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Abstract—Unmanned Aerial Vehicles (UAVs) or drones are
increasingly used for urban applications like traffic monitoring
and construction surveys. Autonomous navigation allows drones
to visit waypoints and accomplish activities as part of their
mission. A common activity is to hover and observe a location
using on-board cameras. Advances in Deep Neural Networks
(DNNs) allow such videos to be analyzed for automated decision
making. UAVs also host edge computing capability for on-board
inferencing by such DNNs. To this end, for a fleet of drones,
we propose a novel Mission Scheduling Problem (MSP) that co-
schedules the flight routes to visit and record video at waypoints,
and their subsequent on-board edge analytics. The proposed
schedule maximizes the utility from the activities while meeting
activity deadlines as well as energy and computing constraints.
We first prove that MSP is NP-hard and then optimally solve
it by formulating a mixed integer linear programming (MILP)
problem. Next, we design two efficient heuristic algorithms, JSC
and VRC, that provide fast sub-optimal solutions. Evaluation
of these three schedulers using real drone traces demonstrate
utility–runtime trade-offs under diverse workloads.

Index Terms—UAV, drone, edge computing, vehicle routing, job
scheduling, energy constrained, video analytics, path planning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also called drones, are
enabling a wide range of applications in smart cities [1], such
as traffic monitoring [2], construction surveys [3], package
delivery [4], localization [5], and disaster (including COVID-
19) management [6], assisted by 5G wireless roll-out [7]. The
mobility, agility, and hovering capabilities of drones allow
them to rapidly fly to points of interest (i.e., waypoints) in the
city to accomplish specific activities. Usually, such activities
involve hovering and recording a scene using the drone’s
camera, and analyzing the videos to take decisions.

Advancements of computer vision algorithms and Deep
Neural Networks (DNNs) enable video analytics to be per-
formed over such recordings for automated decision-making.
Typically, these are inferred once the recordings are transferred
to a ground station (GS) after the drones land. In-flight transfer
of videos to a GS is limited by the intermittent bandwidth
of current communications technologies. However, certain
activities may require low-latency analysis and decisions, as
soon as the video is captured at a location. Hence, the on-
board edge computing capability [8] available on commercial
drones can be leveraged to process the recorded videos, and
quickly report concise results to the GS over 3/4/5G wireless
networks [9]. Since the transferred results are brief and the on-
board processing times dominate, we ignore communication

constraints like data rate, latency, and reliability that are
affected by the UAV’s altitude, antenna envelope, etc.

UAVs are energy-constrained vehicles with limited battery
capacity, and commercial drones can currently fly for less than
an hour. The flying distance between waypoints will affect
the number of activities that can be completed in one trip
on a full battery. Besides hovering and recording videos at
waypoints, performing edge analytics also consumes energy.
So, the drone’s battery capacity should be judiciously managed
for the flying, hovering and computing tasks. Nevertheless,
once a drone lands, its exhausted battery can be quickly
replaced with a full one, to be ready for a new trip.

This paper examines how a UAV fleet operator in a city can
plan missions for a captive set of drones to accomplish activi-
ties periodically provided by the users. An activity involves
visiting a waypoint, hovering and capturing video at that
location for a specific time period, and optionally performing
on-board analytics on the captured data. Activities also offer
utility scores depending on how they are handled. The novel
problem we propose here is for the fleet operator to co-
schedule flight routing among waypoints and on-board compu-
tation so that the drones complete (a subset of) the provided
activities, within the energy and computation constraints of
each drone, while maximizing the total utility.

Existing works have examined routing of one or more
drones for capturing and relaying data to the backend [10],
off-loading computations from mobile devices [11], and co-
operative video surveillance [12]. There also exists literature
on scheduling tasks for edge computing that are compute-
and energy-aware, operate on distributed edge resources, and
consider deadlines and device reliability [13]. However, none
of these examine co-scheduling a fleet of physical drones
and digital applications on them to meet the objective, while
efficiently managing the energy capacity to maximize utility.

Specifically, our Mission Scheduling Problem (MSP) com-
bines elements of the Vehicle Routing Problem (VRP) [14],
which generalizes the well known Traveling Salesman Prob-
lem (TSP) to find optimal routes for a set of vehicles
and customers [15], and the Job-shop Scheduling Problem
(JSP) [16] for mapping jobs of different execution duration
to the available resources, which is often used for parallel
scheduling of computing tasks to multiprocessors [17].

We make the following contributions in this paper.
• We characterize the system and application model, and

formally define the Mission Scheduling Problem (MSP)



to co-schedule routes and analytics for a fleet of drones,
maximizing the obtained utility (Sections III and IV).

• We prove that MSP is NP-hard, and optimally solve it
using a mixed integer linear programming (MILP) design,
OPT, which is feasible for small inputs (Section V).

• We design two time-efficient heuristic algorithms, JSC and
VRC, that solve the MSP for arbitrary-sized inputs, and
offer complexity bounds for their execution (Section VI).

• We evaluate and analyze the utility and scheduling run-
time trade-offs for these three algorithms, for diverse
drone workloads based on real drone traces (Section VII).

II. RELATED WORK

This section reviews literature on vehicle routing and job-
shop scheduling, contrasting them with MSP and our solutions.

A. Vehicle Routing Problem (VRP)

VRP is a variant of TSP with multiple salespersons [14] and
it is NP-hard [18]. This problem has had several extensions
to handle realistic scenarios, such as temporal constraints that
impose deliveries only at specific time-windows [19], capacity
constraints on vehicle payloads [20], multiple trips for vehi-
cles [21], profit per vehicle [22] and traffic congestion [23].
VRP has also been adapted for route planning for a fleet of
ships [24], and for drone assisted delivery of goods [25].

In [10] the scheduling of events is performed by UAVs
at specific locations, involving data sensing/processing and
communication with the GS. The goal here is to minimize the
drone’s energy consumption and operation time. Factors like
wind and temperature that may affect the route and execution
time are also considered. While they combine sensing and
processing into one monolithic event, these are independent
tasks which need to be co-scheduled, as we do. Also, they
minimize the operating time and energy while we maximize
the utility to perform tasks within a time and energy budget.

