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Abstract
Learning with noisy labels is a common chal-
lenge in supervised learning. Existing ap-
proaches often require practitioners to specify
noise rates, i.e., a set of parameters controlling
the severity of label noises in the problem, and
the specifications are either assumed to be given
or estimated using additional steps. In this work,
we introduce a new family of loss functions that
we name as peer loss functions, which enables
learning from noisy labels and does not require
a priori specification of the noise rates. Peer loss
functions work within the standard empirical risk
minimization (ERM) framework. We show that,
under mild conditions, performing ERM with
peer loss functions on the noisy data leads to the
optimal or a near-optimal classifier as if perform-
ing ERM over the clean training data, which we
do not have access to. We pair our results with an
extensive set of experiments. Peer loss provides
a way to simplify model development when fac-
ing potentially noisy training labels, and can be
promoted as a robust candidate loss function in
such situations.

1. Introduction
The quality of supervised learning models depends on the
quality of the training dataset {(xn, yn)}Nn=1. In practice,
label noise can arise due to a host of reasons. For instance,
the observed labels ỹns may represent human observations
of a ground truth label. In this case, human annotators may
observe the label imperfectly due to differing degrees of
expertise or measurement error, see e.g., medical examples
such as labeling MRI images from patients. There exist ex-
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tensive prior works in the literature that aim to develop al-
gorithms to learn models that are robust to label noise (By-
lander, 1994; Cesa-Bianchi et al., 1999; 2011; Ben-David
et al.; Scott et al., 2013; Natarajan et al., 2013; Scott, 2015).
Typical solutions that have theoretical guarantees often re-
quire a priori knowledge of noise rates, i.e., a set of param-
eters that control the severity of label noise. Working with
unknown noise rates is difficult in practice: Usually, one
must estimate the noise rates from data, which may require
additional data collection or requirement (Natarajan et al.,
2013; Scott, 2015; Van Rooyen et al., 2015a) (e.g., a set of
ground truth labels for tuning these parameters) and may
introduce estimation error that can affect the final model in
less predictable ways. Our main goal is to provide an al-
ternative that does not require the specification of the noise
rates, nor an additional estimation step for the noise. This
target solution benefits the practitioner when he or she does
not have access to reliable estimates of the noise rates (e.g.,
when the training data has a limited size for the estimation
tasks, or when the training data is already collected in a
form that makes the estimation hard to perform).

In this paper, we introduce a new family of loss functions,
peer loss functions, to empirical risk minimization (ERM),
for a broad class of learning with noisy labels problems.
Peer loss functions operate under different noise rates with-
out requiring either a priori knowledge of the embedded
noise rates, or an estimation procedure. This family of loss
functions builds on approaches developed in the peer pre-
diction literature (Miller et al., 2005; Dasgupta & Ghosh,
2013; Shnayder et al., 2016), which studies how to elicit
information from self-interested agents without verifica-
tion. Results in the peer prediction literature focused on de-
signing scoring functions to score each reported data using
another noisy reference answer, without accessing ground
truth information. We borrow this idea and the associated
scoring functions via making a connection through treating
each classifier’s predictions as an agent’s private informa-
tion to be elicited and evaluated, and the noisy labels as
imperfect reference answers reported from a “noisy label
agent”. The specific form of peer loss evaluates classifiers’
prediction using noisy labels on both the samples to-be-
evaluated and carefully constructed “peer” samples. The
evaluation on the constructed peer sample encodes implic-
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itly the information about the noise as well as the under-
lying true labels, which helps us offset the effects of label
noise. The peer sample evaluation returns us a favorable
property that the expected risk of peer loss computed on
the noisy distribution turns to be an affine transformation
of the true risk of the classifier defined on the clean distri-
bution. In other words, peer loss is invariant to label noise
when optimizing with it. This effect helps us get rid of the
estimation of noise rates.

The main contributions of this work are:

1. We propose a new family of loss functions that can eas-
ily adapt to existing ERM framework that i) is robust to
asymmetric label noise with formal theoretical guaran-
tees and ii) requires no prior knowledge or estimation
of the noise rates (no need for specifying noise rates).
We believe having the second feature above is non-trivial
progress, and it features a promising solution to deploy
in an unknown noisy training environment.

