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Abstract. We examine whether the Hubble tension, the mismatch between early and late
measurements of H0, can be alleviated by ultralight scalar fields in the early universe, and we
assess its plausibility within UV physics. Since their energy density needs to rapidly redshift
away, we explore decays to massless fields around the era of matter-radiation equality. We
highlight a concrete implementation of ultralight pseudo-scalars, axions, that decay to an
abelian dark sector. This scenario circumvents major problems of other popular realizations
of early universe scalar models in that it uses a regular scalar potential that is quadratic
around the minimum, instead of the extreme fine-tuning of many existing models. The idea
is that the scalar is initially frozen in its potential until H ⇠ m, then e�cient energy transfer
from the scalar to the massless field can occur shortly after the beginning of oscillations
due to resonance. We introduce an e↵ective fluid model which captures the transition from
the frozen scalar phase to the radiation dark sector phase. We perform a fit to a combined
Planck 2018, BAO, SH0ES and Pantheon supernovae dataset and find that the model gives
H0 = 69.9+0.84

�0.86 km/s/Mpc with ��2
⇡ �9 compared to ⇤CDM; while inclusions of other

data sets may worsen the fit. Importantly, we find that large values of the coupling between
fields is required for su�ciently rapid decay: for axion-gauge field models �FF̃/⇤ it requires
⇤ . f/80, where 2⇡f is the field range. We find related conclusions for scalar-scalar models
⇠ ��2 and for models that utilize perturbative decays. We conclude that these sorts of
ultralight scalar models that purport to alleviate the Hubble tension, while being reasonable
e↵ective field theories, require features that are di�cult to embed within UV physics.
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1 Introduction

The standard cosmological model is relatively simple (albeit possibly hiding deep conceptual
questions): the Universe contains (visible and dark) matter, radiation, and dark energy (pos-
sibly a cosmological constant). Observations of the Cosmic Microwave Background (CMB)
suggest the addition of an early inflationary phase, likely driven by a scalar field, which ends
with decays into matter and radiation. The physics of this so-called reheating process can be
complex; for instance, in many scenarios the visible Universe is produced during the inflaton
oscillations after inflation by means of a very violent resonant decay process, also referred to
as preheating. This complexity is nonetheless most likely inaccessible observationally, since
inflation supposedly occurred at very high energies/redshifts.

At much lower energies, the simplicity of the ⇤CDM scenario has instead been called
into question by some observations of the late Universe. In particular, measurements of the
Hubble expansion rate by means of the distance ladder method exhibit tension with the
extraction of this parameter from CMB data. Among late-time measurements, the most
precise has been performed by the SH0ES team using Supernovae data and finds H0 =
74.03± 1.42 km/s/Mpc [1]. In contrast, the Planck collaboration reports H0 = 67.27± 0.60
km/s/Mpc [2] from the fit of ⇤CDM to CMB power spectra. The two approaches disagree
at the 4.4� level. Other independent local measurements mostly tend to agree with the
SH0ES measurement rather than with the value inferred by Planck (see however [3] for a
measurement which agrees with both late and early time measurements and e.g. [4] for a
complete review), and similarly the combination of CMB and Baryon Acoustic Oscillations
(BAO) data gives a result in very good agreement with the aforementioned Planck value [2].

Since no explanation of the tension based on systematic errors has arisen at the time of
writing, it is legitimate to think about physics beyond ⇤CDM which could help in reconciling
the measurements by changing the results of the fits to CMB data. Several ingredients have
been proposed and among them the two most popular additions are as follows. (a) dark
radiation, which we will refer to as the �Ne↵ model (see [2, 5] for a realization of this scenario
involving the QCD axion and [6, 7] for further discussions and scenarios of dark radiation in
relation to the Hubble tension). This model has the advantage of only one extra parameter
and is reasonably well motivated from the UV point of view. However, it only leads to a very
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mild improvement in ��2. Given that the improvement in ��2 from �Ne↵ is rather small,
there has been an interest in more exotic new physics, especially (b) the so-called early dark
energy (EDE) models. In this case, an ultralight scalar field is introduced that initially has
equation of state w ⇡ �1, but then is assumed to evolve in a strange potential that (despite
its name) leads to behavior that is essentially the opposite of that of dark energy at later
times: it redshifts away very quickly around matter-radiation equality due to an unusual
potential that has no quadratic term around its minimum and hence no mass [8–11] (see
also [12] for a supergravity inspired model). These models have been argued to have a better
��2. However, from the point of view of fundamental physics they are peculiar, since the
vanishing of the mass around the minimum, without explanation, requires fine-tuning.

Given this, our interest in this work is to investigate whether there exist models that
can (i) alleviate the Hubble tension with a good ��2 and also (ii) be plausible from the
point of view of fundamental physics. So we develop and investigate here a class of models
that features some of the advantages of both the �Ne↵ and EDE models, but may improve
on their obvious downsides. We consider the possibility that the Universe contains a dark
sector, with an originally slowly-rolling scalar field which then rapidly decays into massless
(or essentially massless) particles. The most basic version of this is to assume the scalar is an
axion that resonantly decays to some dark radiation (see [13, 14] for studies of this decay to
reduce the relic abundance of the QCD axion, [15, 16] for applications to axion dark matter
clumps, [17–20] for EDE models which similarly to ours feature a scalar field which decays to
radiation, and other decaying models include [21, 22]). Our primary interest is to determine
the parameter space required for this class of constructions, and then to comment on its
status within fundamental physics.

To set ideas, we consider as a minimal low-energy content of this sector an ultralight
scalar with mass around m & Heq ⇠ 10�28 eV and f . 1017 GeV, such that its initial energy
density is . 10% of the radiation energy density around matter-radiation equality, and an
abelian gauge field (for a qualitative discussion of resonant decay to scalar fields rather than
gauge fields in the context of the Hubble tension see [23]). This setup is analogous in many
respects to that of preheating after inflation, the crucial di↵erence being obviously in the
relevant energy scale (eV rather than 1015GeV!). Because of this, such a decaying ultralight
scalar (dULS) scenario would be interesting in that, if viable, it could observationally probe
the physics of resonant decay via CMB extraction of the Hubble parameter.

