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On Sparse Linear Regression in the Local
Differential Privacy Model

Di Wang , Student Member, IEEE, and Jinhui Xu, Member, IEEE

Abstract— In this paper, we study the sparse linear regression
problem under the Local Differential Privacy (LDP) model.
We first show that polynomial dependency on the dimensionality
p of the space is unavoidable for the estimation error in both non-
interactive and sequential interactive local models, if the privacy
of the whole dataset needs to be preserved. Similar limitations
also exist for other types of error measurements and in the
relaxed local models. This indicates that differential privacy in
high dimensional space is unlikely achievable for the problem.
With the understanding of this limitation, we then present two
algorithmic results. The first one is a sequential interactive LDP
algorithm for the low dimensional sparse case, called Locally
Differentially Private Iterative Hard Thresholding (LDP-IHT),
which achieves a near optimal upper bound. This algorithm is
actually rather general and can be used to solve quite a few other
problems, such as (Local) DP-ERM with sparsity constraints
and sparse regression with non-linear measurements. The second
one is for the restricted (high dimensional) case where only the
privacy of the responses (labels) needs to be preserved. For this
case, we show that the optimal rate of the error estimation can
be made logarithmically dependent on p (i.e., log p) in the local
model, where an upper bound is obtained by a label-privacy
version of LDP-IHT. Experiments on real world and synthetic
datasets confirm our theoretical analysis.

Index Terms— Sparse linear regression, local differential
privacy.

I. INTRODUCTION

L INEAR regression is a fundamental and classical tool for
data analysis, and finds numerous applications in social

sciences [2], genomics research [3] and signal recovery [4].
One frequently encountered challenge for such a technique
is how to deal with the high dimensionality of the dataset,
such as those in genomics, educational and psychological
research. A commonly adopted strategy for dealing with such
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an issue is to assume that the unknown regression vector is
sparse.

Another often encountered challenge for linear regression is
how to handle sensitive data, such as those in social science.
As a commonly-accepted approach for preserving privacy,
differential privacy [5] provides provable protection against
identification and is resilient to arbitrary auxiliary information
that might be available to attackers. Methods to guarantee
differential privacy have been widely studied, and recently
adopted in industry [6]–[8].

Two main user models have emerged for differential pri-
vacy: the central model and the local one. In the central
model, data are managed by a trusted central entity which
is responsible for collecting them and for deciding which
differentially private data analysis to perform and to release.
A classical application of this model is the one of census
data. In the local model instead, each individual manages
his/her proper data and discloses them to a server through
some differentially private mechanisms. The server collects the
(now private) data of each individual and combines them into
a resulting data analysis. A classical example of this model
is the one aiming at collecting statistics from user devices
like in the case of Google’s Chrome browser [7], and Apple’s
iOS-10 [6], [8].

Despite being used in industry, the local model has been
much less studied than the central one. Part of the reason for
this is that there are intrinsic limitations in what one can do in
the local model. As a consequence, many basic questions, that
are well studied in the central model, have not been completely
understood in the local model, yet.

To advance our understanding on the local model, we study,
in this paper, the locally differentially private version of the
sparse linear regression problem, where each user i ∈ [n] holds
a data record (xi, yi) ∈ R

p × R. There are two commonly
used ways for measuring the performance of this problem,
which correspond to two different settings, the statistical
learning and the statistical estimation settings. For the first
setting, the measurement is based on the optimization error, i.e.
F (θpriv)−minθ∈C F (θ), where F (θ) = E(x,y)∼P(�x, θ�−y)2,
and P is an unknown distribution. For the second setting, y is
assumed to be y = �x, θ∗� + σ, where x ∼ D, D is a known
distribution, σ is a random noise, and θ∗ ∈ R

p is the to-be-
estimated vector that satisfies the condition of �θ∗�0 ≤ s. The
estimation error for this setting is represented by the loss of the
squared �2 norm, i.e., �θpriv−θ∗�2

2. In this paper, we will focus
on the latter setting, and assume that x ∼ Uniform{+1,−1}p.
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Our contributions can be summarized as follows:

• We first present a negative result which suggests that the
� non-interactive private minimax risk of �θpriv − θ∗�2

2 is
lower bounded by Ω(p log p

n�2 ) if the privacy of the whole
dataset {(xi, yi)}n

i=1 needs to be preserved. This indicates
that it is impossible to obtain any non-trivial error bound
in high dimensional space (i.e. p � n). The private
minimax risk is still lower bounded by Ω( p

n�2 ), even in
the sequentially interactive local model. Our proofs are
based on a locally differentially private version of the
Fano and Le Cam method [9]–[11]. We further reveal
that this polynomial dependency on p cannot be avoided
even if the measurement of the loss function or definitions
of differential privacy is relaxed.

• With the understanding of this limitation, we then pro-
pose an �-sequential interactive LDP algorithm for the
low dimensional sparse case, called Locally Differen-
tially Private Iterative Hard Thresholding (LDP-IHT),
which achieves a near optimal upper bound. Further-
more, we show that the idea of DP-IHT is actually
rather general and can be used to achieve differential
privacy for quite a few other problems. Specifically,
it can be applied to the (Locally) Differentially Private
Empirical Risk Minimization (DP-ERM) problem with
sparsity constraints, and achieves an upper bound that
depends only logarithmically on p (i.e., log p) and the
sparsity parameter of the optimal estimator, making it
suitable for applications in high dimensions. To our best
knowledge, this is the first paper studying DP-ERM with
non-convex constraint set. Another application of LDP-
IHT is the sparse regression problem with non-linear
measurements [12], [13].

• We also give a positive result for high dimensions.
Particularly, we consider the restricted case where only
the responses (labels) are required to be private, i.e., the
dataset {xi}n

i=1 is assumed to be public and {yi}n
i=1 is

private (note that this is a valid assumption as shown in
[14], [15]). For this case, we propose a general algorithm
which achieves an upper bound of O( s log p

n�2 ) for the
estimation error. We show that this bound is actually
optimal, as the � non-interactive private minimax risk can
also be lower bounded by Ω( s log p

n�2 ).
• Finally, we perform our algorithms on both synthetic and

real world datasets. Experimental results also support our
theoretical analysis.

II. RELATED WORK

There is a vast number of existing results studying the
differentially private linear regression problem (or more gener-
ally, DP-ERM) from different perspectives, such as [16]–[22].
Below, we focus only on those with theoretical guarantees on
the error.

For the central model, [18] recently conducted a compre-
hensive study, from both theoretical and practical points of
views, on the differentially private linear regression prob-
lem. The author gave upper bounds of the optimization error
in the statistical learning setting and the estimation error in

the statistical estimation setting, as well as a general lower
bound of the optimization error. There are also other works
on this problem (we refer the reader to the Related Work
section in [18] for more details). But all these results are
only for the low dimensional case (i.e. the dimensionality
p is a small constant number). Contrarily, we study mainly,
in this paper, the high dimensional sparse case under the
statistical estimation setting and provide both upper and lower
bounds of the estimation error for the non-interactive and
sequentially interactive models. A couple of results also exist
for the high dimensional sparse linear regression problem in
the central model [20], [23]; but all of them consider only
the optimization error. [24] studied the problem of Bayesian
linear regression, which is incomparable to our problem.
Reference [19] focused the confidence interval of Ordinary
Linear Regression while we mainly focus on the estimation
error. It is notable that recently [25] studied the optimal
rates of the estimation error of linear regression in both low
dimension and high dimensional sparse settings. Specifically,
for (�, δ)-DP, they showed that in the low dimension setting,

the near optimal rate of estimation error is Õ(
√

p
n+ p

√
log 1/δ

n� ),

while in the high dimensional setting it is Õ(
√

s log p
n +

s log p
√

log 1/δ

n� ), here Õ-term omits logn factor. We will
show more details in Remark 2 for the comparison between
sparse linear regression in the central model and the local
model.

Unlike the central model where tremendous progresses have
been made, linear regression in the local model is still not well
understood. The only known results are [9], [10], [21], [26].
Reference [9] studied the low dimensional, non-interactive
private minimax risk of the estimation error for the restricted
case of keeping the responses private, while we consider the
high dimensional case of the problem in the interactive local
model. Reference [21] gave the optimal lower bound of the
optimization error, Θ(

√
p

n�2 ), for the low dimensional case
which was later improved to O(( log p

n�2 )
1
4 ) by [26], [27] in the

case where the constraint set is a unit �1 norm ball. However,
their settings are different from ours since they all assume
that the norm of xi is bounded by 1, i.e. �xi�2 ≤ 1, while
in our statistical setting, �xi�2 =

√
p. Thus, our results are

incomparable with theirs.
DP-ERM has been studied in [9], [27]–[32] under different

settings. However, none of these considered the non-convex
constraint case.

To proof the low bounds in this paper, we mainly use private
version of the Fano and Le Cam method, which are initially
given by [9]–[11]. Based on different settings or problems,
there are different versions of private Fano and Le Cam
method. For example, [33] proposed a generalized private
Assouad method to deal with the lower bounds of some
matrix estimation problems in the local differential privacy
model. Reference [34] proposed private Fano, Le Cam and
Assouad method under central differential privacy. Reference
[35] proved lower bounds for various testing and estimation
problems under local differential privacy using a notion of chi-
squared contractions based on Le Cam’s method and Fano’s
inequality.
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III. PRELIMINARIES

In this section, we introduce some definitions that will
be used throughout the paper. More details can be found in
Section A of Appendix or [10].

A. Classical Minimax Risk

Since all of our lower bounds are in the form of private min-
imax risk, we first introduce the classical statistical minimax
risk before discussing the locally private version.

Let P be a class of distributions over a data universe X .
For each distribution p ∈ P , there is a deterministic function
θ(p) ∈ Θ, where Θ is the parameter space. Let ρ : Θ ×
Θ :
→ R+ be a semi-metric function on the space Θ and
Φ : R+ 
→ R+ be a non-decreasing function with Φ(0) = 0
(in this paper, we assume that ρ(x, y) = |x−y| and Φ(x) = x2

unless specified otherwise). We further assume that {Xi}n
i=1

are n i.i.d observations drawn according to some distribution
p ∈ P , and θ̂ : Xn 
→ Θ be some estimator. Then the minimax
risk in metric Φ ◦ ρ is defined by the following saddle point
problem:

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
p∈P

Ep[Φ(ρ(θ̂(X1, · · · , Xn), θ(p))],

where the supremum is taken over distributions p ∈ P and the
infimum over all estimators θ̂.

B. Local Differential Privacy and Private Minimax Risk

Since we will consider the sequential interactive and non-
interactive local models in this paper, we follow the definitions
in [9].

We assume that {Zi}n
i=1 are the private observations trans-

formed from {Xi}n
i=1 through some privacy mechanisms.

We say that the mechanism is sequentially interactive, when
it has the following conditional independence structure:

{Xi, Z1, · · · , Zi−1} 
→ Zi, Zi−=Xj | {Xi, Z1, · · · , Zi−1}
for all j 
= i and i ∈ [n], where −= means independent
relation. The full conditional distribution can be specified in
terms of conditionals Qi(Zi | Xi = xi, Z1:i−1 = z1:i−1).
The full privacy mechanism can be specified by a collection
Q = {Qi}n

i=1.
When Zi is depending only on Xi, the mechanism is called

non-interactive and in this case we have a simpler form for
the conditional distributions Qi(Zi | Xi = xi). We now
define local differential privacy by restricting the conditional
distribution Qi.

Definition 1 [9]: For given privacy parameters � > 0, δ ≥
0, the random variable Zi is an (�, δ) sequentially locally
differentially private view of Xi if for all z1, z2, · · · , zi−1 and
x, x� ∈ X we have the following for all the events S:

Qi(Zi ∈ S | Xi = xi, Z1:i−1 = z1:i−1) ≤
e�Qi(Zi ∈ S | Xi = x�i, Z1:i−1 = z1:i−1) + δ.

