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It is of great interest to explore matter in nontrivial quantum arrangements, including Schrodinger catlike
states. Such states are sensitive to decoherence from their environment. Recently, in Allali and Hertzberg
[Gravitational decoherence of dark matter, J. Cosmol. Astropart. Phys. 07 (2020) 056] we computed the
rate of decoherence of a piece of superposed matter that primarily interacts only gravitationally, a dark-
matter-Schrodinger-cat state (DMSCS), within the nonrelativistic approximation. In this work we improve
this to a general relativistic analysis. We first derive a single particle relativistic Schrodinger equation for a
probe particle that passes through the DMSCS; the interaction is provided by the weak field metric of
general relativity from the source. For a static DMSCS we find a neat generalization of our previous results.
We then turn to the interesting new case of a time dependent DMSCS, which can be provided by a
coherently oscillating axion field leading to superposed time dependent oscillations in the metric: a truly
quantum-general relativistic phenomenon. We use scattering theory to derive the decoherence rate in all
these cases. When the DMSCS is in a superposition of distinct density profiles, we find that the
decoherence rate can be appreciable. We then consider the novel special case in which the density is not
in a superposition, but the phase of its field oscillation is; this is a property that cannot be decohered
within the nonrelativistic framework. We find that if the probe particle and/or the DMSCS’s velocity
dispersion is slow, then the rate of decoherence of the phase is exponentially suppressed. However, if both
the probe and the DMSCS’s velocity dispersion are relativistic, then the phase can decohere more rapidly.
As applications, we find that diffuse galactic axions with superposed phases are robust against
decoherence, while dense boson stars and regions near black hole horizons are not, and we discuss

implications for experiment.
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I. INTRODUCTION

It is interesting to explore novel phenomena in which
both gravitation and quantum mechanics play the central
role. For most ordinary matter, although their quantum
character can be made manifest, other interactions, such as
electromagnetic, often play the central role in its dynamics.
To isolate the interplay between gravitational and quantum
mechanical phenomena, it is useful to consider matter that
has primarily only gravitational interactions. This is not
known among the familiar particles, but may well be the
most dominant form of matter in the universe (for a review,
see Ref. [1]). Further, we can simply consider the presence
of such exotic matter, even if it were not the dominant
component. In any case, we shall refer to such material that
primarily interacts via gravitation, as “dark matter” (DM) in
this work.

The current lack of direct detection of the DM that
actually does make up most of the mass of the universe,
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other than its gravitational impact on galaxies, etc., implies
that DM is at most very weakly coupled to the ordinary
particles of the Standard Model. In fact, it is possible that its
only coupling to the Standard Model is gravitational (plus
other Planck, or nearly Planck, suppressed operators). On
the one hand, since the interactions between DM particles
and ordinary matter particles are very weak and/or infre-
quent, it makes it very difficult to detect the DM properties.
On the other hand, this may offer a new opportunity for rich
behavior for the following reason: because of the lack of
significant interactions, DM could possibly possess long-
lived exotic quantum mechanical phenomena. In particular,
one can imagine that a piece of DM has organized into a
macroscopic superposition of states, which are sometimes
referred to as “Schrodinger cat” states.

These Schrodinger cat states possess truly quantum
behavior as encoded in the off diagonal terms of the
density matrix (in the relevant basis). However, the quan-
tumness is usually short-lived for ordinary matter due to
interactions with its environment, leading to suppression of
the off diagonal elements of the density matrix: a process
called decoherence. Decoherence can be understood as
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follows: the Schrodinger cat state and its environment
interact and inevitably become entangled. The full system
remains in a pure state, but an observer will usually not track
the full system in all its detail. Instead, one adopts a coarse
grained point of view in which the degrees of freedom of the
environment (which are typically numerous) are ignored and
traced out. This effectively destroys the quantum coherence
of the residual subsystem (for early work establishing the
mechanism of decoherence, see Refs. [2—4], and for various
developments, see Refs. [5—16]). Because of decoherence,
the Schrodinger cat state evolves into a mixed state of
essentially classical probabilities, rather than a pure quantum
mechanical superposition, and so the uniquely quantum
mechanical phenomena, such as interference, are no longer
present in the reduced system. This process is efficient when
the interactions are large, as is the case from an environment
of air scattering off some ordinary material. However, this
decoherence may be inefficient for DM which lacks these
interactions.

There has been much work done on decoherence in the
context of gravitation and cosmology; see Refs. [17-53].
For DM it is plausible that gravitational or self-interactions
can lead to such Schrodinger catlike states due to macro-
scopic spreading of the wave function, especially if the
system exhibits some form of chaos (e.g., see Ref. [54]). In
the case of axion DM [55-62], one is often studying
particles of very low mass, and so they must have a very
high number density to be all the DM. They are therefore
normally in very high occupancy states, and so they are
usually thought to be classical (e.g., see Refs. [63,64]), but
any chaos can lead to the formation of Schrodinger catlike
states. So the high occupancy is not a sufficient condition
for classicality. Nevertheless, there can be forms of ensem-
ble averaging of classical trajectories that approximately
reproduce some quantum correlation functions; see
Ref. [65]. The residual true quantumness of such states
is nontrivial to probe experimentally, but it is conceivable
and interesting to consider. So a key issue is whether its
quantum character persists or decoheres due to some
astrophysical environment.

The rate of decoherence for a dark-matter-Schrodinger-
cat state (DMSCS) of a localized mass distribution for
nonrelativistic DM from nonrelativistic probes was com-
puted by us for the first time in Ref. [66]. The superposition
involved two differing mass distributions, and the inter-
action between the environment and the DM was modeled
by Newtonian gravity. It was found that such a gravitational
interaction would, in fact, lead to decoherence of the
DMSCS depending on parameters. For light bosonic
models for DM, such as the axion, the characteristic
decoherence timescales were found to be very sensitive
to the mass of the DM particle, with lighter particles lead-
ing to rapid decoherence and heavier particles leading to
very slow decoherence. The full details were provided
by us in Ref. [66], including the dependence on the mass

distribution, a comparison between DM in the halo versus
near the earth, and so on. Furthermore, when allowing for
spreading of the DMSCS, it was found that most configu-
rations would decohere in times shorter than the age of the
universe, except for heavier axions.

One may wonder if general relativistic effects can lead
to new interesting forms of decoherence. It is anticipated
that any DMSCS that undergoes decoherence within the
Newtonian approximation will do the same if one includes
relativistic corrections, even if the corrections are appreci-
able; this is because decoherence is a very robust phe-
nomenon. However, one may consider a DMSCS in which
the Newtonian treatment is unable to probe decoherence. In
particular, consider a superposition of two states with
identical (or nearly identical) Newtonian interactions, but
which have distinct behavior within general relativity. A
concrete example is a DM source made out of a coherently
oscillating scalar field (such as an axion) that is in a
superposition of different phases of oscillation, but other-
wise has the same spatial profile. In this case, the
Newtonian interaction would not lead to decoherence,
because the Newtonian treatment does not differentiate
between the substates of the superposition, while the
general relativistic treatment does.

In this work, we consider the mechanism of decoherence
of a DMSCS within a fully relativistic treatment, working
to linear order in the metric perturbations. We develop a
broad formalism for computing the rate of decoherence in
this relativistic setup. We first treat the case when the
DMSCS generates a static spacetime metric, finding many
similarities to the Newtonian formalism in Ref. [66], but
with all the relativistic corrections included. We then
generalize this to the case of a time-varying metric,
motivated by the light bosonic DM models (e.g., axions),
which typically take the form of a regularly oscillating field
that sources a time-varying metric. The analysis of the time-
varying oscillating source is broken up into two cases: the
first where the light bosonic DM field has somewhat
distinct spatial dependence between the two superposition
states, and the second where the superposition substates
only differ in the phases of the field. This second case
captures the main goal of this paper, which is to analyze a
situation in which the Newtonian gravitational interaction
is completely blind to the superposition, requiring the
general relativistic analysis. Within this second case, we
provide a characteristic example of a specific configuration
of the axion field and discuss the implications of such a
DMSCS. We apply these results in several situations,
including slowly moving DM in the galaxy and more
exotic applications of DM which is relativistic in special
environments, such as the near-horizon region of black
holes or DM that forms dense boson stars, and we comment
on consequences for experiment.

Our paper is organized as follows: in Sec. II, we derive
the relativistic Schrodinger equation necessary to track the
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evolution of the environment particles in the spacetime
generated by the DM. In Sec. III we lay out the basic
scattering theory and relation to decoherence needed for
later sections. In Sec. IV, we analyze the evolution of the
environment particles in a static spacetime background and
apply this analysis to compute the decoherence rate for the
DMSCS. In Sec. V, we provide a similar analysis for the
case of a time-varying metric, compute the decoherence
rate, and also apply these results to a specific profile. In
Sec. VI we apply our results to DM in the galaxy today. In
Sec. VII we discuss the spreading of states, application to
boson stars, black holes, and implications for experiment.
In the Appendix we provide some supplementary details.

Il. THE RELATIVISTIC SCHRODINGER
EQUATION

A. Relativistic Hamiltonian

We first compute the Hamiltonian that governs the
evolution of the environment probe particles in a curved
spacetime. For convenience, we treat the probe particles as
scalars, i.e., ignoring their spin. This is therefore not precise
for realistic probe particles, such as baryons or photons,
that can play the role of the environment (as we discuss
later). However, one anticipates that the corrections from
particle spin are small; we leave a proper analysis to
possible future work. Then to incorporate coupling to
gravity in a Lorentz invariant way, we use the field theoretic
formalism for a quantum scalar field minimally coupled to
gravity; this formalism makes it simple to describe inter-
actions among particles in a local and unitary way.

Furthermore, we can take the scalar field to be complex
for convenience. This is not important, since we will only
be interested in single particle states, but it will make the
formal manipulations simpler as we go on since it carries a
conserved particle number. For a minimally coupled com-
plex scalar field y in a general spacetime background with
metric g,, (signature + — ——), the action for this field is

5= / de/TH PO O — i), (2.1)

where g is the metric determinant, g** is the inverse of the
metric, y* is the complex conjugate of y, and m is its mass
(later we will use notation m — m,, to emphasize that it is a
“probe” particle). We ignore other possible interactions of y
here, since, as far as is known, particles may couple to DM
only through gravity (we leave a discussion of other
possible interactions to Sec. VILF).
The momentum conjugate is given by

oL . )
= 5 V=9("7 + ¢"0ix"). (2.2)

The corresponding Hamiltonian density operator H is

11 901'
N
— 0i 0j
v=99"d" . . T ;
+ Taﬂ Dix = /=997 0" 0 +/=gm*xx.

(2.3)

H= (0 +1T"0,x*)

Following the usual canonical quantization, where the
fields and conjugate fields are promoted to operators and
canonical commutation relations are imposed, we can then
write out the operators in terms of a set of creation and
annihilation operators, a, and al;, for the scalar particle
described by the fields, and a set of similar operators, b,

and b;, for its antiparticle—these are summarized in
Appendix A. Single particle momentum eigenstates can
be obtained from the vacuum state |0) as usual as

[p) = \/2E,,a[0).

Then acting on the one-particle momentum eigenstate
with the Hamiltonian operator

ﬁlE/d3x7:(

gives the form of the Hamiltonian in momentum space for
this state.

