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HIGHLIGHTS GRAPHICAL ABSTRACT

Chlorophyll-a and microcystin concen-
trations were significantly related in
lowa lakes.

The ELISA method conservatively esti-
mates microcystin toxicity.

Image mosaicing over water is possible
using a geometry-based approach.
Multispectral  imaging  predicted
microcystin concentrations within 33%

Statewide HAB Measurements
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ARTICLE INFO ABSTRACT

Ara‘cl_e history: Cyanobacterial harmful algal blooms (CyanoHABs) are pervasive and negatively impact lake water quality,
Received 5 August 2020 resulting in economic losses and public health risks through exposure to cyanotoxins. Therefore, it is critical to
Received in revised form 19 October 2020 better monitor and understand the complexity of CyanoHABs, but current methods do not fully describe the spa-
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tial and temporal variability of bloom events. In this work, we developed a framework for a multiscale and multi-
modal monitoring approach for CyanoHABs combining drone-based near-range remote sensing with analytical
measurements of microcystin cyanotoxins and chlorophyll-a. We analyzed weekly beach monitoring samples
from 37 lakes geographically distributed across the state of lowa (USA) over a 15-week period in the summer
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a novel microcystin congener-normalized equivalent toxin metric to compare CyanoHAB impacted waters;
this microcystin-LR normalized sum-of-congeners approach yields lower predicted toxicity than parallel ELISA
results suggesting ELISA is conservative for assessment. A significant linear relationship existed between
chlorophyll-a and microcystin for lakes throughout lowa (R? = 0.39, p < 0.001); lakes with low watershed:
lake area ratio and long residence times exhibited a stronger correlation. We then developed a novel
geometry-based image processing approach to allow for stitching over-water drone images, a previous barrier
in photogrammetry. We applied our mutli-modal framework to a case study on Green Valley Lake to assess initial
viability and predicted microcystin concentrations within 33%. We concluded that multispectral imaging is pos-
sible but may presently be insufficient for predicting microcystin concentrations due to limitations in the spectral
capabilities of the multispectral camera, but technologies are quickly advancing, and lightweight hyperspectral
imaging could soon become feasible for investigating spatial bloom variability on lakes.
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1. Introduction

Cyanobacterial harmful algal blooms (CyanoHABs) occur in freshwa-
ter systems around the world, negatively impacting lake ecosystems by
releasing cyanotoxins into the water, creating hypoxic conditions upon
their decay, and impacting economies from decreased recreation (EPA,
2019). These blooms are created, in large part, from human influence
of nutrient cycling through agricultural practices, leaving lakes of the
Midwest United States particularly susceptible to bloom events (EPA,
2019). CyanoHABs are predicted to increase in frequency and severity
due to climate change, with increased surface temperatures and
changes in meteorological conditions promoting the growth and stabil-
ity of blooms (Paerl et al., 2010, 2016). Therefore, it is important to un-
derstand the occurrence of bloom events, effectively monitor them, and
prevent their negative impacts to the greatest extent possible.

Human exposure to cyanotoxins released from CyanoHABs occurs
from contact with contaminated surface water and can result in pneumo-
nia or respiratory distress, with mild impacts including fever, dermato-
logic, gastrointestinal, or other respiratory distress symptoms (Turner
et al., 1990). Drinking contaminated waters can cause severe liver and
kidney damage that result in livestock, pet, and human deaths (Da et al.,
1993). The toxins present in a bloom are dependent on the cyanobacterial
community because different species will release different toxins. Histor-
ically in the Midwest, microcystins have been the most common and
dominant toxin present in blooms, found in 91% of 23 lakes sampled in
a 2006 Midwest study (Graham et al., 2010). In lowa specifically,
microcystins were found in 100% of the 10 lakes sampled and was the
dominant toxin in 90% of these samples. Microcystis, which only produce
microcystin toxins, were detected in all lowa lakes sampled in the 2006
study and in Green Valley Lake, Lake Keomah, and Lake of Three Fires in
2012 and 2013 samples analyzed by the State Hygienic Laboratory
(State Hygienic Laboratory, Personal Communication, 2019). Therefore,
although other toxins may be present in lowa blooms, we focus on
microcystins in this study due to their historical dominance. Microcystins
are hepatotoxins, defined by an ADDA [(all-S,all-E)-3-amino-9-metoxy-
2,6,8-trimethyl-10-phenyl-4(E),6(E)-dienoic acid] moiety common in
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the structure. Nevertheless, the two L-amino acids vary, generating over
300 structurally identified microcystin congeners as of 2020 (Bouaicha
et al., 2019; Jones et al., 2020), each with a different lipophilicity and po-
larity, resulting in a concomitant suite of toxicities. The known median le-
thal dose levels (LDsp) of microcystin congeners in mice ranges from 50 to
greater than 1200 pg/kg (Chorus and Bartram, 1999). Not all congeners
have been studied for their toxicological effects and not all congeners
are quantifiable due to the lack of laboratory standards; indeed, only
twelve congener standards were available for this study through Enzo
Life Sciences (Enzo Life Sciences Inc., Retrieved from: https://www.
enzolifesciences.com/product-listing/). Therefore, it is challenging to use
congener profiles to predict bloom toxicity.

Several monitoring strategies have been developed for harmful algal
blooms to assess toxicity quantitatively or qualitatively (Fig. 1). We will
briefly review here five types of monitoring: bio-assay, chromatogra-
phy, in-situ sensors and samplers, satellite remote sensing, and near-
range remote sensing. ELISA (Enzyme-linked immunosorbent assay)
test kits are a popular monitoring tool for assessing overall microcystin
toxicity (EPA, 2012). However, the ELISA method cannot distinguish
specific microcystin congeners, which has led to the development of lig-
uid chromatography tandem mass spectrometry (LC-MS/MS) methods.
LC-MS/MS methods can accurately quantify specific congeners with
limited interference (EPA, 2012). Nevertheless, both bio-assay and
chromatography methods are limited in their spatial and temporal res-
olution because they are collected from grab samples, requiring time,
money, and personnel to collect. In-situ sensors are advantageous be-
cause they collect high temporal resolution data but rely on surrogate
pigments such as chlorophyll-a or phycocyanin to quantitatively predict
cyanobacterial abundance and infer toxicity. Also, these sensors are sus-
ceptible to fouling, requiring frequent maintenance and quality assur-
ance for accurate readings (Davis et al., 1997). In-situ samplers, in
contrast to sensors, collect automated water samples at set time inter-
vals. These samples are preserved and later analyzed in the laboratory.
Automated sampling allows for the quantitative assessment of
cyanotoxins and their temporal trends (Miller et al., 2019), but still
requires personnel, time, and money for sample analysis and
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Fig. 1. Conceptual illustration of capabilities of HAB monitoring strategies. Red outlines indicate capabilities available when combining the specified analytical methods (i.e., bio-assay,

