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Quantum mechanics allows for states in macroscopic superpositions, but they ordinarily undergo rapid
decoherence due to interactions with their environment. A system that only interacts gravitationally, such as
an arrangement of dark matter (DM), may exhibit slow decoherence. In this Letter, we compute the
decoherence rate of a quantum object within general relativity, focusing on superposed metric oscillations;
a rare quantum general relativistic result. For axion DM in a superposition of the field’s phase, we find that
DM in the Milky Way is robust against decoherence, while a spatial superposition is not. This novel phase
behavior may impact direct detection experiments.
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Introduction.—Matter that interacts infrequently can
maintain its quantum coherence, making it an excellent
candidate for rich quantum mechanical behavior. Such
behavior includes macroscopic superpositions of distinctly
observable states, which can give rise to exotic phenomena
such as interference. The potential for this behavior is
encoded in the off-diagonal elements of the density matrix
describing the object’s quantum state. Typically, the quan-
tumness of ordinary matter is destroyed rapidly due to
decoherence, a process by which interactions with the
environment effectively suppress the off-diagonal elements
of the density matrix [1–12]. Primarily gravitationally
interacting matter, which we refer to as dark matter
(DM), exists somewhat isolated from its environment.
Thus, if a piece of DM were to form a macroscopic
superposition, it may preserve its quantum coherence for
macroscopically long periods of time. This can have
ramifications for direct detection that we develop in this
work for the first time.
In this Letter, we study a localized mass distribution of

dark matter in a superposition of macroscopic states
(DMSMS) and compute the rate of decoherence induced
by general relativistic scattering of surrounding standard
model (SM) particles. The formalism and results we obtain
rely on genuinely relativistic effects in theweak-field metric
approximation. For an analysis based on Newtonian gravity
see Ref. [13] and for a detailed relativistic companion paper
see Ref. [14]. What we develop here is a truly quantum
general relativistic result, all treated rigorously within
effective field theory, as the effects arise from the metric
gμν in a quantum superposition. There exist very few robust
quantum general relativistic results; perhaps the only known
examples are Hawking radiation [15] and corrections to the
gravitational force law [16,17]. Other work where
decoherence and gravity or cosmology play some role,
includes Refs. [18–54]. As we explain, our work is relevant
to direct detection searches for the axion.

Basic setup.—Let us consider a DMSMS which is some
distribution of DM, represented pictorially in Fig. 1 and
described by a state jDM1iþ jDM2i. The environment
consists of probe particles, described by a quantum state
jψi, and the entire state jΨi evolves under the Schrödinger
equation. Upon scattering, the particle becomes entangled
with the DM due to the gravitational interaction into the
state

jΨi ¼ jψ1ijDM1iþ jψ2ijDM2i ð1Þ

By tracing out the probe particle, one can study
decoherence. For simplicity, we are considering a super-
position of only two states, jDM1i and jDM2i. This basic
setup can be easily extended to a more general super-
position, which we comment on later. To proceed, we need
the Hamiltonian Ĥ governing the gravitational interaction
provided by general relativity. Throughout this work, we
set ℏ ¼ c ¼ 1.
Hamiltonian and scattering.—To construct the desired

Hamiltonian, we treat the probe particle as a scalar,
ignoring its spin. Of course, realistic probes, such as
baryons and photons, are not scalars, but since we are
only interested in the leading universal gravitational inter-
action, we leave the analysis of spin effects for possible
future work. The gravitational interaction is incorporated in

FIG. 1. A schematic representation of a probe particle scattered
by dark matter in a superposition of macroscopic states, evolving
into an entangled state jΨi [see Eq. (1)], where the probe
particle’s state is altered by gravitational interaction.

PHYSICAL REVIEW LETTERS 127, 031301 (2021)

0031-9007=21=127(3)=031301(7) 031301-1 © 2021 American Physical Society

https://orcid.org/0000-0002-5675-8756
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.031301&domain=pdf&date_stamp=2021-07-16
https://doi.org/10.1103/PhysRevLett.127.031301
https://doi.org/10.1103/PhysRevLett.127.031301
https://doi.org/10.1103/PhysRevLett.127.031301
https://doi.org/10.1103/PhysRevLett.127.031301


a local way by using the field formalism (with the probe
taken to be a complex scalar field for convenience, though
we will be interested only in particle states and not
antiparticle states).
The action for a complex scalar probe field χ minimally

coupled to the metric gμν (signature þ − −−) is given by

S ¼
Z

d4x
ffiffiffiffiffiffi−gp ðgμν∂μχ%∂νχ −m2

pχ%χÞ; ð2Þ

where g is the metric determinant, gμν is the inverse metric,
χ% is the complex conjugate of χ, and mp is the mass of the
probe. We can define the Hamiltonian density from this
action in the usual way, giving