In [11] the use of UAVs is explored to off-load computing
from the users’ mobile devices, and for relaying data between
mobile devices and GS. The authors considered the drones’
trajectory, bandwidth, and computing optimizations in an iter-
ative manner. The aim is to minimize energy consumption of
the drones and mobile devices. It is validate through simulation
for four mobile devices. We instead consider a more practical
problem for a fleet of drones with possibly hundreds of
locations to visit and on-board computing tasks to perform.

Trotta et al. [12] propose a novel architecture for energy-
efficient video surveillance of points of interest (POIs) in a
city by drones. The UAVs use bus rooftops for re-charging
and being transported to the next POI based on known bus
routes. Drones also act as relays for other drones capturing
videos. The mapping of drones to bus routes is formulated
as an MILP problem and a TSP-based heuristic is proposed.
Unlike ours, their goal is not to schedule and process data on-
board the drone. Similarly, we do not examine any data off-
loading from the drone, nor any piggy-backing mechanisms.

B. Job-shop Scheduling (JSC)

Scheduling of computing tasks on drones is closely aligned
with scheduling tasks on edge and fog devices [26], and
broadly with parallel workload scheduling [17] and JSC [16].

In [13], an online algorithm is proposed for deadline-
aware task scheduling for edge computing. It highlights that
workload scheduling on the edge has several dimensions, and
it jointly optimizes networking and computing to yield the best
possible schedule. Feng at al. [27] propose a framework for co-
operative edge computing on autonomous road vehicles, which
aims to increase their decentralized computational capabilities
and task execution performance. Others [28] combine optimal
placement of data blocks with optimal task scheduling to
reduce computation delay and response time for the submitted
tasks while improving user experience in edge computing. In
contrast, we co-schedule UAV routing and edge computing.

There exist works that explore task scheduling for mobile
clients, and off-load computing to another nearby edge or
fog resource. These may be categorized based on their use
of predictable or unpredictable mobility models. In [29], the
mobility of a vehicle is predicted and used to select the road-
side edge computing unit to which the computation is off-
loaded. Serendipity [30] takes an alternate view and assumes
that mobile edge devices interacts with each other intermit-
tently and at random. This makes it challenging to determine
if tasks should be off-loaded to another proximate device for
reliable completion. The problem we solve is complementary
and does not involve off-loading. The possible waypoints are
known ahead, and we perform predictable UAV route planning
and scheduling of the computing locally on the edge.

Scheduling on the energy-constrained edge has also been
investigated by Zhang et al. [31], where an energy-aware off-
loading scheme is proposed to jointly optimize communication
and computation resource allocation on the edge, and to limit
latency. Our proposed problem also considers energy for the
drone flight while meet deadlines for on-board computing.

III. MODELS AND ASSUMPTIONS

This section introduces the UAV system model, application
model, and utility model along with underlying assumptions.

A. UAV System Model

Let λ̂ = (0, 0, 0) be the location of a UAV depot in the city
(see Figure 1, left) centered at the origin of a 3D Cartesian
coordinate system. Let D = {d1, . . . , dm} be the set of m
available drones. For simplicity, we assume that all the drones
are homogeneous. Each drone has a camera for recording
videos, which is subsequently processed. This processing can
be done using the on-board computing, or done offline once the
drone lands (which is outside the scope of our problem). The
on-board processing speed is π floating point operations per
second (FLOPS). For simplicity, this is taken as cumulative
across CPUs and GPUs on the drone, and this capacity is
orthogonal to any computation done for navigation.

The battery on a drone has a fixed energy capacity E, which
is used both for flying and for on-board computation. The
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Fig. 1. Sample MSP scenario. a) shows a city with the depot (λ̂); 6 waypoints
to visit (λi) with some utility; and possible trip routes for drones (Ri

j ). b)
has the corresponding 6 activities (αi) with data capture duration (shaded)
and compute deadline (vertical line) and the two available drones.

drone’s energy consumption has three components – flying,
hovering and computing. Let εf be the energy required for
flying for a unit time duration at a constant energy-efficient
speed s within the Cartesian space; let εh be the energy for
hovering for a unit time duration; and let εc be the energy
for performing computation for a unit time duration. For
simplicity, we ignore the energy for video capture since it is
negligible in practice. Also, a drone that returns to the depot
can swap-in a full battery and immediately start a new trip.

B. Application Model

Let A = (α1, . . . , αn) be the set of n activities to be
performed starting from time t̂ = 0, where each activity
αi is given by the tuple 〈λi, ti, t̄i, κi, δi, γi, γ̄i, ¯̄γi〉. Here,
λi = (xi, yi, zi) is the waypoint location coordinates where
the video data for that activity has to be captured by the drone,
relative to the depot location λ̂. The starting and ending times
for performing the data capture task are ti and t̄i. The compute
requirements for subsequently processing all of the captured
data is κi floating point operations. Lastly, δi is the time
deadline by which the computation task should be completed
on the drone to derive on-time utility of processing, while
γi, γ̄i, and ¯̄γi are the data capture, on-time processing and on-
board processing utility values that are gained for completing
the activity. These are described in the next sub-section.

The computation may be performed incrementally on sub-
sets of the video data, as soon as they are captured. This
is common for analytics over constrained resources [32].
Specifically, for an activity αi, the data captured between
(t̄i − ti) is divided into batches of a fixed duration β, with
the sequence of batches given by Bi = (b1i , . . . , b

qi
i ), where

qi = |Bi| =
⌈
t̄i−ti
β

⌉
. The computational cost to process each

batch is κki = κi

qi
floating-point operations, and is constant for

all batches of an activity. So, the processing time for the batch,
given the processing speed π for a drone, is ρki =

⌈
κki · 1

π

⌉
;

for simplicity, we discretize all time-units into integers.
We make some simplifying assumptions. Only one batch

may be executed at a time on-board a drone and it should
run to completion before scheduling another. There is no
concurrency, pre-emption or check-pointing. The data capture
for an activity’s batch may overlap with the computation
of a previous batch of the same or a different activity. All
batches for a single activity should be executed in sequence,
i.e., complete processing bki before processing bk+1

i . Once a

batch is processed, its compact results are immediately and
deterministically communicated to the GS.
C. Utility Model

The primary goal of the drone is to capture videos at the
various activity locations for the specified duration. This is
a necessary condition for an activity to be successful. We
define this as the data capture utility (γi) accrued by a drone
for an activity αi. The secondary goal is to opportunistically
process the captured data using the on-board computing on
the drone. Here, we have two scenarios. Some activities may
not be time sensitive, and performing on-board computing is
just to reduce the costs for offline computing. Here, processing
the data captured by an activity using the drone’s computing
resources will provide an on-board processing utility (γ̄i).
Other activities may be time-sensitive and have a soft-deadline
δi for completing the processing. For these, if we process its
captured data on the drone by this deadline, we receive an
extra on-time processing utility (¯̄γi). The processing utilities
accrue pro rata, for each batch of the activity completed.