2. We present formal results showing that performing ERM
with a peer loss function can recover an optimal, or a
near-optimal classifier f∗ as if performing ERM on the
clean data (Theorem 2, 3, 4). We also provide peer loss
functions’ risk guarantees (Theorem 5, 7).

3. We present extensive experimental results to validate the
usefulness of peer loss functions (Section 5 and Ap-
pendix). This result is encouraging as it demonstrates
the practical effectiveness in removing the requirement
of error rates of noise before many of the existing train-
ing methods can be applied. We also provide preliminary
results on how peer loss generalizes to multi-class clas-
sification problems.

4. Our implementation of peer loss functions is available at
https://github.com/gohsyi/PeerLoss.

Due to space limit, the full version of this paper with all
proof and experiment details can be found in (Liu & Guo,
2020).

1.1. Related Work

We go through the most relevant works.1

Learning from Noisy Labels Our work fits within a
stream of research on learning with noisy labels. A large
portion of research on this topic works with the random
classification noise (RCN) model, where observed labels
are flipped independently with probability ∈ [0, 12 ] (By-
lander, 1994; Cesa-Bianchi et al., 1999; 2011; Ben-David
et al.). Recently, learning with asymmetric noisy data
(or also referred as class-conditional random classification
noise (CCN)) for binary classification problems has been

1We provide more detailed discussions in the Appendix.

rigorously studied in (Stempfel & Ralaivola, 2009; Scott
et al., 2013; Natarajan et al., 2013; Scott, 2015; Van Rooyen
et al., 2015a; Menon et al., 2015).

For RCN, where the noise parameters are symmetric, there
exist works that show symmetric loss functions (Manwani
& Sastry, 2013; Ghosh et al., 2015; 2017; Van Rooyen
et al., 2015a) are robust to the underlying noise, without
specifying the noise rates. Our focus departs from this line
of works and we exclusively focus on asymmetric noise
setting, and study the possibility of an approach that can
ignore the knowledge of noise rates. Follow-up works in-
clude (Du Plessis et al., 2013; Van Rooyen et al., 2015b;
Menon et al., 2015; Charoenphakdee et al., 2019).

More Recent Works More recent developments include
an importance re-weighting algorithm (Liu & Tao, 2016),
a noisy deep neural network learning setting (Sukhbaatar
& Fergus, 2014; Han et al., 2018; Song et al., 2019), and
learning from massive noisy data for image classification
(Xiao et al., 2015; Goldberger & Ben-Reuven, 2016; Zhang
et al., 2017; Jiang et al., 2017; Jenni & Favaro, 2018; Yi &
Wu, 2019), robust cross entropy loss for neural network
(Zhang & Sabuncu, 2018), loss correction (Patrini et al.,
2017), among many others. Loss or sample correction has
also been studied in the context of learning with unlabeled
data with weak supervisions (Lu et al., 2018). Most of the
above works either lacks theoretical guarantees of the pro-
posed method against asymmetric noise rates (Sukhbaatar
& Fergus, 2014; Zhang & Sabuncu, 2018), or require es-
timating the noise rate (or transition matrix between the
noisy and true labels) (Liu & Tao, 2016; Xiao et al., 2015;
Patrini et al., 2017; Lu et al., 2018).

A recent work (Xu et al., 2019) proposes an information
theoretical loss, an idea adapted from an earlier theoretical
contribution (Kong & Schoenebeck, 2018), which is also
robust to asymmetric noise rates. We aimed for a simple-
to-optimize loss function that can easily adapt to existing
ERM solutions.

Peer Prediction Our work builds on the literature of peer
prediction (Prelec, 2004; Miller et al., 2005; Witkowski
& Parkes, 2012; Radanovic & Faltings, 2013; Witkowski
et al., 2013; Dasgupta & Ghosh, 2013; Shnayder et al.,
2016; Liu & Chen, 2017). Most relevant to us is (Das-
gupta & Ghosh, 2013; Shnayder et al., 2016) where a cor-
related agreement (CA) type of mechanism was proposed.
CA evaluates a report’s correlations with another reference
agent - its specific form inspired our peer loss.

2. Preliminaries
Suppose (X,Y ) ∈ X × Y are drawn from a joint dis-
tribution D, with their marginal distributions denoted as
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PX ,PY . We assume X ⊆ Rd, and Y = {−1,+1}, that
is we consider a binary classification problem. Denote by
p := P(Y = +1) ∈ (0, 1). There are N training samples
(x1, y1), ..., (xN , yN ) drawn i.i.d. from D. For positive in-
teger n, denote by [n] := {1, 2, ..., n}.