This framework combines aspects of the EDE and �Ne↵ scenarios, in that we use
an initially overdamped axion field as well as dark radiation, without su↵ering from the
extreme fine-tuning of the EDE scenario. Indeed, we make use of a standard axion potential
which is quadratic around its minimum. However, in order to achieve a su�ciently rapid
energy transfer from the axion to the gauge field, a large coupling between the two species
is required, which we will quantify. While this does not invalidate the e↵ective field theory
which we will be using, achieving this regime in a concrete UV setup is highly non-trivial.
Furthermore, similarly to other EDE models, this scenario does not address the question of
why a dynamical EDE transition should occur around the epoch of matter radiation equality
(see instead e.g. [24–30] for a partial list of modified gravity and other scenarios which
address this coincidence problem). We also find related requirements for large couplings in
other field theories.

The aim of this work is to outline the above class of model in detail, to make a first
step towards a realistic quantitative assessment of its ability to resolve the Hubble tension,
and, importantly, to assess its plausibility within fundamental physics. Since a full numerical
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implementation of the two-field system in a cosmological Boltzmann code is challenging,
we build an e↵ective fluid model which mimics the evolution of the axion background and
its decay to dark gauge fields. We then perform a fit of this simplified fluid model to a
cosmological dataset which combines early and late-time measurements. While we are mainly
motivated by axion resonant decay, our fluid parameterization may also be applied to a
general class of decaying ultralight scalar models, such as those involving perturbative decays
and/or di↵erent field content.

This paper is organized as follows: in section 2 we introduce the axion-dark-photon
model. In section 3 we investigate the energy transfer from the axion to the dark-photons
and the required parameters. In section 4 we discuss other related models and their required
parameters. In section 5 we describe an e↵ective single fluid model of the combined system.
In section 6 we compare the model to cosmological datasets. Finally, in section 7 we o↵er
our conclusions including comments on fundamental physics.

2 Axion and dark radiation models

We focus on a simple model which describes a rapid energy transfer from an ultralight axion
field to an Abelian gauge field Aµ which belongs to a possibly larger dark sector.

L = �
1

4
Fµ⌫F

µ⌫ +
1

2
@µ�@

µ��
g�A
4
�Fµ⌫F̃

µ⌫
� V (�), (2.1)

where F̃µ⌫ = 1

2
✏µ⌫↵�F↵� is the dual of the dark U(1) field strength tensor. Note that the first

three terms here respect the continuous shift symmetry of an axion � ! � + �0. However,
the final term is a potential V (�) which breaks the shift symmetry; its specific choice is quite
important. Firstly, it should respect the discrete periodicity of the axion �! �+2⇡f , where
f is the so-called axion decay constant and sets the axion’s field range. Such potentials that
break a continuous shift symmetry can be generated by non-perturbative e↵ects, including
instantons. In general, such a potential can be expanded in harmonics as follows

V (�) = m2f2
X

n

cn cos

✓
n�

f

◆
(2.2)

where cn are the dimensionless amplitude of the nth harmonic, and we have extracted out a
mass scale m in front for convenience.

In the literature on EDE, some work [8] has used the potential V / (1 � cos(�/f))3

in order to provide a good fit to data. This requires the conspiracy among harmonics:
c2/c1 = �2/5 and c3/c1 = 1/15, with c4 = c5 = . . . = 0, which appears to be an extreme
fine-tuning. By assuming such a conspiracy without justification, such a model deserves a
big penalty in a fair ��2 analysis.

Instead in this paper, we make the following much more standard assumption: the
harmonics organize into the dilute instanton approximation in which there is a hierarchy:
c1 � c2, c3, . . . and we keep the leading harmonic and ignore the others. Without loss of
generality, we set c1 = �1, and we then add a constant, namely V0 ⇡ m2f2 to ensure the
late-time vacuum energy is small (the cosmological constant problem is clearly not addressed
by ours or any other known models). This leads to the standard axion potential

V (�) = m2f2


1� cos

✓
�

f

◆�
. (2.3)
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If there is no, or negligible, coupling to the dark gauge fields, then the axion will at
late times just oscillate around its quadratic minimum and act as a contribution to cold
dark matter. This will not alleviate the Hubble tension. This is why it is essential that we
include an appreciable coupling to the gauge field to provide a decay channel. The operator
that describes the most leading order interaction is the above dimension 5 operator. The
dimensionful coupling ⇤ = 1/g�A sets a cut o↵ on the e↵ective theory. This will turn out
to be an energy scale many orders of magnitude higher than the relevant scales around
matter-radiation equality, so our construction will be a valid e↵ective field theory. It will
be useful to express the coupling in terms of f as g�A = �/f . The numerical coe�cient �
is in principle determined by the physics of the dark sector. Of particular importance to
fundamental physics will be the specific value of � required, which we shall return to.

In order for the axion field to play a role in alleviating the Hubble tension, one should
have f ⇠ 0.1MPl and m ⇠ H(teq), where the subscript denotes that the quantity is evaluated
at the time of matter-radiation equality. This value for f seems quite reasonable from the
point of view of fundamental physics. As to the value of m, it arises from the breaking of a
continuous shift symmetry; in most UV constructions it is exponentially small as it is deter-
mined by the strength of instantons. Hence such extremely small values of m are plausible.