IV. PROBLEM FORMULATION

The Mission Scheduling Problem (MSP) is summarized as:
Given a UAV depot in a city with a fleet of captive drones, and
a set of observation and computing activities to be performed
at locations in the city, each within a given time window and
with associated utilities, the goal is to co-schedule the drones
onto mission routes and the computation to the drones, within
the energy and compute constraints of the drones, such that
the total utility achieved is maximized. It is formalized below.
A. Mission Scheduling Problem (MSP)

A UAV fleet operator receives and queues activities. Period-
ically, a mission schedule is planned to serve some or all the
activities using the whole fleet to maximize the utility. There
is a fixed cost for operating the captive fleet that we ignore.

Multiple activities can be assigned to the same drone dj
as part of the drone’s mission, and the same drone dj can
perform multiple trips from the depot for a mission. The
mission activities for the rth trip of a drone dj is the ordered
sequence Arj = (αrj1 , . . . , α

r
jn

) ⊆ A where αrjx ∈ A, jn ≤ n,
and no activity appears twice within a mission. Further, we
have αrjx ≺ α

r
jx+1

, i.e., the observation start and end times of
an activity in the mission sequence fully precede those of the
next activity in it, t̄rjx ≤ t

r
jx+1

. Also, Axj∩A
y
k = ∅ ∀j, k, x, y to

ensure that an activity is mapped to just one drone. Depending
on the feasibility and utility, some activities may not be part
of any mission and are dropped, i.e.,

∑
j

∑
r |Arj | ≤ n.

The route for the rth trip of drone dj is given by Rrj =

(λ̂, λrj1 , . . . , λ
r
jn
, λ̂), where the starting and ending waypoints

of the drone are the depot location λ̂, and each intermediate
location corresponds to the video capture location λrjk for the
activity αrjk in the mission sequence. For uniformity, we denote
the first and the last depot location in the route as λrj0 and
λrjn+1

, respectively. Clearly, |Rrj | = jn + 2.
A drone dj , given the rth trip of its route Rrj , starts at

the depot, visits each waypoint in the sequence and returns



to the depot, where it may instantly get a fresh battery and
start the (r + 1)th route. Let drone dj leave a waypoint
location in its route, λrji , at departure time τ rji and reach
the next waypoint location, λrji+1

, at arrival time τ̄ rji+1
. Let

the function F(λp, λq) give the flying time between λi and
λj . Since the drone has a constant flying speed, we have
τ̄ rji+1

= τ rji + F(λrji , λ
r
ji+1

).
The drone must hover at each waypoint λrji between trj and

t̄rj while recording the video, and it departs the waypoint after
this, i.e., τ rji = t̄rji . If the drone arrives at this waypoint at time
τ̄ rji , i.e., before the observation start time tj , it hovers here for
a duration of trj − τ̄ rji , and then continues hovering during the
activity’s video capture. If a drone arrives at λrji after trj , it
is invalid since the video capture for the activity cannot be
conducted for the whole duration. So, τ̄ rji ≤ trji ≤ τ rji . Also,
since the deadline for on-time computation over the captured
data is δrji , we require δrji ≥ t̄rji . Once the drone finishes
capturing video for the last activity in its rth trip, it returns
back to the depot location at time τ̄ rjn+1

= τ rjn + F(λrjn , λ̂).
Hence, the total flying time for a drone dj for its rth trip is:

frj =
n∑
i=0

(τ̄ rji+1
− τ rji)

and the total hover time for the drone on that trip is:

hrj =
n∑
i=1

(trji − τ̄
r
ji) +

n∑
i=1

(t̄rji − t
r
ji) =

n∑
i=1

(t̄rji − τ̄
r
ji)

which includes hovering due to early arrival at a waypoint,
and hovering during the data capture.

Let the scheduler assign the time slot [θkji , θ̄
k
ji

) for executing
a batch bkji of activity αji on drone dj , where θ̄kji = θkji + ρki ,
based on the batch execution time. We define a completion
function for each activity αji , for the three utility values:
• The data capture completion uji ∈ {0, 1} has a value of

1 if the drone hovers at location λji for the entire period
from tji to t̄ji , and is 0 otherwise.

• The on-board completion 0.0 ≤ ūji ≤ 1.0 indicates the
fraction of batches of that activity that are completed on-
board the drone. Let µ̄ki = 1 if the batch bki of activity αi
is completed on-board, and µ̄ki = 0 if it is not completed
on-board the drone. Then, ūji =

∑
k µ̄

k
i

qi
.

• The on-time completion 0.0 ≤ ¯̄uji ≤ 1.0 gives the
fraction of batches of that activity that are fully completed
within the deadline. As before, let ¯̄µki = 1 if the batch
bki of activity αi is completed on-time, i.e., θ̄ki ≤ δi, and
¯̄µki = 0 otherwise. So, ¯̄uji =

∑
k

¯̄µk
i

qi
.

The total utility for an activity αi is Ui = uiγi+ūiγ̄i+¯̄ui ¯̄γi,
and the total computation time of batches on a drone dj is:

cj =
∑
αi∈A

(µ̄kji + ¯̄µkji) · ρ
k
i

B. Optimization of MSP

Based on these, the objective of the optimization is
arg max

∑
αi∈A Ui, i.e., assign drones to activity waypoints

and activity batches to the drones’ computing slots to max-
imize the utility from data capture, on-board and on-time

computation. These are subject to the following constraints
on the execution slot assignments for a batch on a drone:

(tji + k · β) ≤ θkji θ̄kji ≤ θ
k+1
ji

θ̄ki ≤ τ̄jn+1

i.e., the data capture for a duration of β for the kth batch of
the activity is completed before the execution slot of the batch
starts; the batches for an activity are executed in sequence; and
the execution completes before the drone lands.