In this work, we focus on the situations in which one
probe particle comes in, it gravitationally scatters off the
DM, and then this one probe particle goes out. There are,
however, various other processes that can take place; this
includes one probe particle comes in and three particles go
out (if there is a conserved particle number, such as baryon
number for protons as probe particles, then it would be two
protons and one antiproton going out). This is certainly
allowed by general considerations (unless it is energetically
forbidden for nonrelativistic probes). But the physical point
is the following: since we are studying the gravitational
interaction, this would be suppressed by additional powers
of Newton’s gravitational constant G. In the language of
Feynman diagrams, we are focused on the simple tree
process of p+ DM — p+ DM via a single graviton
exchange. The scattering amplitude is proportional to
Gy. However, we can also consider another tree process
(or loop processes) in which p+DM — p+p+p+
DM via two graviton exchange. This scattering amplitude
is proportional to G%. To fix the units there will be an
additional factor of E?, where E is the probe particle’s
energy, in the amplitude. Assuming GyE> < 1 (i.e., for
probes of energy much lower than the Planck energy) this is
completely suppressed compared to the leading process.
Hence states of fixed particle number are the dominant
process to consider, which is what we focus on.

Furthermore, since the scatterers are assumed to be
dilute, they will scatter one at a time. So we only need

(2.4)

(2.5)
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to consider the effect of a single probe at a time, compute its
scattering amplitude, determine the overlap of wave func-
tions (which affects the density matrix), and then later
combine the effects of waiting for N scatterers that act
essentially multiplicatively to the total wave function.
The Hamiltonian acting on a single particle state is

3

. . d’p
Hlq)= | & = | &Px——

E g P E Oi
q i~q
+5% + q;
L/_QOO g% E, g%
01 Oj . 2
pPiq M=l _ip—q)-
—i-\/—( >—Ej+\/__9—E]€ ® q)X|P>-
p p
(2.6)
|
H(x,-V?) :l [\/ —V2 + m? go
’ 20 v=g9®

Note that even though we have built the relativistic theory
using creation and annihilation operators in the usual way,
we are allowed to act on particle states, and then form a
kind of position space wave function. Ordinarily, such
position space wave functions would couple multiple
particle wave functions to one another. However, as
explained above, such multiparticle states are suppressed,
which is to say, their amplitudes are small. This allows for a
single particle wave function to provide an accurate
description of the state of the probes.

B. Weak diagonal metric

We specialize now to a weakly curved spacetime.
Furthermore, we assume that there are no significant sources
of gravitational waves. Hence we can use a gauge in which
the metric is diagonal. The metric can be decomposed into a
flat background #,, = diag(+1,~1,—1,—1) and a small

perturbation, %, with |h,,| < 1, as follows:

gpw = ’1;41/ + h/w' (29)
Then, to linear order in the perturbations #h,,, the
Hamiltonian becomes
hOO
H(x,t,-V?) 2 \/-V?> + m? + 5 V=V? +m?
h'9,0;
- (2.10)
A

(writing ¢** = y* — h*). Furthermore, we will be focused
on metrics that either are static or, if they are time

oo v o)

Then, acting from the left with (x’| we can write the
Hamiltonian as a function of x’ and derivatives in x’ acting
on a plane wave (the spatial wave function of the momen-
tum eigenstate) as follows. Note that we only allow
derivatives to act on the wave function and thus assume
the metric components g, to be sufficiently slowly varying
in space. With (x|p) = e®* (note that we are using the
compact notation |x') = y7(x’)|0)), we can then carry out
the above integrals by performing some integration by
parts. This leads to

(x'|H|q)

where we have introduced a Hamiltonian H defined in the
position representation as a differential operator. It is found
to be

= H(x',=V'"?)elax (2.7)

—0:9; (2.8)

2
m
VO el

l
dependent, are also spherically symmetric. In either case,
we can fully specify the metric in terms of just two
functions ® and ¥, which are related to components in
the metric by

h' = 2Wsi,

h = 2, (2.11)

Depending on the source for the metric, these two poten-
tials @ and ¥ may or may not be the same. The
corresponding Hamiltonian simplifies further to

H(x,t,-V?)=V/-V2+m?>+ &/ -V?> 4+ m> —————.
" \/—V2+m
(2.12)

Note that if we now take the nonrelativistic limit, we
obtain a familiar form,

2
H,(x,t,—V?) = mc? —V—er(b, (2.13)
2m

where in the first term we reinstated a factor of ¢2, to make
it clear that this is merely the mass-energy term and is only
a constant. However, we will only make use of the above
relativistic Hamiltonian in this paper.

C. One-particle Schrodinger equation

Given this relativistic Hamiltonian for a particle in a
diagonal, weakly curved background spacetime, we can
construct the Schrodinger equation for the evolution of a
quantum state that describes this particle. The Schrodinger
equation is of the usual form
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i0,lw) = (Hy+ V)ly), (2.14)

where in the position representation Hy(—V?) =
V=V? 4+ m? is the free theory relativistic Hamiltonian
and the potential V is defined as the remaining interaction
parts of the Hamiltonian

¥(x,1)V?
V(x,t,-V)=®(x,0)V-V2i4+m?———2_—  (2.15
( )= ®(x.1)V/ Tor— (19)
The time dependence in Eq. (2.15) is made explicit
because, in general, the potentials ® and W can be time
dependent. The Schrodinger equation for the wave function
w(x, 1) can then be written as

(ié‘t—\/—vz—kmz)u/(x,t):V(x,t,—V2)y/(x,t). (2.16)

Hence we establish a well-defined single particle
Schrodinger equation, which can accurately describe proc-
esses in which particle number changing effects are
negligible.

III. SCATTERING AND DECOHERENCE IN
GENERAL

A. Perturbative expansion

For weak gravitational interactions, it is useful to expand
the full solution into a sum of an unscattered part y,, and a
scattered part y, as

W% 1) = wu(x. 1) + y(x.1). (3.1)
The free particle wave function for a probe particle of mass
m,, (we replace m — m, now) solves the free Hamiltonian
Schrodinger equation

(ia, YA mg)wu(x, 1) = 0.

In fact, we have w =, at early times, before any
interaction with the DMSCS. Then when encountering
the DMSCS, the scattered part y, becomes nonzero. We
can solve for the scattered part of the solution perturba-
tively by expanding in powers of the potential. Working to
first order, the scattered part is given by the solution to the
following equation:

(ia, /-2y m%)z//s(x, £ = V(x, 1, =V (x. 1),

(3.3)

(3.2)

where y, will from now on denote the first order con-
tribution to scattering and not the full scattering solution;

working to first order will be sufficient to determine the
decoherence rate to leading order (for further details on this
point, see Ref. [66]). Having demanded that y, — O at
early times, the solution for y is provided by the particular
solution to this equation

wo(x,1) = / dX Gyt =1 % = XYV (X, =) (X, ),
(3.4)

(time-dependent)
time-dependent

where G, is the four-dimensional
retarded Green’s function of the
Schrédinger operator

(ia,— A +m§,)c4(t-ﬂ,x—x/) = 5(1—1)8 (x—x).
(3.5)

Since y,, is just the solution to the free equation, the kth
mode is both a momentum and an energy eigenstate, and

thus its position representation wave function y/,(,k> has the
simple time dependence given by

(k)

wi (x, 1) = emiEity P (x), (3.6)

where wg,k) (x) = e®** (with some normalization) is

the spatial part of the wave function of the kth mode,
E; = \/k* + m? is its energy, and z//,(,k) (x, t) is its full time-

dependent wave function.

B. Time-independent Green’s function

In the upcoming sections we will study two cases:
(i) static DMSCS sources, and (ii) time-dependent
DMSCS sources. In the first case (i) we will be able to
solve the problem perturbatively using a spatial (three-
dimensional) Green’s function. In the second case (ii) the
time dependence will be more complicated, requiring use of
the full spacetime dependent Green’s function. However,
we will focus on coherently oscillating DMSCS sources,
which carry a simple harmonic time dependence. As we
will show, this will allow us to still solve the problem in
terms of an appropriately shifted spatial Green’s function.

The three-dimensional (spatial) Green’s function is
found by taking the free theory (V = 0) time-independent
Schrodinger equation, Fourier transforming in time, and
inserting a three-dimensional delta function as a source,

(E — -V + m’;‘,)c3(E,x —xX)=8x-x). (3.7)

To obtain this Green’s function, we first take the spatial
Fourier transform

Ga(E.p) = / PBxGs(E, x - x)e®xx) (38)
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The corresponding particular solution is

1
E—\/p*+m}+ie

where the ie factor is chosen to obtain the retarded Green’s
function. Defining r = x —x/, we can readily obtain
Green’s function through the inverse Fourier transform.
We can easily carry out the angular integral to obtain

Gs(E.p) = (3.9)

uEx—) = [Tapp ]
3 s _2ﬂ2 0 pr E— /pz_'_m%—'_ie.

(3.10)

Changing to u = |/ p* + m? such that p = | /u* — m? and

udu = pdp and rewriting sin pr in terms of complex
exponentials, this can be rewritten as

S 207 Ju, 2i  u—(E+ie)’

(3.11)

where the remaining p dependence is implicitly dependent
on u. Integration may now be done in the complex plane.
For convergence, a contour around the upper half of the
plane is chosen for the term proportional to e?”, and thus
the pole at u — E + ie contributes to the integral. Similarly,
the contour in the lower half of the plane is chosen for the
term proportional to e~*P" and thus, lacking a pole, there is
no contribution to the integral. At large radius, which is all
we will need later on, we can ignore the branch cut starting
at u = +m,. We are thus left with

1 eipr
G E’ -x)=- 2miR —E+ie
(B x =) = =5 27iReS oy <2i(u—(E+ie))>
1 .
=——¢"""E, 3.12
27zre ( )

where in the last step we have taken ¢ — 0. Note that
the remaining p in the formula is implicitly defined

) 2
from the energy E as p = y/E~ —mj, (as a result of the

d*p integration). As expected, in the nonrelativistic limit
E— m,, we recover the wusual time-independent
Schrodinger Green’s function.

Also, we note that if one begins from the Klein-Gordon
equation (see Appendix D) and uses the corresponding
Feynman propagator, one, of course, has a pair of poles.
One pole gives the above contribution, while the other pole
is highly off-shell for positive energy particles and is
ignorable (as it is related to antiparticles), so together we
recover Green’s function above.

C. Wave packets

We will assume the incoming wave function of the probe
particle is a wave packet. We can take the incoming,
unscattered wave to be a sum of plane wave modes with a
distribution function ¥, (q) that weights the momenta q of
the modes around a central value k which can be thought of
as the mean momentum. Hence at early times, the spatial
wave function is given by

) = [ G ey
u (27[)3 2Eq k ’

where the vector b is an impact parameter that can shift the
spatial center of the wave packet away from the origin of
the coordinate system. The prefactor 1/ \/E is conveni-
ent because the normalization condition (y, |y,) = 1 takes
on the simple form

(3.13)

dq

/Whmqw 1

[see ahead to Eq. (3.17) for the general expression for the
overlap between a pair of one-particle states].