Instead of observing yns, the learner can only collect a
noisy set of training labels ỹns, generated according to yns
and a certain error rate model; that is we observe a dataset
{(xn, ỹn)}Nn=1. We assume uniform error for all the train-
ing samples we collect, in that errors in ỹns follow the same
error rate model: denoting the random variable for noisy la-
bels as Ỹ and we define

e+1 := P(Ỹ = −1|Y = +1), e−1 := P(Ỹ = +1|Y = −1)

Label noise is conditionally independent from the features,
that is the error rate is uniform across xns: P(Ỹ = y′|Y =
y) = P(Ỹ = y′|X,Y = y), ∀y, y′ ∈ {−1,+1}.

We assume 0 ≤ e+1+e−1 < 1 - this condition is not unlike
the ones imposed in the existing learning literature (Natara-
jan et al., 2013), and it simply implies that the noisy labels
are positively correlating with the true labels (informative
about the true labels). Denote the distribution of the noisy
data (X, Ỹ ) as D̃.

f : X → R is a real-valued decision function, and its risk
w.r.t. the 0-1 loss is defined as E(X,Y )∼D[1(f(X), Y )].
The Bayes optimal classifier f∗ is the one that minimizes
the 0-1 risk: f∗ = argminf E(X,Y )∼D[1(f(X), Y )]. De-
note this optimal risk as R∗. Instead of minimizing the
above 0-1 risk, the learner often seeks a surrogate loss func-
tion ` : R × {−1,+1} → R+, and finds a f ∈ F that
minimizes the following error: E(X,Y )∼D[`(f(X), Y )]. F
is the hypothesis space for f . Denote the following mea-
sures: RD(f) = E(X,Y )∼D[1(f(X), Y )] and R`,D(f) =
E(X,Y )∼D[`(f(X), Y )].

When there is no confusion, we will also short-hand
E(X,Y )∼D[`(f(X), Y )] as ED[`(f(X), Y )]. Denoting D
a dataset collected from distribution D (correspondingly
D̃ := {(xn, ỹn)}n∈[N ] from D̃), the empirical risk measure
for f is defined as R̂`,D(f) = 1

|D|
∑

(x,y)∈D `(f(x), y) .

2.1. Learning with Noisy Labels

Typical methods for learning with noisy labels include
developing noise correction surrogates loss function to
learn with noisy data (Natarajan et al., 2013). For in-
stance, (Natarajan et al., 2013) tackles this problem by
defining the following un-biased surrogate loss functions
over ` to help “remove” noise in expectation: ˜̀(t, y) :=
(1−e−y)·`(t,y)−ey·`(t,−y)

1−e−1−e+1
, ∀t, y. ˜̀ is identified such that

when a prediction is evaluated against a noisy label using
this surrogate loss function, the prediction is as if evalu-

ated against the ground-truth label using ` in expectation.
Hence the loss of the prediction is “unbiased”, that is ∀
prediction t, EỸ |y[˜̀(t, Ỹ )] = `(t, y) [Lemma 1, (Natarajan
et al., 2013)].

One important note to make is most, if not all, existing solu-
tions require the knowledge of the error rates e−1, e+1. Pre-
vious works either assumed the knowledge of it, or needed
additional assumptions, clean labels or redundant noisy la-
bels to estimate them. This becomes the bottleneck of ap-
plying these great techniques in practice. Our work is also
motivated by the desire to remove this limitation.

2.2. Peer Prediction

Peer prediction is a technique developed to truthfully elicit
information when there is no ground truth verification.
Suppose we are interested in eliciting private observations
about a binary event Y ∈ {−1,+1} generated according to
a random variable Y . There are K agents indexed by [K].
Each of them holds a noisy observation of the truth Y = y,
denoted as yA ∈ {−1,+1}, A ∈ [K]. We would like to
elicit the yAs, but they are completely private and we will
not observe y to evaluate agents’ reports. Denote by rA the
reported data from each agent A. rA 6= yA if agents are
not compensated properly for their information.

