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Abstract— Due to their ability to move without sliding relative
to their environment, soft growing robots are attractive for de-
ploying distributed sensor networks in confined spaces. Sensing
of the state of such robots would add to their capabilities as
human-safe, adaptable manipulators. However, incorporation
of distributed sensors onto soft growing robots is challenging
because it requires an interface between stiff and soft materials,
and the sensor network needs to undergo significant strain.
In this work, we present a method for adding sensors to soft
growing robots that uses flexible printed circuit boards with
self-contained units of microcontrollers and sensors encased in
a laminate armor that protects them from unsafe curvatures.
We demonstrate the ability of this system to relay directional
temperature and humidity information in hard-to-access spaces.
We also demonstrate and characterize a method for sensing the
growing robot shape using inertial measurement units deployed
along its length, and develop a mathematical model to predict
its accuracy. This work advances the capabilities of soft growing
robots, as well as the field of soft robot sensing.

I. INTRODUCTION

Distributed sensor networks are of growing interest for
long-term monitoring of environments [1], [2] and structures
[3], but they face limitations in how many sensors can be effi-
ciently deployed, especially in constrained and hard-to-reach
spaces. While wireless sensor networks can be designed for
low power consumption using batteries [4] or the ability to
scavenge energy [5], they are often unable to transmit data
reliably from enclosed spaces such as underground [6] or
through walls [7].

Soft growing robots [8] consist of flexible tubes that grow
when inflated due to tip eversion, either passively taking on
the shape of the environment they grow into, or steered in
free space using soft actuators [9] or tendons [10] or with
a pre-determined shape [8]. Due to their flexibility, they
can grow to long lengths in highly constrained spaces of
unknown shape. To date, sensing for soft growing robots
has been primarily focused on the tip of the robot through
tools such as cameras [8], [9]. Because soft growing robots
have a very low cost per unit length and are relatively easy
to deploy, they can also be a platform for rapid deployment
of sensor networks along the path of the growing robot body.

We use flexible printed circuit board (fPCB) technology
to create modular bands of sensors that are distributed
along the robot, for continuous monitoring of the immediate
environment (Fig. 1). To spatially locate the sources of
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Fig. 1. A soft growing robot (semi-transparent) deploying armored sensor
bands (blue), and sensing its shape as it traverses a bend.

measurements, the shape of the grown robot is also sensed by
measuring the orientation of each sensor band. fPCBs allow
for a wide array of traditional MEMS surface-mount sensors
to be used without alteration, making this a versatile platform
for many types of measurements. In our prototype sensor
modules, we include temperature, humidity, acceleration, and
orientation. We also demonstrate the capability to determine
the spatial direction of a heat source with respect to the robot
body.

Soft growing robots — and more broadly, many other soft
robots — are inherently unstructured in how they bend and
wrinkle. While fPCBs are robust and long-lasting when used
within their design parameters, they have shortened lifetimes
when subjected to curvatures outside those limits. Thus, tra-
ditional flexible circuits alone are not suitable for placement
on soft growing robots. We propose a combination of flexible
circuit design and a semi-soft laminate that enforces safe
bend radii of the fPCB during uncontrolled wrinkling. The
laminate is designed for high flexibility so as to not hinder
robot growth, while protecting the circuit in the directions in
which bending occurs.

In Section II, we introduce recent advances in scalable
sensor network design and soft robot shape sensing. In
Section III, we describe the overall system architecture and
the laminates used to make the sensors robust. In Section IV,
we characterize the accuracy of the robot’s shape sensing.
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(a) A rendering of a growing robot deploying sensor bands, communicating with an aggregator DAQ via a bus along its axis. (b) The process by

which growing robots evert, illustrating the sensor band movement from the stowed state to the deployed state. (c) The overall system architecture, with

the components on a single modular band outlined in blue.

We conclude in Section V with laboratory demonstrations
of deploying sensor bands in two applications: (1) locating a
leak from a cluster of pipes and (2) exploring a small tunnel.