Ĥ ¼ Π%Π
ffiffiffiffiffiffi−gp

g00
− ffiffiffiffiffiffi−gp

gij∂iχ%∂jχ þ
ffiffiffiffiffiffi−gp

m2
pχ%χ þ…; ð3Þ

where “þ & & &” denotes terms proportional to off-diagonal
metric components.
By acting on single particle states (and ignoring the

suppressed number changing processes), we can recast the
Hamiltonian in the position representation as a differential
operator Hðx; t;−∇2Þ acting on a single particle wave
function ψðx; tÞ. For details of this method, see Ref. [14].
Specializing to a weakly curved spacetime provided by

the DMSMS, with negligible gravitational wave emission,
we can use a gauge in which the metric is diagonal.
Thus we decompose the metric into a flat background
ημν ¼ diagðþ1;−1;−1;−1Þ and a small (diagonal) pertur-
bation hμν with jhμνj ≪ 1 as gμν ¼ ημν þ hμν. Further, for
static or spherically symmetric sources, we can take h00 ¼
2Φðx; tÞ and hij ¼ 2Ψðx; tÞδij, giving the relatively simple
Hamiltonian

Hðx; t;−∇2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2 þm2

p

q "
1þΦþ Ψ∇2

∇2 −m2
p

#
; ð4Þ

where the first term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2 þm2

p

q
≡H0 is the relativistic

kinetic energy, and thus we refer to the rest ofH ¼ H0 þ V
as the potential energy Vðx; t;−∇2Þ. The Einstein equa-
tions give ∇2Ψ ¼ 4πGNT00, and writing Φ ¼ Ψþ δ,
rðδ0=rÞ0 ¼ 8πGNðTθθ=r2 − TrrÞ for spherically symmetric
sources. The nonrelativistic limit of H gives the familiar
form Hnrðx; t;−∇2Þ ¼ mp −∇2=2mp þmpΦ, where the
leading mp is just the constant mass energy (mpc2).
Oscillating scalar source.—When studying time depen-

dent fields as sources, we can consider coherently oscillat-
ing scalar fields as the DMSMS, such as axions which may
make up some or all of the missing DM in the Universe. As
a simple example, the scalar field may locally be charac-
terized by a spherically symmetric spatial profile ϕsðrÞwith
a single harmonic oscillation frequency ω

ϕðr; tÞ ¼
ffiffiffi
2

p
ϕsðrÞ cosðωtþ φÞ: ð5Þ

For nonrelativistic axion DM, this single harmonic is a
realistic approximation with a frequency close to the
axion’s mass ma. This assumption is also appropriate for
condensates of scalars since they have almost perfectly
periodic oscillations. From the Einstein field equations, one
can show that the potential based on the choice of Eq. (5)
takes the form

Vðr; tÞ ¼ Vð0ÞðrÞ þ Vð2ÞðrÞ cos½2ðωtþ φÞ(: ð6Þ

Note that if the axion is nonrelativistic and if the spatial
profile of the axion is slowly varying, the (time-averaged)
pressure of the source is negligible and Φ ≈Ψ. In addition,
since the frequency ω ≈ma, the metric is almost constant in
time. For relativistic configurations, the metric can have
important time dependence.
Scattering in general.—The solution of the Schrödinger

equation i∂ψ=∂t ¼ Hψ for the probe particle in a weak
gravitational interaction can be studied perturbatively by
decomposing into an unscattered part ψu and a scattered
part ψ s. The unscattered wave function solves the free
Hamiltonian Schrödinger equation ði∂t −H0Þψu ¼ 0,
while the scattered part, to first-order in perturbation theory,
is a solution to the equation