If δ = 0, we will omit the term of δ (the same for other
definitions).

We say that the random variable Zi is an (�, δ) non-
interactively locally differentially private view of Xi if

Qi(Zi ∈ S | Xi = xi) ≤ e�Qi(Zi ∈ S | Xi = x�i) + δ.

We say that the privacy mechanism Q = {Qi}n
i=1 is (�, δ)-

sequentially (non-interactively) locally differentially private
(LDP) if each Zi is a sequentially (non-interactively) locally
differentially private view.

For a given privacy parameter � > 0, let Q� be the set
of conditional distributions that have the �-LDP property. For
a given set of samples {Xi}n

i=1, let {Zi}n
i=1 be the set of

observations produced by any distribution Q ∈ Q�. Then, our
estimator will be based on {Zi}n

i=1, that is, θ̂(Z1, · · · , Zn).
This yields a modified version of the minimax risk:

Mn(θ(P),Φ◦ρ,Q) :=inf
θ̂

sup
p∈P

Ep[Φ(ρ(θ̂(Z1, · · · , Zn), θ(p))].

From the above definition, it is natural for us to seek
the mechanism Q ∈ Q� that has the smallest value for
the minimax risk. This allows us to define functions that
characterize the optimal rate of estimation in terms of privacy
parameter �.

Definition 2: Given a family of distributions θ(P) and a
privacy parameter � > 0, the � sequential private minimax
risk in the metric Φ ◦ ρ is:

MInt
n (θ(P),Φ ◦ ρ, �) := inf

Q∈Qε

Mn(θ(P),Φ ◦ ρ,Q),

where Q� is the set of all � sequentially locally differentially
private mechanisms. Moreover, the � non-interactive private
minimax risk in the metric Φ ◦ ρ is:

MNint
n (θ(P),Φ ◦ ρ, �) := inf

Q∈Qε

Mn(θ(P),Φ ◦ ρ,Q),

where Q� is the set of all � non-interactively locally differen-
tially private mechanisms.

IV. PROBLEM SET-UP

The focus of this paper is the sparse linear regression
problem. In this problem, we have n pair of observations
{(xi, yi)}n

i=1, where each (xi, yi) ∈ R
p × R. Moreover, there

is some unknown parameter vector θ∗ ∈ R
p that links each

pair (xi, yi) by the standard linear model

yi = �xi, θ
∗� + σi,

where |σi| ≤ C is observation noise and C > 0 is some
constant. Here θ∗ satisfies the sparsity constraint, meaning that
θ∗ has no more than s � p non-zero entries. The goal is to
estimate the unknown vector θ∗ based on these n observations
while also under the local differential privacy constraint.
Specifically, we want to find an estimator θpriv via some
locally differentially private algorithm to make its estimation
error �θpriv−θ∗�2

2 be as small as possible. Specifically, in this
paper we will focus on the following collection of samples
(x, y) ∈ {+1,−1}p × R:

Ps,p,C = {Pθ,σ | x ∼ Uniform{+1,−1}p, y = �θ, x� + σ,

where σ is the random noise s.t E[σ|x] = 0, |σ| ≤ C

for some constant C > 0, �θ�2 ≤ 1, �θ�0 ≤ s}. (1)

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 29,2021 at 01:34:20 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND XU: ON SPARSE LINEAR REGRESSION IN THE LOCAL DIFFERENTIAL PRIVACY MODEL 1185

In the above definition, σ is sampled from a bounded stochastic
noise domain such as uniform distribution and could depend
on x.

It is notable that in the non-private setting, [36]
showed the following optimal minimax rate Mn(θ(Ps,p,C),
� · �2

2) = Θ(C2s log p
s

n ).
It is worth noting that there is some difference between

our model (1) and the sub-Gaussian linear model, which is
a classic model in statistics [36]. That is, here x is assumed
to follow a uniform distribution (which is an often adopted
assumption in estimating lower bounds in differential privacy
[37]) in our model, while it is often sampled from general sub-
Gaussian distribution in a sub-Gaussian model. Even though
the uniform distribution can be viewed as a sub-Gaussian
distribution, the way of using it in our paper is different.

V. KEEPING THE WHOLE DATASET PRIVATE

A. Lower Bounds of Private Minimax Risk

In this section, we investigate the private minimax risk in
the case where the whole dataset {(xi, yi)}n

i=1 needs to be
locally private, and show that even if the parameter vector θ∗

is 1-sparse, the polynomial dependence on the dimensionality
p in the estimation error cannot be avoided. This implies
that achieving �-LDP for the high dimensional sparse linear
regression problem is unlikely.

To show the limitations of the problem with respect to the
private minimax risk, we first give some intuition. Consider a
raw data record (xi, yi) which is sampled from some Pθ,σ ∈
P1,p,C , where P1,p,C has the form as in (1). Suppose that we
want to use a Gaussian or Laplacian mechanism on (xi, yi)
in order to make the algorithm locally differentially private.
Then, due to sensitivity, the �1 or �2 norm of (xi, yi) is a
polynomial of p. The scale of the added random noise will
also be a polynomial of p, which makes the final estimation
error large.

The following theorem indicates that for some fixed privacy
parameter � ∈ (0, 1), the optimal rate of the � non-interactive
private minimax risk is lower bounded by Ω(min{1, p log p

n�2 }).
Theorem 1: For a given fixed privacy parameter � ∈ (0, 1

2 ],
the � non-interactive private minimax risk (measured by the
� · �2

2 metric) of the 1-sparse high dimensional sparse lin-
ear regression problem P1,p,2 needs to satisfy the following
inequality,

MNint
n (θ(P1,p,2), � · �2

2, �) ≥ Ω(min{1, p log p
n�2

}). (2)

With the above theorems, our question now is to determine
whether there are other factors in the local model that might
allow us to avoid the polynomial dependency on p in the
estimation error.

We first consider the necessity of interaction in the model,
since for some problems, such as convex Empirical Risk
Minimization (ERM), there exists a large gap in the estimation
error between the interactive and non-interactive local mod-
els [21]. The following theorem suggests that even if sequential
interaction is allowed in the local model, the polynomial
dependence on p is still unavoidable. Note that sequential
interaction is a commonly used model in LDP [9], [21].

Theorem 2: For a given fixed privacy parameter � ∈ (0, 1
2 ],

the � sequential private minimax risk (measured by the � · �2
2

metric) of the 1-sparse high dimensional sparse linear regres-
sion problem P1,p,2 needs to satisfy the following inequality,

Mint
n (θ(P1,p,2), � · �2

2, �) ≥ Ω(min{1, p

n�2
}). (3)

Remark 1: Since the lower bound of the non-private mini-
max risk is O( log p

n ) [36], we conjecture that the lower bound
in Theorem 2 is not tight and the tightest bound should be
O(p log p

n�2 ), which is the same as Theorem 1. Later, we will
propose a near optimal algorithm (compared with (3)) in
Section V-B and leave the problem of finding a tighter lower
bound as future research.

Corollary 1: Recently, [38] proposed a general framework
which could transfer any k-compositional fully interactive
LDP algorithm to sequentially interactive LDP algorithm with
an O(k) blowup in the same complexity. Combining with
Theorem 2, we can claim that even in the O(p)-compositional
fully interactive LDP model, the dependence on the polyno-
mial of the dimensionality p still cannot be avoided.

Remark 2: Recently [25] studied the lower bound of linear
regression with statistical error in both low and high dimen-
sional case under central (�, δ)-DP model. Specifically, they
show that for s-sparse high dimensional case, the private
minimax risk under the �2 norm measurement is lower bound

by Ω(
√

s log p
n + s log p

√
log 1/δ

n� ) while for the low dimensional

case it is lower bounded by Ω(
√

p
n + p

√
log 1/δ

n� ), all of
these bounds are optimal up to factors of Poly(logn). From
Theorem 1 and 2, we can see that for sparse linear regression
problem, LDP and DP are quite different.

Then, we investigate whether the loss function in the
estimation error is too strong. For example, if let θ∗ = ej

and the private estimator θpriv = ei for some i 
= j, then by
the squared �2 norm loss, we have �θpriv−θ∗�2

2 = 2. Since it is
possible to get |�1, θpriv − θ∗�| = 0, this seems to suggest that
relaxing the loss function could possibly lower the dependency
on p. However, our next theorem gives a negative answer.

Theorem 3: Consider the loss function L : Θ × Θ 
→ R+,
where L(θ, θ�) = |1T (θ − θ�)|. Then, for any fixed � ∈ (0, 1

2 ],
the � sequential private minimax risk of the loss function L in
the 1-sparse high dimensional sparse linear regression problem
P1,p,2 needs to satisfy the following inequality,

Mint
n (θ(P1,p,2), L, �) ≥ Ω(min{1,

√
p

n�2
}). (4)

Finally, we consider the possibility of lowering the depen-
dence of p by relaxing the definition of � local differential
privacy. This is motivated by the following fact in the cen-
tral model, where there is a big difference between � and
(�, δ)-differential privacy for a number of problems, such as
the Empirical Risk Minimization [39] and the 1-way mar-
ginal [37]. However, as shown in a recent study [40], any
non-interactive (�, δ)-LDP protocol can be transformed to an
�-LDP protocol. This implies that relaxing to (�, δ) LDP
cannot avoid the polynomial dependence.

To further investigate the problem, we consider other types
of relaxation for LDP, such as Local Rényi Differential Privacy
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(LRDP) [41] and Local Zero-Concentrated Differential Privacy
(LzCDP) [42]. The following theorem shows that the lower
bounds on the minimax risk of the (2, log(1 + �2)) sequential
LRDP and (κ, ρ) sequential LzCDP still have polynomial
dependence on p.

We first recall the definitions of Rényi Differential Privacy
and Zero-Concentrated Differential Privacy and then extend
them to the sequentially interactive model. For any α ≥ 1,
we denote the Rényi divergence of distribution P and Q as

Dα(P�Q) =
1

α− 1
log

∫
(
dP

dQ
)αdQ.

For α = 1, it is just the KL-divergence.
Definition 3: Similar to the Definition of local differen-

tial privacy, a random variable Zi is a (κ, ρ) locally zero-
concentrated differentially private view of Xi if for all α > 1,
z1, z2, · · · , zi−1 and x, x� ∈ X ,

Dα(Qi(Zi∈S |xi, z1:i−1)�Qi(Zi∈S | x�i,= z1:i−1))≤κ+ρα

holds for all events S. Similar to the locally differentially
private case, we have (κ, ρ) local zero-concentrated differen-
tial privacy (LzCDP) and (κ, ρ) sequential zero-concentrated
differential private minimax risk (sequential zCDP minimax
risk).

Definition 4: Similarly, we have (α, �) local Rényi differ-
ential privacy and (α, �) (sequential) Renyi differential private
minimax risk (called sequential RDP minimax risk) if

Dα(Qi(Zi ∈ S | xi, z1:i−1)�Qi(Zi ∈ S | x�i, z1:i−1)) ≤ �.

Theorem 4: For given fixed privacy parameters 0 < � ≤
1, κ, ρ > 0, the (κ, ρ) sequential zCDP minimax risk (under
the � · �2

2 metric) of the 1-sparse high dimensional sparse
linear regression problem P1,p,2 needs to satisfy the following
inequality,

Mint
n (θ(P1,p,2), � · �2

2, (κ, ρ)) ≥ Ω(min{1, p

n(eκ+2ρ − 1)
}).

The (2, log(1 + �2)) sequential RDP minimax risk (under the
� · �2

2 metric) of the 1-sparse high dimensional sparse linear
regression problem P1,p,2 needs to satisfy :

Mint
n (θ(P1,p,2), � · �2

2, (2, log(1 + �2))) ≥ Ω(min{1, p

n�2
}).