(3.14)

D. Decoherence

Our interest will be a DMSCS that begins in a super-
position of otherwise classical states [DM; ), [DM,). Using
the Einstein equations of general relativity (for details see
later in the paper), this sets up an effective potential V that
is itself in a superposition of potentials V; and V,; see
Fig. 1. The DM can be in a superposition of different
density profiles and, if time dependent, in different phases,
etc. For further generality, we also allow the centers of the
potentials (i.e., the center of the mass distribution) to differ
from the origin of the coordinate system, characterized by

o) [DM,) +[DMa) |1)

FIG. 1. The basic setup of the problem; this figure is taken from
our previous paper Ref. [66]. Suppose there is some piece of
matter that primarily only interacts gravitationally, dark matter,
and it forms a DMSCS. This is defined as a quantum super-
position of two different configurations of some piece of the DM,
[IDM,) + |DM,), as illustrated by the blue and red distributions.
The distributions can differ in the center of mass position and/or
profile of the mass distribution or, for light bosonic DM, the
phase of the oscillating DM field. Now also suppose there is a
probe particle (wave packet with wave number k and width d) in
state |y) which passes through; its gravitational interaction with
the DMSCS ensures that it evolves into a superposition of states
|yr1) and |y,), and so it is then entangled with the DM.
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the distance L; (here the index i is either 1 or 2, denoting
correspondence with either V| or V,). The evolution of
these environmental probe particles is characterized by a
wave function, y, evolving according to the Schrodinger
equation. After interacting with the potential (V| or V,), the
probe particle also evolves into a superposition of substates
lw1), |lw>), which are inevitably entangled with the
DMSCS. The total final state is given by

'¥)) = [y1)|DMy) + [yo)[DML).  (3.15)
By tracing out these probe particles, which act as the
“environment” that we do not track closely, the reduced
density matrix of just the dark matter describes a mixed
state. Our goal then is to compute the rate at which
interactions with such particles lead to decoherence of
the DMSCS.

As is known (e.g., see Ref. [66]), the decoherence rate
depends on the inner product of the substates |y ), |y>).
We parametrize the overlap of these two substates in terms
of A as

(wily)| =1-A. (3.16)
To be consistent with the relativistic normalization of the
quantum states defined in Sec. I A, the inner product in the
position representation of a generic pair of one-particle
states is

(i) = / (=i (x. )0 (x.1) + iy (. )0, (x. 1)),
(3.17)

The deviation from unity A, to lowest order in scattering,
can readily be shown to be given by

1

A :_(<l//s.l |l//s,l> + <l//s.2|l//s,2> - 2§R[<l//sl |Ws,2>])'

5 (3.18)

The decoherence rate is then given by (see our Ref. [66] for
details)
|

Fdec = I’”J/(,{szb, (319)

where 7 is the number density of probe particles, v is their
typical speed, and b is the impact parameter of each probe’s
approach, which is integrated over to account for its
variation.

IV. STATIC SOURCE

We now wish to analyze the evolution of an environment
particle in the spacetime generated by the DMSCS. First
we examine the case where the background space-
time produced by the DMSCS is static V = V(x, —V?).
The evolution of the environment particles is therefore
described as the scattering of a probe particle by a fixed
potential. We assume the DMSCS is taken to be sufficiently
massive such that the backreaction is negligible.

For a truly nonrelativistic DMSCS source, the pressure
of the source should be negligible, and thus the potentials @
and ¥ are equal. In fact, for a DMSCS that is an oscillating
scalar field, such as the axion, taking the source to be static
should correspond to this nonrelativistic limit. However, to
generalize the following results to a source that is not an
oscillating scalar, we will keep the contribution of the
source’s pressure, and thus continue to differentiate
between @ and W. This may be useful to estimate the
decoherence of an object that is relativistic but still sources
a static metric.

A. Scattered wave function for static case

Since the source is static, it is useful to relate four-
dimensional and three-dimensional free Green’s functions
in a simple way due to the separability of the free
Schrodinger equation

Gy(E,x —x') = /dt/G4(t -1, x—x)e -0 (4.)

Thus the scattered response of the kth mode may be
written as

p(xr) = e / X Gy(Epx =X )V (X =V (x)

) —-E eik|x—x’|
= e iExt / d*x' (727r1|(x - > <<I>(x/)\ [-V'"? +m? — — 2>l//§4k)(x).
\/ =V +my,

We will now focus on the far distance regime |x| > [x'|.
This is of most importance at late times when the
wave function is concentrated far from the center
of the potential. In the exponential phase factor, we can
expand |x — x|~ |x|—%-x'. Also, given that the

P(x)v* (4.2)

wave function of the kth mode is a plane wave of
momentum Kk, with w,(,k)(x) = ¢®* the derivatives in
the potential can act on this wave function, giving the
following expression for the scattered response of the kth

mode
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ik|x|
x|~

where K’ = kX and we have defined the first order scatter-
ing amplitude as

i (x,1) = B f (K K) (4.3)

f(k/,k)z_zi /d3x'ef<k—k’>-'[ () (24 m2) + P (x') 2.

(4.4)

Then, the wave function for the scattered wave packet is
given by

d3q iE eiq|x\ l/~lk ((I) i
1) = —LEgt /, R — _lq.b. 4.5
l//s(x ) / (277'_)3 e f(q q) |X| 2Eq e ( )

This generalizes the usual nonrelativistic treatments, e.g.,
see Refs. [67,68] (we will later provide an even much

dqdg [ . L €T (q)
Sij:/dzb/d3x qﬂ 4 [e"Ef?’fj(q’,q) k( )e

Here we have defined r; =[x — L;|~r—X-L,. We can
perform parts of the integral as follows: First the integral
over impact parameter gives a two-dimensional delta
function

/ PLbe ™00 = (22)28(q, —q,).  (4.8)

while the integral over space can be written in spherical
coordinates, and the radial integral gives another delta

function
/d2Q/DO dre=ila=dr
0

e_i(q_;i)r
/ dx 7=

- / d’Q(21)5(q — ). (4.9)

The combination of these delta functions results in two
possibilities q = q and q = —q. However, we can use the
fact that the distributions yry (q) are sufficiently narrowly
peaked such that the case when q and q are antialigned is
exponentially suppressed. Thus we approximate the delta
functions (27)%6*(q, — q,)8(¢ — §) ~ (27)5*(q — q) and
perform the d°§ integrals, resulting in

greater generalization to the time-dependent relativistic
case).

B. Decoherence rate

We now apply the above result for the scattered wave
function to obtain a decoherence rate. The DMSCS is in a
superposition, meaning that when the probe wave packet
passes by it will itself launch into a superposition. The
scattered parts of the superposition will be denoted v, ; or
v, j» Where i, j =1, 2 for each part of the superposition.

In order to obtain the decoherence rate, the following
integral over impact parameter is of interest:

5 = / Pl v, (4.6)

Using the above result for v, we see that this is given by

/d2 /( T i Q)f(d )

e!la- R (4.10)

At this point, it can be clearly seen that the results of
these integrals can follow the same calculations as in the
nonrelativistic Newtonian case in Ref. [66], with the
exception of the fact that the scattering amplitudes f are
defined differently for the relativistic case. It is useful to
average over the direction of k (as is done in the previous
work), which impacts the exponentials in Eq. (4.10) and
replaces |y (q)|*> with a function P(g) that depends only
on the magnitudes k and g. It is then convenient to define
the following generalized cross section which reflects the
averaging over the direction of k:

51,(q) = / POF (. Q) (d- ) jo(2qLy; in(0/2)),

(4.11)

d’q
Sij = (27)36ij(Q)Pk(Q)’ (4-12)
where jo(z) =sin(z)/z is the sinc function and
L;j=|L; —L;|. Note that oy =5y, and 6, =G5, corre-
spond to the usual definition of a scattering cross section
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(with the appropriate general relativistic amplitudes of
Eq. (4.4)) since jy(0) = 1. Finally, the decoherence rate
is given by

1
Cdec :z’w(su + 85 = 20[S},)). (4.13)

This may be approximated by taking S;; to be given by the
6;; evaluated at g = k; this approximation is valid if
the distributions yr, are sufficiently narrow such that the
distribution P;(q) is sharply peaked at ¢ = k. Then we can
express the decoherence rate as

1 -
Cgee = 5””(01 + 6y, = 20[612))| - (4.14)

Note that in the special limit in which &, =0 and
0 = 01 = 05, this simplifies to the familiar form Iy, =
nve relating to other work in the literature on decoherence;
but here it is generalized to nontrivial overlap (provided by
the &1, term) and to a general relativistic setting.

C. Parametrization of the decoherence rate

To compute the decoherence rate explicitly, one must
now provide a specific form for the potentials ® and ¥. For
a static, diagonal, spherically symmetric metric, one can
readily show that the Einstein equations imply ¥ = ®y,
O = Dy + 5, where ®y is the Newtonian gravitational
potential and ¢ is a correction

1
VZ(I)N = 47TGN/)’ -5 = 47TGNPr’ (415)
r

where p is the energy density of the source and P, is the
radial pressure. Most sources lead to a potential that has
“infinite range,” leading to a divergence of the scattering
cross section in the forward scattering direction (e.g.,
Rutherford scattering formula for a Coulomb potential).
This divergence may be avoided for mass distributions with
a vanishing monopole.

One important mass distribution to consider for DM in
the galaxy is a fluctuation in the background density of DM
which is an overdensity surrounded by an underdensity
such that the total perturbation in the integrated mass
(monopole) from the background vanishes. We can para-
metrize this profile with (a) a characteristic mass scale, M,
which can be thought of as the mass scale associated with
the overdensity (since the overdensity and underdensity
together have no mass); and (b) a characteristic length scale
1/u, which can be thought of roughly as the width of the
region including the overdensity and underdensity, and
which we will take to be of the order of the de Broglie
wavelength of the DM. Then, the mass density that deviates
from the background of DM is given by

op(x) = Mp*(ur),  SP.(x) = Mp’y(ur), (4.16)
where {(ur) and y(ur) are dimensionless functions that
describe the shape of the energy density and pressure of the
sources, respectively, and depend on the dimensionless
variable ur. Note that we may take the distribution to be
spherically symmetric for simplicity, and thus the sources
only depend on the position variable |x| = r.

The scattering amplitude in Eq. (4.4) is related to the
Fourier transform of the potential with respect to the transfer
momentum p,. = k — k’. We can define the dimensionless
variables X = ux and p = % [with [p|=p = %Sin(9/2)
and 0 the angle between k and k'] to have a dimensionless
Fourier transform as follows:

Fp) = / BRF(X)ePX, (4.17)
The scattering amplitude is then simply given by
| A R
fK' k) = oS [Ow(P) (), +2k%) +6(p) (mj, + k)]
(4.18)

Then, taking the Fourier transform of Eq. (4.15), we can write
down a form of the scattering amplitude with the physical
parameter dependence more clearly displayed,

—Az‘i)N(lA’) = 47TGNMH£(IA’)- (4.19)
Similarly, to find a Fourier transform for o, we may first
rewrite Eq. (4.15) for 6 by differentiating once with respect to

r and utilizing the fact that we have assumed that § is
spherically symmetric,

V26 = dnGyMy’ (3y(ur) + ury'(ur)).  (4.20)
Then, defining the function ¢ as
e(ur) = 3y(ur) + pry'(ur). (4.21)

we can find the Fourier transform of 6 from the following:
~p?5(p) = 4nGyMué(p). (4.22)

Then finally, we can find the generalized cross sections of
Eq. (4.11) to have the form

_ 8aGyMM; (m}, +2k*)?
Hiltj k*

5:j(k) Xij»  (4.23)

where we have defined a dimensionless quantity
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_[dp [ [wi. m3 + k*
wo= [ e) + (e

(\/f;p)] X [i < ) X jolLin/FED)

(4.24)

and [i <> j] means to repeat the previous quantity in square brackets, interchanging i and j.

Having scaled out the various parameters, this remaining dimensionless quantity y;; is typically O(1) [e.g., when the ratio
of y; and p; is O(1), L;; is small compared to 1/u, and the potential is exponentially damped outside the region of radius
1/u, such as a Gaussian]. Using Egs. (4.14) and (4.24) the decoherence rate is then given by

(m3, 4 2k*)?

~ 2
Lgec ® 4nGyn,v, 2

<M%)(11 +—=xn -
e 13

M> 2M\M,

)(12)-
Hik2

(4.25)

Note the two features of relativity here: in the (m? + 2k?)? prefactor and in the definition of y,; in Eq. (4.24), which includes
the & term from pressure; this provides a neat extension of Ref. [66].