ði∂t −H0Þψ sðx; tÞ ¼ Vðx; t;−∇2Þψuðx; tÞ: ð7Þ

Demanding that the scattered piece ψ s vanishes in
the past, the relevant solution is readily obtained in terms
of the retarded Green’s function G4 as ψ sðx; tÞ ¼R
d4x0G4Vðx0; t0;−∇02Þψuðx0; t0Þ.
Wave packets.—We take the incoming wave function to

be a wave packet, which is a sum of plane wave modes
ψ ðqÞðx; tÞ ¼ e−iEqteiq·x with amplitudes given by the dis-
tribution ψ̃kðqÞ peaked at a central value k. The spatial
wave function at early times is

ψuðxÞ ¼
Z

d3q
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Eq

p ψ̃kðqÞeiq·xe−iq·b; ð8Þ

where b is an impact parameter vector which
shifts the center of the wave packet away from the origin
of the coordinate system. The factor of 1=

ffiffiffiffiffiffiffiffi
2Eq

p
is

convenient to make the normalization condition sim-
ple

R
d3qjψ̃kðqÞj2=ð2πÞ3 ¼ 1.

Scattering from a static source.—When the potential V is
independent of time, and the source of scattering is
sufficiently local, one can use the asymptotic form of
the retarded Green’s function to solve Eq. (7) and write the
scattered response of the qth mode as
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ψ ðqÞ
s ðx; tÞ ¼ e−iEqtfðq0;qÞ e

iqjxj

jxj
; ð9Þ

where the scattering amplitude is found to be

fðq0;qÞ≡ −
1

2π

Z
d3x0eiðq−q

0Þ·x0 ½Φðx0ÞE2
q þ Ψðx0Þq2(:

ð10Þ

Then, the full scattered wave packet is given by

ψsðx; tÞ ¼
Z

d3q
ð2πÞ3

e−iEqtfðq0;qÞ e
iqjxj

jxj
ψ̃kðqÞffiffiffiffiffiffiffiffi
2Eq

p e−iq·b:

ð11Þ

Scattering from a time-dependent source.—We restrict
this analysis to coherently oscillating sources with time
dependence as in Eq. (6). The oscillations of the source can
be incorporated into the time dependence of the qth mode,
allowing a solution similar to Eq. (9) in terms of the
appropriately shifted energy variables E)1 ≡ Eq ) 2ω

ψ sðx; tÞ ¼
X

α¼0;−1;þ1

Z
d3q
ð2πÞ3

e−iðEαtþ2αφÞFαðq0
α;qÞ

×
eiqαr

r
ψ̃kðqÞffiffiffiffiffiffiffiffi
2Eq

p e−iq·b; ð12Þ

with a set of scattering amplitudes Fα given by

F0ðq0;qÞ≡ −
Z

d3x0
Eq

2π
eiðq−q

0Þ·x0Vð0Þðr0; q2Þ; ð13Þ

F)1ðq0
)1;qÞ≡ −

Z
d3x0

E)1

4π
eiðq−q

0
)1Þ·x

0
Vð2Þðr0; q2Þ; ð14Þ

and shifted momenta q)1 ≡ ðE2
)1 −m2

pÞ1=2.
Decoherence.—Interactions ensure that any macroscopic

quantum superposition and its environment become inevi-
tably entangled. Thus, the environment will evolve into a
corresponding superposition. Since the degrees of freedom
of the composite system become numerous as the inter-
actions continue, an observer cannot track the full detail of
the system. Taking on a coarse-grained point of view, the
observer will ignore the environment’s degrees of freedom
and trace them out of the density matrix. This effectively
spoils the quantum coherence of the remaining subsystem.
We now apply the scattering formalism to a probe

particle that interacts with a DMSMS that begins in a
superposition of otherwise classical states jDM1i and
jDM2i. This generates a potential for the probe which is
in a superposition of potentials V1 and V2, and the probe
evolves into a superposition of jψ1i and jψ2i. This
evolution is presented pictorially in Fig. 1.