B. Near Optimal Upper Bound for Sequential
Interactive Local Model

With the understanding of the limitation in high dimensions,
we focus, in this section, on the low dimensional sparse case
(i.e., n ≥ Ω( p

�2 )) and propose an � sequential interactive LDP
algorithm that achieves a near optimal upper bound on the
estimation error (compared with (3)). Instead of considering
the 1-sparse case as in Theorem 2, we study here the general
case, that is, {(xi, yi)}n

i=1 ∼ Pθ∗,σ , where Pθ∗,σ ∈ Ps∗,p,C ,
and assume that some upper bound of s∗ is already known.

Our method is called Locally Differentially Private Iterative
Hard Thresholding (LDP-IHT), which is a locally differen-
tially private version of the traditional Iterative Hard Thresh-
olding method [43]. We consider the following more general

optimization problem, with the intention to extend it to other
problems (see Section VII),

minL(θ;D) =
1
2n

n∑
i=1

(�xi, θ� − yi)2

s.t.�θ�2 ≤ 1, �θ�0 ≤ s. (5)

The key ideas for solving (5) in our Algorithm 1 are the
follows. First, we partition the users into T groups {St}T

t=1

(where the value of T will be specified later). Then, in the i-th
iteration, each user receives the current estimator θi−1, and all
users in group Si conduct the �-LDP randomizer procedure
[10] on their current gradients xT

i (�xi, θi−1� − yi) (see below
for the definition of the Randomizer). After receiving the
noisy version of the gradient from each user, the server runs
the iterative hard thresholding algorithm and produces a new
estimator. That is, it executes first a gradient descent step,
and then a truncation step θ�t+1 = Trunc(θ̃t+1, s), where
the truncation function simply keeps the largest s entries
of θ̃t+1 (in terms of the magnitude) and converts the rest
of the entries to zero. This can be done by first sorting
{|θ̃t+1,j|}p

j=1, where θ̃t+1,j is the j-th coordinate of the vector,
then keeping the s-largest ones, and making the entries of all
other coordinates 0. Finally, the algorithm projects θ�t+1 onto
the unit �2 norm ball B1.

a) Randomizer Rr
� ( · ) [10]: On input x ∈ R

p, where
�x�2 ≤ r, the randomizer R�(x) does the following. It first
sets x̃ = brx

�x�2
where b ∈ {−1,+1} a Bernoulli random

variable Ber(1
2 + �x�2

2r ). We then sample T ∼ Ber( eε

eε+1 ) and
outputs O(r

√
p)R�(x), where

R�(x) =

{
Uni(u ∈ S

p−1 : �u, x̃� > 0) if T = 1
Uni(u ∈ S

p−1 : �u, x̃� ≤ 0) if T = 0
(6)

Using the same proof as in [21] we can show that each
coordinate of the the randomizer Rr

�(x) is sub-Gaussian.
Lemma 1 [21]: Given any vector x ∈ R

p, where �x�2 ≤ r,
each coordinate of the randomizer Rr

�(x) defined above is a
sub-Gaussian random vector with variance σ2 = O( r2

�2 ) and
E[R�(x)] = x.

Before giving the theoretical analysis of Algorithm 1,
we first show the assumption of the partitioned datasets
{XSt}T

t=1.
Assumption 1: {XSt}T

t=1 satisfies the Restricted Isometry
Property (RIP) with parameter 2s+ s∗, where s = 8s∗. That
is, for any v ∈ R

p with �v�0 ≤ 2s+s∗, there exists a constant
Δ which satisfies (1−Δ)�v�2 ≤ 1

|St|�XStv�2
2 ≤ (1+Δ)�v�2

2

for any t ∈ [T ].
Note that for an m × p matrix X = (xT

1 , · · · , xT
m)T ∼

Uniform{+1,−1}m×p, it satisfies the RIP condition (with
parameter s∗) with probability at least 1 − � if m ≥
cΔ−2(s∗ log p + ln(1/�)) for some universal constant c
(see Theorem 2.12 in [44]). Thus, with probability at
least 1 − ξ, {XSt}T

t=1 satisfies Assumption 1 if n ≥
Ω(Δ−2(Ts∗ log p log T

ξ )). Later, we will see that T =
O(log n). Thus, in order to ensure that Assumption 1 and
n ≥ Ω( p

�2 ) hold, we need to assume that n
log n ≥ Ω(ps∗ log p

�2 ).
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Algorithm 1 LDP-IHT

Input: Private data records {(xi, yi)}n
i=1 ∼ Pθ∗,σ, where

Pθ∗,σ ∈ Ps∗,p,C , iteration number T , privacy parameter �,
step size η. Set θ0 = 0. s = 8s∗.
1: For t = 1, · · · , T , define the index set St = {(t −

1)
⌊

n
T

⌋
, · · · , t ⌊ n

T

⌋ − 1}; if t = T , then St =
St

⋃{t ⌊ n
T

⌋
, · · · , n}.

2: for t = 1, 2, · · · , T do
3: The server sends θt−1 to all the users. Every use i,

i ∈ St, conducts the following operation: let ∇i =
xT

i (�θt−1, xi� − yi), compute zi = Rr
�(∇i), where Rr

�

is the randomizer defined above with r = O(C
√
p) and

send back to the server.
4: The server compute ∇̃t−1 = 1

|St|
∑

i∈St
zi.

5: Perform the gradient descent updating θ̃t = θt−1 −
η∇̃t−1.

6: θ�t = Trunc(θ̃t−1, s).
7: θt = argθ∈B1

�θ − θ�t�2
2.

8: end for
9: Return θT

Theorem 5: For any � > 0, Algorithm 1 is � sequentially
interactive LDP. Moreover, under Assumption 1 with Δ =
O(1) and n

log n ≥ Ω(ps∗ log p
�2 ), if {(xi, yi)}n

i=1 ∼ Pθ∗,σ, where
Pθ∗,σ ∈ Ps∗,p,C , then by taking s = 8s∗ and η = O(1),
the output θT of the algorithm satisfies

�θT − θ∗�2 ≤ (
1
2
)T �θ∗�2 +O(

C
√
p log p

√
T
√
s∗√

n�
), (7)

with probability at least 1 − 2T
pc for some constant c > 0.

Note that Theorem 5 shows that if s∗ = 1, T =
O(log n�2

p log p ), then �θT − θ∗�2
2 = O(p log p log n

n�2 ). Compared
with the lower bound in Theorem 2, it is an optimal upper
bound up to a factor of

√
log p.

We notice that recently [45] also used IHT to distributed
DP-sparse PCA. However, compared with theirs, our method
is �-sequentially LDP while theirs is (�, δ)-fully interactive
LDP. Thus, the algorithms are quite different.

VI. KEEPING THE RESPONSES PRIVATE

In this section, we consider a restricted case where only the
responses or labels (i.e., {yi}n

i=1) are required to be locally
differentially private and all the observations {xi}n

i=1 are
assumed to be public. Preserving the privacy of the labels has
been studied in [14], [15] for private PAC learning. We also
note that keeping the responses private is related to some issues
of physical sensory data and the sparse recovery problem,
which has been studied in [46]. In this case, we can actually
assume that {xi}n

i=1 ∼ Uniform({+1,−1}p)n are public, and
the collection of probability Ps,p,C in (1) is now reduced to
the following model:

P �
s,p,C = {Pθ,σ(y1, · · · , yn) | yi = �θ∗, xi� + σi,

where �θ�0 ≤ s, �θ�2 ≤ 1 and the random noise |σi| ≤ C}.
(8)

Algorithm 2 Label-LDP-IHT

Input: Public dataset {xi}n
i=1, private {yi}n

i=1 ∈ Pθ∗,σ,
where Pθ∗,σ ∈ P �

s∗,p,C , �, δ are privacy parameters, T is the
number of iteration, η is the step size, and s = 8s∗. Set
θ0 = 0.
1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼ N (0, τ2), τ2 =

32C2 ln(1.25/δ)
�2 .

3: end for
4: for t = 0, 1, · · · , T − 1 do
5: θ̃t+1 = θt − η( 1

n

∑n
i=1(ỹi − �xi, θt�)xT

i ).
6: θ�t+1 = Trunc(θ̃t+1, s).
7: θt+1 = argθ∈B1

�θ − θ�t+1�2
2.

8: end for
9: Return θT .

The following theorem shows that, for every set of data
{(xi, yi)}n

i=1, if only {yi}n
i=1 needs to be private, then there

is an (�, δ) non-interactively locally differentially private algo-
rithm DP-IHT, which yields a non-trivial upper bound on the
squared �2 norm of the estimation error (see Algorithm 2).
More specifically, the algorithm first perturbs each yi by
Gaussian noise to ensure that it is (�, δ)-LDP. Then, it performs
the classical IHT procedure on the server side. Note that we
can combine our algorithm with the protocol in [40] to obtain
an � non-interactive LDP algorithm.

Assumption 2: X = (xT
1 , · · · , xT

n )T ∈ {−1,+1}n×p sat-
isfies the Restricted Isometry Property (RIP) with parameter
2s + s∗, where s = 8s∗. That is, for any v ∈ R

p with
�v�0 ≤ 2s + s∗, there exists a constant Δ which satisfies
(1 − Δ)�v�2 ≤ 1

n�Xv�2
2 ≤ (1 + Δ)�v�2

2.
Theorem 6: For any 0 < � ≤ 1 and 0 < δ < 1, Algorithm 2

is (�, δ) (non-interactively) locally differentially private for
{yi}n

i=1. Moreover, if X satisfies Assumption 2 with 0 <
Δ ≤ 2

7 , then by setting s = 8s∗ in Algorithm 2, there is
an η = η(Δ) which ensures that the output θT satisfies the
following inequality with probability at least 1−exp(−n)− 2

pc

�θT − θ∗�2 ≤ (
1
2
)T �θ∗�2 +O(

C log(1/δ)
√
s∗ log p√

n�
). (9)

Note that if T = O(log
√

n�

C
√

s∗ log p
) in (9), we have �θT −

θ∗�2
2 ≤ O(C2 s log p

n�2 ). Compared with the bounds in Theorem 1
and 2, the dependency on p is reduced from polynomial
to logarithmic, which makes it suitable for handling high
dimensional data. We note that the term O( s log p

n ) also appears
in the optimal minimax rate of the high dimensional sparse
sub-Gaussian linear model [36].

Also note that after obtaining {(xi, ỹi)}n
i=1, we can

get another private estimator, which has the same
upper bound of O( s log p

n�2 ), by performing Lasso
θpriv ∈ argθ∈Rp{ 1

2n

∑n
i=1(ỹi − �θ, xi�)2 + λ�θ�1}, for

some λ = O(
√

log p
n�2 ) [47]. However, we would like to point

out that our algorithm is more practical and can be extended
to the case of non-linear measurements.
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With the above theorem, a natural question is to deter-
mine whether the upper bound in Theorem 6 can be further
improved. The following theorem (adopted from [36]) suggests
that it is actually tight as the � non-interactive local private
minimax risk (under the � · �2 metric) is lower bounded by
Ω(C2s∗ log p

n�2 ).
Theorem 7: Under Assumption 2 and for a given fixed

privacy parameter � ∈ (0, 1
2 ], the � non-interactive local private

minimax risk (under the � · �2 metric) satisfies the following
inequality if only {yi}n

i=1 needs to be kept locally private

MNint
n (θ(P �

s,p,C), � · �2
2, �) ≥ Ω

(
min{1, C

2s log p
s

n�2(1 + Δ)
}).

VII. EXTENSION TO OTHER PROBLEMS

As mentioned earlier, the (Local) DP-IHT method is actu-
ally quite general for achieving differential privacy. In this
section, we extend it to other problems. Specifically, we use
it to the DP-ERM problem 1 under some sparsity constraint
and the sparse regression problem with non-linear monotone
measurements.