II. RELATED WORK

Much of the focus on designing sensor networks has
been on outdoor pipeline [11], environment [1], ecological
habitat [2], and agricultural [12] monitoring over large areas,
necessitating the implementation of wireless data transmis-
sion. However, sensor networks are also being deployed
in confined spaces that require a higher density of nodes
and are close enough to be wired. These operate at a scale
where stretchable wiring can be used to expand a network to
cover large areas, such as strain gauges for aircraft structural
monitoring [13] or on robots [14]. In enclosed spaces, this
approach has benefits over wireless transmission, where
electromagnetic waves can be attenuated depending on the
the obstructing material, such as soil or a wall [6].

Although the area of coverage of these networks is smaller
than outdoor applications, deployment of large numbers of
sensor nodes in small areas remains a challenge for both
labor efficiency of setup, and precise knowledge of where
the nodes (and therefore data source) are located spatially.
One approach is to make the sensor nodes so small that
they are simply scattered and unobtrusive [15], [16], though
these still face the challenge of localizing the data source.
By introducing inertial measurement units (IMUs) to sensor
nodes on a flexible tape, [17] were able to localize sensor
readings by determining shape of the carrier tape in real
time, in a similar manner to what we present. By including
the entire network on a single continuous strip, the distance
that it could span was limited and it was not designed for
robotic deployment.
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Soft growing robots have been used for sensor deployment
including cameras [8] and antennas [18], however work has
been primarily focused on adding sensors to a tip mount [19],
[20]. While this approach is useful for taking data along the
path of the robot tip as it grows into constrained spaces, it
does not use the length of robot left behind after growth for
long-term monitoring of the space it grew into. At a shorter
scale, [21] used capacitive touch sensors distributed along
the length of a robot.

In many scenarios in which soft growing robots are used
to deploy sensors, the shape of the robot must be measured
to localize each node. Approaches to measuring curvature of
soft robots include optical [22], capacitive [23], resistive [24],
[25], and mechanical methods using cables on encoders [26].
All of these approaches require substantial sensor integration
in the robot’s fabrication process, and are challenging to
integrate over the length scales reachable with soft growing
robots.

III. SENSOR DESIGN

Building on and addressing gaps in related work, we
present a distributed sensor network that can be deployed
using soft growing robots.

A. Design objectives

There are two purposes for incorporation of sensors onto
robots: exteroception (that is, sensing of external stimuli),
and proprioception (that is, sensing of the state of the
robot itself). We sought to enable both of these purposes
for soft growing robot sensing with a single design. For
exteroception, a suite of sensors could be useful to allow
monitoring of confined spaces. Depending on the application,
sensing of temperature, humidity, light, and video could all
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be useful. In addition, by sensing the shape and contact
conditions of the robot itself when deployed in an environ-
ment, information can be learned about the environment’s
shape and stiffness properties. For proprioception, sensing
of robot shape and contact conditions can improve control
of the robot during navigation and manipulation tasks. For
some scenarios, sensors along one side of the robot body
would suffice, but for other scenarios, sensors should be
placed on all sides of the robot body to achieve the desired
functionality.

We aimed to create a template sensor system in which the
specific sensors could be switched out as needed, depending
on the application. To demonstrate proprioception, we chose
to place IMUs along the length of the robot to sense its
shape. To demonstrate exteroception and directional sensing
capability, we placed temperature and humidity sensors along
the length of the robot and thermistors distributed on all sides
of the robot body. In future iterations of the design, these
specific sensors could be replaced with cameras and contact
sensors, for example, as needed.

In order to function on a soft growing robot, our sensor
system needed to fulfill the following basic requirements.
First, it needed to be attached to the soft robot body and
endure repeated eversion and inversion without failure or
significant encumbrance of the robot’s ability to grow and
retract. Second, it needed to be scalable to robot lengths
suitable for navigation and manipulation tasks (ranging from
1 to 10 meters in length).