3 Resonant decay

We are interested in understanding the resonant decay of the axion field � to the gauge field
Aµ. To this end, we treat � as an homogeneous classical background with equation of motion

�̈+ 3H�̇+ V 0(�) = 0 (3.1)

On this background, we quantize the four vector potential Aµ = (A0,A) (we omit operator
symbols in this work). Working in the Coulomb gauge r ·A = 0 and in the FRW expanding
spacetime, the equations of motion of A are given by

Ä+ HȦ�
r

2

a2
A+ g�A�̇

r

a
⇥A = 0. (3.2)

Let us first focus on the axion dynamics, as dictated by eq. (3.1). At early times,
one has H � m and the field is stuck at its initial value, which is naturally O(f). Once
m & H, the axion is released and starts oscillating in its potential, which at large field
values exhibits important non-linearities. The homogeneous axion field thus behaves as an
underdamped non-linear oscillator, i.e. �(t) = �0F (t), with F being an oscillating function
which, in the absence of Hubble friction, is also periodic. As oscillations progress, Hubble
friction reduces their amplitudes until the field moves in an e↵ectively quadratic potential
and F (t) ' cos(mt).

Let us now study the gauge field dynamics, according to (3.2). It is useful to rewrite it
in Fourier space as follows

s̈k,± + Hṡk,± +

✓
k

a

◆2

⌥
k

a

�

f
�̇

�
sk,± = 0, (3.3)

where sk,± are the mode functions, ± denotes the two circular polarizations of the gauge
field, and k ⌘ |k|. Solutions of the equation above can exhibit instabilities, meaning that the
mode functions sk can grow exponentially, according to two distinct but related mechanisms.
We can describe the solutions by momentarily neglecting the expansion of the Universe.
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Figure 1. Values of the Floquet exponent µk in units of m for (3.2). We have focused on the
� polarization and fixed � = 20 as a representative example. The trajectories of the modes k =
5 m, 10 m, 15 m and 20 m as the Universe expands are shown as white dashed curves.

First, the e↵ective frequency !2

k ⌘ k(k ⌥ �/f �̇) of a given k-mode can turn negative as
�̇ changes sign during the axion oscillations. In the harmonic approximation for the axion,
it is easy to see that modes with k  kmax ' m�✓i/2 are a↵ected by this so-called tachyonic
resonance. The time scale of this growth is given by the time that �̇ remains with a given
sign, that is �t ⇠ 1/m.

Secondly, even when the e↵ective frequency is positive, parametric resonance can occur
because eq. (3.3) takes the form of Hill’s equation since �̇ is a periodic function. Thus,
according to Floquet’s theorem, the solutions of (3.3) are given by sk,± ⇠ eµktP (t), where
P (t) is a periodic function with the same period as the oscillating axion background and
µk is in general complex. For certain values of k lying in so-called resonance bands one has
<(µk) > 0 and the corresponding mode grows exponentially. In figure 1 we show the values
of the real part of the Floquet exponent in units of m as a function of k and �i, as computed
by solving numerically (3.1) and (3.2) (see e.g. [31] for a computational method). One can
appreciate that the largest enhancement occurs around k ' �m/2, ✓i ' 2.

If the amplitude of the oscillations is small enough that the axion oscillates in an ef-
fectively quadratic potential, (3.2) can be rewritten as a Mathieu equation with resonance
bands which coincide with those shown in figure 1 for ✓ . 1.

Let us now consider the e↵ects of the expansion. Once Hubble friction is included,
e�cient resonant growth occurs only if its time scale is shorter than the Hubble time, i.e. if
m > H for tachyonic resonance and <(µk) > H for parametric resonance. Furthermore, the
amplitude of the axion oscillations redshifts as a�3/2 and momenta as a�1. Therefore, on
the one hand, tachyonic resonance is only e↵ective during the first axion oscillations since
the range of k modes a↵ected by this resonance decreases with the expansion. On the other
hand, a given mode k can now pass through several Floquet bands, as shown in figure 1.

It is qualitatively easy to understand the potential relevance of these dynamics for the
Hubble tension. Deep in the radiation era the axion field is overdamped and practically be-
haves as a dark energy component. Around the epoch of matter-radiation equality, the axion
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begins to oscillate. Eventually, it would behave as dark matter, since after few oscillations its
energy density starts redshifting as a�3. By itself, this would actually worsen the goodness
of the CMB fit. However, as the axion oscillates it can start dumping its energy into dark
gauge fields, as outlined above. The additional energy in the would-be dark matter field can
then be rapidly converted into a radiation component. Intuitively, this energy transfer should
occur rapidly enough so that the two-field system e↵ectively behaves similarly to the EDE
scenario of [8] with n = 2 and of [9], which both significantly alleviate the Hubble tension.

The question of how fast the energy transfer should occur for the mechanism to allevi-
ate the Hubble tension can be quantitatively addressed only by performing a dedicated fit to
cosmological data, as we will do in the next section. Here instead we provide evidence that
in principle the energy in the gauge fields can be su�ciently amplified during the first few
axion oscillations. We solve the system of equations (3.1) and (3.2) numerically, assuming
a radiation-dominated background to fix ideas and m = H, ✓i = 2, ✓̇i = 0 as initial condi-
tions for the axion field, while the gauge fields are initialized according to the Bunch-Davies
vacuum. We then compute the energy density in the gauge fields as

⇢A =
1

2a4

Z
d3k

(2⇡)3

X

±

⇣
a2|Ȧ±|

2 + k2
|A±|

2
� 2k

⌘
, (3.4)

which we plot in figure 2 for several values of �, together with the axion energy density.
Notice that the initial energy density in the gauge fields is extremely small compared to
the axion energy density, since ⇢A/V ' (k4/m2f2) ⇠ (m/f)2 ' 10�110 for representative
values m ⇠ 10�26 eV and f ⇠ 1017 GeV (which roughly correspond to the bestfit values
which we determine in section 6). The “steps” in figure 2 correspond to the oscillations of
the axion field. Therefore, one can see that for � & 50 the energy density in the gauge
fields becomes comparable to the background axion energy density after the axion completes
five/six oscillations. For even larger �, su�cient growth occurs after only few oscillations
(and even after just the first oscillation for � & 80). For ✓i > 2, the resonant enhancement
is faster and smaller values of � are su�cient to achieve the required rapid growth. This
can be understood by looking at figure 1, since the largest parametric enhancement occurs
around ✓ ⇠ 2.