A. ERM With Sparsity Constraint

We start with reviewing some definitions of DP-ERM.
Definition 5 (DP-ERM [48] ): Given a dataset D =

{z1, · · · , zn} from a data universe X , a loss function �(·, ·)
and a constraint set C ⊆ R

p, DP-ERM is to find xpriv so as to
minimize the empirical risk, i.e. L(x;D) = 1

n

∑n
i=1 �(x, zi)

with the guarantee of being differentially private [5]. The
utility of the algorithm is measured by the expected excess
empirical risk, that is EA[L(xpriv;D)] − minx∈C L(x;D),
where the expectation of A is taking over all the randomness
of the algorithm.
Here, in the Differential Privacy (DP) model, data are managed
by a trusted central entity which is responsible for collecting
them and for deciding which differentially private data analysis
to perform and to release.

Definition 6 (Differential Privacy [5]): Given a data uni-
verse X , we say that two datasets D,D� ⊆ X are neighbors
if they differ by only one entry, which is denoted as D ∼ D�.
A randomized algorithm A is (�, δ)-differentially private (DP)
if for all neighboring datasets D,D� and for all events S in
the output space of A, the following holds

P(A(D) ∈ S) ≤ e�
P(A(D�) ∈ S) + δ.

When δ = 0, A is �-differentially private.
In this section, we consider the sparsity-constrained (�, δ)

DP-ERM problem. That is, the constraint set C is defined as
C = {x : �x�0 ≤ k}, where �x�0 denotes the number of
non-zero entries in vector x. We note that such a formu-
lation encapsulates several important problems such as the
�0-constrained linear/logistic regression [49].

We first introduce some assumptions to the loss function,
which are commonly used in the research of ERM under the
sparsity-constrained optimization.

1It is easy to extend to LDP model

Algorithm 3 DP-IHT
Input: Initial point x0, learning rate η, empirical risk
L(x;D), privacy parameters 1 > �, δ > 0, and iteration
number T .
1: for t = 0, 1, · · · , T − 1 do
2: Let x̃t+1 = xt − η(∇L(xt;D) + zt), where zt ∼

N (0, σ2Ip), σ2 = cT log 1
δ G2

n2�2 for some constant c.
3: Let xt+1 = Trun(x̃t+1, k).
4: end for
5: Return xT .

Definition 7 (Restricted Strong Convexity, RSC): A differ-
entiable function f(x) is restricted ρs-strongly convex with
parameter s if there exists a constant ρs > 0 such that for any
x, x� with �x− x��0 ≤ s, we have

f(x) − f(x�) − �∇f(x�), x− x�� ≥ ρs

2
�x− x��2

2.

Definition 8 (Restricted Strong Smoothness, RSS): A
differentiable function f(x) is restricted �s-strong smooth
with parameter s if there exists a constant �s > 0 such that
for any x, x� with �x− x��0 ≤ s, we have

f(x) − f(x�) − �∇f(x�), x− x�� ≤ �s
2
�x− x��2

2.

Assumption 3: Denote x∗ = arg minx∈C L(x;D) and
�x∗�0 = k∗. We assume that the objective function L(x;D)
is ρs-RSC and �(x, z) is �s-RSS for all z ∈ X with parameter
s = 2k + k∗. We also assume that �(x, z) is G-Lipshitz w.r.t
�2 norm for all z ∈ X .

For the sparsity-constrained DP-ERM problem, we follow
the idea in Algorithm 1 to solve the optimization problem (5).
That is, we first execute a DP-Gradient Descent step and then
perform a hard thresholding operation (see Algorithm 3 for
details).

Theorem 8: Under Assumption 3, for any 1 ≥ �, δ > 0,
there exists a constant c > 0 which makes Algorithm 3 (�, δ)-
DP. Moreover, if the sparsity level k ≥ (1 + 64κ2

s)k∗, where
κs = 
s

ρs
, then by setting η = 1

2
s
and T = O(κs log n2�2

k∗ ),
we have

EL(xT ;D) − L(x∗;D) ≤ O(
log n log pk∗ log 1

δ

n2�2
), (10)

where the big O-notation omits the terms of G, ρs and �s.
Remark 3: We note that the upper bound in (10) depends

only logarithmically on p (i.e., logp), rather than polynomially
(i.e., Poly(p)) as in general DP-ERM with (strongly) convex
loss functions [31], [48]. This means that we have obtained a
non-trivial upper bound for the high dimensional case (p� n)
of the problem. Recently, [23], [50] also studied the case
of high dimensional DP-ERM with specified constraint set.
However, there are considerable differences. Firstly, the [23]
paper considers only linear regression and �1-norm Lipshitz
with the constraint set restricted to an �1-norm ball. Secondly,
the [50] paper shows that its upper bound depends only on
the Gaussian width of the underlying constraint set, which
could has sub-linear dependence on p (e.g., for the case of
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the unit �1-norm ball, it is logarithmic in p). However, their
algorithm is based on the mirror descent method, which needs
the constraint set to be convex. But it is non-convex in our
problem. Thus, these previous results are not comparable with
ours.

It would be interesting to find a general condition on the
constraint set such that the upper bound of the problem can
be independent of Poly(p). Also, we note that to achieve the
bound in (10), the gradient complexity of Algorithm 3 needs
to be Õ(nκs), which is quite large. We leave it as an open
problem to make it more practical.

B. Non-Linear Regression

We now study a model with non-linear non-convex measure-
ment: yi = f(�θ∗, xi�) + σ, where f is some known function
and θ∗ is sparse. This model has recently been studied in [12],
[13]. Note that when f is the identity function, it reduces to
the sparse linear regression model. In this paper, we focus on
a special class of functions called (a, b) monotone:

Definition 9: A function f : R 
→ R is (a, b) monotone for
some 0 < a ≤ b if f is differentiable and f �(x) ∈ [a, b] for
all x ∈ R.
Like in the linear model, we also consider the cases of keeping
the whole dataset and only the responses {yi}n

i=1 locally
differentially private.

1) Keeping the Whole Dataset Private: Same as in the linear
model case, we consider the following distribution collection
of samples (x, y) ∈ {+1,−1}p × R:

Ps,p,C,f,a,b ={Pθ,σ |x∼Uniform{+1,−1}p, y=f(�θ, x�)+σ,
where σ is the random noise |σ| ≤ C,C > 0

is some constant �θ�2 ≤ 1, �θ�0 ≤ s, f is (a, b) monotone }.
(11)

We note that when f(x) = x, it reduces to (1).
To obtain an upper bound of the empirical risk, we can

easily extend Algorithm 1 to the non-linear measurement case
(see Algorithm 4) to solve the following problem

minL(θ;D) =
1
n

n∑
i=1

(f(�xi, θ�) − yi)2

s.t.�θ�2 ≤ 1, �θ�0 ≤ s. (12)

Theorem 9: For any � > 0, Algorithm 4 is � sequential
interactive LDP. Moreover, if {XSt} satisfies Assumption
1 with 0 ≤ δ� ≤ 9a2−5b2

14 in Section 4.2 and n
log n ≥

Ω(ps∗ log p
�2 ), and {(xi, yi)}n

i=1 ∼ Pθ∗,σ, where Pθ∗,σ ∈
Ps∗,p,C,f,a,b (we assume a2

b2 ≥ 5
9 ), then after taking s = 8s∗

and η = η(a, b), the output θT satisfies

�θT − θ∗�2 ≤ (
1
2
)T �θ∗�2 +O(

√
p log p

√
T
√
s√

n�
), (13)

with probability at least 1 − 2T
pc for some constant c > 0.

Algorithm 4 LDP-IHT

Input: Private data records {(xi, yi)}n
i=1 ∼ Pθ∗,σ , where

Pθ∗,σ ∈ Ps,p,C,f,a,b, T is the Iteration number, � is the privacy
parameter, and η is the step size. Set θ0 = 0. s is a parameter
to be specified later.
1: For t = 1, · · · , T , define the index set St = {(t −

1)
⌊

n
T

⌋
, · · · , t ⌊ n

T

⌋ − 1}, if t = T , then St =
St

⋃{t ⌊ n
T

⌋
, · · · , n}.

2: for t = 1, 2, · · · , T do
3: The server sends θt−1 to all the users. Every use

i which i ∈ St does the following operation: let
∇i = xT

i f
�(�θt−1, xi�)(f(�θt−1, xi�) − yi), compute

zi = Rr
�(∇i), where Rr

� is the randomizer defined in
the previous section with r = O(bC

√
p) and send back

to the server.
4: The server compute ∇̃t−1 = 1

|St|
∑

i∈St
zi.

5: Do the gradient descent updating θ̃t = θt−1 − η∇̃t−1.
6: θ�t = Trunc(θ̃t, s).
7: θt = argθ∈B1

�θ − θ�t�2
2.

8: end for
9: Return θT

2) Keeping the Labels Private: For a fixed X =
(xT

1 , · · · , xT
n )T ∈ {+1,−1}n×p, we consider the following

collection of distributions:

P �
s,p,C,f,a,b = {Pθ,σ({yi}n

i=1) | yi = f(�θ∗, xi�) + σi,

where �θ�0 ≤ s, �θ�2 ≤ 1, the random noise

|σi|≤C for some constant C>0, and f is (a, b) monotone}.

The following theorem shows the lower bound of the private
minimax risk (under the � · �2

2 metric) with respect to the
above collection of distributions, which is similar to the one
in Theorem 6.

Theorem 10: Under Assumption 2 and for a given fixed
privacy parameter � ∈ (0, 1

2 ], the � non-interactive local private
minimax risk (under the � · �2 metric) in the case of keeping
{yi}n

i=1 locally private satisfies the following inequality

MNint
n (θ(P �

s,p,C,f,a,b), �·�2
2, �)≥Ω(min{1, C2 s log p

s

nb2�2(1+Δ)
}).

Comparing to the lower bound in Theorem 6 in the previous
section, we can see that there is an additional factor of b2 in
Theorem 10, which is due to the fact that the model is more
complicated.

For the upper bound, we adopt a similar approach as in
DP-IHT for linear regression. Particularly, we let L(θ) =
1
2n

∑n
i=1(ỹi − �xi, θ�)2 and then apply the ideas of IHT.

Theorem 11: For any 0 < � ≤ 1 and 0 < δ < 1,
Algorithm 5 is (�, δ) (non-interactively) locally differentially
private for {yi}n

i=1. Moreover, if {yi}n
i=1 ∈ Pθ∗,σ (where

Pθ∗,σ ∈ P �
s∗,p,C,f,a,b with 1 ≥ a

b >
√

5
3 ) and X satisfies

Assumption 1 with 0 < Δ ≤ 9a2−5b2

14 , then by setting s = 8s∗

in Algorithm 5, there is an η = η(Δ) which ensures that the
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Fig. 1. Experimental results on sparse linear regression under LDP while keeping the whole dataset private (Algorithm 1).

Fig. 2. Experimental results on sparse linear regression under LDP while keeping the labels private (Algorithm 2).

Algorithm 5 General DP-Iterative Hard Thresholding

Input: Public dataset {xi}n
i=1, private {yi}n

i=1 ∈ Pθ∗,σ,
where Pθ∗,σ ∈ Ps∗,p,C,f,a,b, �, δ are privacy parameters, T is
the number of iteration, η is the step size, and s is a parameter
to be specified. Set θ0 = 0.
1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼ N (0, τ2), τ2 =

32C2 ln(1.25/δ)
�2 .

3: end for
4: for t = 0, 1, · · · , T − 1 do
5: θ̃t+1 = θt − η∇L(θt).
6: θ�t+1 = Trunc(θ̃t+1, s).
7: θt+1 = argθ∈B1

�θ − θ�t+1�2
2.