Also, there can only be one batch executing at a time on a
drone. So ∀[θxjp , θ̄

x
jp

) and [θyjq , θ̄
y
jq

) slots assigned to batches
bxp and byq on drone dj , we have [θxjp , θ̄

x
jp

) ∩ [θyjq , θ̄
y
jq

) = ∅.
Lastly, the energy expended by drone dj on the rth trip, to

fly, hover and compute, should be within its battery capacity:
Erj = frj ε

f + hrjε
h + crjε

c ≤ E
Model Applicability: Our novel model can be abstracted to de-
scribe diverse applications. In entity localization [33], γ̄i = 0
and ¯̄γi > 0 captures the importance of an entity being tracked.
In traffic monitoring [2] it is useful to have timely insights,
appropriately tuning γ̄i and ¯̄γi. In construction survey [3] there
are no strict time deadlines, so ¯̄γi = 0.

V. OPTIMAL SOLUTION FOR MSP
In this section, we prove that MSP is NP-hard, and we

define an optimal, but computationally slow, algorithm called
OPTIMAL MISSION SCHEDULING (OPT) based on MILP.

A. NP-hardness of MSP
As discussed earlier, the MSP combines elements of the

VRP and the JSP in assigning routes and batches to drones, for
maximizing the overall utility, subject to energy constraints.
Theorem 1. MSP is NP-hard.
Proof. The VRP is NP-hard [18]. In addition, MSP considers
multiple-trips, time-windows, energy-constraints, and utilities.

The VRP variant with multiple-trips (MTVRP), which con-
siders a maximum travel time horizon Th, is NP-hard. Any
instance of VRP can be reduced in polynomial time to MTVRP
by fixing the number of vehicles to the number of waypoints,
m = n, and setting the time horizon Th =

∑
e∈E F(e), where

E is the set of edges and F(e) is the flying time for traversing
an edge [34], and limiting the number of trips to one. The
VRP variant with time-windows (TWVRP), which limits the
start and end time for visiting a vertex, [ti, t̄i), is NP-hard.
Any instance of VRP can be reduced in polynomial time to
TWVRP by just setting ti = 0 and t̄i = +∞ [15]. Clearly, a
VRP variant with energy-constrained vehicles is still NP-hard,
by just relaxing those constraints to match VRP.

In the above VRP variants, the goal is only to minimize the
costs. But MSP aims at maximizing the utility while bounding
the energy and compute budget. In literature, the VRP variant
with profits (PVRP) is NP-hard [21] since any instance of
MTVRP can be reduced in polynomial time to PVRP by just
setting all vertices to have the same unit-profit. Moreover, MSP
has to deal with scheduling of batches for maximizing the
profit. The original JSP is NP-hard [35]. So, any variant which
introduces constraints is again NP-hard by a simple reduction,
by relaxing those constraints, to JSP.

As MSP is a variant of VRP and JSP, it is NP-hard too.



TABLE I
CONSTRAINTS FOR OPT MILP FORMULATION.

C. Expression Meaning

1
∑

k∈D
∑

l∈R
∑

j∈−→i x
kl
ij ≤ 1, ∀i ∈ V ′ The waypoint for an activity αi is visited only once.

2
∑

j∈−→0 x
kl
0j −

∑
j∈←−0 x

kl
j0 = 0, ∀k ∈ D, l ∈ R A drone trip l starting from the depot must also end there.

3
∑

j∈−→0 x
kl
0j = 1 ⇐⇒

∑
j∈−→i x

kl
ij = 1, ∀i ∈ V ′, k ∈ D, l ∈ R A drone k must visit at least one waypoint on each trip l.

4
∑

i∈←−j x
kl
ij −

∑
i∈−→j x

kl
ji = 0, ∀k ∈ D, j ∈ V ′, l ∈ R A drone k visiting waypoint j must also fly out from there.

5 (tj −F0j) ·
∑

k∈D
∑

l∈R x
kl
0j ≥ 0, ∀j ∈ V ′ Any drone flying to waypoint j from the depot must reach

before its observation start time tj .
6 (tj − t̄i −Fij) ·

∑
k∈D

∑
l∈R x

kl
ij ≥ 0, ∀i ∈ V ′, j ∈ −→i Any drone flying to waypoint j from i must reach before its

observation start time tj .
7 τ̄ lkn+1

=
∑

i∈V′ xkli0 · (t̄i + Fi0), ∀k ∈ D, l ∈ R Decides the landing time of drone k at the depot after trip l.
8 τ̄ lkn+1

≤ τmax, ∀k ∈ D, l ∈ R Depot landing times for all trips is within the maximum time.
9 ti + (g + 1) · β ≤ θgi , ∀i ∈ V ′, g ∈ Bi Batch g of activity αi must be observed before it is processed.
10 θ̄gi < θg+1

i , ∀i ∈ V ′, g ∈ Bi Processing of batch g of activity αi must precede batch g+1.
11

∑
j∈−→i x

kl
ij +

∑
b∈−→a x

kl
ab−1 ≤ wgh

ia +whg
ai , ∀i, a ∈ V ′, i < a, g ∈ Bi, h ∈

Ba, k ∈ D, l ∈ R
Compute time slots of two batches g and h from activities
αi and αa on the same drone k and trip l should not
overlap [16].12 θ̄gi − θ

h
a ≤M · (1− w

gh
ia ), ∀i, a ∈ V, i 6= a, g ∈ Bi, h ∈ Ba

13 ylgik = 1⇒ θ̄gi +M
(

1−
∑

j∈−→i x
kl
ij

)
≤ δi, ∀i ∈ V ′, g ∈ Bi, k ∈ D, l ∈ R Decision variable for batches that complete before deadline.

14 zlgik = 1⇒ θ̄gi +M
(

1−
∑

j∈−→i x
kl
ij

)
≤ τ̄ lkn+1

, ∀i ∈ V ′, g ∈ Bi, k ∈ D, l ∈ R Decision variable for batches that complete before landing.

15
∑

i∈V

(∑
j∈−→i

(
xklij · Fij · εf

)
+

∑
g∈Bi

(
zlgik · κ

g
i · ε

c
)

+∑
j∈−→i

(
xklij · (t̄j−(t̄i + Fij)) · εh

))
≤ E, ∀k ∈ D, l ∈ R

Sum of energy consumed for flying, hovering and computing
on trip l of drone k should be within the battery capacity.

B. The OPT Algorithm

The OPTIMAL MISSION SCHEDULING (OPT) algorithm
offers an optimal solution to MSP by modeling it as a multi-
commodity flow problem (MCF), similar to [36], [12]. We
reformulate the MSP definition as an MILP formulation.