Of course our linear analysis breaks down before the energy density of the gauge fields
becomes comparable to the axion energy density shown in figure 2. Nonetheless, the relevant
time scale needed to achieve the energy transfer should still be correctly captured by our
simple estimate.

An important caveat is now in order: the analysis above further neglects the backre-
action of the gauge fields on the axion field, which causes a growth of axion fluctuations
and can thus further alter the axion-gauge field dynamics. Dedicated lattice calculations
are required to realistically assess the implications of such backreaction, as well as the de-
tailed energy transfer from the axion to the gauge field. These have been performed in [14]
for the case in which � is the QCD axion. Very interestingly, the results of [14] show
that the energy transfer can indeed e�ciently occur in the first few oscillations, for the
same range of � shown in figure 2. However, when the growth is so strong that the en-
ergy density in the gauge field is comparable to that in the axion field already during the
first half-oscillation, then backreaction serves as an e↵ective friction on the motion of the
rolling axion, whose relic abundance is then enhanced rather than diluted. Following [14],
the upper bound on � to avoid such a situation can be estimated as follows. Focusing
on the energy in the kmax mode, after the first half oscillation, tachyonic resonance gives
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m= H(ai), θi= 2

Figure 2. Growth of the energy in the � polarization of the gauge field, according to (3.2) and (3.4)
for several values of axion-gauge field coupling � = 20, 50, 80 from left to right in the plot, fixing
✓i = 2, assuming a radiation dominated background. The dashed line shows the redshifting energy
density of the axion field, for m = H(ai) and for representative parameters m = 10�26 eV and
f = 5 · 1017 GeV. The calculation has been performed by discretizing the integral in (3.2), setting
a cuto↵ kcut = �mai and sampling the energy density over 10� points. We have checked that the
results are not significantly a↵ected by increasing the number of points and/or the cuto↵.

⇢A,k ⇠ (kmax/ai)4 exp
�
2
R

dt kmax/a
�
⇠ (�m✓i/2)4 exp (�✓i). By imposing that the latter

energy is smaller than the axion energy density at the end of the first half oscillation, i.e.
1/2m2f2✓2i , one finds

� . 2✓�1

i log

✓
✓i

f

m

◆
⇠ 100� 200 (3.5)

for ✓i ⇠ 1 � 2 and m ⇠ 10�26 eV, f ⇠ 5 · 1017 GeV. We conclude that the relevant range
of axion-gauge field coupling required for this mechanism to alleviate the Hubble tension is
50 . � . 150.

While the above model is a perfectly sensible e↵ective field theory, as this operator
respects the shift-symmetry of the axion, this is nevertheless an uncomfortably large value
for the axion-photon coupling, and begs the question whether it makes sense from the point
of view of UV physics.

4 Other models

This issue can be addressed in the context of a broader class of models. The discussion above
has focused on an axion field decaying to Abelian gauge fields. Similar dynamics can be
obtained also with scalar fields (see also [23]). For instance, one can consider a real scalar
field � that is coupled to an essentially massless secondary scalar field � with Lagrangian

L =
1

2
(@�)2 +

1

2
(@�)2 �

1

2
m2�2 �

1

2
" ��2 (4.1)

The cubic interaction also allows for tachyonic and parametric resonance. One can show that
e�cient energy transfer from � to � requires

"�
m2

�i
(4.2)
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where �i is the amplitude of the scalar field at the onset of oscillations H ⇠ m. Now since we
are considering extremely small masses for m & 10�28 eV, this condition on " seems very easy
to satisfy. So again from the e↵ective field theory point of view this is perfectly reasonable
(one can further check that loop corrections to the mass of � or � are negligible too, unless
" is taken many orders of magnitude higher than this bound).

However, one can also wonder about the UV completion of this model. Since the theory
is already dimension 4 this does not seem an issue. On the other hand, one might wish to
justify the masslessness of �, especially since the above Lagrangian does not have a shift
symmetry for �. This can be done as follows: consider a complex scalar �, with a sponta-
neously broken global U(1) symmetry (such a symmetry can be broken non-perturbatively
and/or by quantum gravity, but we assume such corrections are small in this discussion)

L = |@�|2 � �(|�|2 � v2)2 (4.3)

Here there can be resonant decay to the Goldstone mode (see e.g., [32]). Expanding around
the VEV v as � = v + (� + i�)/

p
2, the mass of the radial mode � is m =

p
2� v and the

cubic coupling to the Goldstone mode � is " = 2�v. Hence the condition for rapid energy
transfer (4.2) is |�i| � v. This means that the radial mode should initially sit high up in
its quartic potential, far from the VEV and puts one in a regime in which the standard
resonance analysis does not apply. This may be considered analogous to the requirement
|�i| ⇠ f � ⇤ = f/� (i.e., � � 1) in the axion-gauge field system studied earlier.

Finally, non-resonant energy transfers may also be envisioned. For example, ref. [17]
considers a scenario with an axion decaying to non-Abelian gauge fields through sphaleron
e↵ects. However, the condition of rapid enough decay may be challenging to achieve. Or one
could simply consider ordinary perturbative decays by considering much larger couplings.
For example, one could just allow � to decay into massless (dark) fermions  through the
Yukawa interaction �L = y� ̄ . The perturbative decay rate is

�pert =
y2 m

8⇡
(4.4)

So in order for the scalar � to decay shortly after it starts rolling at H ⇠ m, one needs �pert

to be not too much smaller than m. This means the Yukawa coupling should be y = O(1).
This represents a large breaking of any shift symmetry for �. Therefore, such a set-up does
not explain why � is so light. While one can simply set the renormalized mass of � to its
desired value m ⇠ Heq and since the model does not have any heavy degrees of freedom, this
is again not a direct problem with the e↵ective field theory. But it also begs the question as
to whether it has a UV embedding.