8: end for
9: Return θT .

output θT satisfies the following inequality

�θT − θ∗�2 ≤ (
1
2
)T �θ∗�2 + O(

bC log(1/δ)
√
s∗ log p√

n�
),

with probability at least 1 − T exp(−n) − 2T
pc .

VIII. EXPERIMENTS

A. Experiments on Sparse Linear Regression

a) Data Generation: Our data generation process is sim-
ilar to the one in [32]. We first fix a parameter vector θ∗ by
randomly choosing s∗ coordinates, with each of them sampled
independently from a uniform distribution in interval [0, 1],
and setting the remaining coordinates/entries to zero. Then,
we generate the data samples using equation yi = �xi, θ

∗�+σi,
where xi ∈ Uniform{−1,+1}p and σi ∈ Uniform[−C,C].
We assume C = 0.05 in our experiment.

b) Experiment Results: We compare the relative error, i.e.
�θT−θ∗�2

�θ∗�2
, with the sample size n in three different settings,

i.e., under varying dimensionality, sparsity and privacy level,
respectively. We run algorithms Label-LDP-IHT with η =
0.2 or η = 0.1, s = s∗, T = �log n

p �, δ = 10−3 and a
random normal Gaussian vector as the initial point to obtain
θT . For each experiment, we run the algorithm 10 times
and take the one with the lowst relative error as the final
value.

Figure 1 and 2 depict the results of Algorithm 1 and 2,
respectively. From Figure 1, we can see that when the dimen-
sionality and the sparsity level increase or the privacy para-
meter � decreases, the relative error increases, especially when
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Fig. 3. Experimental results on Covertype dataset [52] for �0-constrained logistic regression under (ε, δ)-DP (Algorithm 3).

Fig. 4. Experimental results on rcv1 dataset [51] for �0-constrained logistic regression under (ε, δ)-DP (Algorithm 3).

Fig. 5. Experimental results for sparse regression with non-linear measurement under LDP when keeping the whole dataset private (Algorithm 4).

the sample size n is small. When the sample size increases,
the relative error will decreases. From Figure 2, we can learn
that when the dimensionality p increases, unlike Figure 1,
it does not cause the relative error to change significantly.
This can be explained by the fact that the error bound is only
logarithmically depending on p. Moreover, when the privacy

parameter increases, the relative error decreases. These results
confirm our theoretical claims.

B. Experiments on Sparsity-Constrained DP-ERM

In this section, we test Algorithm 3 on real world
datasets Covertype and rcv1 [51]. Particularly, we study
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Fig. 6. Experimental results for sparse regression with non-linear measurement under LDP when keeping the label private (Algorithm 5).

the sparsity-constrained logistic regression problem with
�(w, z) = log(1 + exp(−yi�w, xi�)) + λ

2 �w�2
2, where yi is

the label of xi. As pre-processing, the data is first normalized.
Since there is no ground truth on real data, we run the algo-
rithm in [32] sufficiently long until �wt − wt+1�2/�wt�2 ≤
10−4 and then use the output L(wt;D) as the approximate
optimal value. With this, we can calculate the optimality gap
of our estimator. In the experiments, we set λ = 10−3,
η = 0.1 and δ = 10−3, and use zCDP [42] to achieve the
(�, δ)-DP.

From Figure 3 and 4, we can see that when the dimen-
sionality p increases, the optimality gap does not change
too much, which is due to the fact that the error bound is
only logarithmically depending on p. Also, when the sparsity
level increases or � decreases, the optimality gap increases.
Clearly, all these experimental results are consistent with
Theorem 8.

C. Tests on Synthetic Datasets for Linear Regression
With Non-Linear Measurements

Our data generation process is similar to the one in [32].
We first fix a parameter vector θ∗ by randomly choosing
s∗ coordinates, with each of them sampled independently
from a uniform distribution in interval [0, 1], and setting the
remaining coordinates/entries to zero. For the case of non-
linear measurements, we assume that yi = f(�xi, θ

∗�) + σi,
where f(x) := 8x + cosx where xi ∈ Uniform{−1,+1}p

and σi ∈ Uniform[−C,C] so that it satisfies the assumptions
in Theorem 9. The results are shown in Figure 6 and 5. We can
see that these results are almost the same as in Figure 1 and 2,
respectively.

IX. CONCLUSION

In this paper, we comprehensively studied the sparse linear
regression problem in the non-interactive and sequential inter-
active local differential privacy models. Specifically, we first
showed that polynomial dependency on the dimensionality
p of the space is unavoidable for the estimation error in
both non-interactive and sequential interactive local models
if the privacy of the whole dataset needs to be preserved,

even if we allow relaxed privacy models and relaxed mea-
surements of error. This is quite different compared with both
of the non-private case and the problem in the central (�, δ)
Differential Privacy model. However, in a restricted (high
dimensional) case where only the privacy of the responses
(labels) needs to be preserved. We showed that the optimal
rate of the error estimation can be made logarithmically
dependent on p (i.e., log p) in the local model, which is quite
similar as in the non-private case. Second, we proposed a
general method which is called Differentially Private Iterative
Hard Thresholding whose output achieve an optimal rate
up to a

√
logn factor. Moreover, we used this method to

solve some other problems, such as (Local) DP-ERM with
sparsity constraints and sparse regression with non-linear
measurements.

APPENDIX

A. Technical Lemmas

For the estimation error, we first give some definitions and
lemmas.

Definition 10: A random variable X is said to be sub-
Gaussian with σ2 if E(X) = 0 and

E[exp(sX)] ≤ exp(
σ2s2

2
), ∀s ∈ R.

For the case that X is a d-dimensional random vector, it is
sub-Gaussian with σ2 if for any unit vector u ∈ S

d−1, uTX
is sub-Gaussian with σ2.

It is well known that if X1, X2, · · · , Xn are all sub-
Gaussian with σ2, then a1X1 + · · · + anXn is sub-Gaussian
with (

∑n
i=1 a

2
i )σ

2.
We can easily see that if x ∼ Uniform{+1,−1}d, x is sub-

Gaussian with σ2 = 1.
Lemma 2 [53]: Let X1, X2, · · · , Xn be n random vari-

ables such that each Xi is sub-Gaussian with σ2. Then the
following holds

Pr[max
i∈n

Xi ≥ t] ≤ ne−
t2

2σ2 ,

Pr[max
i∈n

|Xi| ≥ t] ≤ 2ne−
t2

2σ2 .
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Lemma 3 [32]: For any θ ∈ R
k and an integer s ≤ k,

if θt = Trunc(θ, s) then for any θ∗ ∈ R
k with �θ∗�0 ≤ s,

we have �θt − θ�2 ≤ k−s
k−s∗ |θ∗ − θ�2

2.
Lemma 4: Let K be a convex body in R

p, and v ∈ R
p.

Then for every u ∈ K, we have

�PK(v) − u�2 ≤ �v − u�2,

where PK is the operator of projection onto K.
The following theorem says that when X ∈
Uniform{+1,−1}n×p, with high probability it satisfies
the Restricted Isometry Property if n is sufficiently large.

Lemma 5 (Theorem 2.12 in [44]): Let X ∈ {+1,−1}n×p

be a Bernoulli Random Matrix and ξ,Δ ∈ (0, 1). Assume that

n ≥ CΔ−2(s log(p/s) + log(1/ξ)).

Then with probability at least 1− ξ, X satisfies the Restricted
Isometry Property (RIP) with sparsity level s and parameter
Δ, that is, for every �v�0 ≤ s,

(1 − Δ)�v�2 ≤ 1
n
�Xv�2

2 ≤ (1 + Δ)�v�2
2.

Note that if X satisfies the Restricted Isometry Property
(RIP) with sparsity level s and parameter Δ, it means that

Δ = max
�x�2=1,�x�0≤s

�( 1
n
XTX − Ip×p)x�2.

Lemma 6 [54]: If z ∼ χ2
n, where χ2

n is the Chi-square
distribution with parameter n, then

Pr[z − n ≥ 2
√
nx+ 2x] ≤ exp(−x).

B. Private Fano and Le Cam Method

Our lower bounds are basic on the locally private version
Fano and Le Cam method [10], [11]. Given a finite set V ,
a family of distributions {Pv, v ∈ V} with Pv ∈ P is
2δ-separated in a metric ρ if ρ(θ(Pv), θ(Pv′ )) ≥ 2δ for all
distinct pairs v, v� ∈ V . Given any 2δ-separated set, the private
Fano’s method for the � non-interactive private minimax risk
can be summarized by the following lemma.

Lemma 7 (Prop. 2 in [10]): Given any 2δ-separated set
{Pv, v ∈ V}, and α ∈ (0, 1

2 ], the � non-interactive private
minimax risk satisfies the following inequality

MNint
n (θ(P),Φ◦ρ, �)≥ Φ(δ)

2
(
1−nα

2CNint
∞ ({Pv}v∈V)+log 2

log |V|
)
,

where CNint∞ ({Pv}v∈V) = 1
|V| supγ∈B∞

∑
v∈V(ψv(γ))2, B∞

is the 1-ball of the supremum norm B∞ = {γ ∈ L∞(X ) |
�γ�∞ ≤ 1}, and L∞(X ) = {f : X 
→ R | �f�∞ < ∞} is
the space of uniformly bounded functions with the supremum
norm �f�∞ = supx |f(x)|. Also, for each v ∈ V , ψv :
L∞(X ) 
→ R is a linear function defined by

ψv(γ) =
∫
X
γ(x)dPv(x) − dP̄ (x),

where P̄ is the mixture distribution P̄ = 1
|V|

∑
v∈V P

n
v .

A useful corollary is the following:
Lemma 8 (Corollaries 2 and 4 in [9]): Let V be randomly

and uniformly distributed in V . Assume that given V = v, Xi

is sampled independently according to the distribution of Pv,i

for i = 1, · · · , n. Then, there is a universal constant c < 19
such that for α ∈ (0, 1

2 ],

I(Z1, Z2, · · · , Zn;V ) ≤ c�2
n∑

i=1

1
|V|2

∑
v,v′∈V

�Pv,i −Pv′,i�2
TV .

The � non-interactive private minimax risk satisfies

MNint
n (θ(P),Φ◦ρ, �) ≥ Φ(δ)

2
(
1− I(Z1, · · · , Zn;V ) + log 2

log |V|
)
.

Now we introduce the generalized private Le Cam method.
Let P0 and P1 be two collections of distributions in P .
We say that P0 and P1 are δ-separated for loss function L
if dL(P0, P1) ≥ δ for all P0 ∈ P0 and P1 ∈ P0, where
dL(P0, P1) = infθ∈Θ{L(θ, θ(P0)) + L(θ, θ(P1)). Then we
have the following lemma.

Lemma 9 (Theorem 2 in [11]): Consider a set of distribu-
tions P , a collection of distributions on X , {Pv}v∈V ⊂ P ,
indexed by v ∈ V , as well as a distribution P0 ∈ P . For each
of these distributions, we have i.i.d. observations Xi, that is,
samples from the product with density

dPn
v = Πn

i=1dPv(xi).

We also define the marginal distributions Mn
v (·) =∫

Q(·|x1:n)dPn
v (x1:n) and M̄n = 1

|V|
∑

v∈V M
n
v , where Q is

a private channel. For any � ∈ (0, 1
2 ], the � sequential private

minimax risk in the loss function L satisfies the following
inequality

MInt
n (θ(P), L, �)≥ 1

2
min
v∈V

dL(P0, Pv)
(
1− 1

2

√
Dkl(Mn

0 �M̄n)
)
,

where

Dkl(Mn
0 �M̄n) ≤ n�2

4
C∞({Pv}v∈V)min{e�,max

v∈V
� dP
dPv

�∞}
for any distribution P supported on X . Here

C∞({Pv}v∈V) = inf
suppP∗∈X

sup
γ
{ 1
|V|

∑
v∈V

φv(γ)2|�γ�L∞(P∗)}.