The paths in the city are modeled as a complete graph,
G = (V, E), between the n activity waypoint vertices, V =

{0, 1, . . . , n}, where 0 is the depot λ̂. Let
−→
i and

←−
i be the

set of out-edges and in-edges of a vertex i, and V ′ = V \
{0} be the set of all waypoint vertices. We enumerate the m
drones as D = {1, . . . ,m}. Let τmax be the maximum time
for completing all the missions, and rmax the maximum trips
a drone can do. Let R = {1, . . . , rmax} be the possible trips.

Let xklij ∈ {0, 1} be a decision variable that equals 1 if the
drone k ∈ D in its trip l ∈ R traverses the edge (i, j), and 0
otherwise. If xklij = 1 for i ∈ V ′, then the waypoint for activity
αi was visited by drone k on trip l. Let Bi = {0, . . . , qi} be
the set of batches of activity αi. Let wghia be a binary decision
variable used to linearize the batch computation whose value
is 1 if batch bgi is processed before bha , and 0 otherwise [16].

Let yklig be a decision variable that equals 1 if the drone
k ∈ D in trip l ∈ R processes the batch g of activity αi within
its deadline δi, and 0 otherwise; and similarly, zklig equals 1 if
the batch is processed before the drone completes the trip and
lands, and 0 otherwise. Let the per batch utility for on-board
completion be Γ̄i = γ̄i

qi
, and on-time completion be ¯̄Γi =

¯̄γi
qi

,
for activity αi. Finally, let M be a sufficiently large constant.

Using these, the MILP objective is:

max
∑
k∈D

∑
l∈R

∑
i∈V

(∑
j∈−→i

xklij · Γi

)
+

( ∑
g∈Bi

yklig · Γ̄i + zklig · ¯̄γi

)
(1)

subject to the constraints listed in Table I.

VI. HEURISTIC ALGORITHMS FOR MSP

Since MSP is NP-hard, OPT is tractable only for small-
sized inputs. So, time-efficient but sub-optimal algorithms are
necessary for larger-sized inputs. In this section, we propose
two heuristic algorithms, called JOB SCHEDULING CENTRIC
(JSC) and VEHICLE ROUTING CENTRIC (VRC).

A. The JSC Algorithm

The JOB SCHEDULING CENTRIC (JSC) algorithm aims to
find near-optimal scheduling of batches while ignoring the
optimizations of routing to conserve energy. JSC is split into
two phases: clustering and scheduling.

1) Clustering Phase: First, we use the ST-DBSCAN al-
gorithm [37] to find time-efficient spatio-temporal clusters
of activities. It returns a set of clusters C such that for
activities within a cluster Ci ∈ C, certain spatial and temporal
distance thresholds are met. Drones are then allocated to
clusters depending on their availability. For each cluster Ci,
let TUi = maxαj∈Ci (t̄j + F(λj , λ̂)) be the upper bound for
the latest landing time for a drone servicing activities in Ci;
analogously, let TLi = minαj∈Ci

(tj −F(λ̂, λj)) be the lower
bound for the earliest take-off time. Then, all the temporal
windows [TLi , T

U
i ] for each Ci ∈ C are sorted with respect

to TLi . Recalling that there are m drones available at t̂ = 0,
they are proportionally allocated to clusters depending on the
current availability, which in turn depends on the temporal
window. So, c1 = m

n · |C1| drones are allocated to C1 at time
TL1 and released at time TU1 ; c2 = m−c1

n · |C2| allocated to
C2 from TL2 to TU2 (assuming TL2 < TU1 ), and so on.

2) Scheduling Phase: Here, the activities are assigned to
drones. The feasibility of assigning αi to dj , is tested by
checking if the required flying and hovering energy is enough
to visit Aj ∪αi; here, we ignore the batch processing energy.



If feasible, the drone can update its take-off and landing times
accordingly, and then schedule the subset of batches B̂i ⊆ Bi
within the energy requirements. Assignments are done in two
steps: default assignment and test and swap assignment.
Default Assignment. For each bki ∈ B̂i, let Pbki = [tk+iβ, δk)
be the preferred interval; Qbki ⊆ Pbki be the available preferred
sub-intervals, i.e., the set of periods where no other batch is
scheduled; and Sbki = [δk, τ̄jn+1

) be the schedulable interval,
which exceeds the deadline but completes on-board. Clearly,
Pbki ∩ Sbki = ∅. The default schedule determines a suitable
time-slot for bki . If Qbki 6= ∅, bki is first-fit scheduled within
intervals of Qbki ; else, if Qbki = ∅, the same first-fit policy is
applied over intervals of Sbki . If bki cannot be scheduled even
in Sbki , it remains unscheduled.
Test and Swap Assignment. If the default assignment has
batches that violate their deadline, i.e., scheduled in S but
not in P , we use the test and swap assignment to improve
the schedule. Let P+

i =
⋃
i Pbki be the union of the preferred

intervals forming the total preferred interval for an activity αi.
Each batch bki is tested for violating its deadline. If it violates,
then batches bhj from other activities already scheduled in P+

i

are identified and tested if they too violate their deadline. If so,
bhj is moved to the next available slot in Sbhj , and its old time
slot given to bki . If bhj is in its preferred interval but has more
slots available in this interval, then bhj is moved to another
free slot in Pbhj and bki assigned to the slot that is freed. Else,
the current configuration does not contain violations, except
for the current batch bki , but all available slots are occupied.
So, the utility for bki is compared with another bhj in P+

i , and
the batch with a higher utility gets this slot.

3) The Core of JSC: The JSC algorithm works as follows
(Algorithm 1). After the initial clustering phase, activities
are tested for their feasibility. If so, the default assignment
is initially evaluated in terms of total utility. If this creates
deadline violation, the test and swap assignment performed,
and the best scheduling is applied.

Algorithm 1: JSC(A,D)

1 C← clustering phase
2 for Ck ∈ C do
3 for αi ∈ Ck do
4 for dj assigned to Ck do
5 if αi ∪Aj is feasible then
6 apply best scheduling among default and

test and swap assignment on B̂i

4) Time Complexity of JSC: ST-DBSCAN’s time complex-
ity is O(n log n) for n waypoints. Unlike k-means clustering,
ST-DBSCAN automatically picks a suitable number of clus-
ters, k, with ≈ n

k waypoints each. For k times, we compute
the min-max of sets of size n

k , sort the k elements and finally
make n

k assignments. So this drones-to-clusters allocation
takes O(k nk + k log k+ n

k ) time. Hence, this clustering phase
takes O(n log n) time.