B. System overview

The sensor network (Fig. 2) consists of an aggregator
microcontroller (Teensy 4.0) located at the base of the robot
and many fPCB sensor bands distributed along its length at
discrete intervals. The sensor bands are adhered to the outside
of the robot so that the sensors can monitor their direct
surroundings when deployed. Each band is self-contained
with its own microcontroller (Atmega328P-MU), reducing
noise by performing digital conversions over short distances
from analog sensors. Communication to the aggregator mi-
crocontroller is performed through a 4-wire i2C bus which
runs the full length of the robot. This system is robust to
failure of individual sensor bands, and uses a small number
of flexible wires.

The sensor bands (Fig. 3) consist of semi-rigid islands that
contain the surface mount components, and flexible tracks
which carry circuit traces between islands (fPCBs were
produced by Seeed Studio with a 0.1 mm thick polyimide
backing and cross-hatch ground pour beneath the flexible
tracks for minimally stiff shielding). This design is chosen
so that the bands can be wrapped circumferentially around
the robot while exhibiting high flexibility so as not to impede
growth of the robot or damage the circuit. The flexible
islands are in a two-dimensional network: the main islands
consist of the non-directional components (I2C devices,
microcontroller, peripheral components, and bus-connector);
the smaller islands contain the directional sensors. This
approach is scalable, as it allows for a chain of directional
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Fig. 3. A flexible PCB band designed for growing robot deployment.
Components are distributed in multiple semi-rigid islands, connected by
highly flexible tracks with a sparsely filled ground layer. Many components
that require directional sensing (such as the thermistors here) can be placed
along additional islands which align with the axis of the robot.

sensors to be added down the axial direction of the robot,
rather than increasing the size of the rigid islands (and
therefore reducing band flexibility). The bands are attached to
the robot with Tegaderm adhesive film, resulting in a robust
adhesion that still allows the flexible tracks to bend during
eversion. This highly conformable and thin adhesive allows
the bands to be fully covered so that they do not snag on the
environment, and does not rely on connection directly to the
polyurethane armor, a material which is inherently difficult
to adhere to.

Sensors on each band include an IMU (Bosch BNOO055),
a temperature/humidity sensor (Sensirion SHT31-DIS-
B2.5kS), and four thermistors (TDK NTCG163JF103FT1S).
In other applications, measurements that could be simply in-
tegrated into our platform using standard SMD chips include
contact, force, air pressure, ambient light, gas composition,
pH, and proximity.

C. PCB armor

While flexible circuit technology has been ubiquitous in
industry use since the 1950s, it is only recently finding
use cases in soft robotics [27]. Since soft robots often
undergo unpredictable motions, flexible sensors adhered to
these robots are at risk of undergoing bends and wrinkles
that would break fragile connections to surface mount com-
ponents and the conductive traces that connect them. Most
manufacturers recommend that dynamic flex circuits have
a minimum bend radius over traces of at least 100 times
board thickness so that the copper does not work harden or
succumb to cyclic fatigue [28].

In order to enforce this minimum bend radius, we designed
an armor laminate to protect the fPCBs (Fig. 4), which
encases the circuits on top and bottom. Over the functional
islands, the laminate is stiff and has cavities that fit snugly
over the SMD components, protecting them from damage
and providing strain relief to the soldered connections. Over
the flexible tracks, the laminate has very low stiffness (so as
to not hinder deployment) until the minimum bend radius is
reached, at which point the teeth mesh and prevent further
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Fig. 4.
maintaining high flexibility, only jamming at the necessary curvature. The
armor is molded as one piece per side, and laminated onto the fPCB using
an adhesive-backed Kapton intermediate layer. For this design, the angle
between adjacent repeating teeth when laid flat is 19°.

The elastomer armor enforces a minimum bend radius while

bending (Fig. 4 (a)). Tooth geometry can be varied depending
on the allowable bend in the application. The laminate is
fabricated by pouring Vytaflex 60 (60A Shore hardness [29])
polyurethane into a 3D printed mold. Once cured, it is
adhered to a 3 mil thickness Kapton sheet with adhesive
backing, and this is then applied to the top and bottom of
the sensor band.

D. Shape accuracy and model

To estimate the robot’s shape based on the measured
IMU orientation at each sensor band, some assumptions are
needed about the shape of the robot body segments between
the sensor bands.