Where the linear functional φv(f) is defined as

φv(f) :=
∫
f(x)(dP0(x) − dPv(x)).

C. Proofs in Sections V and VI

Proof of Theorem 1: The main idea of the proof is :
• Find an index set V which corresponds to a 2δ-separated

set {Pv,σv , v ∈ V}.
• Obtain an upper bound on C∞({Pv,σv}v∈V), use

Lemma 7 to specify δ, and then get an lower bound.
We consider V as the set of {±ej, j ∈ [p]}, where {ej}n

j=1

is the standard basis of R
p. Let θv = δv for some δ < 1

and every v ∈ V . Then for each θv, we define the distribution
Pθv,σv as

Pθv,σv =
{
x∈Uniform{+1,−1}p; pθv(y |x, σ)=�x, θv�+σ;

where σ =

{
1 − �x, θv� w.p.1+
x,θv�

2

−1 − �x, θv� w.p.1−
x,θv�
2

}
. (14)
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It is easy to see that Pθv ,σv ∈ P1,p,2 since the noise |σv| ≤
1+|�x, θv�| ≤ 2. Note that the distribution in (14) is equivalent
to

pθv,σv ((x, y)) =
1 + y�x, θv�

2p+1
for (x, y) ∈ {+1,−1}p+1.

(15)

Also for every fixed (x, y) ∈ {+1,−1}p+1, we have
p̄((x, y)) := 1

|V|
∑

v∈V pθv,σv ((x, y)) = 1
2p+1 .

Now we show our main lemma used in the proof. For
convenience we denote Pv = Pθv,σv (the same for later
theorems).

Lemma 10: The term CNint
∞ ({Pv}v∈V) satisfies the follow-

ing inequality

CNint
∞ ({Pv}v∈V) ≤ δ2

p
. (16)

Proof of Lemma 10: By definition, for each v ∈ V we have

ψv(γ) =
∑

(x,y)∈{+1,−1}p+1

γ(x, y)[pv((x, y)) − p̄((x, y))]

=
δ

2p+1

∑
(x,y)∈{+1,−1}p+1

γ(x, y)y�x, v�

=
δ

2p+1

∑
x∈{+1,−1}p

[γ(x, 1)�x, v� − γ(x,−1)�x, v�]

Thus, we can get

1
|V|

∑
v∈V

ψ2
v(γ)≤2× 1

2p

∑
v∈V

[
( δ

2p+1

∑
x∈{+1,−1}p

γ(x, 1)�x, v�)2

+
( δ

2p+1

∑
x∈{+1,−1}p

γ(x,−1)�x, v�)2]

=
δ2

p4p+1

∑
v∈V

∑
x1,x2∈{+1,−1}p

[
(
γ(x1, 1)γ(x2, 1)

+ γ(x1,−1)γ(x2,−1)
)
xT

1 vv
Tx2]

=
2δ2

p4p+1

∑
x1,x2∈{+1,−1}p

(
γ(x1, 1)γ(x2, 1)xT

1 x2

+ γ(x1,−1)γ(x2,−1)xT
1 x2

)
,

where the last equation is due to
∑

v∈V vv
T = 2Ip×p. Thus

by the definition of CNint∞ ({Pv}v∈V) we have

CNint
∞ ({Pv}v∈V)≤ 1

2
δ2

p4p
[ sup
γ∈B∞

∑
x1,x2∈X

γ(x1, 1)γ(x2, 1)xT
1 x2

+ sup
γ∈B∞

∑
x1,x2∈X

γ(x1,−1)γ(x2,−1)xT
1 x2]

=
δ2

2p
[ sup
γ∈B∞

�EP0 [γ(X, 1)X ]�2+ sup
γ∈B∞

�EP0 [γ(X,−1)X ]�2],

where P0 is the uniform distribution on {+1,−1}p. Note
that since �a�2

2 = sup�v�≤1�v, a�2 for any vector a, by

Cauchy-Schwartz inequality we have

sup
γ∈B∞

�EP0 [γ(X, 1)X ]�2

= sup
γ∈B∞,�v�2≤1

(EP0 [γ(X, 1)vTX ])2

≤ sup
γ∈B∞

EP0 [γ(X, 1)2] × sup
�v�2≤1

EP0 [(v
TX)2]

≤ sup
�v�2≤1

vT
∑

x∈{−1,1}p

xxT

2p
v ≤ 1,

where the second inequality is due to the definition
of X and γ. Similarly, we can bound the term
supγ∈B∞ �EP0 [γ(X,−1)X�2] ≤ 1. This completes the
proof.

By Lemma 7 and Lemma 10 , we can get

MNint
n (θ(P1,p,2),Φ ◦ ρ, α) ≥ δ2

2
(
1 − n�2 δ2

p + log 2

log 2p
)
.

If we take δ2 = Ω(min{1, p log 2p
n�2 }), we can get the proof of

the lower bound in Theorem 1.
Proof of Theorem 2: Now we use the squared loss as

the loss function L(θ, θ�) = �θ − θ��2
2. Then, dL(P0, P1) =

1
2�θ(P0) − θ(P1)�2

2. Define P0 ∈ P1,p,C as the uniform
distribution on {+1,−1}p × {+1,−1}, that is,

P0 =
{
x ∈ Uniform{+1,−1}p; pθv(y | x, σ) = �x, 0� + σ;

where σ =

{
1 − �x, 0� w.p. 1+
x,0�

2

−1 − �x, 0� w.p.1−
x,0�
2

}
.

Thus, θ(P0) = 0.
Define the set of distributions {Pv, v ∈ V} in the same way

as in the proof of Theorem 1. Then, we have dL(P0, P1) =
1
2δ

2. As in Lemma 9, we have Mn
0 and M̄n. For the KL-

divergence Dkl between Mn
0 and M̄n, by Lemma 9 we have

Dkl(Mn
0 �M̄n) ≤ n�2

4
C∞({Pv}v∈V)min{e�,max

v∈V
� dP
dPv

�∞}.

We can easily see that for each γ ∈ B∞ and v ∈ V ,
we have that ψv(γ) in the proof of Lemma 10 is equiva-
lent to φv(γ) in Lemma 9 for our construction. Thus, by
Lemma 10 we have C∞({Pv}v∈V) ≤ δ2

p . Taking P = P0,
we get maxv∈V � dP

dPv
�∞ = 1

1−δ . Thus, if choosing δ2 =
Ω(min{1, p

n�2 }), we have

Dkl(Mn
0 �M̄n) ≤ n�2δ2(1 + δ)

8p
.

By Lemma 9, we can get

MInt
n (θ(P1,p,2),Φ ◦ ρ, α) ≥ δ2

4
(1 −

√
n�2δ2(1 + δ)

8p
).

Thus, if taking δ2 = Ω(min{1, p
n�2 }), we have the proof.

Proof of Theorem 3: Now consider the case of L(θ, θ�) =
|1T (θ− θ�)|. We can easily obtain dL(P1, P2) ≥ |1T (θ(P2)−
θ(P1))|. Consider the same distributions P0, {Pv, v ∈ V} as
in the proof of Theorem 2, we have minv∈V dL(P0, Pv) ≥ δ.
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Since Dkl(Mn
0 �M̄n) ≤ n�2δ2(1+δ)

8p for δ2 = Ω(min{1, p
n�2 }),

we have

Mint
n (θ(P1,p,2), L, α) ≥ δ

2
(1 −

√
n�2δ2(1 + δ)

8p
).

Thus, we have the proof if set δ2 = Ω(min{1, p
n�2 }) .

Proof of Theorem 4: Before the proof, let us recall the
definition of χ2-local differential privacy [11]:

For any convex function f on R+ with f(1) = 0, the
f -divergence of distributions P and Q is

Df (P�Q) :=
∫
f(
dP

dQ
)dQ.

Definition 11: Let f(x) = (x − 1)2. Following the above
definitions, we have �2-χ2-divergence local differential privacy
and �-χ2-divergence (sequentially) private minimax risk if

Df (Qi(Zi ∈ S | xi, z1:i−1)�Qi(Zi ∈ S | x�i,= z1:i−1)) ≤ �2.

From the above definitions, it is easy to see that if a channel
Q is (κ, ρ) sequentially locally zero-concentrated differentially
private, it is (�2 = eκ+2ρ − 1 )-χ2-divergence sequentially
locally differentially private. Also, since (2, log(1 + �2)) local
Renyi differential privacy is equivalent to �2-χ-divergence
local differential privacy, to prove Theorem 4, we only need
to show the lower bound of �2-χ2-divergence sequential local
private minimax risk, which is denoted as MInt

n,χ2(θ(P), L, �2).
To do that, we need the following lemma.

Lemma 11 (Theorem 2 in [11]): For any � ∈ (0, 1], the
�2-χ2-divergence sequential private minimax risk in the loss
function L satisfies the following inequality

MInt
n,χ2(θ(P), L, ε2)≥ 1

2
min
v∈V

dL(P0, Pv)×(1− 1

2

�
Dkl(Mn

0‖M̄n)),

where

Dkl(Mn
0 �M̄n) ≤ n�2C2({Pv}v∈V)min{e�,max

v∈V
�dPv

dP
�∞}

for any distribution P supported on X , and C2({Pv}v∈V) =
1
|V| infsuppP⊂X supγ{

∑
v∈V(φv(γ))2 | �γ�L2(P ) ≤ 1}, where

φ(γ) is defined in Lemma 9.
Now, we will proof Theorem 4.

The construction of P0 and {Pv, v ∈ V} is the same as in
the proof of Theorem 3. Thus, by Lemma 11, we only need to
bound C2({Pv}v∈V), instead of C∞({Pv}v∈V). From the proof
of Lemma 10, we can see that if taking P as a uniform dis-
tribution, then for any γ with �γ�L2(P0) ≤ 1, we always have
EP0 [γ(X, 1)2] ≤ 1. This means that 1

|V|
∑

v∈V(ψv(γ))2 ≤ δ2

p .

Thus, we have C2({Pv}v∈V) ≤ δ2

p . The remaining part of the
proof is the same as the one in the proof of Theorem 2.

Proof of Theorem 5: Follow from the fact that the linear
model is a special case of the non-linear measurement. See the
proof of Theorem 9 in Section VII-B for the case f(x) = x
and a = b = 1.

Proof of Theorem 6: Follow from the fact that the linear
model is a special case of the non-linear measurement. See the
proof of Theorem 11 in Section VII-B for the case f(x) = x
and a = b = 1.

Proof of Theorem 7: Follow from the fact that the linear
model is a special case of the non-linear measurement. See the
proof of Theorem 10 in Section VII-B for the case f(x) = x
and a = b = 1.

D. Proofs in Section VII-A

Proof of Theorem 8: For the guarantee of (�, δ)-DP, it fol-
lows from the Moment accountant and composition theorem,
see [31], [55] for details.

Let I = It+1
⋃ It

⋃ I∗, where I∗ = supp(x∗), It =
supp(xt) and It+1 = supp(xt+1), and gt = ∇L(xt) + zt.
Since �xt+1−xt�0 ≤ 2k. By the assumption of RSS, we have

L(xt+1) ≤ L(xt) + �∇L(xt), xt+1 − xt� +
�s
2
�xt+1 − xt�2

≤ L(xt) + �(gt)I , (xt+1 − xt)I� +
�s
2
�xt+1 − xt�2

+ �zt,I��(xt+1 − xt)I�2

= L(xt) +
1
2η

�xt+1,I − xt,I + ηgt,I�2 − η�gt,I�2

2

− 1 − η�s
2η

�xt+1 − xt�2 + �zt,I��(xt+1 − xt)I�2

= L(xt)+
1
2η

(�xt+1,I − xt,I+ηgt,I�2−η2�gt,I\(It
� I∗)�2)

− η�gt,It
� I∗�2

2
+ �zt,I��(xt+1 − xt)I�2, (17)

where the second inequality is due to xt+1 − xt = xt+1,I −
xt,I .