For the test and swap assignment, we maintain an inter-
val tree for fast temporal operations. If l is the maximum

number of batches to schedule per activity, building the tree
costs O(nlk log(nlk )), while search, insertion and deletion cost
O(log(nlk )). Finding free time slots makes a pass over the
batches in O(nlk ). This is repeated for l batches, to give an
overall time complexity of O(nlk log(nlk ) + n

k l
2). Also the

default assignment relies on the same interval tree, reporting
the same complexity as test and swap assignment.

Finally, for the k clusters and each application in a
cluster, two schedule assignments are calculated for all the
drones. Thus, the time complexity of JSC is O(n log n) +
O(k nkm(nlk log(nlk )+ n

k l
2)). However, since the clustering can

result in single cluster, m→ n, and the overall complexity of
JSC is O(n3l2) in the worst case.

B. The VRC Algorithm

The VEHICLE ROUTING CENTRIC (VRC) algorithm aims
to find near-optimal waypoint routing while initially ignoring
efficient scheduling of the batch computation. VRC is split into
three phases: routing, splitting, and scheduling.

1) Routing Phase: In this phase, VRC builds routes while
satisfying the temporal constraint for activities, i.e., for
any two consecutive activities (αi, αi+1) in the route, t̄i +
F(λi, λi+1) ≤ ti+1. This is done using a modified version of
k-nearest neighbors (k-NN) algorithm, whose solution is then
locally optimized using the 2-OPT* heuristic [38].

The modified k-NN works as follows: Starting from λ̂, a
route is iteratively built by selecting, from among the k nearest
waypoints which meet the temporal constraint, the one, say,
λ1 whose activity has the earliest observation start time. This
process resumes from λ1 to find λ2, and so on until there is no
feasible neighbor. λ̂ is finally added to conclude the route. This
procedure is repeated to find other routes until all the possible
waypoints are chosen. This initial set of routes is optimized to
minimize the flying and hovering energy using 2-OPT*, which
lets us find a local optimal solution from the given one [15].
However, routes found here may be infeasible for a drone to
complete within its energy constraints.

2) Splitting Phase: Say Ri,j = (λ̂, λi, . . . , λj , λ̂) be an
energy-infeasible route from the routing phase, which visits
λi and λj as the first and last waypoints from λ̂. The goal
is to find a suitable waypoint λg for i ≤ g < j such that by
splitting Ri,j at λg and λg+1, we can find an energy-feasible
route while also improving the overall utility and reducing
scheduling conflicts for batches. For each edge (λg, λg+1), we
compute a split score whose value sums up three components:
energy score, utility score, and compute score.
Energy score. Let E(a, b) be the cumulative flying and
hovering energy required for some route Ra,b ⊆ Ri,j . Here we
sequentially partition the route Ri,j into multiple viable trips
R(i,k1−1), R(k1,k2−1), . . . , R(kx,j) such that each is a maximal
trip and is energy-feasible, i.e., E(ky, ky+1 − 1) ≤ E while
E(ky, ky+1) > E. For each edge (λg, λg+1) ∈ R(ky,ky+1−1),
the energy score is the ratio E(ky,g)

E ≤ 1. A high value indi-
cates that a split at this edge improves the battery utilization.
Utility score. Say U(a, b) gives the cumulative data capture
utility from visiting waypoints in a route Ra,b ⊆ Ri,j . Say



edge (λg, λg+1) ∈ R(ky,ky+1−1) ⊆ Ri,j is also part of a
viable trip from above. Here, we find the data capture utility
of a sub-route of Ri,j that starts a new maximal viable trip at
λg+1 and spans until λl, as U(g, l). The utility score of edge
(λg, λg+1) is the ratio between this new maximal viable trip
and the original viable trip the edge was part of, U(g,l)

U(ky,ky+1−1) .
A value > 1 indicates that a split at this edge improves the
utility relative to the earlier sequential partitioning of the route.
Compute score. We first do a soft scheduling of the batches
of all waypoints in Ri,j using the first-fit scheduling policy,
mapping them to their preferred interval, which is assumed to
be free. Say there are |Ri,j | such batches. Then, for each edge
edge (λg, λg+1) ∈ Ri,j , we find the overlap count Og as the
number of batches from αg whose execution slot overlaps with
batches from all other activities. The overlap score for edge
(λg, λg+1) is given as Og

|Ri,j | . If this value is higher, splitting
the route at this point will avoid batches from having schedule
conflicts in their preferred time slot.

Once the three scores are assigned, the edge with the highest
split score is selected as the split-point to divide the route into
two sub-routes. If a sub-route meets the energy constraint, it
is selected as a valid trip. If either or both of the sub-routes
exceed the energy capacity, the splitting phase is recursively
applied to that sub-route till all waypoints in the original route
are part of some valid trip.

3) Scheduling Phase: Trips are then sorted in decreasing
order of their total utility, and drones are allocated to trips
depending their temporal availability. Once assigned to a trip,
the drone’s scheduling is done by comparing the default
assignment and the test and swap assignment used in JSC.

4) The Core of VRC: The VRC algorithm works as fol-
lows (Algorithm 2). After the initial routing phase, energy-
unfeasible routes are split into feasible ones in the splitting
phase, and then drones are allocated to them. Finally, the
scheduling phase is applied to find the best schedule between
the default assignment and the test and swap assignment.

Algorithm 2: VRC(A,D)

1 R← routing phase
2 for Rij ∈ R do
3 for (λg, λg+1) ∈ Rij , i ≤ g < j do
4 s(g)← energy score + utility score + compute score

5 R′ ← splitting phase based on scores s(i), 1 ≤ i ≤ n
6 for dj assigned to Rij ∈ R′ do
7 apply best scheduling among default assignment and test

and swap assignment on Rij

5) Time Complexity of VRC: In the routing phase, the
modified k-NN takes O(kn), with n waypoints and k number
of neighbors. The 2-OPT* algorithm has time complexity
O(n4). Hence this phase overall has a cost of O(n4).