chromatography) with near-range remote sensing, as proposed and conducted in this study.
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maintenance. In-situ sensors and samplers are often placed on buoys,
producing no spatial information. To improve spatial monitoring of
blooms, remote sensing through satellites, small aircraft, and un-
manned aerial vehicles (UAVs)/drones have become popular. Again,
these strategies detect pigments and cannot directly measure toxicity.
Satellite remote sensing has proven effective for ocean studies, large
lake systems, or for assessing large-scale trends in blooms (Borbor-
Cordova et al., 2019; NOAA, 2019). However, for small inland lakes, spa-
tial resolution is too coarse to provide useful monitoring information,
and cloud cover and mixed land/water pixels can prevent or complicate
analysis (Kislik et al., 2018). Therefore, small aircraft and drone based
near-range imaging technologies have emerged for monitoring of
blooms on small inland lakes. The spatial resolution of near-range imag-
ing can be sub-meter and there is greater flexibility in sampling time
and location (Kislik et al., 2018). Because the spatial resolution is so
high, several images are captured during monitoring, requiring image
stitching. Over water image stitching has been a roadblock for these
technologies due to the limitations of current photogrammetry soft-
ware (Kislik et al., 2018).

There is no one monitoring strategy currently available to capture
the spatial and temporal complexity of harmful algal blooms and predict
toxicity. Therefore, we propose the use of a multiscale, multimethod ap-
proach using near-range imaging, bio-assay, and chromatography
methods (indicated by the red lines in Fig. 1) to best capture bloom dy-
namics. The main limitation of remote sensing technologies is that they
are unable to directly quantify the toxicity of blooms. However, a rela-
tionship has been identified that exists between the pigment
chlorophyll-a and phycocyanin produced by cyanobacterial blooms
and the toxins that they release (Francy et al., 2015; Hollister and
Kreakie, 2016; Shi et al., 2015). We chose to use chlorophyll-a as the
surrogate pigment in this study because it is readily detectable by
more imagers, unlike phycocyanin which can only be detected by
hyperspectral imagers and thus may be cost prohibitive to lake man-
agers (Kislik et al., 2018). Additionally, phycocyanin methods have not
been standardize and lack accuracy and reproducibility in the laboratory
due to light and temperature sensitivity that cause rapid degradation
(Kasinak et al., 2014). Understanding the relationship between
chlorophyll-a and microcystin toxins and using it in conjunction with
a remote sensing approach could allow for estimation of toxin levels
using more practical, currently available technologies. An additional
gap in the current monitoring of CyanoHABs in lowa is the lack of data
available on specific microcystin congeners and the implications of
their concentrations on bloom toxicity. Therefore, the objective of this
work was to determine microcystin congener abundance and toxicity
in Iowa lakes, and then quantify the relationship between chlorophyll-
a and microcystin toxins to predict the distribution of toxins using a
near-range remote sensing approach. We developed, tested, and ap-
plied the drone-based monitoring technology framework for a case
study lake and highlight the remaining hurdles to implementation as
a novel lake monitoring approach.

2. Materials and methods
2.1. Weekly sampling procedures

The lowa Department of Natural Resources (IDNR) conducts weekly
microcystin sampling (on Tuesdays and Wednesdays) at lowa's state-
owned beaches from Memorial Day to Labor Day (US federal holidays;
late May to early September). The IDNR uses a manual composite sam-
pling technique centered in the swimming beach area (Fig. S.1). An ad-
ditional 500 mL HDPE bottle was collected from a subset of the
composite sample during normal state beach sampling by the IDNR to
allow additional analyses for our study. The samples were transferred
to a dark cooler with ice and transported, with temperatures not ex-
ceeding 10 °C, to the State Hygienic Laboratory's Coralville location, or
to the lowa Lakeside Laboratory (Milford, IA) location if collected in
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the northwestern portion of the state (Table S.1). The samples were
then transferred to a fridge kept below 10 °C upon arrival to the appro-
priate laboratory. The samples sent to Lakeside Laboratory were filtered
for chlorophyll-a analysis, with the filter frozen, and subsequently sent
to Coralville for analysis by fluorometry. The remaining sample volume
not used for chlorophyll-a filtration (only requiring a maximum of
100 mL, determined by sample turbidity as described in Section 2.1.2),
was preserved and also sent to the Coralville location. Upon arrival, a
20 mL aliquot was transferred to a glass amber vial fitted with a PTFE
screw cap and frozen for subsequent analysis of twelve microcystin con-
geners. Samples from locations other than Lakeside Laboratory were fil-
tered for chlorophyll-a at the Coralville location, with a 20 mL aliquot
reserved for congener analysis. The samples were transported in HDPE
plastic (to permit safety and ease of handling during field collection
and shipping) for a duration of one day to a week prior to transfer to
glass, with longer transfer times for samples from Lakeside Laboratory.

In 2019, the monitoring season ran from May 21st to August 28th,
with 37 beaches sampled across the state (Fig. S.2, Table S.1); however,
not all 37 beaches were analyzed for chlorophyll-a and microcystin con-
geners weekly. Only samples that the IDNR reported with a microcystin
concentration above 2 pg/L (above the drinking water advisory level of
1 pg/L (World Health Organization, 2004)) were further analyzed to
lessen the sampling burden yet still capture significant bloom events.
For each sampling period, 3 to 5 samples between 0.75 ng/L (ELISA
limit of detection) and 2 pg/L were analyzed for the twelve congeners
described below and compared to ELISA microcystin concentrations
for quality assurance. In 2019, 20 beaches at 16 distinct lakes had ob-
served ELISA microcystin concentrations greater than 2 pg/L
(Fig. 2, top).