Decoherence rate.—The decoherence rate depends on
the inner product of the substates jψ1i and jψ2i which
we can parametrize by its deviation from unity
jhψ1jψ2ij≡ 1 − Δ. The inner product consistent with
the relativistic normalization conditions is given by
hψ jϕi ≡ R

d3x½−iϕðx; tÞ∂tψ%ðx; tÞ þ iψ%ðx; tÞ∂tϕðx; tÞ(.
To lowest order in scattering, the leading contributions to Δ
come from the first-order scattered wave function defined
previously. One can show that, at this order, Δ is approx-
imately [13]

Δ ¼ 1

2
ðhψ s;1jψ s;1iþ hψ s;2jψ s;2i − 2ℜ½hψ s;1jψ s;2i(Þ: ð15Þ

Then, the decoherence rate is found by summing the Δ’s
from the many probe particles

Γdec ¼ nv
Z

d2bΔb; ð16Þ

where n is the number density of probe particles, v is their
typical speed, and Δb is Δ evaluated at impact parameter b.
Thus, the following integral over impact parameter is
crucial,

Sij ≡
Z

d2bhψ s;ijψ s;ji; ð17Þ

which is used to give the decoherence rate as

Γdec ¼
1

2
nvðS11 þ S22 − 2ℜ½S12(Þ: ð18Þ

For a more general DM superposition
P

i aijDMii, the
overlaps hψ ijψ ji still control the decoherence rate. If these
overlaps are of a similar order, the inferred rate will be
similar to that of a two-component superposition. Thus,
we believe this simplification to be justified.
Decoherence from a static source.—We can obtain an

expression for the decoherence rate by first inserting
Eq. (11) into Eq. (17), where ψ i and ψ j are written in
terms of momenta q and q̃, respectively. We include the
addition shifts b → b −Li to indicate that the centers of
the sources Vi may differ. The integral can be readily
simplified when the distributions ψ̃k are narrowly peaked
around k (for details see Ref. [14]). Averaging over the
direction of k replaces the ψ̃k with a function PkðqÞ, which
depends only on the magnitudes k and q, giving simply

Sij ¼
Z

d3q
ð2πÞ3

σ̃ijðqÞPkðqÞ; ð19Þ

where we have defined the generalized scattering cross
section σ̃ij to be
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σ̃ijðqÞ≡
Z

d2Ωf%i ðq0;qÞfjðq0;qÞj0½2qLij sinðθ=2Þ(; ð20Þ

where j0ðzÞ≡ sinðzÞ=z is the sinc function and
Lij ≡ jLi −Ljj. Note that σ1 ≡ σ̃11 and σ2 ≡ σ̃22 are the
usual scattering cross sections [with the appropriate general
relativistic amplitudes of Eq. (10)] since j0ð0Þ ¼ 1.
If the ψ̃k are narrow enough, we may approximate q ≈ k

and take Sij ≈ σ̃ij, obtaining the result

Γdec ¼
1

2
nvðσ1 þ σ2 − 2ℜ½σ̃12(Þjq¼k: ð21Þ

Note that in the special case when σ̃12 ¼ 0 and
σ ≡ σ1 ¼ σ2, we recover the familiar form Γdec ¼ nvσ,
relating to other results in the literature on decoherence.
However, our result in Eq. (21) generalizes this to include
the nontrivial cross term σ̃12 and full relativistic corrections.
Decoherence from a time-varying source.—An analo-

gous procedure may be applied to compute first Sij and
then the decoherence rate for time-varying sources. Each
Sij involves a nine-term sum over the α’s of each state ψ i
and ψ j; for a detailed analysis, see Ref. [14]. In particular,
considering narrow ψ̃k will be of interest once more,
allowing us to simplify the decoherence rate in terms of
another generalized cross section σ̄, defined in Eq. (23).
Phase difference.—We examine now the case where the

distinction between the Vi is only in the phase of oscillation
φi. Thus we set L1 ¼ L2 ¼ 0, and the overlap integral Sij
can be greatly simplified:

Sij ¼
X

α;β

σ̄αβe2iðαφi−βφjÞ; ð22Þ

where the sum runs over α; β ¼ −1; 0;þ1, we have made
the approximation that the distributions ψ̃k are narrowly
peaked to integrate over momentum, and we have defined
the new generalized cross sections as

σ̄αβðkÞ≡
Z

d2ΩF%
αðk0

α;kÞFβðk0
α;kα−βÞ: ð23Þ

Using the fact that ℜ½σ̄αβ( ¼ ℜ½σ̄βα( (see Ref. [14]), we can
see that the terms σ̄0;0, σ̄0;β, and σ̄α;0 drop out of the
expression for the decoherence rate in Eq. (18), giving