5 E↵ective fluid description

In order to quantitatively assess the relevance of this scenario for the Hubble tension, a
numerical realization in a Boltzmann code is required. While this is a relatively straightfor-
ward task for single field models, realizing the coupled axion-gauge field dynamics above is
challenging with existing Boltzmann codes. Therefore, in this work we rather make a first
step towards a fully realistic numerical analysis by employing an e↵ective fluid description
of the axion-gauge field dynamics, which captures some of its most important features. This
analysis is meant to be valid in a coarse-grained sense, meaning after averaging over an ap-
propriate time scale, for instance over one period for the oscillating axion field (see [8, 10] for
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similar approaches in the context of the Hubble tension). Our simplification will proceed in
two steps: first, we will introduce an e↵ective two-fluid description of the axion-gauge field
system, in which we encode the energy transfer from the axion fluid to the gauge field fluid.
Secondly, we will further reduce to a single fluid system. The latter is the description which
we implemented in a Boltzmann code. While our approach may not be entirely justified
based on the complex two-field dynamics, we think that it serves the purpose of providing
an understanding of whether the mechanism can help in alleviating the Hubble tension.

Let us first focus on the background dynamics of the axion-gauge field system. As
shown in [33], at the background level a homogeneous scalar field with potential (2.3) can be
e↵ectively described as a fluid with equation of state parameter

w�(a) = �1 +
1

1 + (ac/a)3
, (5.1)

where ac is the scale factor evaluated at the time when the scalar field starts rolling down
its potential. On the other hand, massless gauge fields behave as radiation and thus have
an e↵ective equation of state parameter wA = 1/3. In order to capture the energy transfer
from the axion to the gauge field, we can then make use of the following e↵ective coupled
fluid equations:

⇢̇� + 3H(1 + w�)⇢� = ��(t)⇢� (5.2)

⇢̇A + 4H⇢A = �(t)⇢�, (5.3)

where ⇢�,A are the energy densities of the axion and gauge field fluids and �(t) is an e↵ec-
tive decay rate. The latter can in principle be numerically extracted by means of a lattice
simulation (such as the one presented in [14] in the context of the QCD axion coupling to
hidden photons). Such an analysis goes beyond the aim of this paper. However, in a rather
model-independent fashion, we can parametrize the decay rate as follows

�(t) =
1

1 + �(ar/a(t))
, (5.4)

where �(x) is a function such that �(x) � 1 for x � 1 and �(x) ⌧ 1 for x ⌧ 1. To set ideas,
we consider here �(x) = xp, with p > 0. Here ar is the scale factor evaluated at the time tr at
which parametric resonance becomes e�cient. Obviously ar > ac; its precise value depends
on the coupling strength g�A, and in particular on the value of �. The regime of our interest
is � � 1 and in this case the energy transfer from the homogeneous axion background to
the gauge field can be extremely e�cient, as discussed in the previous section, in such a way
that the axion field dumps all its energy during at most the first few oscillations. To reflect
this feature in our parameterization, we will consider ar & ac and p � 1.

We now proceed to the second step of our simplification. Namely, we consider a single
fluid approach to describe the two-fluid system presented above. We start by considering the
following equation of state parameter

ws(a) = �1 +
1

1 + (ac/a)3
+

1/3

1 + (ad/a)d
, (5.5)

with d > 0 and ad > ac. A single fluid with the equation of state parameter above features
two transitions: the first one from �1 to 0 around ac, the second one from 0 to 1/3 around
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Figure 3. Comparison between: the axion energy density computed from the field theory model
(solid blue), the axion-gauge field energy density according to the two-fluid approximation (5.2)
(solid orange, green, red) and according to the single fluid approximation with equation of state
parameter (5.5). In order to produce this plot, we have chosen as an example Hi = 3m, ✓i = 3, ac '

6.5 ai, ar = 3 ac, ad = 0.9 ar.

ad. This matches the two-fluid picture, if ad ' ar. We compare the evolution of the energy
densities of the two-fluid system, according to (5.2), (5.1), (5.4), with the energy density ⇢s
of the single fluid with equation of state parameter (5.5) in figure 3 for an example choice
of parameters. For simplicity, we work in a radiation-dominated background, although our
conclusions are not a↵ected by the background evolution. Furthermore, we fix p = 30 and
d = 4 as a representative example and choose ad ' ar. We observe a very good agreement
between the two e↵ective descriptions of the evolving axion and gauge field system. The
agreement can be made even more precise considering larger values of d. However, we have
verified that the results of the fit to cosmological data are not significantly a↵ected by the
choice of d, as long as d � 4. Notice that the single-fluid parametrization of the axion-
gauge field system, according to (5.5), is not expected to provide an accurate description
of the background evolution at late times. Indeed, even though the axion field transfers a
significant fraction of its energy density to gauge fields at early times, a small fraction of its
energy density likely remains in the form of axions and redshifts like matter [14]. At late
times, significantly after recombination, this small fraction is expected to dominate over the
energy density in the gauge fields, since the latter redshifts faster. Therefore, at late times
the axion-gauge field system should be dominated by a dark matter component, rather than
by radiation as described by (5.5). Nevertheless, at such late epochs the contribution of our
dark sector to the total energy density is very small, thus we expect our parametrization (5.5)
to be valid to the aim of assessing the Hubble tension in our scenario.