2.1.1. ELISA microcystin analysis conducted by IDNR

The IDNR analyzes for total microcystin using the microcystins/
nodularins (ADDA) ELISA Kit, PN 520011 OH, Microtiter Plate (96T).
IDNR follows the Ohio EPA Total microcystins — ADDA by ELISA analyt-
ical methodology (Zaffiro et al., 2016). The detection range is
0.15-5 pg/L, but the IDNR performs a 1:5 dilution on all samples, in-
creasing the detection range to 0.75-20 ng/L. Additional dilutions are
then conducted if the concentration exceeds 20 pg/L. A quality control
standard, low calibration range check, and laboratory reagent blank
are used for quality assurance. The samples are read in duplicate.
ELISA beach monitoring results for 2019 and previous years can be
found through the IDNR's water quality database, AQuIA (IDNR, n.d., Re-
trieved from: https://programs.iowadnr.gov/aquia/).

2.1.2. Chlorophyll-a analysis

The chlorophyll-a samples were analyzed by fluorometry using the
State Hygienic Laboratory standard operating procedure, a modified
version of EPA method 445.0 (Arar and Collins, 1997). First, a represen-
tative sample was collected on Millipore type SM, 47 mm 2.0 pm
membrane filters by vacuum filtration in dim light to avoid
photodegradation. Sample volume varied by the turbidity of the sample
to prevent clogging of the filter, ranging from 10 to 100 mL, with volume
recorded to determine correct chlorophyll-a concentration from the
fluorescence measurement using the standard curve. Samples were ide-
ally filtered within 24 h of collection, but sometimes up to 3 days follow-
ing collection. The filter was stored and processed according to M445.0,
except the samples were sonicated for 30 min rather than ground to re-
lease pigment (Arar and Collins, 1997).

The samples were analyzed using a Perkin Elmer Fluorometer,
model LS using FL Winlab Version 4.00.02. Calibration standards
were prepared using Sigma Chemical Chlorophyll-a standard stock
diluted with aqueous 90% acetone. The exact concentrations of the
calibration standards were determined using a spectrophotometer.
The calibration curve was constructed using a blank and a minimum
of 5 standards analyzed at room temperature, with the linear regres-
sion determined by the software. A minimum correlation coefficient
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Fig. 2. State beach sites with microcystin levels above 2 ng/L by ELISA during the 2019 monitoring season. There were 20 distinct beaches at 16 lakes (top). Note: North Twin label includes
the East and West beaches. The colored labels indicate vulnerable lakes, defined as lakes with 5 samples greater than 2 pg/L ELISA microcystin. Concentration distributions of 12
microcystin congeners and their detection frequencies in the 87 analyzed samples with ELISA microcystin concentrations above 2 pg/L in 2019 Iowa state beach samples (bottom).
Boxplots represent median, interquartile range, and min/max values. Note: The color schemes for the vulnerable lakes and microcystin congeners in this figure are consistent with

later figures.

of 0.999 was required for the standard curve. A sipper cell system
was used to pull samples. Lab reagent blanks, control blanks, quality
control standards, and lab duplicates were added throughout each
run to ensure all quality control and assurance requirements were
met. If dilutions were required, they were conducted using 90% ace-
tone. The sample intensities were converted to concentrations by the
software based on the linear regression curve and corrected for fil-
tered volume.

2.1.3. Microcystin congener analysis

As described in 2.1, the samples were transferred to 20 mL glass
amber vials and frozen at —20 °C until analysis. Three freeze-thaw cy-
cles were conducted to lyse the cyanobacterial cells, agitating the sam-
ples after each cycle. Then, the samples were filtered through a 25 mm,
1.2 um glass-fiber filter. 0.5 mL of sample were added to sample vials,
with 25 pg/L of 100 ng/mL Simeton added to each sample as internal
standard. The prepared samples were stored at —10 °C until analysis.
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The target analytes included twelve microcystin congeners: MC-LR, MC-
RR, MC-LA, MC-YR, MC-LY, MC-LF, MC-LW, MC-WR, [dAsp®] MC-LR,
[dAsp®] MC-RR, MC-HtyR, and MC-HilR (Table S.2). The standard cali-
bration curve was prepared using stock standards of the twelve conge-
ners and diluted using 10% methanol in water, with Simeton added as
internal standard. Calibration range was 0.1-10 pg/L.

The samples were analyzed via HPLC-MS/MS using a Dionex Ulti-
mate 3000 UPLC and Velos Pro linear ion trap mass spectrometer.
The HPLC Column used was an Agilent Zorbax SB-C18 RRHD,
2.1 x 150 mm, 1.8 pm. Mobile phase A was 0.1% formic acid in
water and mobile phase B was 0.1% formic acid in acetonitrile. Flow
rate of mobile phase was 0.3 mL/min with ramp increase in mobile
phase B from 10% to 90%. From 2 min to 16 min, mobile phase B in-
creased from 10 to 80%. At 16.1 min, mobile phase B increased to
90% and was held until 22 min. At 22.1 min, mobile phase B was de-
creased back to 10%. The mass spectrometry details can be found in
Table S.3. XCalibur software was used for quantification. Samples
above 10 pg/L were diluted and re-analyzed. A 10% methanol solu-
tion was used as the lab reagent blank. Standards were used period-
ically during runs to ensure consistent retention times and peak
areas.

2.1.4. Regression analysis and statistics

Chlorophyll-a and microcystin data were tested for normality using
the Kolmogrov-Smirnov test and were not statistically significantly dif-
ferent from a log-normal distribution at the 90% confidence level. There-
fore, a log-log linear regression was applied as a best-approximation for
data distribution when determining the relationship between
chlorophyll-a and microcystin. F-Tests on the slopes and intercepts of
the linear regressions were performed in Minitab and reported with
p-values tested at the 95% confidence interval. The coefficient of deter-
mination (R?) was used as a metric for goodness of fit and 95% confi-
dence intervals about the regression line were calculated in GraphPad
Prism (version 8). A Pearson's correlation analysis was conducted in
GraphPad Prism to relate the coefficient of determination for lake-
specific regressions to other lake parameters: watershed:lake area
ratio, mean depth, residence time, and internal phosphorus loading. A
one-way matched pair ANOVA followed by a Tukey's multiple compar-
ison analysis was used to compare toxicity metrics including ELISA, Con-
geners, and MC-LRroyic equivatents (as detailed in Section 3.2).