In the splitting phase, calculating the energy score for a
route with length n edges takes O(n). Calculating the energy
score has O(n2) complexity, and calculating the compute
score has O(n) complexity. Considering a recursion of length
n− 1, the complexity of this phase is O(n3)

Combining default assignment and test and swap assign-
ment, VRC’s overall complexity is O(n4) in the worst case.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

The OPT solution is implemented using IBM’s CPLEX
MILP solver v12 [39]. It uses Python to wrap the objective
and constraints, and invokes the parallel solver. Our JSC
and VRC heuristics have a sequential implementation using
native Python. By default, these scheduling algorithms on our
workloads run on an AWS c5n.4xlarge VM with Intel Xeon
Platinum 8124M CPU, 16 cores, 3.0 GHz, and 42 GB RAM.
OPT runs on 16 threads and the heuristics on 1 thread.

We perform real-world benchmarks on flying, hovering,
DNN computing and endurance, for a fleet of custom,
commercial-grade drones. The X-wing quad-copter is designed
with a top speed of 6 m/s (20 km/h), < 120 m altitude, a
24000 mAh Li-Ion battery and a payload capacity of 3 kg.
It includes dual front and downward HD cameras, GPS and
LiDAR Lite, and uses the Pixhawk2 flight controller. It also
has an NVIDIA Jetson TX2 compute module with 4-Core
ARM64 CPU, 256-core Pascal CUDA cores, 8 GB RAM and
32 GB eMMC storage. The maximum flying time is ≈ 30 min
with a range of 3.5 km. Based on our benchmarks, we use the
following drone parameters in our analytical experiments.

s εf εh εc E

4 m/s 750 J/s 700 J/s 20 J/s 1350 kJ

B. Workloads

We evaluate the scheduling algorithms for two application
workloads: Random (RND) and Depth First Search (DFS).
Both have a maximum mission time of 4 h over multiple
trips. In the RND workload, n waypoints are randomly placed
within a 3.5 km radius from the depot, and with a random
activity start time within (0, 240] mins. This is an adversarial
scenario with no spatio-temporal locality. The DFS workload
is motivated by realistic traffic monitoring needs. We perform
a depth-first traversal over a 3.5 km radius of our local
city’s road network, centered at the depot. With a P = 1

10
probability, we pick a visited vertex as an activity waypoint;
P grows by 1

10 for every vertex that is not selected, and n are
chosen. The start time of these activities monotonically grows.

The table below shows the activity and drone scenarios
for each workload. These are based on reasonable operational
assumptions and schedule feasibility. We vary the data capture
time (t̄− t); batching interval (β); batch execution time on 2
DNNs (ρM , ρR)1; deadline (δ); utility (γ); and number of
drones (m). The load factor x decides the count of activities
per mission, n = x ·m. Drones take at most rmax = n

m trips.

t̄− t β ρM ρR δ γ m x n = x ·m
[1, 5] 60 s 11 s 98 s 120 s [1, 5] 5, 10, 20, 50 2, 4, 8 10, . . . , 200

1We run SSD Mobilenet v2 DNN (MNet, ρM ) [40], popular for analyzing
drone footage [41], and FCN Resnet18 DNN (RNet, ρR) [42] on the TX2.
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Fig. 2. Expected utility per drone and algorithm runtime of the three MSP algorithms, for the RND and DFS workloads on MNet. On the X axis, the number
of drones (outer) and activities per drone (inner) increase. OPT is solved on 16× cores while JSC and VRC run on just 1. DNF indicates OPT did not finish.
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Fig. 3. Expected utility per drone and algorithm runtime for RNet on DFS.

For brevity, RNet is only run on DFS. 10 instances of each of
these 33 viable workload scenarios are created. We run OPT,
JSC and VRC for each to return a schedule and expected utility.

C. Experimental Results

Figures 2a, 2b and 3a show the expected utility per drone for
the schedules from the 3 algorithms, for different drone counts
and activity load factors. Similarly, Figures 2c, 2d, and 3b
show the algorithm execution time (log, secs) for them. Each
bar is averaged for 10 instances and the standard deviations
shown as whiskers. The per drone utility lets us uniformly
compare the schedules for different workload scenarios. The
total utility – MSP objective function – is the product of the
per drone utility shown and the drone count. OPT did not finish
(DNF) within 7 h for scenarios with 40 or more activities.

1) OPT offers the highest utility, if it completes executing,
followed by VRC, and JSC: Specifically, for the 5-drone
scenarios for which OPT completes, it offers an average of 42%
higher expected utility than JSC. VRC gives 26% more average
utility than JSC for these scenarios, and 75% more for all
scenarios they run for. This is as expected for OPT. Since a bulk
of the energy is consumed for flying and hovering, VRC, which
starts with an energy-efficient route, schedules more activities
within the time and energy budget, as compared to JSC. This
is evidenced by Figure 4, which reports for MNet the average
fraction of activities, which are submitted and successfully
scheduled by the algorithms. The remaining activities are not
part of any trip. Among all workloads, JSC only schedules
60% of activities, VRC 90%, and OPT 98%. So OPT and VRC
are better at packing routes and analytics on the UAVs. OPT
and VRC offer more utility for the DFS workload than RND
since ≥ 96% of DFS activities are scheduled. They exploit the
spatial and temporal locality of activities in DFS.

10 20 40 20 40 80 40 80 1601002000

20

40

60

80

100

120

%
 c

om
pl

et
ed

 a
ct

iv
iti

es

5d 10d 20d 50d

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

JSC VRC OPT

(a) RND

10 20 40 20 40 80 40 80 1601002000

20

40

60

80

100

120

%
 c

om
pl

et
ed

 a
ct

iv
iti

es

5d 10d 20d 50d

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

(b) DFS

Fig. 4. Fraction (%) of submitted activities scheduled per mission for MNet.

2) The average flying time per activity in each trip is higher
for VRC compared to JSC: Interestingly, at 728 s vs. 688 s per
activity, the route-efficient schedules from VRC manage to fly
to waypoints farther away from the depot and/or from each
other, within the energy constraints, when compared to the
schedules from JSC. As a result, it schedules a larger fraction
of the activities to gain a higher expected utility.

3) The execution times for VRC and JSC match their time
complexity: We use the execution times for JSC to schedule
the 300+ workload instances to fit a cubic function in n, the
number of activities, to match its time complexity of O(n3·l2);
since in our runs, l ∈ [1, 5] and l ≤ n, we omit that term in
the fit. Similarly, we fit a degree-4 polynomial for VRC in n.
The correlation coefficient for these two fits are high at 0.86
and 0.99, respectively. So, the real-world execution time of
our scheduling heuristics match our complexity analysis.