We now bound the term of �xt+1,I − xt,I + ηgt,I�2 −
η2�gt,I\(It

�I∗)�2 by the idea in [32]. Since I\(It
⋃ I∗) =

It+1\(It
⋃ I∗) ⊆ It+1, we have

xt+1,I\(It
� I∗) = xt,I\(It

� I∗) − ηgt,I\(It
� I∗).

Also, since xt,I\(It
� I∗) = 0, this means that

xt+1,I\(It
�I∗) = −ηgt,I\(It

� I∗). Next, we choose a
set R ⊆ It\It+1 such that |R| = |It+1\(It

⋃ I∗)|.
Note that such R can be found since |It+1\(It

⋃ I∗)| =
|It\It+1| − |(It+1

⋂ I∗)\It| (which is a consequence of
|It| = |It+1|). Thus, we have

η2�gt,I\(It
�I∗)�2 = �xt+1,I\(It

� I∗)�2

≥ �xt,R − ηgt,R�2. (18)

With (18) and the fact that xt+1,R = 0, we have

�xt+1,I − xt,I + ηgt,I�2 − η2�gt,I\(It
�I∗)�2

≤ �xt+1,I − xt,I + ηgt,I�2 − �xt+1,R − xt,R + ηgt,R�2

= �xt+1,I\R − xt,I\R + ηgt,I\R�2. (19)

We then bound the size of |I\R| as |I\R| ≤ |It+1| +
|(It\It+1)\R| + |I∗| ≤ k + |(It+1

⋂ I∗)\It| + k∗ ≤
k + 2k∗. Also, since It+1 ⊆ (I\R), we have xt+1,I\R =
Trun(xt,I\R − ηgt,I\R, k). Thus, by (18) and Lemma 3 we
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have

�xt+1,I − xt,I + ηgt,I�2 − η2�gt,I\(It
�I∗)�2

≤ �xt+1,I\R − xt,I\R + ηgt,I\R�2

≤ 2k∗

k + k∗
�x∗I\R − xt,I\R + ηgt,I\R�2

≤ 2k∗

k + k∗
�x∗I − xt,I + ηgt,I�2

=
2k∗

k + k∗
(�x∗ − xt�2 + 2η�gt,I , (x∗ − xt)I� + η2�gt,I�2)

=
2k∗

k + k∗
(�x∗−xt�2+2η�∇L(xt), (x∗−xt)� + η2�gt,I�2)

+
4k∗

k + k∗
�zt,I , (x∗ − xt)I�

≤ 2k∗

k + k∗
[�x∗−xt�2 + 2η(L(x∗)−L(xt) − ρs

2
�x∗ − xt�2)

+ η2�gt,I�2] +
4k∗

k + k∗
�zt,I , (x∗ − xt)I�

=
4ηk∗

k + k∗
(L(x∗) − L(xt)) +

2(1 − ηρs)k∗

k + k∗
�x∗ − xt�2

+
2η2k∗

k + k∗
�gt,I\(It

� I∗)�2 +
2η2k∗

k + k∗
�gt,(It

� I∗)�2

+
4k∗

k + k∗
�zt,I , (x∗ − xt)I�.

Plugging this into (17), we get

L(xt+1) ≤ L(xt) +
2k∗

k + k∗
(L(x∗ − L(xt))

+
(1 − ηρs)k∗

η(k + k∗)
�x∗ − xt�2 +

ηk∗

k + k∗
�gt,I\(It

� I∗)�2

+ (
ηk∗

k + k∗
− η

2
)�gt,It

� I∗�2 +
2k∗

η(k + k∗)
�zt,I , (x∗ − xt)I�

+ �zt,I��(xt+1 − xt)I�2 − 1 − η�s
2η

�xt+1 − xt�2

≤ L(xt)+
2k∗

k + k∗
(L(x∗ − L(xt))+

(1−ηρs)k∗

η(k + k∗)
�x∗−xt�2−

(
1−η�s

2η
− k∗

η(k+k∗)
)�xt+1−xt�2+(

ηk∗

k + k∗
− η

2
)�gt,It

� I∗�2

+
2k∗

η(k + k∗)
�zt,I , (x∗ − xt)I� + �zt,I��(xt+1 − xt)I�2

(20)

≤ L(xt)+
2k∗

k + k∗
(L(x∗−L(xt)) +

(1 − ηρs)k∗

η(k + k∗)
�x∗ − xt�2

+ (
ηk∗

k+k∗
− η

2
)�gt,It

� I∗�2+
2k∗

η(k + k∗)
�zt,I , (x∗−xt)I�

+
η(k + k∗)

2((1 − η�s)k − (1 + η�s)k∗)
�zt,I�2, (21)

where the second inequality is due to the fact that �xt+1 −
xt� ≥ η�gt,I\(It

�I∗)� and the third inequality is due to the
fact that ab ≤ a2

4c + cb2 for any c > 0.
For the term �xt − x∗�2, we have the following lemma:
Lemma 12:

�xt−x∗�2≤ 4
ρ
[L(x∗)−L(xt)]+

8
ρ2

s

�gt,It
� I∗�2+

8
ρ2

s

�zt,I�2.

(22)

Proof: From RSC, we have

L(x∗) ≥ L(xt) + �∇L(xt), x∗ − xt� +
ρs

2
�x∗ − xt�2

= L(xt) + �∇It
� I∗L(xt) − gt,It

� I∗ + gt,It
� I∗ , x∗ − xt�

+
ρs

2
�x∗ − xt�2

≥ L(xt) − 2
ρs

�zt,I�2 − 2
ρs

�gt,It
� I∗�2 +

ρs

4
�x∗ − xt�2,

where the last inequality is due to ab ≤ a2

4c + cb2.
With this lemma, we get

L(xt+1) ≤ L(xt) +
2k∗

k + k∗
(1+

2(1 − ηρs)
ηρs

)(L(x∗)−L(xt))

− (
η

2
− (η2ρ2

s + 8(1 − ηρs))k∗

ηρ2
s(k + k∗)

)�gt,It
� I∗�2

+
2k∗

η(k + k∗)
�zt,I , (x∗−xt)I�+(

η(k + k∗)
2((1−η�s)k − (1+η�s)k∗)

+
8(1 − ηρs)k∗

ηρ2
s(k + k∗)

)�zt,I�2. (23)

Taking η = 1
2
s

and k ≥ (1 + 64
2s
ρ2

s
)k∗, we further get

L(xt+1) ≤ L(xt) +
ρs

8�s
(L(x∗) − L(xt))

+
4k∗�s

(k + k∗)
�zt,I , (x∗ − xt)I� +

37�s
ρ2

s

�zt,I�2. (24)

Lemma 13: For x ∼ N (0, σ2Ip)

E|x|2∞ ≤ O(σ2 log p)

Proof: By definition of expectation, we have

E|x|2∞ =
∫ ∞

0

Pr[|x|2∞ ≥ t]dt

=
∫ O(σ2 log p)

0

Pr[|x|2∞ ≥ t]dt+
∫ ∞

O(σ2 log p)

Pr[|x|2∞ ≥ t]dt

≤ O(σ2 log p) +
∫ ∞

O(σ2 log p)

2p exp(− t

2σ2
)dt

≤ O(σ2 log p) + 2
√

2pσ2 exp(−O(log p)) = O(σ2 log p).

Note that E�zt,I , (x∗ −xt)I� = E�zt, x
∗ − xt� = 0. Taking

the expectation w.r.t zt and by the fact that �zt,I�2 ≤ |I||zt|2∞
(from the above lemma), we have

EL(xt+1) ≤ L(xt) +
ρs

8�s
(L(x∗) − L(xt))

+O(
κsk

∗G2 log 1
δ log pT

ρsn2�2
). (25)

That is

E[L(xt+1) − L(x∗)] ≤ (1 − ρs

8�s
)E[L(xt) − L(x∗)]

+O(
κsk

∗G2 log p log 1
δT

ρsn2�2
). (26)

Thus, taking T = O(κs log(n2

k∗ )), we get the theorem.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 29,2021 at 01:34:20 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND XU: ON SPARSE LINEAR REGRESSION IN THE LOCAL DIFFERENTIAL PRIVACY MODEL 1197

E. Proofs in Section VII-B

Proof of Theorem 9: We first show that each sto-
chastic gradient �xT

i f
�(�xi, θt−1�)(f(�xi, θt−1�) − yi)�2 ≤

O(bC
√
p), this is due to that

�xT
i f

�(�xi, θt−1�)(f(�xi, θt−1�) − yi)�2

≤ b�xT
i �2(f(�xi, θt−1�) − yi)

≤ b
√
p(f(1) − yi) ≤ O(bC

√
p),

where the second inequality is due to that �xi, θt−1� ≤
�xi�∞�θt−1�2 ≤ 1, f is monotone and |yi| = |f�θ∗, xi� +
σi| ≤ O(C).

W.o.l.g we assume that each |St| = n
T . From the ran-

domizer R�(·) and Lemma 1, we can see that ∇̃t =
T
n

∑
i∈St

xT
i f

�(�xi, θt−1�)(f(�xi, θt−1�)−yi)+ζt, where each
coordinate of ζt is a sub-Gaussian vector with σ2 = O( bCpT

n�2 ).
Let S∗ = supp(θ∗) denote the support of θ∗, and s∗ = |S∗|.

Similarly, we define St = supp(θt), and F t−1 = St−1 ∪St ∪
S∗. Thus, we have |F t−1| ≤ 2s+ s∗.

We let θ̃t− 1
2

denote the following

θ̃t− 1
2

= θt−1 − η∇̃t−1,Ft−1 ,

where vFt−1 means keeping vi for i ∈ F t−1 and converting
all other terms to 0. By the definition of F t−1, we have
θ�t = Trunc(θ̃t− 1

2
, s). Denote by Δt the difference of θt − θ∗.

We have the following

�θ̃t− 1
2
− θ∗�2 = �Δt−1 − η([∇Lt(θt−1) + ζt]Ft−1)�2,

where ∇Lt(θt−1) = T
n

∑
i∈St

(f(�xi, θt−1�) −
yi)f �(�xi, θt−1�)xT

i . Taking yi = �xi, θ
∗� + σi and by

the triangle inequality we can get

�θ̃t− 1
2
− θ∗�2 ≤ �Δt−1−

η[
T

n

∑
i∈St

(f(�xi, θt−1�)− f(�xi, θ
∗�))f �(�xi, θt−1�)xT

i ]Ft−1�2

+ η
√

|F t−1|[|T
n

∑
i∈St

f �(�xi, θt−1�)σix
T
i |∞ + |ζt|∞].

We denote the followings:

At−1 = �Δt−1 − η[
T

n

∑
i∈St

(f(�xi, θt−1�) − f(�xi, θ
∗�))

× f �(�xi, θt−1�)xT
i ]Ft−1�2 (27)

Bt−1 = η
√

|F t−1||T
n

∑
i∈St

f �(�xi, θt−1�)σix
T
i |∞ (28)

Ct−1 = η
√
|F t−1||ζt|∞ (29)

We first bound Bt−1. Since each xi ∈ Uniform{+1,−1}p,
which is sub-Gaussian with 1, we know that for each coor-
dinate j ∈ [p], T

n

∑
i∈St

f �(�xi, θt−1�)σixi,j is sub-Gaussian

with σ2 = T 2

n2

∑
i∈St

f �2(�xi, θt−1�)σ2
i ≤ Tb2C2

n . Thus,
by Lemma 2 we have

Pr[| 1
n

n∑
i=1

f �(�xi, θt�)σix
T
i |∞ ≤ O(

√
T log pbC√

n
)] ≥ 1 − 1

pc
.