To examine this further, let us now examine this result in the nonrelativistic (k < m,) and ultrarelativistic (k > m,,)
limits. In the nonrelativistic limit, we recover the result of our previous nonrelativistic analysis in Ref. [66], namely

2 2 2
r ~ 41G? My % % —
decnr ~ AU\, 2)(11+ > X22
Up \ M H3

2M M,
Hi1H2

;(12) (nonrelativistic probes). (4.26)

Good examples of nonrelativistic probe particles are the baryons in the galaxy, or in the atmosphere of earth, which are
plentiful. For a detailed analysis of this result applied to axionic (or other light bosonic) DM in the galaxy today, including
estimates in the atmosphere of the earth and dilute boson stars; see the plots and discussion in Ref. [66].

In contrast, the ultrarelativistic limit leads to different predictions

2

M M3
1—‘dec.ur ~ 16776?\/”17]{2 <”_2])(11 + 2
1

X2~
T

where we take v, — 1 in the ultrarelativistic limit. A good
example of ultrarelativistic probes are cosmic microwave
background (CMB) photons. Here, we can see that the
decoherence rate now increases with increasing probe
particle momentum. Thus, one may expect that sufficiently
high-energy particles will cause decoherence of the
DMSCS to come about more rapidly. However, when
considering DM in the galaxy, the relative abundance of
high-speed particles compared to low-speed particles is
quite low. Therefore, one should expect that, for example,
nonrelativistic hydrogen in the galaxy will dominate the
calculation of the decoherence rate.

To compare I' 4. and I'gec , directly amounts to compar-
ing the factors n,m? /v, of nonrelativistic probe articles to
n pk2 of ultrarelativistic probe particles. In the former, the
larger abundance of probe particles should more than
compensate for the fact that in the latter k> m,. One
way, however, to consider a probe which is generically
ultrarelativistic is to consider a photon probe. In this case, itis
still clear that the nonrelativistic hydrogen with m%, Jv,~
10° GeV? will dominate over the contribution of photons,
which either have much smaller energies or, if they are
energetic enough to compete, have much lower abundances.

Therefore, it is reasonable to conclude that the non-
relativistic analysis is sufficient to compute the decoherence
rate for static DMSCS configurations. This provides extra

2M M,
HiK2
|

motivation to consider DMSCS which vary in time; these
sources necessarily require a general relativistic treatment
and are the subject of the next section.

;(12> (ultrarelativistic probes), (4.27)

V. TIME DEPENDENT SOURCE

We now consider the case where the metric sourced by
the DMSCS varies in time. Of particular interest is light
bosonic DM, such as an axion, which can oscillate in time
and thus source a time-varying spacetime.

A. Einstein equations for spherically
symmetric source

First, we can compute the background metric
sourced by the energy momentum tensor of a scalar field
which oscillates coherently in time. We consider the
Lagrangian for the scalar field ¢ of mass m, (for simplicity
we ignore self-interactions, such as ~A¢* in this discussion)

c:%aﬂwﬂqa—%mg(ﬁ (5.1)

From this, we construct the energy momentum tensor,
which we only need to zeroth order in the gravitational field

T, = 0,00,¢ —n,L. (5.2)
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Assuming spherical symmetry ¢ = ¢(r, t), using notation
0. =¢', 0,¢p = ¢, and using spherical coordinates, we
have

p=Ty =3+ WP+ (53)

Po=T, =@+ WP -m). (54
1.

Py = % = 5(9{72 - (¢/)2 - mz?) (5.5)

(and Ty = Ty sin? @). For convenience we will express
the metric in spatially conformally flat coordinates as

G = (1 4+2%(r, 1) +25(r, 1))dr?
— (1 =2%(r,1))(dr* + r*d0* + r*sin*> 0dg*) (5.6)

with ¥ =W¥(r,7) and ® =¥(r,t) + 5(r,t). From this
metric, we can use the linearized Einstein equations G, =
8zGyT),, to solve for the metric as

(Gu =) 2VP¥ =4nGy (¢ + (¢)2 +m2g?). (5.7)

Gul? =G =) () =-saGutgy. 59

Using the Klein-Gordon equation of motion for the scalar
field, and the equations for ¥, § above, it can be shown that

the G, = 8zGT,, = SﬂGN¢¢’ equation is automatically
satisfied, so we do not need to specify it here.

B. Coherently oscillating scalar field

From these equations, we can calculate the metric
sourced by an oscillating scalar. We will take the scalar
field to have a spatial profile ¢(r) that is spherically
symmetric and time dependence that is a single simple
harmonic of angular frequency w. For diffuse DM that is in
motion in the galaxy, this is not precise, since it is really
made out of a combination of traveling waves, with some
fluctuations in frequencies. However, for such diffuse DM,
the variation in frequency is on the order w = m,, +3m,v?,
where 2?2 is the typical dispersion in velocities. For non-
relativistic DM, this correction is tiny (we shall return to
these details in Sec. VI), so it is fairly monochromatic.
Furthermore, for a condensate of scalars, one usually has
almost perfectly periodic oscillations, so this form is even
more appropriate (we shall return to such condensates in
Sec. VII).

In any case, for our discussion it will suffice to treat the
scalar field as having the form

o(r, 1) = \/E(]ﬁx(r) cos(wt + @). (5.9)

Hence ¢ = /2¢.(r) cos(wt + ¢) and ¢ = — 2w, (r)x
sin(wt + ¢). This can be inserted into Eq. (5.3) to obtain
the corresponding energy density. By using double angle
formulas, it can be readily shown that it takes on the
following form:

p(r.1) = pO(r) + p? (r) cos2(wt + ¢)),  (5.10)

where we have indicated that the energy density p has a part
which is independent of time and a part which is propor-
tional to cos(2(wt + ¢)). The coefficients are functions of
position given by

_pi(mg — o?) + ())?
- 2

o) = Bl =0t @)

pO(r) + 2w’ (5.11)

(5.12)

We can then identify that the Newtonian potential ¥ has the
same time dependence structure

¥(r,t) = YO (r) + YO (r) cos(2(wt + @)  (5.13)

with each piece solving the corresponding Poisson equation

(n)
n _ P
‘P( ) = 477,'GN?

(5.14)
for n = 0, 2. In addition, we can solve for J from Eq. (5.8),
from which we can see that § will also be proportional to
cos’(wt + @), and thus will also have a part that is
independent of time and a part that oscillates in time with
cos(2(wt + ¢)) as

8(r,t) = 8O (r) + 6@ (r) cos(2(wt + ¢)) (5.15)

with 52 obeying

o0 0 1
5O(r) = 50 (r) = ~82Gy / dr'v / ar' B
(5.16)

Thus, both potentials in the metric, ¥ and ® = ¥ + 6, have
some part that is independent of time and some other part
that depends on cos(2(w? + ¢)).

C. Scattered wave function for dynamic case

We then wish to analyze the response of a one-particle
wave function for a probe particle of mass m, evolving
according to the relativistic Schrodinger equation in this
spacetime background. We change from describing the
potentials @ and ¥ in favor of an equivalent set of time-
independent potentials V() (r,=V?) and V®(r, -V?) in
order to explicitly separate out the time dependence of V
from Eq. (2.19),
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V(x,=V?) = VO (r, =V2) + V) (r, =V?) cos(2(wt + ¢)), (5.17)

where we have defined the spatial operators

v2
) (r, =V2) = (¥ (r) + 60 (r))/-V? + ﬁ (5.18)

for n = 0, 2. Then, we solve the Schrodinger equation perturbatively, where the first order correction to the wave function
from scattering for the kth mode is given by the following convolution of the potential with the four-dimensional Green’s
function

i(2(wf'+¢)) —i(2(wt'+¢))
l//s(x,t):/d4x’G4(t—t’,X—X')e‘iEkt,(V(O)(r',—V’z)—|—V(2)(r’,—V’2) (e Pte ! )) (k)

5 P (x).  (5.19)

In the first term here with V(%) which is independent of time, we can easily carry out the integral over time and rewrite the
answer in terms of the three-dimensional (spatial) Green’s function. In the second term here with V(?), which depends on
time, it seems to be more complicated. However, since we are assuming a single-harmonic coherently oscillating source, we
can absorb the time dependence into the exponential e~£’ prefactor, allowing us to once again carry out the integral over
time, this time in terms of the three-dimensional (spatial) Green’s function with an appropriately shifted value of energy/
frequency. This gives

w(Xx,1) :/d3x’{G3(Ek,x—X) —iEy0) (¢, —V'?)

1 ‘ .
+3 [G3(E_;,x — xX")e E-11=20) 1 G4(Ey,x — X')e (Bt t20) ]y (2) (5 —V’Z)}y/g,k)(x’). (5.20)
Here the shifted energies/frequencies E_; and E_ | are defined as

E,=E; + 20w (5.21)

with @ = £1. Then, as in Sec. III C, the unscattered wave function is expressed as a wave packet with Fourier amplitudes
U (q). The resulting scattered wave can be written as

Pq (@) jgx - :
X, 1) = ABx iqx o—iqgb ) G (E ,X—X/ —qutV(O) /, 2
w0 = [ AT o e Gy x ) V(2 )
1 4 .
+5[G3(Eoy x = X)eEar20) 4 Gy (B, x = X )e B2y, qz)}, (5.22)

where the derivatives in the potentials V(*)(r, —=V?) and V() (r, =V?) have acted on the plane waves, and now the potentials
depend instead on the square of the momenta ¢°.

Since Green’s function is most naturally written in terms of momentum and not energy, we define the following
momenta:

= \JE2=m, = \/(E, + (200))” — nt}. (5.23)

Green’s function can be approximated in the far distance regime as
/ Ea 1 ‘ ‘ —iq’ -x’
G3(Ey x —xX') = = —" ¢'alXle7 X (5.24)

27|x]|

where (), = g,%. Then the scattered wave packet becomes
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d
Ws(x’t): ()Zl:+l/(2ﬂc>1

where we have defined a set of scattering amplitudes F, as

E,
Fo(q'.q) = - /d3 ¥l =Xy O g2),

Fi(dy,q) =-
+1(q%,9) )

D. Decoherence rate

We return now to considering a DMSCS source for
potential V, specifically a scalar field in a superposition. We
will examine two cases with increasing specialization.
First, we will allow the centers of the potentials V; and
V, to differ, as characterized by L; and L,. In addition, the
substates of the scalar field will differ in the phase ¢ as
defined in Eq. (5.17), while the spatial profile of the scalar
field is taken to be the same between the substates (up to
the difference in the centers). Then in the next subsection,
we will specialize to the case where the centers of the
substates coincide (L.; = L,), and thus the only difference

|
Sij / dzbd3
2

E +E |:e+z (Eqt+2a¢;) F*(q (])

2w

(E,,,t+2a(p)Fa(q:Z’ ) elda” l/~/k ((]) e_iq.b7 (525)

2E,

(5.26)

(5.27)

between the potentials V; and V, will be from the phase ¢
of the scalar field. This second case captures one of the
goals of this paper, which is to evaluate the degree of
decoherence for a configuration in which Newtonian
gravity cannot detect the superposition, and thus only
general relativistic effects have the ability to lead to
decoherence.