2.2. Case study methods

A study was conducted on Green Valley Lake on August 15th, 2019
to determine the potential of a multispectral/UAV remote sensing ap-
proach for predicting and mapping the distribution of microcystin
toxins in lowa lakes. Green Valley Lake was chosen as an ideal case
study site due to the prevalence of pervasive blooms on the lake over
the last several years. The lake is located in Union County (S26, T73N,
R31W), about 2.5 mi NW of Creston, lowa in a 5175-acre watershed
(Fig. S.3). The lake area is 386 acres with a mean depth of 10.5 ft. A flight
area centered on the swimming beach was chosen due to accessibility,
data availability throughout the summer at the beach through the
state beach monitoring program, and location of sensors with additional
water quality data through lowa State University (Fig. S.4). Grab sam-
ples were collected throughout the flight area, with samples collected
at the two sensor stations and a transect of densely collected samples
toward the beach area to capture the extent of horizontal heterogeneity.
These samples were analyzed for chlorophyll-a, total microcystin, and
microcystin congeners using the methods described above. The beach
is just north of sample site 7, and a boat launch access is located just
north of sample site 11.

2.2.1. Sample collection
A boat was used to traverse the lake and a handheld GPS system was
used to navigate to the sampling sites. The location coordinates were
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recorded for each sampling site (Fig. S.5). 250 mL PETG bottles were
used to collect the samples, after rinsing with source water three
times just deep enough to submerge the bottle. The samples were
then immediately placed on ice in an opaque cooler to protect the sam-
ples from light degradation and heat. As a quality control measure, a du-
plicate sample was collected at sensor 5 and sample site 14. Dissolved
Oxygen, temperature, pH, and conductivity were collected at each site
using a Hach HQ40D portable water quality sonde. The samples were
analyzed and filtered for chlorophyll-a at the State Hygienic Laboratory
the following day.

2.2.2. Flight planning

A MicaSense Rededge-3 (Micasense Inc., WA, USA) multispectral
camera mounted on a DJI Inspire 1 drone (DJI, China) was used to collect
image data over the flight area of 148,178 m2. Due to battery limitations,
three flights were required to cover the total study area. The drone oper-
ated at a height of 90 m above the surface, and at a flight speed of 6 m/s,
to obtain a 75% image overlap (Fig. S.5). The MicaSense Atlas Flight appli-
cation was used for flight planning and the DJI GO application was used
to control the drone during flight. The weather conditions at the begin-
ning of the flight were cloudy with intensifying light rain and wind as
the flight proceeded. Over 400 multispectral images were obtained,
with 5 bands for each image.

2.2.3. Image processing workflow

The raw images collected from the Micasense camera were first
georeferenced and rotated using metadata collected by the drone and
camera systems and raw images were converted to reflectance. The im-
ages were then mosaiced and band math algorithms were applied. The
geo-referencing, rotating, and conversion of the images to reflectance
was conducted using a Python script. The images were mosaiced and
band math algorithms were applied using Erdas Imagine software
(Hexagon AB, Sweden).

First, the images were georeferenced by writing world files for each
image to describe the location, scale, and extent of rotation for each
image to be read by Erdas Imagine software. A world file is a short
text file associated with an image with the following terms: dimension
of pixels in x-direction, rotation in x-direction, rotation in y-direction,
dimension of pixels in y-direction, x-coordinate of the upper left pixel,
and y-coordinate of the upper left pixel. The coordinates of the upper
left pixel were calculated from the directional vector transformed
from a rotational matrix based on the orientation of the camera at the
time of image capture (Fig. S.8). The pixel dimensions and rotations
were calculated from the camera specifications and flight altitude and
transformed with appropriate trigonometric functions (Egs. (S.1)-
(S.7)). See SI for Python script. The same process was applied to all
images.

After generating the world files for each image, the raw image values
were converted to reflectance (Egs. (S.8), (S5.9)). Micasense released a
Python package on GitHub to convert images to reflectance, the func-
tions of which were adapted and used in the analysis (Micasense Inc.,
2017). The python script used to convert band 1 is provided in the SI,
as an example, with similar analysis performed for the other 4 bands.
The analysis sequence was to first use calibration images to convert
each image from radiance to reflectance, followed by correction for vi-
gnetting and lens distortion, and then to save the undistorted reflec-
tance image as a new file. The reflectance images were brought into
Erdas with their associated world files to mosaic the images into one
scene. Quality control was conducted manually to remove images that
did not stitch together properly. Each band was mosaiced using the
same parameters (see SI for details). The five mosaiced bands were
then layer stacked to combine them into a single image and then band
math algorithms were applied.

Several multispectral band math algorithms have been developed,
many for satellite applications and some have been investigated for
monitoring HABs. The Micasense RedEdge-3 has five bands, including
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red, green, and blue, as well as Red Edge and near infrared (NIR) bands
outside of the visible spectrum (Table S.4). Not all algorithms that have
been developed are applicable for use with the Micasense RedEdge. For
example, some Landsat-8 algorithms use the coastal blue band, which is
not measured by the RedEdge. The following algorithms were applied in
the analysis: BNDVI, SABI, NDVI, FLH Blue, Kab1, NDRE, KIVU, and SHI
(Table S.5).

3. Results and discussion
3.1. Prevalence and spatiotemporal variability of microcystin congeners

Microcystin congener distributions have not been extensively stud-
ied in the Midwest or lowa (Graham et al., 2010); consequently, there is
a lack of understanding of microcystin congeners that may be present in
a bloom or if any spatial or temporal trends exist. Therefore, we first
identified the prevalence of 12 microcystin congeners in lowa lakes.
MC-LR and -RR were the most abundant of the 12 congeners we quan-
tified in the beach monitoring samples, present in 97% and 80% of the 87
samples analyzed, respectively (Fig. 2, bottom). MC-LR and -RR abun-
dance is consistent with previous findings in the Midwest and other lo-
cations in the United States, and Asia (Diez-quijada et al., 2019; Graham
etal., 2010). The mean and maximum concentrations were also greatest
for the most prevalent congeners (Fig. 2, bottom). We tested for two al-
ternative algal toxins, cylindrospermopsin and anatoxin-a in 25 of the
samples using EPA method 545 (U.S. EPA, 2015). No concentrations of
cylindrospermopsin and anatoxin-a were above the detection levels
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(0.04 and 0.0133 pg/L, respectively) in any sample, consistent with pre-
viously reported studies in the Midwest that suggest microcystin toxins
dominate (EPA, 2016; Graham et al., 2010).