Results in peer prediction have proposed scoring or re-
ward functions that evaluate an agent’s report using the
reports of other peer agents. For example, a peer pre-
diction mechanism may reward agent A for her report
rA using S(rA, rB) where rB is the report of a ran-
domly selected reference agent B ∈ [K]\{A}. The
scoring function S is designed so that truth-telling is a
strict Bayesian Nash Equilibrium (implying other agents
truthfully report their yB), that is, EyB [S(yA, yB)|yA] >
EyB [S(rA, yB)|yA], ∀rA 6= yA.

Correlated Agreement (Shnayder et al., 2016; Dasgupta
& Ghosh, 2013) (CA) is an established peer prediction
mechanism for a multi-task setting2. CA is also the core
and the focus of our subsequent sections on developing
peer loss functions. This mechanism builds on a ∆ ma-
trix that captures the stochastic correlation between the two
sources of predictions yA and yB . Denote the following
relabeling function: g(1) = −1, g(2) = +1, ∆ ∈ R2×2

is a squared matrix with its entries defined as follows:
∀ k, l = 1, 2

∆k,l = P
(
yA = g(k), yB = g(l)

)
− P

(
yA = g(k)

)
P
(
yB = g(l)

)
,

The intuition of above ∆ matrix is that each (k, l) entry of
∆ captures the marginal correlation between the two pre-
dictions yA and yB . When there is no confusion in the text,
we will always follow this relabeling function to map a −1
label to 1 and +1 to 2 when defining or calling an entry in

2We provide other examples of peer prediction functions in the
Appendix.
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the ∆ matrix without explicitly spelling out g(·), that is we
will write

∆k,l = P
(
yA = k, yB = l

)
− P

(
yA = k

)
· P
(
yB = l

)
,

as well as

∆y,y′ = P
(
yA = y, yB = y′

)
− P
(
yA = y

)
· P
(
yB = y′

)
.

We further define M : {−1,+1} × {−1,+1} → {0, 1} as
the sign matrix of ∆:

M(y, y′) =: Sgn (∆y,y′) , (1)

where Sgn(x) = 1, x > 0; Sgn(x) = 0, otherwise.

CA requires each agent A to perform multiple tasks: de-
note agent A’s predictions for the N tasks as yA1 , . . . , y

A
N .

Ultimately the scoring function S(·) for each task n that is
shared between A,B is defined as follows: randomly draw
two tasks n1, n2 , n1 6= n2,

S
(
yAn , y

B
n

)
:=M

(
yAn , y

B
n

)
−M

(
yAn1

, yBn2

)
.

A key difference between the first and second M(·) terms
is that the second term is defined for two independent peer
tasks n1, n2 (as the reference answers). It was established
in (Shnayder et al., 2016) that CA is truthful at a Bayesian
Nash Equilibrium (Theorem 5.2, (Shnayder et al., 2016).)
3; in particular, if yB is categorical w.r.t. yA: P(yB =
y′|yA = y) < P(yB = y′), ∀A,B ∈ [K], y′ 6= y then S(·)
is strictly truthful (Theorem 4.4, (Shnayder et al., 2016)).

3. Learning with Noisy Labels: a Peer
Prediction Approach

In this section, we show that peer prediction scoring func-
tions, when specified properly, will adopt Bayes optimal
classifier as their maximizers (or minimizers for the corre-
sponding loss form).

3.1. Learning with Noisy Labels as an Elicitation
Problem

We first state our problem of learning with noisy labels as a
peer prediction problem. The connection is made by firstly
rephrasing the two data sources, the classifiers’ predictions
and the noisy labels, from agents’ perspective. For a task
Y ∈ {−1,+1}, say +1 for example, denote the noisy la-
bels Ỹ as Z(X), X ∼ PX|Y=1. In general, Z(X) can be
interpreted as the agent that “observes” ỹ1, ..., ỹN for a set
of randomly drawn feature vectors x1, ..., xN : ỹn ∼ Z(X).
Denote the following error rates for the agent’s observa-
tions (similar to the definition of e+1, e−): P(Z(X) =

3To be precise, it is an informed truthfulness. We refer inter-
ested readers to (Shnayder et al., 2016) for details.