The validity of an e↵ective fluid description at the level of perturbations is more subtle.
In particular, the sound speed of the e↵ective fluid perturbations should exhibit a dependence
on the scale factor as well as on the momentum k of the given perturbation mode (see [33]
for a detailed discussion in the context of a single oscillating axion field). In this work we will
consider a sound speed which tracks the behavior of the equation of state parameter w�A, i.e.

c2s = 1�
1

1 + (ac/a)3
+

1/3

1 + (ad/a)d
. (5.6)
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Additionally, in order to understand how a di↵erent treatment of perturbations may af-
fect our results, we will briefly consider fixed values of the sound speed c2s, in between the
asymptotic early and late time values c2s = 1 and c2s = 1/3. An important caveat is in
order before moving to the next section: the realistic two-field model may exhibit a pecu-
liar behavior for perturbations which is not captured by our simple e↵ective fluid approach.
Therefore, our analysis should be considered purely as a first step towards a more realistic
numerical implementation, which is left for future work. Finally, let us also remark that our
parameterization (5.5) can capture a broad range of models where dark energy decays to a
radiation-like species, beyond the axion-gauge field system. As such, the results presented in
the next section may o↵er insight for such models as well.

6 Datasets and results

We are now ready to present the results of a numerical fit of our single fluid parameterization
of the decaying ultralight scalar (dULS) model to cosmological datasets. We consider the
following data sets: Planck 2018 high-` and low-` TT, TE, EE and lensing data [34] (from
now on Planck18); BAO measurements from 6dFGS at z = 0.106 [35], from the MGS galaxy
sample of SDSS at z = 0.15 [36] (BAO smallz), from the CMASS and LOWZ galaxy samples
of BOSS DR12 at z = 0.38, 0.51, and 0.61 [37] (bao DR12); the Pantheon Supernovae data
sample [38] (Pantheon) and the latest measurement of the present day Hubble rate from the
SH0ES program H0 = 74.03 ± 1.42 km/s/Mpc [1]. We implement our fluid model (which
we refer to as dULS, for decaying Ultra-Light Scalar) in the Boltzmann code CLASS [39, 40],
by making use of its dark energy fluid section. Furthermore, we include the possibility of
a varying sound speed in the perturbations part of the code. We model neutrinos as two
massless and one massive species with m⌫ = 0.06 eV, following the Planck collaboration.

Our construction features three additional parameters with respect to ⇤CDM: the relic
abundance of the fluid with equation of state parameter given in (5.5), ⌦dULS; the value
of the scale factor ac in (5.5); a parameter gd ⌘ ad/ac which quantifies the time scale of
the transition from a CDM-like fluid to radiation., with the obvious requirement gd � 1.
In terms of the original axion-gauge field model, the larger gd, the larger the number of
oscillations of the axion field before it undergoes strong resonant decay. For simplicity, we
actually present here results only for a fixed representative value gd = 1.1. Therefore, the
fitted model only has two varying extra parameters beyond ⇤CDM. In terms of the original
axion-gauge field model, this choice implies a very rapid energy transfer from the axion field
to the gauge field, which occurs during the first axion oscillation. As mentioned in section 3
above (3.5), the feasibility of such a rapid energy transfer probably deserves a dedicated
numerical study which includes backreaction e↵ects.1 In the dULS model, the sound speed
of fluid perturbations is given by (5.6).

Furthermore, we study the dependence of our results on the sound speed by considering
variants of the model with a fixed value of the sound speed c2s � 1/3 and with varying gd.
We refer to these variants as dULSc2s and we will briefly mention their potential relevance to
assess the Hubble tension in our framework.

1
We have also performed runs with gd free to vary and found results which are very similar to the ones

presented here. Furthermore, we find that the range gd � 2 is disfavored by the data compared to gd < 2,

although for gd & 2 we find that this model still alleviates the Hubble tension and has a smaller �2
than

⇤CDM with the same dataset used in this work.

– 11 –



J
C
A
P
1
0
(
2
0
2
0
)
0
2
8

zeq
zc
zd

100 1000 104 105 106
10-6

10-5

10-4

0.001

0.010

0.100

Redshift z

E
ne
rg
y
de
ns
ity
fra
ct
io
n

Ω
dU
LS
(z
)

Figure 4. The energy density fraction ⌦dULS = ⇢dULS/⇢tot of the single fluid with equation of
state (5.5) as a function of redshift z. The vertical lines indicate the redshift of matter-radiation
equality zeq, the redshift zc when the equation of state parameter starts deviating from �1, and the
redshift zd after which the fluid redshifts as radiation.

We use Monte Python [41, 42], in its version 3.3.2, to perform a Markov chain Monte
Carlo investigation of the model.2 For comparison, we also obtain chains for the ⇤CDM and
�Ne↵ models. The results for cosmological parameters are reported in table 1 and in figure 5.

Let us first discuss results for the dULS model. The behavior of the energy density
fraction in the e↵ective fluid for the bestfit values of parameters in table 1 is reported in
figure 4. One can appreciate that the data prefers a transition from dark energy to matter
around zc ' 24, 000, significantly before recombination. Taking into account our assumption
gd = 1.1, the transition to a radiation-like fluid should occur around zd ' 22 000. The actual
contribution to the total energy density is ⇠ 3� 4% slightly after zc. Therefore, the model is
expected to alleviate the Hubble tension, without being able to fully solve it. Indeed we find
H0 = 69.9+0.84

�0.86 km/s/Mpc with H0 = 69.92 km/s/Mpc being the best fit value. The dULS
model can be compared to the �Ne↵ model, as reported in table 1 and in figure 5. The dULS
model is preferred with respect to ⇤CDM model by ��2

⇡ �9, whereas the �Ne↵ model is
preferred only at ��2

⇡ �3.3 As seen in table 2, which shows the individual contributions
to �2, the improvement in ��2 of the dULS model with respect to the ⇤CDM model is
driven by the fit to SH0ES, as expected. The improvement with respect to the �Ne↵ model
is instead due to a combination of a better fit to SH0ES as well as Planck high-l and low-l
TT data.

In spite of their power in alleviating the Hubble tension, both the dULS model and the
�Ne↵ model exhibit larger values of the �8 and !cdm parameters with respect to ⇤CDM.

2
For all of the analyses presented in this paper, the Gelman-Rubin convergence criterion [43] is respected,

since R� 1 < 0.1. In particular, for the ⇤CDM and �Ne↵ models we have R� 1 < 0.005.
3
Several criteria exist to compare the performance of two models with di↵erent number of parameters.