4) OPT is the slowest to execute, followed by VRC and JSC:
Despite OPT using 16× more cores than JSC and VRC, its
average execution times are > 100 s for just 20 activities. The
largest scenario to complete in reasonable time is 40 activities
on 5 drones, which took 7 h on average. This is consistent
with the NP-hard nature of MSP. As our mission window is
4 h, any algorithm slower than that is not useful.

JSC is fast, and on average completes within 1 s for up to
80 activities. Even for the largest scenario with 50 drones and
200 activities, it takes only 90 s for RND and 112 s for DFS.
VRC is slower but feasible for a larger range of activities than
OPT. It completes within 3 min for up to 100 activities. But,
it takes ≈ 45 min to schedule 200 activities on 50 drones.

5) The choice of a good scheduling algorithm depends on
the fleet size and activity count: From these results, we can
conclude that OPT is well suited for small drone fleets with
about 20 activities scheduled per mission. This completes



within minutes and offers about 20% better utility than VRC.
VRC offers a good trade-off between utility and execution time
for medium workloads with 100 activities and 50 drones. This
too completes within minutes and gives on average about 75%
better utility than JSC and schedules over 80% of all submitted
activities. For large fleets with 200 or more activities being
scheduled, JSC is well suited with fast solutions but has low
utility and leaves a majority of activities unscheduled.

6) A higher load factor increases the utility, but causes
fewer % of activities to be scheduled: As x increases, we see
that the utility derived increases. This is partly due to adequate
energy and time being available for the drones to complete
more activities in multiple trips. E.g., for the 5-drone case,
we use load factors of x = {2, 4, 8, 16, 32} for JSC and VRC.
There is a consistent growth in the total utility, from 109 to
523 for JSC, and from 121 to 1080 for VRC. There is also a
corresponding growth in the number of trips performed per
mission, e.g., from 7.5 to 43.2 in total for VRC.

However, the fraction of submitted activities that are sched-
uled falls. For JSC, its activity scheduled % linearly drops with
x from 76% to 23%. But for VRC, the scheduled % stays at
about 80% until x = 8, at which point the activities saturate
the drone fleet’s capacity and the scheduled % falls linearly to
37% for x = 32. Interestingly, the utility increases faster than
the number of activities scheduled for VRC. This is due to the
scheduler favoring activities that offer a higher utility, while
avoiding those with a lower utility, causing a 20% increase in
utility received per activity between x = 8 to x = 32.

7) Longer-running edge analytics offer lower on-time util-
ity: We run the same scenarios using RNet and MNet DNNs
for the DFS workload. For both JSC and VRC, the data capture
utility that accrues from their schedules for the two DNNs is
similar. However, since the RNet execution time per batch is
much higher than MNet, there is a drop in on-time utility,
by about 32% for both JSC and VRC, due to more deadline
violations. As a result, this also causes a drop in total utility
for RNet by about 15.9% for JSC and 19% for VRC, relative
to MNet. Even for OPT we see a similar trend with a 15.8%
drop in the total utility. The runtime of JSC and VRC do not
exhibit a significant change between RNet and MNet.

8) Effect of real-world factors: The expected utilities re-
ported above are under ideal conditions. Here, we evaluate
their practical efficacy by emulating these schedules using real
drone traces to get the effective utility and trip completion rate.

Ideally, each trip generated by JSC and VRC should complete
be within a drone’s energy capacity. In practice, factors such
as wind or non-linear battery performance can increase or
decrease the actual energy consumed. Figure 5 shows the
% of scheduled trips that do not complete when using the
drone trace. With < 80 activities, all trips complete (not
plotted). But but with ≥ 80 activities, some trips in the planned
schedule start to fail. At worst, 12% of trips are incomplete
in some schedules. So the effect of real-world factors can be
significant. Interestingly, for the failed trips, an average 3.6%
and a maximum of 7.9% extra battery capacity would allow
them to finish the trip. So by maintaining a buffer battery
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Fig. 5. % of incomplete trips using drone trace. It is 0% for < 80 activities.

capacity of ≈ 10% when planning a schedule, we can ensure
that the drones can complete a trip and return to the depot.

VIII. CONCLUSION AND FUTURE WORK

This paper introduces a novel Mission Scheduling Problem
(MSP) that co-schedules routes and analytics for drones,
maximizing the utility for completing activities. We proposed
an optimal algorithm, OPT, and two time-efficient heuristics,
JSC and VRC. Evaluations using two workloads, varying drone
counts and load factors, and real traces exhibit different trade-
offs between utility and execution time. OPT is best for ≤ 20
activities and ≤ 5 drones, VRC for ≤ 100 activities and ≤ 50
drones, and JSC for > 100 activities. Their time complexity
matches reality. The schedules work well for fast and slow
DNNs, though on-time utility drops for the latter.

The MSP proposed here is just one variant of an entire class
of fleet co-scheduling problems for drones. Other architectures
can be explored considering 4G/5G network coverage to send
edge results to the back-end, or even off-load captured data
to the cloud if it is infeasible to compute on the drone.
This will allow more pathways for data sharing among UAVs
and GS, but impose energy, bandwidth and latency costs for
communications. Even the routing can be aware of cellular
coverage to ensure deterministic off-loading on a trip.

We can use alternate cost models by assigning an opera-
tional cost per trip or per visit, and convert the MSP into a
profit maximization problem. The activity time-windows may
be relaxed rather than be defined as a static window. Drones
with heterogeneous capabilities, in their endurance, compute
capabilities, and sensors, will also be relevant for performing
diverse activities such as picking up a package using an on-
board claw and visually verifying it using a DNN.

Finally, we need to deal with dynamics and uncertainties
like wind, obstacles and non-linear battery or compute behav-
ior that affect flight paths, energy consumption and utilities.
We can use probability distributions and stochastic approaches
coupled with real-time information, which can decide and
enact on-line rescheduling and rerouting while on a trip.
Such on-the-fly route updates for drones also allows us to
accept and schedule activities continuously, rather accumulate
a mission over hours, and prioritize the profitable activities.
These will also need to be validated using more robust real-
world experiments and traces.
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