First, because the robot body material is nearly inexten-
sible, we assume that the outer edge of the robot body
remains constant in length as the robot curves, while the
inner edge wrinkles. This is consistent with the robot’s
observed behavior when pressurized, and thus is expected
to be the case when the robot is growing.

Second, we assume that a single discrete bend takes place
between each pair of sensors, with all of the length change of
the inner edge of the robot body taken up at a single point
(Fig. 5 (a)). This strain profile is consistent with inflated
beam bending behavior, and a single bend in each segment is
likely provided that the sensor bands are spaced close enough
for the particular operating pressure and robot diameter used.
In the case of the robot used here, a ratio of band spacing
to diameter of 1.5 was found to prevent multiple bends per
segment.

Third, to account for the amount of length taken up by the
curved sections of the robot, we assume that the outer edge
of the robot body forms a circular arc at each bend, with
straight segments taking up the rest of the length between
sensor bands. We found this to be consistent with the robot’s
observed behavior when pressurized for angles up to about
90° (Fig. 5 (b)).

And fourth, we assume that the orientation of the central
axis of the robot body can be accurately measured by the
orientation of any of the corresponding points on its surface,
i.e., that it does not matter where around the circumference
of the robot body the IMU is placed. This assumption is
consistent with robot behavior provided that the environment
around the robot does not cause a depression in the robot
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Fig. 5.

(a) The robot is assumed to bend a maximum of once between
sensor bands (red). The position between the sensors at which it bends is
unknown and can contribute to error in the robot’s shape measurement,
varying between a bend immediately after the first sensor (i) to right before
the following sensor (iii). (b) The robot forms smooth outer bends when
pressurized for angles up to 90°.

body that happens to be where the IMU is located. To avoid
this, we ensured that, for our experiments, the robot body
was smaller in diameter than the smallest aperture in the
environment it would explore.

Given these assumptions, shape sensing inaccuracy can
come from: (1) uncertainty in where bends occur between
sensor bands, and (2) inaccuracy in measurements from the
IMUs themselves. Further inaccuracy will come into play if
the previous assumptions are not true.

For a large enough band spacing, there is inherent un-
certainty in the position of each sensor band relative to
the previous one, because the location of each bend within
the segment between successive sensor bands is unknown.
The bend could occur immediately after the first sensor, as
shown in Fig. 5 (a) (i), right before the next sensor (iii), or
somewhere in between (ii). Because bends are equally likely
at any point along this length, the safest assumption by the
central limit theorem is that bends occur at mean. Thus we
choose the midpoint of the segment as the center of each
bend for our shape reconstruction algorithm. To quantify the
shape error due to uncertainty in the bend location, we use a
model that is mostly influenced by band spacing, Lspacing,
but also a function of robot diameter, D (Fig. 5 (a)). The
length over which the bend can begin is limited by the
severity of the bend angle and the diameter of the robot as
Lore = (D/2)0, where 6 is the bend angle. Thus, the range
over which the bend can occur is Lgpacing — Lare-

Another factor that influences measured shape accuracy
is IMU accuracy. While accelerometers can be used to
very accurately measure IMU angle relative to gravitational
acceleration, the calculation of IMU heading still uses the
chip’s sensor fusion algorithm but primarily relies on a
magnetometer, which is comparatively less accurate; the
BNOO0S55 sensor used has a magnetometer heading accuracy
of +2.5°. In addition, the magnetometer can require re-
calibration when the magnetic fields in its environment
change, often with the introduction of a ferrous or magnetic
object, which will result in a significant change in reported
heading.

Based on these considerations, the choice of band spacing
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is driven either by the required spatial resolution of the
measurements or by the desired accuracy of the sensed robot
shape, at the cost of sensor cost and measurement frequency.