−1|Y = +1) = e+1, P(Z(X) = +1|Y = −1) = e−1.
There is another agent whose observations “mimic” the
Bayes optimal classifier f∗. Again denote this optimal clas-
sifier agent as Z∗(X) := f∗(X): P(Z∗(X) = −1|Y =
+1) = e∗+1, P(Z∗(X) = +1|Y = −1) = e∗−1.

Elicited report as the classifier prediction

Max reward = Min loss

Reference report as the noisy label

Figure 1. S is the peer prediction function; `peer is to “evaluate” a
classifier’s prediction using a noisy label.

Suppose we would like to elicit predictions from the opti-
mal classifier agent Z∗, while the reports from the noisy
label agent Z will serve as the reference reports. Both Z
and Z∗ are randomly assigned a task X = x, and each of
them observes a signal Z(x) and Z∗(x) respectively. De-
note the report from agent Z∗ as r∗. A scoring function
S : R × R → R is called to induce truthfulness if the fol-
lowing fact holds: ∀r∗(X) 6= Z∗(X),

EX
[
S
(
Z∗(X), Z(X)

)]
≥ EX

[
S
(
r∗(X), Z(X)

)]
. (2)

Taking the negative of S(·) (changing a reward score one
aims to maximize to a loss to minimize) we also have

EX
[
−S
(
Z∗(X), Z(X)

)]
≤ EX

[
−S
(
r∗(X), Z(X)

)]
,

implying when taking−S(·) as the loss function, minimiz-
ing −S(·) w.r.t. Z will the Bayes optimal classifier f∗.

Our idea is summarized in Figure 1.

3.2. Peer Prediction Mechanisms Induce Bayes
Optimal Classifier

When there is no ambiguity, we will shorthand
Z(X), Z∗(X) as Z,Z∗, with keeping in mind that
Z,Z∗ encode the randomness in X . In the elicitation
setting, a potentially misreported classifier f(X) only
disagrees with f∗(X) according to its local observation
f∗(X) but not Y (unobservable to the agent), that is
P(f(X) 6= f∗(X)|f∗(X) = l, Y = +1) = P(f(X) 6=
f∗(X)|f∗(X) = l, Y = −1), l ∈ {−1,+1}. Denote
this reporting space of f as Freport: clearly f∗ belongs to
this space (truthful reporting). Suppose Z∗ has the correct
prior p of Y . Then we have:

Theorem 1. Suppose S(·) induces truthful f∗ (Eqn.
(2)), that is S(·) is able to elicit the Bayes opti-
mal classifier f∗ (agent Z∗) using Z. Then f∗ =
argminf∈Freport

E(X,Ỹ )∼D̃
[
−S(f(X), Ỹ )

]
.
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This proof can be done via showing that any non-optimal
Bayes classifier corresponds to a non-truthful misreporting
strategy. We emphasize that it is not super restrictive to
have a truthful peer prediction scoring function S. We pro-
vide discussions in Appendix. Theorem 1 provides a con-
ceptual connection and can serve as an anchor point when
connecting a peer prediction score function to the problem
of learning with noisy labels (with restriction to a particu-
lar reporting space). So far we have not discussed a specific
form of how we construct a loss function using ideas from
peer prediction, and have not mentioned the requirement of
knowing the noise rates. We will provide the detail about
a particular peer loss (with little to none restriction) in the
next section, and explain its independence of noise rates.

4. Peer Loss Function
We now present peer loss, a family of loss functions in-
spired by a particular peer prediction mechanism, the cor-
related agreement (CA), as presented in Section 2.2. We are
going to show that peer loss is able to induce the minimizer
of a hypothesis spaceF , under a broad set of non-restrictive
conditions. In this Section, we do not restrict to Bayes op-
timal classifiers, nor do we impose any restrictions on the
loss functions’ elicitation power.

4.1. Preparing CA for Noisy Learning Problem

To give a gentle start, we repeat the setting of CA for our
classification problem.

∆ and scoring matrix First recall that ∆ ∈ R2×2 is a
squared matrix with entries defined between Z∗ (the f∗)
and Z (i.e., the noisy labels Ỹ ): ∀k, l = 1, 2

∆k,l = P
(
f∗(X) = k, Ỹ = l

)
− P

(
f∗(X) = k

)
P
(
Ỹ = l

)
,

∆ characterizes the “marginal” correlations between the
optimal classifier’ prediction and the noisy label Ỹ . Then
the following scoring matrixM is computed using Sgn(∆),
the sign matrix of ∆.