For instance, the Akaike criterion (see e.g. [49, 50]) applied to the dULS and ⇤CDM models gives: �AIC ⌘
��2 � 2�n ⇡ �5 if we only consider the two extra free parameters used in our run and �AIC ⇡ �3 if we

also count gd, with �n being the di↵erence in the number of parameters between the two models. The same

criterion applied to the �Ne↵ model gives instead �AIC ⇡ �1. Thus, according to this criterion, the dULS

model performs better than the �Ne↵ model.
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Parameter ⇤CDM dULS �Ne↵

100 !b 2.254 (2.26)+0.013
�0.014 2.26 (2.264)+0.021

�0.019 2.272(2.262) +0.016
�0.016

!cdm 0.1183 (0.1189)+0.00087
�0.00092 0.1239 (0.124)+0.0026

�0.0026 0.124(0.1231) +0.0027
�0.0028

109As 2.122 (2.123)+0.03
�0.035 2.137 (2.134)+0.034

�0.037 2.147(2.131) +0.033
�0.036

ns 0.97 (0.9699)+0.0038
�0.0036 0.9802 (0.9857)+0.0086

�0.0082 0.9792(0.9779) +0.0058
�0.0059

⌧reio 0.06053 (0.06027)+0.007
�0.0084 0.06049 (0.06011)+0.007

�0.0081 0.06018(0.05912) +0.0072
�0.0083

H0 68.24 (68.06)± 0.41 69.9 (69.92)+0.84
�0.86 70.08(69.64) +0.91

�0.95

106⌦dULS/�Ne↵ � 8.764 (8.278)+3.1
�3.5 0.3401(0.2825) +0.15

�0.16

105ac � 5.988 (4.159)+1.1
�4.4 �

gd � fixed to 1.1 �

�8 0.8097 (0.8119)+0.0061
�0.0067 0.8226 (0.8243)+0.0091

�0.0097 0.825(0.821) +0.0095
�0.0095

Table 1. The mean (best-fit in parenthesis) ±1� error of the cosmological parameters obtained by
fitting ⇤CDM, the dULS and the �Ne↵ models to our combined cosmological dataset.

Dataset ⇤CDM dULS �Ne↵

Planck highl TTTEEE 2352.18 2353.94 2357.80

Planck lowl EE 397.44 397.18 397.04

Planck lowl TT 22.71 20.88 21.78

Planck lensing 8.84 9.68 9.41

Pantheon 1027.06 1026.92 1026.92

SH0ES 2019 17.71 8.39 9.56

bao boss dr12 3.81 3.36 3.46

bao smallz 2014 1.45 1.94 1.80

Total 3831.19 3822.28 3827.78

��2 0 �8.91 �3.41

Table 2. Contributions to the total �2
e↵ for individual datasets, for the best-fits of ⇤CDM, dULS

and �Ne↵ models.

Therefore, the S8 = �8(⌦m/0.3)1/2 tension between CMB and cosmic shear measurements
(e.g., a recent joint analysis of KIDS1000+BOSS+2dfLenS [44] finds a smaller values of S8,
with a ⇠ 3� discrepancy with Planck data assuming the ⇤CDM model) is exacerbated in
the dULS and �Ne↵ models with the cosmological dataset considered in this work. This is a
feature common to all EDE-like solutions of the Hubble tension. Indeed these solutions add a
certain amount of energy density in the form of radiation (which may or may not decay faster
than radiation after equality). In order to keep the CMB angular scale at equality fixed, the
dark matter energy density also has to be increased and this leads to an enhancement of
the amplitude of the matter power spectrum at late times compared to the ⇤CDM model.
Furthermore, the fit may be worsened with the inclusion of other data sets, including large
scale structure (see e.g. [45–47] and [48] for recent contrasting takes on this issue and its
relation to the Hubble tension).
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Let us now translate our results from the language of the e↵ective fluid model to that
of the ultralight scalar theory. We do so for the bestfit values of parameters presented in
table 1. First, the axion mass can be roughly determined by setting m = ↵Hc, where by
means of CLASS we extract Hc ' 5 · 10�27 eV. The value of ↵ depends on the initial axion
field value and can be estimated as ↵ '

p
V 0(�i)/�i/m. For �i & 2f , one finds ↵ & 1.5, with

↵ ' 4 when �i & 3f . Therefore, we find m ⇠ 10�26 eV. Second, the axion decay constant
can be roughly determined by matching the initial energy density fraction shown in figure 5,
which we find to be ⇢dULS(z ' zc) ' 20 eV4, to V ⇠ m2f2. We find f ' 5 · 1017 GeV.
Finally, the value of the axion-gauge field coupling � can be roughly estimated by noticing
that ad = 1.1ac implies that the energy transfer should e�ciently occur during the first
oscillation of the axion field. According to figure 2, this can be achieved for � & 80. As
mentioned above, this regime deserves further numerical investigation to assess the relevance
of backreaction e↵ects. Our investigation reveals that slightly smaller values of � should
still alleviate the Hubble tension, although quantitatively the improvement over the ⇤CDM
model in terms of ��2 may be weakened.

Let us now briefly discuss the dULSc2s model, without presenting detailed results for
cosmological parameters. We consider two choices c2s = 0.5 and c2s = 1/3. We find that both
variations of our fluid model prefer similar values of ac as in the dULS model. However, a
slower transition to radiation is also preferred, with zd ' (1/3)zc ' 5000. This allows for
several oscillations of the axion field before the latter actually decays to radiation, thereby
smaller values of � . 70 are preferred. When c2s = 0.5, the Hubble parameter turns out
to be slightly larger than in the dULS model, with H0 = 70.17+0.9

�0.69 km/s/Mpc. Most
importantly, the goodness of the fit with respect to ⇤CDM is further improved to ��2 =
�11, with three extra parameters. For c2s = 1/3 instead H0 is very similar to the dULS
case, and the ��2 is somewhat worse. While the results for c2s = 0.5 are encouraging, the
simplified parameterization of fluid perturbations in the dULSc2s variants is not expected to
be realistic, since in general the sound speed will vary with time. Nonetheless, results for the
dULSc2s model show that the goodness of the fit can be a↵ected by the specific treatment of
perturbations (as also found in [8, 10]). A more realistic implementation of perturbations in
the axion-gauge field system could thus turn out to moderately alter the quantitative results.