As done in Sec. IV B, the calculation of the decoherence
rate involves an integral of the wave function overlaps with
respect to impact parameters S;; = [ d*b{y, |y, ;). Using
Eq. (5.25) and shifting the center of mass appropriately, this
is given by

Gpri v (&
Z{{ i(E3t+2p0)) Fﬁ((];,,(])e o7 g (@) e—i(b-L; )}

ro\J/2E;
e —iq,ri wa(q) e+,’q.(b_Li):| i

r ,/2Eq

(5.28)

where once more we have used r;=|x —L;|~r—1%-L;. Here we have used notation that Ej is defined as

Ey(q) =

/ Pbe ™1 = (2025 (q, — ).

3 e_i(qa_ZI/}>r > [6e] . - -
/ d ¥ = / d’Q A dr e 4=8)r = / d?Q(27)8(q, — Gp).-
|

Using these delta functions, either we can evaluate the d351
integrals and replace ( by a function of q or we can evaluate
first the d° g integrals and replace q with a function of q. In
either case, the delta functions guarantee that £, (¢) = E(g)
(implicit from the condition g, = g;) which guarantees that
the integral becomes time independent as expected. For
completeness, we should note that the delta functions provide
conditions which allow q, for example, to be replaced by
more than one valid function of q; however, since the

E; + 2pw. We once again perform the following integrals to obtain some delta functions:

(5.29)

(5.30)

distributions {r are meant to be relatively sharply peaked,
we will only consider the q picked out by the delta functions
which are approximately aligned with ¢, since the distribu-
tion functions will suppress the cases in which q and q differ
greatly.

If we choose to first perform the d°§ integral, each delta
function will result in the components of ¢ being replaced
by functions of the components of q; we denote this vector

by q - qrxﬁ
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\/q2 +aw(a—P)E, + 40 (a—p)? forE,>0

qaﬂ =

\/q2 +4w(a+p)E, +4w* (a+p)?* for E, <0
(5.31)

Note that E, > 0 is guaranteed if E, > 2w. We will in
general wish to examine the case where o< E,; q,m,;in
this case we can expand to first order in @ as follows:

- p) + O(o?). (5.32)

2w
Gop =9 + 7Eq(a

In addition, the cancellation of the time dependence
following the d*§ integration results in a different leftover
phase for each term, given simply by 2(ag; — ;). Then,
the overlap integral can be written more concisely as

z] /dQQ/ 3{F*(qmq)Fﬂ<q;’qaﬂ)
ap

q qa) LI e+’(qa/)' qa) Lj€2i(a(pi_ﬂ(pj>l/71*{ (q)li}k (qaﬂ)}’
(5.33)

where in the last expression, we have simplified using
Ea o 1, which is valid for @, which is small compared

VEdEq,
|

3
Sap = / *Q / éTc)ﬁ{F;(q;,q)Fﬁ(qL,qaﬂ)%(q)u?k(qaﬁ)}-

to E,. This is required for self-consistency, since this is the
regime in which the source is unable to pair produce
particles, and we are indeed working in the single particle
formalism. For completeness, the full expression with this
factor is provided in Appendix B, but it will not be needed
for the remainder of our analysis.

We note that when computing S;;, the only dependence
on i or j, i.e., whether the potential is V; or V,, is in the
form of phases and the position of the center of mass (by
construction). The result of Eq. (5.33) can be used to
compute the decoherence rate for this configuration.

E. Phase difference

We will specialize now to a case where the superposition
is one in which the spatial mass distribution is entirely the
same, including the location of the centers of mass
(L; =L, =0), and only the phase ¢ of the axion field
differs. Thus, the only part of the integrals that depends on
the indices i and j is the leftover phase e%(®%i=¢) which
can be taken out of the integral. We can thus write the
integrals S;; as

Sij - ZsaﬂeZi(a%_ﬂq)j)? (534)
ap
where the coefficients s,4 are defined as
(5.35)

Then, to compute the decoherence rate, we consider the combination of S;; as required in Eq. (3.18) to compute A. It can now
be seen that any part of S;; which does not depend on the phase ¢ will 51mply cancel when computing A. Explicitly, this is

Si1 + Sp = 2R[S12] = 2(1 = cos(2(¢,

where we have used the fact that R[s,, 4]

—@2)))(5-1-1 +54141)
+ 2{cos(4¢;) + cos(4¢,)

= 2cos(2(¢1 + ¢2)) R[5y 1], (5.36)

= N[sp,] to simplify (see Appendix B). Not only does the term s, completely

independent of the potential’s index i or j, vanish, but also the terms of the form s 4 or s, . Thus, in this case, one must only

compute s_; _y, §141, and R[s_; ).

Then, after carrying out the computation of the necessary s, 4, the decoherence rate is

1
Laec = 510{2(1 =c08(2(1 = 92))) (-1 -1 +541.41) +2{cos (49 ) +cos(4g)

—2c08(2(¢1 +@2)) }R[s_1 4]}, (5.37)

where 7 is the local number density for the probe particles and v is their typical velocity.

Another interesting feature of this scenario arises
when considering the momentum distribution func-
tions ¥y (q). One typically expects that the probe particle
has well-enough-defined momentum such that the
dynamics are well approximated by considering a plane

wave [a wave packet where ¥ (q) « 8(q —k)]. For
narrowly peaked 1, one expects the product
¥ (q)¥k(q,p) to be exponentially suppressed unless
a = p. Specifically, two regimes of interest are
when
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(A) The width of the (I, distribution is large compared
to the difference between q and q,; [roughly
~o(a — ﬂ)Eq/q]

(B) The width of the distribution is small compared to
this difference.

In case (A), the product Wy (q)k(qqp) is well approxi-
mated by | (qq,)|*, where q, is some intermediate value
between q and qs. In case (B), however, the product
U (q) Wi (q,p) Will necessarily cause the integral to be
exponentially suppressed, except for when o = 5, which
gives | (q)|. The condition for (A) is satisfied when the
spatial variance of the probe particle wave packet is
smaller than the spatial variance of the DMSCS; thus
we expect case (A) to be of more physical relevance.

Both cases (A) and (B) are of interest since they can both

lead to decoherence. In addition, both of these regimes
allow for the simplification of Eq. (5.35). For situation (A),
we can approximate the distributions as being evaluated at

Quy as [ (q)|*, while in situation (B) the momentum
distributions only contribute to the integral when a = 8 in
the form [{jr, (q)|*. For either case, let us presume that the
composite distribution |, (q, )|> [where q, is either q,, in
situation (A) or q in (B)] is sufficiently narrow such that the
integral in Eq. (5.35) is well approximated by evaluating
the rest of the integrand at q, = k, giving

(5.38)

Sap X 5aﬁ(q) q.=k>

where

5op(a) = / POF: (¢ Q) F (e 0op)  (5.39)

is another generalized cross section. Then, the decoherence
rate can be more simply expressed in terms of the
generalized cross section as

1 _ _
Fgec & 5nv{2(1 —cos(2(@) — 2)))(6-1-1 +654141)

+ 2{cos(4@;) + cos(4p,) —2cos(2(p, + ¢2)) }R[6_; 1]}

(5.40)

or, in case (B) above where 6_; ,, is exponentially suppressed, the decoherence rate is more simply

1 _ _
[gec ® 5’”1{2(1 —cos(2(p1 = 2))) (611 + 541 41)}

(5.41)

F. Parametrization and Gaussian example

We seek once more to parametrize the decoherence rate in such a way that makes the scales in the problem manifest. In
the interest of clarity, we will consider an example configuration for the scalar field. We study a Gaussian spatial profile for

the scalar field

o(r,t) = V2¢ e 12 cos(wt + ¢)

(5.42)

with ¢, an amplitude and u an inverse length scale. Upon substitution into Eq. (5.8) we can carry out the integrals to solve

for § and obtain

5 = —4nGyd2e " cos*(wt + ).

In this form, the energy density of Eq. (5.10) becomes

2 _ .2 2.4 2 _ .2 2.4
o= e [<w+w2> N <wc05(2(wt+¢>)>],

2

(5.43)

5 (5.44)

Introducing now the mass scale M associated with the energy density of the configuration, we wish to write the energy
density p in terms of a dimensionless function £ (analogous to the function ¢ we introduced in the static case) of the

dimensionless variables X = ur and T = wt,

p=MpPE(.T).

To do this, we write

(5.45)
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KMy
bi=—5. (5.46)

my

where « is an O(1) dimensionless constant and &(%, T') is identified as

1)

fx.T) = %e —(m3 4+ 0+ 8242) + (mF = 0 + %) cos(2(T + ). (5.47)

Since the scattering amplitudes are related to Fourier transforms of the potentials with respect to some transfer
momentum p,, = ( — (,, we can write first the Fourier transforms of the potentials according to the definition in Eq. (4.17)
(which transforms with respect to p = p,,./u). Taking the Fourier transform gives a form analogous to Eq. (4.19),

—pMW(p.T) = 42GyMué(p.T). (5.48)
We can also write the form of the potential ®(r, ¢) in terms of the dimensionless variables, using ®(r, 1) = ¥(r, t) + 5(r, 1).

To consolidate notation, we define the following two dimensionless functions of X and their Fourier transforms as
functions of p:

gR) =, §(p) = a¥e T, (5.49)
> . 2 n
hE) =P, h(p) =~ e (7 - 6). (5.50)
such that £ becomes
A kp? [m2 4+ o® . R m2—w* . R .
R, T) = 2,':2 [ﬂzg(x) + h(%) + < e g(%) + h(x)) cos(2(T + (p)} (5.51)

and the Fourier transforms of the potentials become

- . kMy? 1 m2+aw* 3 1 m2-w* 3 A
Y(p,T) =2nGy——9(P ——— e e 2(T , 5.52
(0.1) =206, )| (=" - )+ (3= - o JeosCa( ) (552

1 m2+0*> 3 1 m?—-w?* 3 R
55—t St AT . 5.53
)[<4+ s +2p2> + <4+ prrs +2132> cos(2( +(p))] (5.53)

KMy
——g(p
m

a

é(p’ T) = _27TGN

We can now readily separate the Fourier transforms of the potentials into the time dependent and independent parts,

. kM3 1 m2+o®> 3 1 m2+e®> 3¢

2 4 2p? 4 Ppt 2pP) E,

. M3 1 m-o0®> 3 1 m2—-w* 3¢
V@ (p,q?) = 22G KME sy (2 Ma =@ 2 \p R I N 5.55
(P q°) TGN mtzl g(p) 4+ ﬂzﬁz +2]A72 gt 4 sz’z 2]32 Eq ( )

Finally, we can write the scattering amplitudes as

E (> A
Fold.@) = ~75 VO (5.56)
=
1EL afo .
Farldi @) = =35 V000 g (5.57)
=

In F, the exponential §in VO and V® is O(1) when the transfer momentum goes to zero (6 = 0, the forward direction),
but this is also where these functions suffer from a divergence. This is the well-known divergence that comes from an
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infinite-range potential (e.g., the Coulomb potential and the
forward divergence of the Rutherford scattering amplitude).
It arises because the density p which sources the potential
has a monopole. In this case one can still proceed by
restricting to configurations that have a vanishing monop-
ole; this is a physical thing to do, because the monopole
will decohere quickly, leaving other pieces of the distri-
bution in a quantum state. Importantly, however, in the case
in which the two parts of DMSCS differ only in phase, any
divergences from F, will exactly cancel, and thus it is
possible to calculate the decoherence rate for that configu-
ration using this scattering formalism. We will focus on this
case later in the paper.