To investigate the spatial and temporal variability of microcystin
congeners in lowa, we generated time-series data for the five most com-
mon congeners of the twelve quantified (MC-LR, -RR, -LA, -YR, and
[dAsp3] MC-LR) at seven lowa lakes (Fig. 3, Fig. S.9). These lakes had
five or more samples with ELISA microcystin concentrations >2 pg/L
and will herein be defined as “vulnerable lakes”. No clear spatial or tem-
poral trends emerged in the distribution of congeners or their concen-
trations in the vulnerable lakes. McIntosh Woods had a constant low
concentration of microcystin with no clear peak in any individual con-
gener, whereas the other vulnerable lakes had a spike near the middle
or end of the season. Green Valley Lake and Lake of Three Fires are
both located in the southwestern portion of lowa, but exhibited mark-
edly different congener distributions. Lake of Three Fires was MC-LR
dominant and Green Valley Lake was MC-RR dominant for the majority
of the season. Similarly, Lake Darling, Lake Keomah, and Honey Creek
Resort are close geographically (within 100 km), but had distinct conge-
ner profiles. Higher temporal resolution data may be needed, but these
initial results in lowa indicate that blooms are rapidly changing systems
that are often unpredictable. Previous research in the Great Lakes and
Ontario region also reported variability in MC-LA, MC-LR, MC-RR, and
MC-YR distributions from lake to lake, with potential distribution pat-
terns caused by environmental factors rather than geographic loca-
tion (Taranu et al., 2019). Our study did not capture nutrient
concentrations or meteorological conditions necessary to compare
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with their findings, but capturing these data in future studies could
be useful for helping to predict congener abundance. Additionally,
characterizing the cyanobacterial community could be beneficial in
predicting the presence of certain microcystin congeners. Although
Microcystis are the most common microcystin producers,
Anabaena, Planktothrix, Oscillatoria, and other species can produce
not all, but some congeners (H. K. Hudnell, 2008). Therefore, clas-
sifying the bacterial community could aid in predicting which con-
geners are most likely to be present in a sample. However, this
information alone will not allow for prediction of the concentra-
tion of those congeners.

3.2. A novel microcystin congener normalized toxicity framework

Our analysis of congener data suggests that the ELISA method may not
reflect the true toxicity of microcystin-dominant cyanobacterial blooms
given the variability of congeners present, each with differing toxicities
and abundance, in the lake water samples. We conceptualized a new nor-
malized toxicity metric to determine if the congener-independent
method (ELISA) is effective for predicting toxicity, rather than overall
microcystin concentration. The ELISA method is often used for assessing
public health risk, thus evaluating its efficacy in the context of multiple
microcystin congeners is critical. MC-LR has been studied extensively
for toxicity because it is the most common and abundant congener across
many freshwater lake systems (Diez-quijada et al., 2019; Graham et al.,
2010); thus, MC-LR has been used as a toxicity predictor to set advisory
levels (Testai et al., 2016; World Health Organization, 1998). Because
each congener exhibits different toxicity, we normalized all congener
concentrations measured to MC-LRroxic equivatents USINg Eq. (3.1) based
on literature-reported LDsqy values in mice (Table S.7). It should be
noted that this proposed novel framework for normalizing MC-LRroxic
equivalents 1S distinct from prior concepts of congener normalization,
which are based not on toxicity but rather on relative analytical
quantification (Natumi and Janssen, 2020).

MC — LRToxic equivalents — MC - XXMeasured x MC — XXEquivalenr factor (3-])
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where,

LDs5o(MC—XX
MC — XXEquivalentfactor = m ’

MC — XXpeasurea = Measured microcystin congener concentration

We compared the 2019 beach sampling results from across lowa be-
tween using the ELISA, sum of congeners (sum of 12 individual conge-
ner concentrations), and MC-LRroyic equivalents CONCentrations methods
(Fig. 4). To determine if congener dominance in the lake impacts
method performance, we also binned the samples into three groups
by dominant congener: MC-LR, MC-RR, and MC-LA. Twenty-one of the
93 samples analyzed were above the advisory level of 20 pg/L by
ELISA; however, only 7 samples were >20 ug/L MC-LRroxic equivalents
(Fig. 4a). The ELISA method concentration was significantly greater
than the MC-LRroxic equivalents (P < 0.001) for all groups, indicating that
the ELISA method could be overestimating the toxicity of blooms. This
is particularly noticeable when MC-RR is the dominant congener in
the sample due to its low relative toxicity (Fig. 4c). This trend is also no-
table when examining the Sum of Congeners and MC-LRroxic equivalents
time series data for Green Valley Lake (MC-RR dominant) and Lake of
Three Fires (MC-LR dominant) (Fig. 3). MC-LF and MC-LW are the
most toxic congeners (Faassen and Lurling, 2013), but were the least
prevalent in our samples (Fig. 2). These congeners were only present
when ELISA microcystin concentrations were >20 pg/L and surface
water temperatures were >25 °C, conditions where cyanobacteria
growth is maximum (K. Hudnell, 2008). With a changing climate, ele-
vated temperatures could become more prevalent, resulting in greater
concentrations of the highly toxic congeners and subsequent potential
for underestimation of bloom toxicity using congener independent ap-
proaches (i.e., ELISA microcystin).