Finally, we have performed a fit of the model to an early time dataset only (Planck 18
and BAO). When comparing with the fit of ⇤CDM to the same dataset, we find that the
fluid description slightly improves the fit to the dataset, as was the case for [8, 10].

7 Conclusions

We explored a class of scenarios to alleviate the tension between early and late time mea-
surements of the Hubble constant and its possible status within fundamental physics. The
setup relies on ultralight scalars that can decay to massless fields, with a focus on the axion-
dark-photon version. Soon after the start of scalar oscillations, the massless field/s can be
resonantly enhanced due to tachyonic and parametric instabilities in its equation of motion.
Therefore, energy can be e�ciently transferred from the homogeneous scalar field to the mass-
less field. This scenario represents a realization of a decaying ultralight scalar (dULS) model.

By means of a linear analysis, we have provided evidence that su�cient resonant growth
can occur in the first few scalar oscillations (in agreement with the lattice results obtained
by [14] for the case of the QCD axion). Because of the challenge of implementing numerically
the resonant two-field system in existing Boltzmann codes, we have used an e↵ective single
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fluid model to quantitatively assess the performance of this setup with respect to the Hubble
tension. Our parameterization adds three extra parameters to the standard ⇤CDM parame-
ters: the relic abundance of the e↵ective fluid and the values of the scale factor at which the
two transitions from a dark energy to a matter-like fluid first, then to a radiation-like fluid,
occur. These parameters correspond to the axion mass and decay constant and its coupling
to the dark gauge fields.

We have performed a fit to a combined early and late Universe dataset of a simplified
version of the fluid model, obtained by fixing one of the three extra parameters and corre-
sponding to an energy transfer from the axion field to the gauge fields which occurs during
the first oscillation and at z ⇠ 20, 000. We found H0 = 69.9+0.84

�0.86 km/s/Mpc with ��2
⇡ �9

compared to the ⇤CDM model, when the sound speed of the e↵ective single fluid is taken
to track the behavior of the equation of state parameter. For comparison, we find the �Ne↵

model to give very similar values of H0 but ��2
⇡ �3 compared to the ⇤CDM model.

Therefore, the fluid model performs better than �Ne↵, even when taking into account the
larger number of new parameters. Our results provide evidence that an axion field with a
standard cosine potential and with m ' 10�26eV and f ' 1017 GeV can significantly alleviate
the Hubble tension. However, even with the combined dataset considered in this work, the
dULS model does not fully resolve the discrepancy between early and late time measurements
of H0. Furthermore, other data sets may worsen the fit, in particular those that constrain
the S8 parameter. In this respect, it would be interesting to investigate possibilities to sup-
press small-scale density fluctuations in our setup. These may require additional ingredients
beyond the ones considered in this work, such as extra species with self interactions.

We also considered variations of our fluid parameterization, with a fixed value of the
sound speed c2s. In particular, for c2s = 0.5 we find ��2

' �11 with respect to ⇤CDM,
with a slightly larger value of H0 compared to the case above. Our modeling of the axion-
gauge field system as a single fluid with varying equation of state parameter is certainly quite
simple and may capture only some of the features of the field theory model. Nonetheless,
the above results are promising and motivate future work towards a more realistic numerical
implementation of the setup studied here.

The dULS scenario can be compared to the EDE models studied in the literature. From
the point of view of fundamental physics, it o↵ers an important advantage: it makes use of a
standard axion potential which is quadratic around the minimum. This should be contrasted
with EDE models, where a V / (1�cos(�/f))n, with n � 2 potential is assumed; this requires
a miraculous conspiracy among coe�cients of the harmonic expansion. Such a choice should
take a big penalty in a fair ��2 analysis. Relatedly, such models currently have no known
justification from a UV perspective.

Furthermore, in its axionic version, the dULS model exploits the honest-to-goodness
character of the axion: a pseudo-scalar with coupling to gauge fields �FF̃/⇤. When con-
sidering a sound speed for fluid perturbations which tracks the equation of state parameter,
we find that the Hubble tension is significantly alleviated when the energy transfer from the
axion to the gauge field occurs during the first oscillation. In this case, a dedicated numerical
lattice analysis would be desirable to fully assess the relevance of backreaction e↵ects on the
axion field, which is left for future work. At the linear level, the regime of interest can be
achieved by considering somewhat large axion-gauge field couplings ⇤ . f/80.

There is no known obstruction in making this choice of parameters from the point of
view of e↵ective field theory (since ⇤ controls the size of an operator that respects a sym-
metry, while f controls the size of the axion field range). However, it is highly non-trivial to
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Figure 5. Posterior distributions for cosmological parameters in the dULS model (green), compared
to ⇤CDM (red) and the �Ne↵ (blue) model. We used the joint Planck 18 + BAO + Pantheon +
SH0ES likelihood (see beginning of section 6).

obtain a UV completion of this. Such UV completions have been argued to exist with addi-
tional ingredients, including extra fields (e.g. in the spirit of [51], see also [52] for a clockwork
model), but it is still an open question (e.g., see [53]). Related issues apply to scalar-scalar
models ⇠ ��2, where the required parameters do not arise naturally from spontaneously
broken quartic theories. Furthermore, direct perturbative decays require O(1) dimensionless
couplings, which can introduce tuning of the ultralight scalar mass. In summary, our theo-
retical results, combined with possible problems from other data sets, are hints that the full
resolution to the Hubble tension remains unsolved.
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