Γdec ¼
1

2
nvfSφðσ̄þ1;þ1 þ σ̄−1;−1Þ − Aφℜ½σ̄−1;þ1(g; ð24Þ

where Sφ ¼ 2f1 − cos½2ðφ1 − φ2Þ(g and Aφ ¼ cosð4φ1Þ þ
cosð4φ2Þ − 2 cos½2ðφ1 þ φ2Þ( encode the phase depend-
ence. This is an interesting new quantum gravitational
result.
Quantitative results.—For situations where the super-

position states differ in their spatial profiles, the non-
relativistic limit of our formalism usually suffices,

compatible with Ref. [13]. If we consider a DMSMS
which is just a random Gaussian overdensity surrounded
by an underdensity in the background density of DM in the
galaxy (with vanishing monopole), we can set the size of
the DMSMS by the de Broglie wavelength of typical DM in
the Milky Way and obtain the following decoherence rate
Γdec ¼ CG2

Nmpρ2DMρp=ðm8
av8avpÞ, where ρDM and ρp are

the densities of the DM and the probe, va and vp are the
typical speeds of the DM and probe particles, and C is a
constant numerical factor (for details, see Ref. [13]).
Estimating this rate using the local density of DM in the
Milky Way ρloc;mw ≈ 0.4 GeV=cm3 [55], taking the probe
to be a proton with density ρp ∼ 0.2ρloc;mw, and estimating
the speed of axions and protons as the virial speed
in the Milky Way vp ≈ va ≈ 220 km=s, we find that
Γdec ≈ 10−20 sec−1ð10−6 eV=maÞ8. This means that light
axions decohere rapidly. We can also examine decoherence
of such a DMSMS if it passes through the Earth’s
atmosphere; using the density of probes to be
ρp ∼ 1 kg=m3, we find Γdec ≈ 103 sec−1ð10−6 eV=maÞ8,
which can be significant.
For the remainder of this work, we will focus on the

above truly relativistic phenomenon when the superposi-
tion states only differ by the phase of the axion. In this case,
there is no divergence in the forward direction in the
scattering amplitudes since the only cross sections left in
Eq. (24) do not diverge even for a monopole (due to the fact
that the transfer momentum after scattering cannot vanish
when α, β ≠ 0).
We will choose the spatial profile of the DMSMS to be a

Gaussian. A Gaussian perturbation in the DM density
corresponds to a Gaussian momentum distribution, fitting
the expectation that virialized DM in the galaxy would
obey a Maxwell velocity distribution. We take the spatial
profile to be ϕsðrÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κMμ3=m2

a

p
e−r

2μ2=2, where M is the
mass scale associated with the DMSMS, μ is the inverse
length scale (roughly denoting its size), and κ is an Oð1Þ
numerical factor. The scattering amplitudes in Eq. (14) are
proportional to Fourier transforms of the potential with
respect to the transfer momentum ptr ≡ q − qα. Therefore,
the cross sections and the decoherence rate will be propor-
tional to the Gaussian e−p

2
tr=4μ

2
. The transfer momentum is a

minimum in the forward direction, and for ω ≪ Eq (which
is expected for realistic probes and an axion DMSMS), the
argument of the exponential is p2

tr=ð4μ2Þ ≈ α2ω2E2
q=ðμ2q2Þ

(see Ref. [14]). For the relevant terms α ≠ 0, this cannot
vanish; thus

Γdec ∝ exp
$
−

ω2E2
k

μ2k2pc4

%
ð25Þ

(reinstating c). So if the transfer momentum is appreciable,
the decoherence rate is exponentially suppressed.
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Slowly moving dark matter.—For slow axion DM, one
expects ω ≈mac2. We can then set the scale μ by the de
Broglie wavelength of the axion such that μ ∼ pa ¼ mava.
Taking the probe to be a proton in the galaxy, we set the
speeds of both particles to be the virial speed in our galaxy
∼10−3c, obtaining

ω2E2
k

μ2k2pc4
≈
ω2ðm2

p þ k2p=c2Þ
m2

av2ak2p
≈

c4

v2av2p
∼ 1012: ð26Þ

Similarly, if the probe is relativistic, such as a photon, we
find ω2E2

k=ðμ2k2pc4Þ ≈ c2=v2a ∼ 106. Thus, for nonrelativ-
istic objects in the galaxy, the decoherence rate will be
exponentially suppressed and a superposition of the phase
of the axion is robust against decoherence.
Relativistic dark matter.—If instead we consider a

component of the DM that is relativistic, such as near a
black hole or for dense boson stars (see below), we can
have situations where ω ∼ μc and thus the exponential may
not necessarily suppress the decoherence rate.
First, let us examine the dependence of the decoherence

rate on the physical scales (see Ref. [14] for detailed
analysis)