Alternatively, the sum of congener and MC-LRroxic equivatents could
underestimate concentrations in comparison to ELISA. The samples
were stored in HDPE plastic temporarily, which could have resulted in
adsorptive losses (Altaner et al., 2017; Zaffiro et al., 2016). Adsorptive
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Fig. 4. Comparison of the of ELISA method to toxicity-normalized MC-LRroxic equivatents determined from LC-MS/MS method. The ELISA method concentration was significantly greater than
the MC-LRroxic equivatents (P < 0.001). Comparison of ELISA, MC-LRroyic equivalents: and Sum of Congener concentrations for the (a) 2019 beach samples. The second-fourth panel show
samples where (b) MC-LR, (c) MC-RR, and (d) MC-LA were the dominant congener in the sample, respectively. Bars indicated medians and interquartile range.
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losses would decrease observed congener concentration by the LC-MS/
MS method as compared to the ELISA because ELISA samples were col-
lected in non-adsorptive PETG plastic. Only 12 of the potential congeners
were quantified due to a lack of access to analytical standards for other
congeners, whereas ELISA generates a response for all possible
microcystin congeners and nodularin. We suggest as a framework going
forward first to screen and identify the congeners of greatest abundance
and toxicological relevance, and then prioritize availability of those ana-
lytical standards for improved monitoring. From reported toxicity infor-
mation (as LDsg values in mice), some congeners that should be
prioritized are: MC-YA (60-70 pg/kg), [D-Asp®(E)-Dhb’]MC-LR
(70 pg/kg), [ADMAdda’]MC-LR (60 ug/kg), MC-YM(O) (56 pg/kg),
[ADMAdda®|MC-LHar, and [D-Asp?(E)-Dhb’]MC-HtyR (70 pg/kg)
(Bouaicha et al,, 2019). As standards become available for more conge-
ners, this relative toxicity framework should be further developed with
efforts to minimize adsorptive losses to the greatest extent possible.
Then, a more complete assessment of the ELISA method as a toxicity
tool can be conducted.

Recently, additional efforts have been made to analyze more or po-
tentially all microcystins by LC-MS. Munoz et al. (2017) presented use
of Lemieux-von Rudloff oxidation to produce the 2-methyl-3-
methoxy-4-phenylbutyric acid (MMPB) moiety from each microcystin,
which can then be analyzed as one integrated compound representing
nearly all MCs and nodularins. The advantage to using an approach
that oxidizes microcystins to a common moiety for analysis is that mea-
surements via LC-MS are not limited to only the targeted congeners
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(ie., n = 12 in our work); however, the disadvantage is that resolution
is lost on what congeners were present and does not factor in differen-
tial toxicity of the various congeners. Indeed, the oxidation to a common
moiety approach is useful for comparison to ELISA data, but was not
explored in this study. Natumi and Janssen (2020) used a suspect
screening approach and a (sub)class specific quantification based on
most-similar laboratory standards available, a technique that is more
accurate than only MC-LR-equivalents concentrations (notably, based
on chemical analysis not toxicity, as described above). The application
of non-target and suspect screening high-resolution mass spectrometry
for algal toxins will enable enhanced understanding of microcystin con-
gener profiles in lakes as this technology gains wider-spread use. Grow-
ing advances in mass spectrometry technology and techniques will
improve measurements of microcystin in aquatic systems.

3.3. Predicting microcystin concentrations from chlorophyll-a in lowa Lakes

We discovered a statistically significant linear relationship between
log chlorophyll-a and log ELISA microcystin concentrations in samples
from the lakes across lowa (R? = 0.39, p < 0.001; Fig. 5a). Our results sug-
gest that a state-wide relationship may be able to predict microcystin con-
centrations from chlorophyll-a in lowa lakes. A similar relationship
occurred between chlorophyll-a and the sum of congeners (Log
(MC) = 0.87 * Log (Chl-a) - 1.11,R?> = 0.46, p < 0.001; Fig. S.11). The
microcystin ELISA samples span 20 different beach sites at 16 lakes, cov-
ering all geographic regions of the state and over a 99-day spread of
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sampling (Fig. 2). Despite the natural variability inherent to environmen-
tal samples and the diversity of the samples in geographic location, lake
characteristics, and time, the relationships were still significant. A positive
relationship between chlorophyll-a and microcystin health advisories is
consistent with observations for lakes across the contiguous United
States (Hollister and Kreakie, 2016), suggesting broader utility in estimat-
ing microcystin from pigments. This study was only conducted for one
season, thus the long-term stability of the chlorophyll-a/microcystin rela-
tionship should be confirmed in future work. A study at Lake Taihu, China
reported multi-year temporal stability of a chlorophyll-a/microcystin re-
lationship (Shi et al., 2015); therefore, it is possible that individual lakes
maintain stability of this relationship over multiple seasons.

3.3.1. The chlorophyll-a/microcystin relationship is variable for vulnerable
lowa Lakes

We developed specific relationships between chlorophyll-a and
microcystin for each of the seven vulnerable lakes (Table S.8) to examine
if there were differences in relationship strength between waterbodies.
The vulnerable lakes with coefficients of determination greater than 0.5
and statistically significant slopes were defined as “strong relationship”
lakes and all others were defined as “weak relationship” lakes. The strong
relationship data were pooled, and an overall regression was generated
(Fig. 5b) with lakes including Green Valley, North Twin, and McIntosh
Woods Lake. Weak relationship lakes included Lake Keomah, Lake of
Three Fires, Lake Darling, and Honey Creek Resort Lake (Fig. 5¢). Green
Valley Lake exhibited the strongest relationship, with chlorophyll-a
predicting 78% of the microcystin variability. Lake of Three Fires had the
weakest relationship, with chlorophyll-a only explaining 3% of the
microcystin variability. Our results suggest that the relationship between
chlorophyll-a and microcystin varies significantly between lowa lakes,
but it is not clear why. Therefore, we investigated if specific lake factors
may drive the relationship variability.

3.3.2. Watershed:lake area ratio and residence time impact the chlorophyll-
a/microcystin relationship

To probe underlying drivers causing variability in the chlorophyll-a/
microcystin relationships across lakes, we investigated the following
lake characteristics: residence times, watershed:lake areas, internal phos-
phorus loadings, and mean lake depths obtained from previously pub-
lished data (Tables S.9 and S.10). For each characteristic, we conducted
a Pearson's correlation analysis with the corresponding coefficient of de-
termination from the vulnerable lakes (Fig. S.12). Watershed:lake area
ratio was negatively correlated with the coefficients of determination
from the seven vulnerable lakes (r = —0.66, p = 0.11). A smaller water-
shed:lake area ratio may be favorable for the use of a simple linear rela-
tionship to predict microcystin, whereas a larger ratio may not be well
characterized by a univariable model. As watershed:lake area ratio in-
creases, lakes become more difficult to manage and less predictable due
to complex nutrient loading dynamics of larger watershed systems and
less in-lake assimilation capacity (Ikenberry, 2012). Residence time was
positively correlated (r = 0.43, p = 0.33), indicating that longer residence
times may be favorable for the use of a simple linear model to predict
microcystin concentrations from chlorophyll-a. Longer lake residence
times result in more favorable conditions for stable bloom develop-
ment (K. Hudnell, 2008). We recognize that these correlations pre-
sented are not at a 95% significance level, likely due to the small
sample size; however, the results are consistent with the cited liter-
ature. Mean lake depth (r = —0.10, p = 0.83) and internal phospho-
rus loading (r = 0.36, p = 0.43) had weak correlations with the
coefficient of determination that were not significant and, conse-
quently, were not explored further.