»_ (a—q,
2
p W

In the forward direction & — 0 this becomes

4a2a)2E§

5.59
W q? (5.59)

152|9:0 ~

The forward direction is important since this is where the
transfer momentum is at a minimum, and we wish to
examine how far from zero the transfer momentum must
be. The leftover expression can be interpreted in the
following way: For a probe that is not relativistic,
E/q~m,/q~1/v, In addition, the length of the
region containing the DMSCS is given approximately by
L ~ 1/u, and so the product uiq ~L/v, ~t, where t, is the

time it takes the probe to cross through this region. Then,

% ~ wt, is approximately the number of oscillations of the

DMSCS the probe particles encounter during its scattering.
Estimating the number of oscillations as

oFE
N=—,

o (5.60)

we have that the minimum transfer is p?|,_, ~ 42> N>.

We first note that when a = 0, corresponding to the
amplitude F, then the limit & — 0 gives e P/ 51 (as
indicated previously, along with the forward divergence).
However, with nonzero @, depending on parameters, it may
be the case that the scattering amplitude, and therefore
scattered wave function, is itself suppressed, and exponen-
tially so. That is, for N > 1, the rapid oscillations of the
scalar field are effectively ignored by the probe. Thus, any
contribution to decoherence from the a # 0 part of the
scattered wave function would be miniscule. In this regime,
decoherence would proceed in approximately the same way
as in the static case, effectively ignoring the time depend-
ence of the potential.

1\2 1
) ~— <(2q2 +4awE,)(1 - cos ) +

For F;, when a # 0, the transfer momentum cannot be
exactly zero because q and q, have different magnitudes.
Thus, there is in principle no forward divergence. But now
the exponentials in the amplitudes are no longer guaranteed
to be O(1), and thus the amplitude may become exponen-
tially suppressed.

Let us examine one regime of interest, where the

oscillation frequency is small compared to the energy

scales of the probe particle. Specifically, we take 425‘1,

4{{%2 < 1, and thus we expand the (dimensionless) transfer
momentum to second order in @ as follows:

. (5.58)

422w’ (q* + (E2 — ¢*) cos 9))
. :

VI. APPLICATION TO DARK MATTER
IN GALAXY

In this section, we apply these results to DMSCS in the
galaxy today. Our results apply to any light scalar (or light
boson) as the DM, with primary motivations from axions.
The substates of the superposition of the DMSCS will
differ only in the phase of the axion field. If we instead
consider a DMSCS with substates that differ in the spatial
profile of the mass distribution, the decoherence rate will be
dominated by this spatial difference, resulting in a
decoherence rate more simply found using the static and
nonrelativistic analyses. Thus we restrict to the case of only
differing phases.

We will continue to use the results from the Gaussian
profile discussed in the previous section as a prototype for a
DMSCS. The phenomena resulting from this Gaussian
analysis should generalize fairly generically. For example,
we will see in the next section that in the nonrelativistic
limit, the effects of scattering which correspond to the
oscillation of the scalar field will be suppressed because
they reside in the tail of the momentum distribution of the
Gaussian profile. This momentum distribution, also a
Gaussian with a width of the order of the characteristic
momentum, is similar to the Maxwell velocity distribution
that one expects to find for DM in the galaxy.

A. Nonrelativistic dark matter

For ordinary models of DM in the galaxy, one expects
diffuse DM particles to have velocity dispersion to be far
lower than that of light. The reason is that diffuse DM tends
to virialize, and we know that the virial speed of matter in
the galaxy is small. Furthermore, if the diffuse DM were
moving relativistically, it would easily escape the galaxy.
The discussion in the previous section suggests that this
makes the decoherence of phases to be exponentially
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suppressed; however, we shall quantify this more pre-
cisely here.

For diffuse nonrelativistic DM, such as axions, we can
take the oscillation frequency to be approximately the mass
of the DM, w =~ m,,. In addition, the scale y is set by the de
Broglie wavelength of the DM such that y ~ p, = m,v,,.
We can consider a nonrelativistic particle as a probe, such
as a baryon/proton in the galaxy. Then using the typical
DM and baryon speeds of the order of the virial speed in
our galaxy ~1073 (in units where ¢ = 1) [69], we obtain a
minimum transfer momentum of

a)z(m%,—i-kf,)z_ 1 10"

2,2
awp

~ 2,272
0=0 mg gk, v

_P7
4

(6.1)

v

Similarly, for a photon as the probe, or relativistic cosmic
ray protons, we have a minimum transfer momentum of

52 2
p @ 1 6

-——| ~- ~——~—10°. (6.2)
Tloo ™ mR 2

Thus, since these quantities appear in the arguments of
exponentials in the scattering amplitudes, we see that the
decoherence rate of the phase is highly exponentially
suppressed. This suppression in scattering seems compat-
ible with the time dependent one-dimensional problem
studied in Ref. [70]. We therefore only expect an appreci-
able response from scattering corresponding to when p
truly vanishes. This corresponds to the generalized cross
section 6, which means that the only appreciable con-
tribution to decoherence comes from the part of the wave
function that is independent of the phases of the scalar field.
Therefore, if the superposition involves spatially distinct
profiles, the decoherence rate is well described by the
decoherence rate for the static metric in Sec. IV B, and can
be appreciable. If instead the superposition is only of
phases as in Sec. V E, one finds a decoherence rate that is
exponentially suppressed. Such a configuration is therefore
quite robust against decoherence; we shall return to a
discussion of possible implications of this for earth-based
searches for axions in Sec. VIIE.

B. Relativistic dark matter

Considering again axions as the DM, let us now consider

a piece of the DM that involves (semi)relativistic axions.
This idea may seem at odds with the idea of cold dark
matter (CDM), which is known to fit the data well. So let us
|

Cgee ® G3,(kM)*nve” 22

25 (2K (32 — w?) + 322 m? + w*my + K mi(2k* + m3))?

clarify what we mean by this: (i) we can consider just a
small fraction of the DM to be relativistic, such as that
which is near black holes (as we will discuss in Sec. VII D),
or (ii)) we can even be considering the bulk of the DM
particles to be relativistic, so long as they are in bound
clumps, such as boson stars, whose center of mass is
moving slowly so as to act as CDM. But the velocity
dispersion around the center of mass within a clump could
be relativistic (as we will discuss in Secs. VII B and VII C).

In this situation, we have u ~ p, = m,. It is no longer
guaranteed that the exponentials in the scattering ampli-
tudes lead to an exponentially suppressed contribution to
the wave function from scattering. Furthermore, one does
also need relativistic probes, such as cosmic ray protons or
photons, which we shall discuss in the next section.

To study the regime in which the exponentials of the
scattering amplitudes are appreciable, we consider the case
where both the probe and the axion have relativistic
energies. One should still expect the energy of the axion
to be much smaller than that of the probe, so we continue to
assume this relationship (this can be satisfied trivially, for
example with a relativistic proton or photon probe). Then,
indeed, the transfer momentum as expressed in Eq. (5.59) is
O(1), and thus the exponential factors in the scattering
amplitudes will not suppress the amplitudes dramatically.

In this regime, we can make use of either Eq. (5.40) or
Eq. (5.41) to estimate the decoherence rate, where the
choice between these two expressions depends on the
details of the wave packet for the probe particle. As
discussed in Sec. VE, if the width of the distribution
function yry (q) is large compared to the difference between
q and q,4 [case (A)], then Eq. (5.40) is the appropriate
approximation for the decoherence rate. Instead, if the
width of the distribution is small compared to this differ-
ence [case (B)], then Eq. (5.41) is more appropriate. In
either case, we will simply evaluate the expressions at
q = k [though in case (A), in principle, k should be set to
some q,,, and this approximation will suffice to estimate
the decoherence rate]. To evaluate these expressions, one
must compute the generalized cross sections defined in
Eq. (5.39) explicitly. The form of these cross sections is
quite complicated, but can be simplified greatly to achieve
an order-of-magnitude estimate for the decoherence rate;
the details of this approximation and the resulting cross
sections are discussed in Appendix C. Here, we give the
resulting decoherence rate in terms of the physical param-
eters defined in Sec. VF

4w (k> + mf,)2

(1. 92), (6.3)
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where © is an O(1) function of the phases; its limiting
values are

(2+cosdg, +cosdp, —4cos(2(p) —»)))
8 9,
(6.4)

Ou(p1.2) =

sin? (g — @)

= (6.5)

®B(fﬂ11§02) =

where the choice depends on whether one is in case
(A) with Eq. (5.40) (®,) or case (B) with Eq. (5.41) (®p).

We can set the mass scale M to be the amount of DM
mass contained in a region of volume 1/43 by specifying
the local DM density ppy; these are roughly related as
p~ m2¢2 = kMy?. In addition, for relativistic particles, we
can relate their momenta and their energies/masses to
further eliminate parameters. For a massive probe, we
parametrize the momentum of the probe as a =k/m,
where a is a numerical factor which can be O(1). In this
case, we can replace the mass of the probe particle in favor
of its energy by m, = E(1 4+ a*)~'/> where E = E; is the
energy of the probe, and the speed of the probe is simply
v =a(l+a*)~'/2. We can also eliminate the number
density of probes in favor of their energy density as
n=p,/E. If instead the probe is massless, then v = 1,
m, =0, and k = E. Similarly, for a semirelativistic DM,
we can take the oscillation frequency to be on the order of
the mass of the axion; we parametrize it by b = w/m,,.
Also, for semirelativistic DM the inverse length scale ¢ can
also be on the order of the axion mass; we parametrize it by
¢ = u/m,. With this parametrization, we obtain the follow-
ing result for the decoherence rate

GrEp,pt
1—‘dec ~ KNigDM@((plv (pZ)’ (66)

a
where K is a dimensionless numerical factor, which
includes the exponential factor. For a massive probe
particle it is given by

© 0sap? a(b* +a*(143c?) +a*(2—2b% +6¢?))?
=e a“c .
my, 4a(l +a2)7/2b4C8

(6.7)
For a massless probe particle (a — o0) this simplifies to

2 2 2\2
KOEe_%ﬂ(l—b4Jg3c)
bc

(6.8)

The decoherence rate can then be obtained by specifying
the densities and energies of the probe particle and the
axion. As a starting point, we can compare density
estimates for the DM to the local average density of DM
in the Milky Way [71]

GeV

ploc,mw ~0.4 3

-~ (6.9)

Although, as we discuss below, what really matters is the
energy density of relativistic DM (which may be DM near
black holes, or DM that is in the form of dense clumps,
etc.), so this figure is not directly relevant, but acts as
merely a starting point for consideration.

We can consider different types of probe particles. Most
of the baryonic mass in the galaxy is made of hydrogen
atoms; for simplicity, we can think of these as being
protons. Since we are considering only (semi)relativistic
probes, we can take the proton to have a kinetic energy on
the order of GeV. The average density in the universe is
about one-fifth that of DM. So the average density at our
radius from the center of the galaxy for baryons is about
Pb ™ Plocmy & 0.08 GeV/cm?. This number is evidently
larger in the disk of the galaxy and much larger in the solar
system, etc. However, almost all of the baryons are non-
relativistic, leading to a huge exponential suppression in the
decoherence of the phase, as explained above. So our
interest is in the energy density of protons that are
relativistic (or at least semirelativistic). At a typical point
in the galaxy, we can use estimates of the cosmic ray
density of protons, which has been estimated to be [72]

GeV
Per ~ 107 3"

- (6.10)

So it is suppressed from the average density of non-
relativistic baryons by about 7 orders of magnitude, or
so. It can be altered in the solar system due to solar or earth
magnetic fields, but we shall not go into those details here.