Γdec ≈ K
G2

NEρpρ
2
DM

m8
a

½phase; ðsemiÞ-relativistic( ð27Þ

(here c ¼ 1), where E is the energy of the probe and K is a
numerical factor depending on the ratios kp=mp, ω=ma,
and μ=ma [each is Oð1Þ or greater for DM and probes
which are relativistic].
To obtain an idea of the decoherence rate, we shall use

the local average density in the Milky Way ρloc;mw for the
density of the DMSMS. If the probes are semirelativistic
protons in the galaxy, we can take their energy to be
∼2 GeV. Such protons may come from cosmic rays, so
we may use estimates of cosmic ray proton density from the
literature [56], roughly ρcr ∼ 10−9 GeV=cm3. Finally,
taking a representative K to be 10−4 for semi-relativistic
DM and protons, we find a reference decoherence rate near
the Hubble rate today (H0 ≈ 2.2 × 10−18 sec−1) to be
Γdec ∼ 10−21 sec−1ðK=10−4Þð10−12 eV=maÞ8. Similarly,
we can consider photons from the cosmic-microwave
background as probes of the DMSMS, which have
number densities of approximately n ∼ 400=cm3 and
typical energies of ∼6 × 10−4 eV. Taking a representative
value of K for the semirelativistic DM with a photon
probe to be 10−2, we find the decoherence
rate Γdec ∼ 10−16 sec−1ðK=10−2Þð10−14 eV=maÞ8.
Boson stars.—Axions are predicted to form gravitation-

ally bound Bose-Einstein condensates known as boson
stars. Previous work has established the dynamics of boson
stars [57–72], and specifically the unique phase depend-
ence of the outcomes of boson star mergers [73].

Considering a typical dilute boson star made of non-
relativisitc axions, if it is in a superposition of phases,
we can predict that the coherence of the superposition will
be long lived. Further, if such a boson star engages in a
merger event, the phase dependence would lead to non-
trivial evolution of the merged object.
In contrast, the densest boson stars [74] aremade of (semi)-

relativistic axions, and therefore theymay exhibit appreciable
decoherence of their phases. We find the decoherence rate
to be Γdec ∼ 106 sec−1ðK=10−4Þð1 eV=maÞ4, which is
quite rapid.
Black holes.—We also remark that rapid decoherence for

DM would occur near the horizon of a black hole as the
DM becomes highly relativistic. It is interesting to note that
from this point of view, the most classical states are
entering the black hole; this may have ramifications for
the information paradox.
Consequences for earth based experiments.—Earth-

based experiments, for example, haloscopes [75] including
ADMX [76], search directly for axion DM that passes
through the atmosphere or the earth. We previously showed
that the decoherence rate is increased by frequent inter-
actions when the DM passes through the atmosphere [13].
However, the phase of the axion cannot be decohered in this
way for a nonrelativistic DMSMS. Since the DM near the
Earth should be nonrelativistic, our results show that a
superposition of phases will survive.
This suggests that earth-based experiments should

consider a quantum superposition of axion waves of
different phases interacting with the detector
jaxioni ∼

P
i cij cosðωt − ka · xþ φiÞi. Experiments like

ADMX involve a resonant cavity, and the phase of the
resonant electromagnetic waves will be impacted by
the phase of the axion. This raises questions about what
impact this may have for the signal in the resonant cavity.
The cavity would evolve into a superposition of different
resonant electromagnetic signals, though it may be difficult
to predict the experimental signature of this phenomenon,
since the subsequent decoherence from other interactions
will likely be very rapid. This fundamentally new phe-
nomenon found here can alter the response of detectors and
deserves consideration in detection strategies.
We assumed in this work that a DM superposition may

naturally exist. One may also attempt to determine
whether some DM is in a superposition by probing it
with a particle which is entangled with a reference system;
the probe particle, upon remeasurement, may divulge
information about the state of the DM. An individual
particle generally only gains a small amount of entangle-
ment with DM, and it is the net effect of a large number of
particles that can lead to decoherence. Nevertheless, this
may be an interesting way to learn about the character of
the DM state.
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