This means that with probability at least 1 − 1
pc , we have

Bt ≤ η
√

2s+ s∗O(
√
T log pbC√

n
). (30)

For the term Ct−1, by Lemma 1 and 2 and since
each coordinate ζt,i is sub-Gaussian, we have Ct−1 ≤
η
√

2s+ s∗O(
√

TpbC log p√
n�2

) with probability at least 1− 1
pc for

some constant c > 0.
Finally, we bound the term At−1. By the mean value theo-

rem, we know that there exists a θt−1,i line between θt−1 and
θ∗ which satisfies the equation f(�xi, θt−1�) − f(�xi, θ

∗�) =
f �(�xi, θt−1,i�)�xi, θt−1 − θ∗�). Hence, we have

T

n

∑
i∈St

(f(�xi, θt−1�)−f(�xi, θ
∗�))f �(�xi, θt−1�)xT

i =Dt−1Δt−1,

where Dt−1 = T
n

∑
i∈St

f �(�xi, θt−1,i�)f �(�xi, θt−1�)xix
T
i ∈

R
p×p.
Since Supp(Dt−1Δt−1) ⊂ F t−1 (by assumption), we

have At−1 = �Δt−1 − ηDt−1
Ft−1,·Δt−1�2 ≤ �(I −

ηDt−1
Ft−1,Ft−1)�2�Δt−1�2. Now we bound the term �(I −

ηDt−1
Ft−1,Ft−1)�2, where I is the |F t−1|-dimensional identity

matrix.
By the RIP property of X and |F t−1| ≤ 2s + s∗, we can

easily get the following for any |F t−1|-dimensional vector v

a2[1−Δ(2s+s∗)]�v�2
2≤vTDt−1

Ft−1,Ft−1v ≤ b2[1+Δ(2s+s∗)].

Thus, �(I − ηDt−1
Ft−1,Ft−1)�2 ≤ max{1 − ηa2[1 − Δ(2s+

s∗)], ηb2[1 + Δ(2s+ s∗)] − 1}.
This means that if we can find an η satisfying the condition

of

5
7

1
a[1 − Δ(2s+ s∗)]

≤ η ≤ 9
7

1
b2[1 + Δ(2s+ s∗)]

,

then we have �(I−ηDt−1
Ft−1,Ft−1)�2 ≤ 2

7 . Note that such an η

can indeed be found if Δ(2s + s∗) ≤ 5a2−9b2

14 . This means
that a

b >
√

5
3 .

Thus, in total we have the following with probability at least
1 − 2

pc

�θ̃t− 1
2
− θ∗�2 ≤ 2

7
�Δt−1�2 +O(

√
Tp(2s+ s∗) log pbC√

n�
).

Our next task is to bound �θ�t − θ∗�2 by �θ̃t− 1
2
− θ∗�2 by

Lemma 3.
Thus, we have �θ�t − θ̃t− 1

2
�2
2 ≤ |Ft−1|−s

|Ft−1|−s∗ �θ̃t− 1
2
− θ∗�2

2 ≤
s+s∗
2s �θ̃t− 1

2
− θ∗�2

2.
Taking s = 8s∗, we get

�θ�t − θ̃t− 1
2
�2 ≤ 3

4
�θ̃t− 1

2
− θ∗�2

and

�θ�t − θ∗�2 ≤ 7
4
�θ̃t− 1

2
− θ∗�2

≤ 1
2
�Δt−1�2 +O(

√
Tps∗ log pbC√

n�
).
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Finally, we need to show that �Δt�2 = �θt − θ∗�2 ≤ �θ�t −
θ∗�2, which is due to the Lemma 4.

Putting all together, we have the following with probability
at least 1 − 2

pc ,

�Δt� ≤ 1
2
�Δt−1�2 +O(

√
Tps∗ log pbC√

n�
).

Thus, we get with probability at least 1 − 2T
pc ,

�ΔT �2 ≤ (
1
2
)T �θ∗�2 +O(

√
Tps∗ log pbC√

n�
).

Proof of Theorem 10: Our proof is inspired by the ones
in [9], [13] and [36]. Since it is reduced to the linear model
when f(x) ≡ x, we only need to consider the general case.
Similar to the proof of Theorem 1, we first construct a packing
set {Pv : v ∈ V} and then bound C∞({Pv}). To do so,
we need the following lemma.

Lemma 14 [36]: For any s ∈ [p], define the set

H(s) := {z ∈ {−1, 0,+1}d | �z�0 = s}
with Hamming distance ρH(z, z�) =

∑d
i=1 1[zj 
= z�j ] between

the vectors z and z�. Then, there exists a subset H̃ ⊂ H with
cardinality |H̃| ≥ exp( s

2 log p−s
s/2 ) such that ρH(z, z�) ≥ s

2 for

all z, z� ∈ H̃.

Now consider the rescaled version of H̃,
√

2
δ H̃, for some

δ ≤ 1√
2

. For any two θ, θ� ∈ H̃, we have

8δ2 ≥ �θ − θ��2
2 ≥ δ2. (31)

Then,
√

2
δ H̃ is a δ packing in �2 norm with M = |H̃|

elements, denoted as {θ1, θ2, · · · , θM}. For each θi, let σi

denote the uniform distribution on the interval [−C,C]. Thus,
we have Pθi , which can be easily verified that Pθi ∈
P �

s,p,C,f,a,b.
Our idea is to use Lemma 8. Thus, our goal is to bound

the sum of the Total Variance
∑

v,v′∈V �Pv,i − Pv′,i�2
TV .

Now consider the case of Pθ,i and Pθ′,i, where (due to our
construction) Pθ,i is the uniform distribution on the interval
of [f(�xi, θ� − C, f(�xi, θ� + C]. Thus, we have

�Pθ,i − Pθ′,i�TV =
1
2

∫
|pθ,i(y) − pθ′,i(y)|dy

≤ 1
2C

|f(�θ, xi�) − f(�θ�, xi�)| ≤ b

2C
|�θ − θ�, xi�|,

where the last inequality is due to the assumption on f . Hence,
we have

n∑
i=1

1
|V|2

∑
v,v′∈V

�Pv,i − Pv′,i�2
TV

≤
n∑

i=1

b2

4C2

∑
v,v∈V

(θv − θv′)Txix
T
i (θv − θv′)

=
b2

4C2

1
|V|2

∑
v,v∈V

(θv − θv′)XTX(θv − θv′)

≤ 8
b2(1 + Δ)

4C2
δ2 =

2b2(1 + Δ)δ2

C2
,

where the last inequality is due to the fact that for every pair
(v, v�) with �θv − θv′�0 ≤ 2s, (θv − θv′)XTX(θv − θv′) ≤
n(1 + Δ) holds (by Assumption 1).

Thus by Lemmas 14 and 8, we have

Φ(δ)
2

≥ δ2

8
(1 − 2cn�2δ2 b2(1+Δ)

C2 + log 2
s
2 log p−s

s/2

).

Taking δ2 = Ω(min{1, s log p/sC2

(1+Δ)b2n�2 ), we get the result.
Proof of Theorem 11: For the guarantee of (�, δ) locally

differentially private, it is due to the fact that xi is known and
each yi ∈ [�xi, θ

∗� −C, �xi, θ
∗� −C] (since the random noise

σi is bounded by C). Thus, by the Gaussian Mechanism [5],
we can see that it is locally differentially private.

Now we prove Theorem the upper bound.
Let S∗ = supp(θ∗) denote the support of θ∗, and s∗ = |S∗|.

Similarly, we define St+1 = supp(θt+1), and F t = St∪St+1∪
S∗. Thus, we have |F t| ≤ 2s+ s∗.

We let θ̃t+ 1
2

denote the following

θ̃t+ 1
2

= θt − η∇FtL(θt),

where vFt means keeping vi for i ∈ F t and making all
other terms 0. By the definition of F t, we have θ�t+1 =
Trunc(θ̃t+ 1

2
, s). Denote by Δt+1 the difference of θt+1 − θ∗.

We have the following

�θ̃t+ 1
2
− θ∗�2 = �Δt − η∇FtL(θt)�2,

where ∇FtL(θt) = [ 1
n

∑n
i=1(f(�xi, θt�) −

ỹi)f �(�xi, θt�)xT
i ]Ft . Plugging ỹi = f(�θ∗, xi�) + σi + zi,

where zi ∼ N (0, τ2), and τ2 = 32C2 log(1.25/δ)
�2 into the

above equality, we get

�θ̃t+ 1
2
− θ∗�2 ≤

�Δt−η[ 1
n

n∑
i=1

(f(�xi, θt�)−f(�xi, θ
∗�))f �(�xi, θt�)xT

i ]Ft�2+

η
√
|F t|[| 1

n

n∑
i=1

f �(�xi, θt�)σix
T
i |∞+| 1

n

n∑
i=1

f �(�xi, θt�)zix
T
i |∞].

Define the following terms

At =�Δt−η[ 1
n

n∑
i=1

(f(�xi, θt�)−f(�xi, θ
∗�))f �(�xi, θt�)xT

i ]Ft�2

Bt = η
√
|F t|| 1

n

n∑
i=1

f �(�xi, θt�)σix
T
i |∞,

Ct = η
√
|F t|| 1

n

n∑
i=1

f �(�xi, θt�)zix
T
i |∞.

We first bound Bt. Since each xi ∈ Uniform{+1,−1}p,
which is sub-Gaussian with 1, we know that for each coordi-
nate j ∈ [p], 1

n

∑n
i=1 f

�(�xi, θt�)σixi,j is sub-Gaussian with
σ2 = 1

n2

∑n
i=1 f

�2(�xi, θt�)σ2
i ≤ b2C2

n . Thus, by Lemma 2
we have

Pr[| 1
n

n∑
i=1

f �(�xi, θt�)σix
T
i |∞ ≤ O(

√
log pbC√
n

)] ≥ 1 − 1
pc
.
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This means that with probability at least 1 − 2
pc , we have

Bt ≤ O(η
√

2s+ s∗
√

log pbC√
n

). (32)

Similarly, for Ct we have that with probability at least 1−
1
pc , the following holds

| 1
n

n∑
i=1

f �(�xi, θt�)zix
T
i |∞ ≤ O(

b
√

log p
√∑n

i=1 z
2
i

n
).

Since zi is Gaussian with variance τ2, we know that∑n
i=1 z

2
i = τ2

∑n
i=1 r

2
i , where

∑n
i=1 r

2
i is a χ2-distribution

with parameter n.
By the above concentration bound for χ2-distribution and

Lemma 6, we have
∑n

i=1 z
2
i ≤ 5τ2 n with probability at least

1 − exp(−n). Thus,

Ct ≤ η
√

2s+ s∗O(
b
√

log pτ√
n

) (33)

with probability at least 1 − 1
pc − exp(−n).

For the term of At, the proof is the same as the one for
At−1 in the proof of Theorem 9, and thus we omit it from
here.

By (32) and (33) and plugging τ2 = 32C2 log(1.25/δ)
�2 into

(33), we have the following with probability at least 1− 2
pc −

exp(−n)

�θ̃t+ 1
2
−θ∗�2 ≤ 2

7
�Δt�2 +O(

√
(2s+ s∗) log p log(1/δ)bC

n�
).

Putting all together, we have the following with probability
at least 1 − 2

pc − exp(−n),

�Δt+1� ≤ 1
2
�Δt�2 +O(

√
s∗ log p log(1/δ)bC

n�
).

Thus, we get the bound in Theorem 11 with probability at
least 1 − 2T

p − T exp(−n). For the linear case, since f � ≡ 1,
(32) and (33) will be the same in each iteration, the probability
for the linear case becomes 1 − 2

pc − exp(−n).
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