IV. EXPERIMENTS AND RESULTS

To validate sensor network deployment and shape sensing
accuracy, we placed 15 sensor bands at a 7.6 cm (3 in) spac-
ing along a 1.15 m robot of diameter 6.6 cm. The bands were
connected via a bus to an aggregator microcontroller, which
sent measurements at S0Hz to a computer running custom
real-time plotting and recording software using Python. We
built a maze on a peg-board through which the robot was
able to grow. While we tested the robot’s growth capabilities
separately, to ensure that the sensors would survive this
test, we posed the robot in three positions that it would
reach during growth through the maze and captured the
sensor data in those positions, rather than during an active
growth. The maze forces the robot to form multiple bends of
different angles, as well as to follow a trajectory such that the
deployed section of the robot changes shape as it continues
to grow. In a scenario like this, sensors moving with the tip
of the robot would not be able to measure shape changes
further back, so distributed sensing is helpful to accurately
capture the robot shape.

To measure the ground truth shape, we placed a camera
above the maze and took photos that could then be fed
into MATLAB, where the robot shape was reconstructed by
clicking on key points in the image. After clicking on two
points to calibrate the pixel-to-world distance measurement
and define the angle of rotation of the maze relative to the
image frame, we traced out the robot shape by clicking on
one point at the center of each sensor band, as well as
one point along the robot’s center line between each pair
of sensor bands.

We calibrated the IMUs with their z-axes pointing upwards
so that it was easy to project the measured shape into the
plane of the maze by projecting it into the x-y plane. We
zeroed all IMUs while pointing in the same direction at the
start to avoid any variability between sensors. We calculated
the estimated robot shape by feeding the measured IMU
orientations into the model discussed in Section III. We
then projected the sensed 3D shape into the plane of the
maze. To register the estimated robot shape to the image,
we rotated the estimated shape within the plane of the maze
until the vector from the center of the first to the center of
the second sensor band was aligned with the same vector
in the ground truth plot. While soft growing robots tend not
to twist significantly about their axis, small twist angles can
build up as the robot gets longer. Our shape sensing method
still works if portions of the robot twist relative to the base,
and the IMU readings could be used to measure this twist.

Fig. 6 shows the images from the three chosen time points
of maze navigation, with the ground truth shape overlaid in
red, and the estimated shape overlaid in blue. In the first
image, the maximum position error between corresponding
ground truth and estimated shape points is 2.5 cm and occurs
at the sensor band closest to the robot tip. In the second
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image, the maximum position error is 3.6 cm and occurs
midway along the grown length of the robot. In the third
image, the maximum position error is 8.93 cm and occurs at
the sensor band closest to the tip.

To understand the sources of error between the ground
truth shape and our estimated shape, we used our model
to conduct Monte Carlo simulations of the estimated shape
when two parameters were varied: the bend location, and
the sensor-measured orientation. The first parameter, bend
location, is inherently uncertain, even if the sensors are per-
fectly accurate in their orientation readings, because the bend
location could be anywhere between each pair of sensors.
To vary the bend location, we calculated 2000 robot shapes
with the exact bend angles measured by the IMUs but with
bend locations sampled from a uniform distribution along the
length between each pair of sensors minus the length taken
up by the bend itself. The results of this simulation for the
third time point are plotted in Fig. 7 (top). The simulated
shapes are plotted in translucent blue such that the intensity
of the color corresponds to the likelihood of the shape. Even
across the entire deployed length of the robot, the expected
position error due to this factor is quite small and does not
fully explain the measured error.

The second parameter, sensor-measured orientation, is
dependent on the quality of the sensors used. To vary this
parameter in addition to the bend location, we calculated
2000 robot shapes with the sensor-measured bend angles plus
a sensor error sampled from a uniform distribution between
£3°, as well as with bend locations sampled from a uniform
distribution along the length between each pair of sensors
minus the length taken up by the bend itself. The results of
this simulation for the third time point are plotted in Fig. 7
(bottom). This amount of sensor error plus the uncertainty of
bend location plausibly explains the error in our estimated
robot shape. Such a simulation technique can be used to
design the sensor band spacing and sensor error tolerance for
a growing robot system for shape sensing with a particular
position error tolerance.

Deployable sensor networks are of interest in many long
term monitoring applications. We demonstrate two applica-
tions in which the robot can provide data from places that
are otherwise hard to access.