We also plotted the cumulative coefficient of determination against
increasing watershed:lake area ratio and decreasing residence time for
all lakes (Fig. 6a and b) to examine if a break-point exists in the strength
of prediction. A decrease in the coefficient of determination occurred
above watershed:lake area ratios of 20 and below residence times of
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47 days (Fig. 6a and b; red lines). Limiting analysis to lakes with water-
shed:lake area ratios <20 or residence times >47 days, yielded a stronger
relationship (R? = 0.55 and 0.50, respectively; Fig. 6¢c and d) than when
including all lakes (Fig. 5a). When the watershed:lake area ratio or resi-
dence times are known for a lake and meet the defined criteria, the re-
fined regressions could be applied for increased accuracy in predicting
microcystin concentrations. Understanding the impact of commonly
measured physical/chemical lake characteristics broadens the impacts of
our discoveries; future investigations outside lowa can compare to our
findings herein.

3.4. Green Valley case study: developing new HAB remote sensing approaches

We chose Green Valley Lake as an ideal case study for testing the util-
ity of drone-imagery remote sensing technologies, based on historical oc-
currence of HAB events and our data demonstrating a significant
chlorophyll-a/microcystin relationship. We collected sixteen samples
within the proposed flight area to validate the predictions of
chlorophyll-a (Fig. 7, top). Sample sites 7 and 9, the sites closest to the
swimming beach, had the highest measured chlorophyll-a, ELISA
microcystin, and congener concentrations in the study area. These sites
were in the shallowest regions closest to the shore, where algal scums
are more likely to form (K. Hudnell, 2008). Although the total concentra-
tions were highest in these locations, the relative proportions of the con-
geners remained comparatively consistent. Thus, the profiles of
congeners on a single lake may be spatially consistent, although not be-
tween different lakes, as we observed in the results from across the
state. This hypothesis would require further testing across different
lakes and at multiple time points. The concentrations of chlorophyll-a
and microcystin were substantially higher for site 7 (closest to the
beach site) than the concentrations found from the composite beach sam-
ple collected by the IDNR on the previous day. These findings indicate that
even on a one-day time scale, we observed significant variability in con-
centration, further supporting our findings that HAB systems are highly
variable in space and time.

3.4.1. Chlorophyll-a/microcystin relationship for Green Valley Lake was
spatially and temporally consistent

The predictions for microcystin from chlorophyll-a, using the same re-
gression approach described above, were not significantly different be-
tween the case study (Fig. 7, bottom) and the state beach monitoring
data (p = 0.96) collected throughout the summer season at Green Valley
Lake. Therefore, the relationship between chlorophyll-a and microcystin
on Green Valley Lake was temporally and spatially consistent in 2019,
but longer-term stability should be verified. For other lakes in Iowa, it is
unknown if spatial consistency of the chlorophyll-a and microcystin rela-
tionships exists, which should be a focus of future research. Studies on
Lake Taihu, a hypereutrophic lake in China significantly impacted by
CyanoHABs, report positive and consistent chlorophyll-a/microcystin re-
lationships across multiple years and from various sampling locations
(Shi et al, 2015). It is possible then, that Green Valley Lake, also
hypereutrophic, may exhibit multiannual consistency. This discovery is
valuable because multiannual and spatial consistency in the correlation
at lakes makes models developed in prior years useful for making future
measurements without the need for further sampling and model adjust-
ment. At lakes where multiannual consistency is not observed,
chlorophyll-a and microcystin relationships would need to be updated
annually to facilitate remote sensing predictions of microcystin
concentrations.

3.4.2. A geometry-based image processing approach for near-range remote
sensing of HABs

We applied the image processing workflow (described in
Section 2.2.3) to the multispectral imagery collected during the Green
Valley case study and tested eight previously developed band math al-
gorithms for their ability to predict chlorophyll-a. The SHI index
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resulted in the highest coefficient of determination at 0.18, but the slope
of the regression between SHI and chlorophyll-a was not significant at
the 95% confidence level (p = 0.115, Table 1). The next best index
was BNDVI (R? = 0.16), and then SABI and NDVI (R?> = 0.15). The
KIVU and RedEdge algorithms performed the worst, with coefficients
of determination at 0.01, and 0.02, respectively.

The SHI algorithm was developed for Lake Taihu in China and is one
of the few published studies that linked the predicted chlorophyll-a
values to microcystin levels (Shi et al., 2015). The relationship reported
between chlorophyll-a and the index at Lake Taihu was negative,
whereas our analysis yielded a positive relationship. The range of
index values was greater for the Lake Taihu study, approximately
—0.03 to 0.04, whereas our range of index values in the study area
was approximately —0.015 to 0. In such a narrow range of index and
chlorophyll-a values, it may not be possible to develop a robust linear
relationship from the Green Valley case study data; this also may ex-
plain the low-degree of confidence in the slope. In fact, when applied
to the Green Valley Lake data, the SHI algorithm produced unrealistic re-
sults, predicting microcystin concentrations upwards of 1000 pg/L in
some areas. This is much higher than any historical data collected at
the lake.

The BNDVI index was applied to Centralia Lake, Kansas in 2012 and
compared to measurements of buoyant packed cell volume (Van der
Merwe and Price, 2015). Buoyant packed cell volume (BPCV) is the frac-
tion of total sample volume where buoyant cyanobacterial cells are lo-
cated. Therefore, it is difficult to relate this metric to chlorophyll-a

10

concentrations for direct comparison to the results of the Green Valley
case study. Nevertheless, the range in BNDVI values were comparable
(0-0.25) between one of the Kansas farm-ponds and the Green Valley
case study results. BPCV explained substantially more of the variability
in BNDVI values (R?> = 0.79) than chlorophyll-a in our study (R? =
0.16) and thus may be a useful parameter for future investigations
and monitoring.