For this baryonic probe, we calculate the following
reference decoherence rate in terms of mass of the axion
m,, the density of DM ppy, the density of protons p,,, and

the factor K. We take an example value for K, as 10~* and
a reference mass m, corresponding to a decoherence rate
roughly near the Hubble rate today (H, ~ 2.2 x 10718 s71)

K\ /1002 eV\8/ E
F N10—21 -1
dec ) <10—4>< m, >(2 GeV>

DM 2 Pp
. 6.11
x <0.4 GeV/cm3> (10‘9 GeV/cm3> (6.11)

This suggests the decoherence rate is quite small, unless the
axion mass is somewhat below 10712 eV. But this con-
clusion is still subject to the choice of density ppy of the
DMSCS. For diffuse DM, it normally has only a very small
amount that is relativistic. But under some circumstances,
this density can be large; we shall return to this in the next
section.

Additionally, photons from the CMB radiation are
numerous and may have a chance to decohere the source.
An example value for K, is 1072. The number density of
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CMB photons today is known to be approximately
400/cm?®. We take the energy of a typical CMB photon
to be 6 x 10™* eV, which gives the following estimate for
the decoherence rate:

K 107 eV #® E 2
T ~ 10—16 -1
dec ° (10—2>( m, ) <6x 10 ev>
% PDM 2 p
0.4 GeV/cm?/) \400/cm?®)/"

Note that the approximations necessary for this
decoherence rate estimate require that the mass of the
axion is larger than the energy of the photon. Thus, this
result should only be trusted for axion masses smaller than
10~* eV (or the photon energy of interest). We see that
indeed this decoherence rate is comparable to the current
Hubble rate, or faster, for m, < 107! eV. These are very
light for QCD axions, but may be a type of stringy
motivated axion or other ultralight axion. But again, any
such conclusions are very sensitive to the local density ppy
of the DMSCS, which we discuss shortly.

(6.12)

VII. DISCUSSION AND VARIOUS APPLICATIONS

In this discussion section, we analyze our results in
various contexts. Since the decoherence rate of the phase is
exponentially suppressed for slowly moving DM particles,
we begin by discussing contexts in which it is relativistic,
including spreading in Sec. VII A, dense boson stars in
Sec. VIIB, dense oscillons in Sec. VII C, and near black
holes in Sec. VIID. On the other hand, in earth-based
experiments, the DM should be nonrelativistic, leading to
negligible decoherence of the phase, which we then discuss
in Sec. VII E. We also discuss other interactions in Sec. VII F.

A. Spatial spreading of state

To estimate the characteristic amount of time it takes for
decoherence to occur, it is usually sufficient to take the
inverse of the above decoherence rate (fg.. ~Igl).
However, since one may consider the DMSCS to be a
fluctuation in the DM density with a scale set by its de
Broglie wavelength, one should also consider that this
fluctuation may spread out over time. If the characteristic
time of spreading is large compared to the inverse of the
decoherence rate, then the inverse of the decoherence rate is
an accurate estimate for the decoherence time. Otherwise, it
is necessary to compute the decoherence time as follows.

Since the DM is modeled here as a scalar (axion), it
evolves under the Klein-Gordon equation. Since the
DMSCS is taken to be a Gaussian-shaped fluctuation about
the mean of the DM density, we can track the spatial
spreading by considering the evolution of a Gaussian wave
packet under the Klein-Gordon equation (as discussed,
for example, in Ref. [73]). Evolving such a wave packet in
time results in the growth of its spatial variance Ax; in the

case of the Gaussian profile for the axion discussed in the
previous sections, this is equivalent to the shrinking of the
parameter y as

A 1 : 1+ <t>2 (7.1)
x ~N — — = — - 5 .
u(t)  po T
where the characteristic time 7 is given by
e =" (7.2)
Ho

and where m, is the scalar’s mass, p is the initial ¢, and y is
the usual relativistic Lorentz factor for the center of mass of
the Gaussian. Since we are studying the DMSCS in its rest
frame, we can set y = 1 here. Note that this shrinking does
not apply directly to the momentum distribution for the
particles (as momentum is conserved for free particles), but
it applies to the momentum distribution for the density and
hence gravitational potential; this is because they are
associated with the square of the field and are affected
by the spatial spread. Note that at late times, the width is
growing as Ax ~ 1/u = (uy/m,)t, and by noting that one
anticipates p, ~ m,v for some characteristic speed v, this
gives Ax ~ vt as expected.

Then, one can write the decoherence rate as a function of
time I'y..(#) by inserting Eq. (7.1) into Eq. (6.3). We then
define the decoherence time 4. as the solution to the
following equation:

Tdec
/ Cyee(t)dt = 1.
0

For 1 < 7, [yec (1) & Tgec(0), and therefore, we would have
simply that 74, = ;). (0) so long as this 74, is found to be
in the regime ¢ < 7. On the one hand, when 7 > 7, we have
u(t) < pg. The decoherence rate can be estimated in either
regime as

(7.3)

202 Ez

Ho \* —= (i)
1—‘dec(l‘) zl—‘dec(o) (/[T%) e UM

In this late-time limit, there is not likely to be a solution to
Eq. (7.3). The decrease in u at late times would lead to an
exponentially slow rate of decoherence. Therefore, if the
decoherence does not occur within a time that is of the
order of 7, then one should not expect decoherence to
occur at all. One expects a larger 7 for nonrelativistic
axions. Thus it may be interesting to consider conditions
that cause a nonrelativistic DMSCS, which is robust against
decoherence and has slower spreading, to become relativ-
istic and experience decoherence before sufficient spread-
ing has occurred.

Additionally, the 7 of Eq. (7.2) is only for a Gaussian
evolving with the free theory Klein-Gordon equation. If,

(7.4)
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instead, one considers a DMSCS which experiences some
binding force, then the spreading of the Gaussian would be
slowed or stopped completely. The realization of such
conditions is discussed in the following sections.

B. Boson stars

A superposition of phases of the axion (or similar light
scalar DM), as discussed in Sec. V E, may be of unique
observational interest in the case of boson stars. Boson stars
are gravitationally bound Bose-Einstein condensates of
scalars. Much work has been done regarding the properties
of boson stars, specifically in the contexts of axions as DM;
see Refs. [74-90]. (Note that the condensate is a short-
ranged localized clump, due to the attractive nature of
gravity [64], rather than one with long-range properties, as
claimed in Refs. [91,92].)

As seen in previous work (see Ref. [90]), the merger
dynamics of boson stars strongly depends on the phase of
the axion field. For some phases, there is a merger, while
for other phases, the boson stars do not merge. Thus, a
boson star in a superposition of different phases, when
coming into contact with another boson star, could initially
evolve into a superposition of merged and unmerged.
However, one should expect rapid decoherence during
the merger event because of the stark difference in the
resulting gravitational interactions of the star (merged or
unmerged) with its environment.

It is common to examine boson star solutions in the
nonrelativistic regime; that is, the axions in orbit are
moving slowly. From our previous analysis in Sec. IV C,
a dilute boson star in a superposition of different density
profiles will rapidly decohere (as we already showed in
Ref. [66]). However, from the analysis of Sec. VI A, if it is
in a superposition of different phases, then this aspect of the
state will be robust against decoherence.

On the other hand, from our analysis in Sec. VI B, if we
consider dense boson stars that are made out of a bound
state of (semi)relativistic axions, then there may indeed be
appreciable decoherence. Since the boson star is held
together by gravity, its spatial size will not grow in time
and we can ignore the spreading of the previous subsection.
For the densest boson stars with negligible self-interactions,
the mass and radius can be estimated as (e.g., see Ref. [93])

1 1
, R~—.
GNma m,

~

(7.5)

The corresponding density can be estimated as
pom ~ M/R? ~m?/Gy. If we use (semi)relativistic pro-
tons as the environment, with a realistic value of
p, ~ 107 GeV/cm?, one obtains a decoherence rate of

K leV\*
[gee~ 100571 <—> (i) (dense boson stars). (7.6)

m{l

We note that for such dense stars the perturbation theory
may break down and the true rate may be somewhat
different, so this is an estimate. Note that we need very
dense stars; if they are even moderately dilute, and their
velocity dispersion is even, say, ~0.1 that of light, the
exponential suppression in K is huge. So dispersions that
are, say, ~0.5 that of light are needed for appreciable
decoherence. We can also consider photons from the CMB
as probes; in this case, one finds a much slower
decoherence rate than is caused by relativistic protons,
Cgee ~ 1072 s71(K/1072)(1 €V/m,)*. Thus, in the pres-
ence of (semi)relativistic protons and CMB photons, one
expects the decoherence due to the protons to dominate; so
this is what sets the rate to good accuracy.

From Eq. (7.6), we see that for anything other than heavy
axions, the decoherence is very rapid. Note that this is a
truly general relativistic form of quantum decoherence,
since the dense boson star is described by general relativity
and the environment includes relativistic particles that are
probing the general relativistic phenomenon of oscillations
in the metric.

C. Condensates from self-interactions

We also mention that when there are self-interaction
terms included ~A¢*, then the above solutions do not exist
for || > Gym?2. Instead, one is led to other kinds of
relativistic  solutions. For attractive self-interactions
(4 < 0), these are oscillons/axitons with mass and radius
given by

(7.7)

For extremely small A, as anticipated for an axion with
A~m2/f: (f, is the axion decay constant, which is
anticipated to be an extremely high scale, perhaps within
a few orders of magnitude of the Planck scale), these
masses can be appreciable, too. However, in this case there
1s radiation in the form of scalar waves, so these states do
not live too long, unless m,, is extremely small. But in any
case, the decoherence rate is altered from the result in
Eq. (7.6) by a simple additional factor

K LeV\*/ f, \*
Cgee~ 100571 —— 2 d ill ,
dec S <]0_ 4> ( e ) <MP1> (dense oscillons)

(7.8)

where Mp; = 1/+/Gy is the Planck mass. So unless f, is
many orders of magnitude below the Planck scale, one
anticipates rapid decoherence here, too. Again we need
very dense oscillons so that they are a bound state of
semirelativistic scalars to avoid large exponential suppres-
sion in the factor K. These tend to radiate fairly quickly,
however. (In addition to the gravitational decoherence
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studied here, one might also consider the scalar radiation to
be a form of “environment” that one may consider tracing
over; we leave this as a possible future topic.)

For completeness, we also mention that for appreciable
self-interactions that are repulsive (A > 0), there are other
interesting kinds of solutions that exist in which the
repulsion holds the object up against gravitational collapse.
However, for a real scalar, these cannot live long due to
annihilation processes in its core, as determined for the first
time by some of us in Ref. [94]. Hence we will not explore
these solutions further here. There are, however, a related
set of stable solutions for a complex scalar in theories
organized by a global U(1) symmetry (with gravity, see
Ref. [95], and without gravity, see Ref. [96]). In this case,
however, the symmetry ensures that even though the field
oscillates as ¢ o e’ its magnitude does not, and in turn
the metric does not. Therefore even general relativity is not
sensitive to the value of this phase and cannot decohere it.
One may anticipate that an exact global symmetry is broken
by quantum gravity, but we leave these topics for future
investigation.

D. Black holes

Another situation that can lead to relativistic DM would
be in the region surrounding the event horizon of a black
hole. In fact, for primordial black holes, one can anticipate
nucleation of boson stars [97]. However, our analysis in this
subsection does not rely on the DM forming boson stars.

Let us imagine the following interesting sequence of
events: DM organizes into some DMSCS which maintains
its quantum coherence for a long time in the halo of the
galaxy. Suppose it then approaches, or gets trapped by, the
accretion disk around the black hole, but is still far from
the horizon. In this case, the accretion disk is likely to cause
the spatial profile of the DMSCS to decohere using the
analysis of Sec. IV C. However, the phase can remain in a
quantum superposition. Then if the DMSCS spirals in
toward the horizon of the black hole it will become
relativistic, and of course its environment will be relativistic
here too. This means the analysis of Sec. VIB becomes
relevant, and one can anticipate that decoherence of the
phase occurs here, too.