V. DEMONSTRATION
A. Deployable Temperature and Humidity Sensing

In our first demonstration, we deploy the robot between a
tight cluster of steam pipes to identify the location of leaks.
Using a small entry point to enter the wall and pinpoint
the leak location can reduce the amount of damage done
to the wall in order to access the pipes behind it. The
robot is able to grow in the constrained space between the
pipes, and measure humidity and temperature over time, with
thermistors measuring temperature at four discrete intervals
encompassing the top half of the robot’s circumference. Note
that the melting temperature of LDPE plastic is at least
105°C, so the robot body can withstand the temperature
of steam at atmospheric pressure without melting [30]. The
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and 12. The orientations of the heat sources as registered to
E 20 the thermistor placement show that the leaks occur in pipes
g 10¢ 2 and 3 respectively.
<3 B. Shape sensing in a constrained space
>-10 —O—Grqund Truth
»20,,_°_§§::Z1T:canon Uncertainty In our second demonstration we show shape sensing in
0 20 20 60 80 three dimensional space by placing the robot in a constrained
X position (cm) pipe such that the first sensor band is at the entry point,
and the last comes out the exit (Fig. 9). This demonstration
30} mimics growth into an unknown path such as an animal
= 20 burrow, for mapping tunnels in ecological studies. The pipe
S Ll has an internal diameter of 7.6 cm, and traverses two 22.5°
c .
. o bends and two 45° bends, which are not co-planar. The
g shape calculated using our model and based on the 15 sensor
>-10 |7 Groung Truth orientations stays within the 7.6 cm diameter throughout its
20 Bend Location and Angle Uncertainty length.
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X position (cm) VI. CONCLUSION AND FUTURE WORK
Fig. 7. Plots showing uncertainty in the sensed shape from third time We created and demonstrated a distributed fPCB sensor

point in Fig. 6 based on two sources: (top) ul}certainty in the bend lqcatiop, network deployed on a soft growing robot. IMU Chips on
and (bottom) uncertainty in the bend location as well as uncertainty in .
the sensed bend angle (£3°). The deviation of our shape estimate from each band allow for shape reconstruction of the soft robot
the ground truth shape comes primarily from the uncertainty in the sensed using absolute orientation, and a simple model is developed
angle, which could be improved with more accurate or redundant sensors. to determine and reduce shape uncertainty. A network of dig-
ital temperature and humidity sensors as well as thermistors
setup and measured response are shown in Fig. 8. The  allows for humidity sensing along the robot and directional
three steam pipes are oriented as shown in the inset, with  temperature information to localize heat sources in space.
vectors indicating the leak holes; the fifteen sensor bands These sensors are protected with an armor laminate that
are numbered along the length, and the four thermistors per  jams at a minimum bend radius to protect the fPCB during
band are pointed as indicated in the inset, with the humidity  undeployed states, and robot tip eversion. This approach is
sensor located near thermistor 3. Steam is released into one  easily scalable, and its modularity allows for the usage of
plpe at a time for three separate trials, and the neighboring 5 many different types of SEeNsors, depending on the Sensing
sensors’ humidity and thermistor values are plotted for each.  application. This sensor network opens up new possibilities
The first pipe is oriented such that the steam leak is nearest ~ for control of soft growing robots. In combination with soft
to sensor band 2, but entirely blocked from the humidity actuators such as series pouch motors [20], the robot could
sensor, which shows no noticeable rise in humidity. The be steered to a specific shape or endpoint position. With
steam is also pointed away from the robot entirely, resulting  the addition of directional tactile sensing (for example in
in a measurable but low thermistor change, and heat from the  place of the thermistors), contact sensing could be used
steam and pipe percolates to nearby bands. Thermistor O of  to navigate an environment. Shape sensing itself could be
band 2 is still identifiable as a local maximum in temperature,  improved significantly with the addition of a redundant IMU
so with the robot’s orientation, the leak can be identified. =~ on each band for increased accuracy, as well as a separate
Leaks 2 and 3 are pointed more directly at the robot, and type of band that only includes the IMU(s), distributed at a
thus register a much higher peak in thermistor value, which  higher density. These large arrays could also be improved
can be clearly identified to register leak location at bands 7  with a selectively stiff armor design, since fully rigid islands
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