Despite the poor relationships obtained between the algorithms and
chlorophyll-a, we pursued the processing steps of converting
chlorophyll-a to microcystin toxin levels to both demonstrate the po-
tential utility of this sensing/monitoring framework and determine if
emerging future improved technologies could yield a stronger remote
sensing relationship. Using the summer-wide Green Valley regression
developed from the state beach monitoring data (Fig. 7), we converted
the BNDVI index values to predicted microcystin values, with
chlorophyll-a as the intermediary. We then generated a map of pre-
dicted microcystin concentrations (Fig. 8) using the raster calculator
in ArcMap.

We plotted the predicted microcystin values for each of the 15 sam-
pling locations against measured ELISA microcystin concentrations
(Fig. 8(b)) to quantify the efficacy of the BNDVI index. The predicted
and measured microcystin concentrations in the Green Valley Lake
study were correlated (r = 0.43; significant at the 89% confidence
level, p = 0.11). Microcystin values were generally underpredicted by
the BNDVI relationship by an average of 33%; however, two samples
were predicted within 2% of the measured value (Site 1 and 6) and
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five samples were overpredicted by an average of 24%. Sample site 9
was the most underpredicted, 7.8 pg/L (53%) less than measured by
ELISA.

From this case study, we discovered that despite the existence of a
positive and significant relationship between chlorophyll-a and
microcystin, remote sensing will not necessarily be an effective moni-
toring approach if other constraints and conditions are not met. Cali-
brating and testing a new model must be conducted under near ideal
conditions, i.e., stable fair weather and either while the bloom has defin-
itive spatial heterogeneity or over multiple days to adequately sample a
wide range of HAB concentrations. Despite the difficulties that arose
from the weather conditions of the case study, however, there is still
meaningful potential for near-range remote sensing of CyanoHABs.
The proposed image processing framework removes a substantial ob-
stacle from previous over-water imaging by enabling effective image
stitching. Imaging technologies are quickly advancing from the portable
multispectral cameras, like the RedEdge used in this study, to lighter
and more affordable hyperspectral imagers (Kislik et al., 2018). These
hyperspectral cameras have narrower bands capable of more accurately
predicting pigments such as chlorophyll-a or phycocyanin. The size and
weight of hyperspectral cameras were previously too great for use on
UAVs, but this current limitation too is changing rapidly. There is poten-
tial to develop an affordable surface water quality monitoring approach
using UAVs and hyperspectral cameras to advance CyanoHAB remote
sensing for small inland lakes.

For a monitoring tool to be accessible to lake managers, it would be
beneficial to generate a user-interface for this new over-water image
processing technique. By partnering with computer scientists/and or
engineers, it would be possible to create a photogrammetry software
that does not involve back-end computing by the user. Ideally, the
user would be able to import images into a program such as Agisoft
and would only have to select the band math algorithms to be applied
and identify a few basic flight parameters. Then, the user would quickly
have a toxin distribution map as output. With minimal processing time
and limited custom computer code, the image processing would be ac-
cessible and useful for lake managers as a risk management tool.

4. Conclusions

We demonstrated the utility and necessity for a multi-modal moni-
toring approach to capture the temporal and spatial variability of
CyanoHABs using a combination of analytical and remote sensing
methods. The first step to generating this new framework was to better
classify bloom toxicity in lowa in the context of the status quo ELISA
method. We determined that there is a critical need for the generation
of more analytical congener standards and toxicological studies to
fully characterize congener profiles, but the current results suggest the

Table 1
Summary of algorithm linear regressions for predicting measured chlorophyll-a concentrations applied to the data collected in the Green Valley Lake, lowa case study.
Band math Linear regression equation R? p-Valuegjope

SHI? (eRed — @NIR) / (gRed 4 NIR) Log (Chl-a) = 13.81 « SHI + 1.87 0.18 0.115
BNDVI (NIR — Blue) / (NIR + Blue) Log (Chl-a) = —1.64 « BNDVI + 2.07 0.16 0.139
SABI® (NIR — Red) / (Blue + Green) Log (Chl-a) = —1.42 « SABI + 1.88 0.15 0.155
NDVI¢ (NIR — Red) / (NIR + Red) Log (Chl-a) = —1.81 « NDVI + 1.94 0.15 0.157
FLH Blue® Green — (Red + (Blue — Red)) Log (Chl-a) = —2.53 « FLHBlue + 1.91 0.13 0.183
Kab1" 1.67-3.94 * In(Blue) + 3.78 « In(Green) Log (Chl-a) = —0.04 « Kab1 + 1.86 0.09 0.273
NDRE# (NIR — RedEdge) / (NIR + RedEdge) Log (Chl-a) = —0.67 « RedEdge + 2.04 0.02 0.582
Kivu" (Blue — Red) / Green Log (Chl-a) = 0.54 « KIVU + 1.85 0.01 0.702
2 (Van der Merwe and Price, 2015).
b (Alawadi et al, 2010).
¢ (Mishra et al., 2009).
4 (Beck et al,, 2016).
¢ (Kabbara et al., 2008).
f (Barnes et al., 2000).
& (Brivio et al., 2001).
b (Shi et al,, 2015).
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Fig. 8. Microcystin map generated from novel image processing approach, BNDVI index results, and chlorophyll-a/microcystin regression for Green Valley Lake data collected during a case
study on August 15th 2019. Inset plot of linear regression between BNDVI and log of chlorophyll-a (a) and comparison of BNDVI predicted microcystin concentration and measured ELISA
microcystin concentrations (b). Shaded region of inset plot (a) are 95% confidence intervals.

ELISA method may be a conservative estimate for toxicity. We demon-
strated that in lowa lakes, there is a significant and positive relationship
between chlorophyll-a and ELISA microcystin concentrations that, al-
though variable between lakes, can help predict the distribution of
algal toxins. We developed and proposed a new image processing tech-
nique to overcome the current limitations of photogrammetry software,
and conclude a multispectral camera is insufficient for estimating pig-
ment concentrations under most conditions. As hyperspectral imaging
becomes more affordable and laboratory measurements of phycocyanin
improve, more targeted predictions of cyanobacteria will be possible.
CyanoHABs have significant implications for public and ecosystem
health, therefore improving our understanding and characterization is
critically important. This study illuminates areas for different monitor-
ing strategies and generates a framework for better understanding the
complex spatiotemporal dynamics of HABs, as well as provides a de-
fined foundation for areas of future research need.
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