To estimate the decoherence rate as the DMSCS nears
the horizon, we can estimate the density of accreting matter
near the innermost stable circular orbit (ISCO) of a stellar
mass black hole as prescribed by the Shakura-Sunyaev
solutions for the accretion disk (see Ref. [98]). For
example, for a solar-mass black hole, at a distance
~0.1Ry outside of the ISCO, where Rg is the
Schwarzschild radius of the black hole, the density of
accreting matter is approximately p, ~10% GeV/cm®.
Further, as the DMSCS gets closer to the horizon, the
density of matter increases rapidly, and the energy of the
probe particles increases as they become more relativistic.
Thus one expects decoherence to happen quite rapidly here.

Very close to the horizon, the weak field metric analysis of
this paper is not accurate, but the basic qualitative behavior
indicated here may apply.

So from the point of view of coherent superpositions, it is
the state that is the most classical that will ultimately cross
the horizon into the black hole (although there are many
other aspects to this issue, not discussed here). This may
have consequences for one’s thinking about the black hole
information puzzle (for a review, see Ref. [99]) and various
subtleties surrounding the quantum nature of black holes.
We leave these interesting subjects for future consideration.

E. Consequences for earth-based experiments

Let us now discuss possible implications for earth-based
experiments. We are thinking of haloscopes [100], such as
ADMX [101], which looks for direct detection of the DM
axion wind that passes through the atmosphere and surface
of the earth and can potentially interact with a detector
through nongravitational couplings; see next subsection for
more discussion. In our previous work [66] we showed that
DM passing through the earth’s atmosphere leads to much
quicker decoherence. This follows simply from the fact that
the atmosphere of the earth is much denser than the halo of
the galaxy, so the rate of particles passing through the
DMSCS goes up by many orders of magnitude. This
typically leads to decoherence of the spatial profile of
the DMSCS, except for heavier axions.

However, as discussed in this paper in detail, this cannot
decohere the phase. Since the axion DM is expected to be
nonrelativistic as it passes through the atmosphere, the rate
of decoherence of the axion’s phase is exponentially
suppressed. This means that one should more precisely
be describing an axion wave as it passes through one’s
experiment as

|axion) ~ ch-| cos(wt — K, -x+¢;)), (7.9)

where we have indicated a sum over phases ¢; (more
generally, this can be lifted to an integral). This is certainly
not the standard treatment that ADMX and essentially all
other analyses use to make predictions for the signal. This
leads to the very important question as to its possible
consequences. Since these experiments are very sensitive to
the axion phase, for example, its phase directly impacts the
phase of the electromagnetic resonance in an ADMX
cavity, it can potentially be very important to note that
its phase is likely in a superposition. This implies that the
cavity is itself launched into a quantum superposition of
different cavities with different resonant phases. On the
other hand, it is highly nontrivial to see how this would
itself be probed experimentally, if these “worlds” sub-
sequently decohere due to other interactions. This deserves
further investigation.
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F. Nongravitational interactions

In addition to gravitation, one can consider other inter-
actions that couple the DM to the Standard Model particles.
In the case of an axion, it enjoys an (approximate) shift
symmetry and is a pseudoscalar. So its interactions take on a
specific form. At the dimension-five level, this includes
coupling to gauge bosons of the form AL « ¢F WF"” and
coupling to fermions of the form AL « 0,¢yy"ysy. The
specific couplings are model dependent [102-107].

These interactions are inherently relativistic (they are
particle number changing, for example) and could be
studied with some of the formalism that we have outlined
in this work. The resulting decoherence rate is worthy of
future study. In particular, as we explained, the phase for
nonrelativistic DM is robust against decoherence from
gravity. It would therefore be of interest to determine its
phase against these other interactions. This is especially
important since earth-based experiments rely upon the
existence of these other interactions. So if the phase
remains in a Schrodinger catlike state, it is important to
know how it affects the experiment in question through
these other operators.
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APPENDIX A: STANDARD FIELD EXPANSION

For completeness here we mention the standard expan-
sion of fields in the Schrddinger picture in terms of creation
and annihilation operators for a scalar,

& 1 4 e
2(x) = / P (aye® 4 %), (Al)

3
I(x) = —i/éT;\/%(I;pe"p a{,e"lp"‘). (A2)

The factors .of E s deﬁnec.i as E,=+/ p? + m?, assure the
proper relativistic normalization, so that y transforms as a
Lorentz scalar, with standard creation and annihilation

operators [a,, a’ »] = (27)°8 (p - p").

APPENDIX B: PROPERTIES OF §;

The expression for §;; in Eq. (5.33) seems asymmetric
in the role of a compared to that of 5, whereas one might
expect some form of symmetry due to the arbitrary
definitions of which coefficient is @ and which is f.
The apparent asymmetry arises from the fact that the
integrals have not all been completed, and the d° integral
which has been completed has eliminated some / depend-
ence in favor of a. To clearly see that the expected
symmetry exists, let us integrate instead over d’q.
Then, starting from Eq. (5.28) and integrating once more
as in Egs. (5.29) and (5.30), the subsequent integration
over d°q will replace all g with a function of § which can
be defined analogously from the definition of g,s as Gg,-
Then we are left with

&g E; +E;+2a+po
&*Q / {F:(q' +Giga) F (@, 61>< e )
zﬂ:/ 2n)° pr eI 2v/Eq.Eq

L g0 (03 @)

If we interchange i with j, a with f, and redefine § — g, we can write

YEE =
afp

{ (4% Qop) F oz Q) (

« e—i(qaﬁ—q;)L_/-e+i(q—q;)~L1eZi(ﬂw/—wﬂf),pl*{ (Qaﬁ)lpk(q)}

= ()"

(B1)
E,,tE;+ 2(a + ﬁ)w)
2. /Eqa/;Eq
(B2)
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This result should be of no surprise. The unitarity of the
Schrodinger evolution guarantees that the overlap
(y/g_li)|y/§}i)> must be real. Thus, S;; must be real, which
is seen by the fact that they are equal to their own complex
conjugate, while the off-diagonal elements must be equal
to the conjugate of their transpose.

One can continue this analysis through the analysis of
Sec. VE, where the substates of the superposition differ
only in phase, and therefore the only appearance of i or j is
in the phases. S;; is then broken up accordingly as in
Eq. (5.34) and s, 4 is defined as in Eq. (5.35). By inspection
of Eq. (B2) and the definition of s, 5 in Eq. (5.35), we have

d*Q

Sji - E e2i(Bpj—an;)

<E +E +2(a+p) )
X

2 q(l’ q(l/)’) (l(qﬁlv q)

- (B3)

11/; q

Hence we have

(B4)

E 2i(pj—ap;) g § 2i(pj—ag;)

ap
and so we can conclude similarly that 5,5 = 573(1-

APPENDIX C: GENERALIZED CROSS SECTIONS
FOR THE GAUSSIAN PROFILE

For the Gaussian profile discussed in Sec. V F and the
corresponding scattering amplitudes in Egs. (5.56) and
(5.57), we report here on the generalized cross sections 6.

Recall that the leading exponentials in the scattering
amplitudes cause the expressions to be exponentially sup-
pressed for large 6. Thus, we will approximate the integral
in Eq. (5.39) by expanding the arguments of the exponen-
tials and the remaining parts of the integrand in powers of 8
about § = 0 and then taking the upper limit of € to infinity.
Then, we can obtain an expression for 6,4 in terms of the
parameters discussed in Sec. V F. We quote here the result
for 6, and 6_; _; (note that 6y is given simply by the
generalized cross section for the static metric case o¢;;),

_ m(4K2 (3 — @?) + 2m2 (2K* + m2) + m3 (k> + 6% + 20E; — k\/k* + 4o (o + Ep)))?
(o3 =
" 32k /K2 + dw(w + Ep) (K + 20(0 + Ey) — k\/K2 + 4o(o + E;))
“20(0+Ey)+k(=k+~/ K2 +dw(0+Ey))
x G3,(kM)*e " . (C1)
. w423 — @) + 2m3 (2K + m3) + m3 (k2 + 64® = 20E; — k\/K* + 4w (0 — Ey)))’
G_1_
- 32k /B2 + do(w — E) (K + 20(w — Ey) — k\/K* + 4o (0 — Ey))
20(~a+Eg)+hk(=k+/ K2 +4w(0—Ey))
x G% (kM )?e ” (C2)

To apply these expressions to the analysis in Sec. VI B, one
examines the regime in which the probe particle and the
DM particle are relativistic. This is the only scenario where
the exponentials in 6,3 do not cause the results to be
exponentially suppressed. Then, we use the fact that the
energy/mass/momentum of the DM particle are assumed
smaller than the energy/mass/momentum of the probe
particle (this is trivially the case when, for example, the
DM is a light axion and the probe is a proton). Expanding the
expressions for 6, to leading order in the DM parameters w,
u, and m,, we can combine the resulting expressions as in
Eq. (5.40) or Eq. (5.41) to obtain Eq. (6.6).

APPENDIX D: RELATION TO
KLEIN-GORDON EQUATION

Here we explain that the one-particle Schrodinger
equation is closely related to the Klein-Gordon equation

in curved spacetime, even though the latter is usually only
used in the context of field theory. For completeness, we
quote here the Schrodinger equation of Sec. 11 C,

= V=V +m)y(x.1)

_ ((I)(x, OV i - OV

o Y1)

(D1)

We now show that this is related to the Klein-Gordon
equation in a curved background spacetime. To obtain the
Klein-Gordon equation in curved spacetime, one need only
generalize the flat-space Klein-Gordon equation by replac-
ing the Minkowski metric with the curved metric g, and by
generalizing ordinary derivatives to covariant derivatives
appropriately,
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9V, (0,p) +my = 0. (D2)

The covariant derivative in Eq. (D2) involves an ordinary
derivative and a Christoffel symbol term. However, in the
analysis leading to the Schrodinger equation of Sec. II C,
we assumed that the metric coefficients are slowly varying
in space and time. Thus, the Christoffel symbols involving
spatial and time derivatives of the metric can be taken to be
zero. What this means is that the variation in time of the
metric is sufficiently slow compared to the variation in time
of the wave function (in the case of a probe particle
scattering off of an oscillating scalar field, this amounts
to assuming that the energy of the probe particle is much
greater than the frequency of oscillation of the scalar field),
and the source is wide compared to the probe. Altogether
this gives

¢0,0,w + m*y = 0. (D3)

To linear order in perturbations of the metric of Sec. I[I B
this leads to

o (142¥ +20)V2y — (1 +20)m?y.  (D4)

We can see that the solutions to the above Schrodinger
equation are compatible with the solutions of the

Klein-Gordon equation. Taking a time derivative of the
Schrodinger equation as

=i0,(i0iy (x.1)) = =i0,(H(x, =V*)y(x.1))  (D5)

and then using the appropriate Hamiltonian and ignoring
derivatives of the metric

W = —iH(x, =V (x,t) ¥ —H*(x,-V?)y(x,1). (D6)

By using the previously defined Hamiltonian, we readily
recover the Klein-Gordon equation (D4).

Thus a time derivative of the Schrédinger equation gives
the Klein-Gordon equation. The extra differentiation pro-
motes the Schrodinger equation to a second-order differ-
ential equation. This introduces a new set of negative
frequency solutions, which are understood to be related to
the need for antiparticles for a causal interacting theory. The
corresponding solutions of the Klein-Gordon equation
must be restricted to the limit where only one particle’s
evolution is described and no particles/antiparticles are
created or destroyed, and thus the negative frequency
solutions (which do not solve the Schrodinger equation)
do not contribute.
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