Example 1. Consider a binary class label case: P(Y =
−1) = 0.4,P(Y = +1) = 0.6, the noise in the labels
are e−1 = 0.3, e+1 = 0.4 and e∗−1 = 0.2, e∗+1 = 0.3.
Then we have ∆1,1 = 0.036, ∆1,2 = −0.036, ∆2,1 =
−0.036, ∆2,2 = 0.036. The details of the calcula-
tion can be found in the Appendix. And: ∆ =[

0.036 −0.036
−0.036 0.036

]
⇒ Sgn(∆) =

[
1 0
0 1

]
.

Peer samples For each sample (xn, ỹn), randomly draw
another two samples (xn1

, ỹn1
), (xn2

, ỹn2
) such that n1 6=

n2. We will name (xn1
, ỹn1

), (xn2
, ỹn2

) as n’s peer sam-
ples. After pairing xn1 with ỹn2 (two independent in-
stances), the scoring function S(·) for each sample point

xn is defined as follows:

S(f(xn), ỹn)) = M
(
f(xn), ỹn

)
−M

(
f(xn1), ỹn2

)
.

Define loss function ˜̀(·) as the negative of S(·), which we
will name as the (Generic Peer Loss)

˜̀
(
f(xn),ỹn

)
:=
(
1−M

(
f(xn), ỹn

))
−
(
1−M

(
f(xn1), ỹn2

))
.

(3)

The first term above evaluates the classifier’s prediction on
xn using noisy label ỹn, and the second “peer” term defined
on two independent tasks n1, n2 “punishes” the classifier
from overly agreeing with the noisy labels. We will see
this effect more clearly.

4.2. Peer Loss

We need to know Sgn(∆) in order to specify M and ˜̀,
which requires certain information about f∗ and Ỹ . We
show that Example 1 is not a special case, and for the sce-
narios that the literature is broadly interested in, Sgn(∆) is
simply the identify matrix:

Lemma 1. When e−1+e+1 < 1, we have Sgn(∆) = I2×2,
the identity matrix.

The above implies that for ∆k,k, k = 1, 2, f∗ and Ỹ are
positively correlated, so the marginal correlation is posi-
tive; while for off-diagonal entries, they are negatively cor-
related.

Peer Loss When Sgn(∆) = I2×2, M(y, y′) = 1 if y =
y′, and 0 otherwise. ˜̀(·) defined in Eqn. (3) reduces to the
following form:

1peer(f(xn), ỹn) = 1(f(xn), ỹn)− 1(f(xn1), ỹn2) (4)

To see this, for instance 1−M
(
f(xn) = +1, ỹn = +1

)
=

1 −M(2, 2) = 1 − 1 = 0 = 1(f(xn) = +1, ỹn = +1).
Replacing 1(·) with any generic loss `(·) we define:

`peer(f(xn), ỹn) = `(f(xn), ỹn)− `(f(xn1), ỹn2) (5)

We name the above loss as peer loss. This strikingly simple
form of `peer(f(xn), ỹn) implies that knowing e−1+e+1 <
1 holds is all we need to specify `peer.

Later we will show this particular form of loss is invariant
under label noise, which gives peer loss the ability to drop
the requirement noise rates. We will instantiate this argu-
ment formally with Lemma 2 and establish a link between
the above measure and the true risk of a classifier on the
clean distribution. The rest of presentation focuses on `peer
(Eqn. (5)), but `peer recovers 1peer via replacing ` with 1.
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ERM with Peer Loss Performing ERM with peer loss
returns us f̂∗`peer

:

f̂∗`peer
= arg min

f∈F

1

N

N∑
n=1

`peer(f(xn), ỹn) (6)

Note again that the definition of `peer does not require the
knowledge of either e+1, e−1 or e∗+1, e

∗
−1.

4.3. Property of Peer Loss

We now present a key property of peer loss, which shows
that its risk over the noisy labels is simply an affine
transformation of its true risk on clean data. We denote
by ED[`peer(f(X), Y )] the expected peer loss of f when
(X,Y ), as well as its peer samples, are drawn i.i.d. from
distribution D.

Lemma 2. Peer loss is invariant to label noise:

ED̃[`peer(f(X), Ỹ )] = (1−e−1−e+1)·ED[`peer(f(X), Y )].

The above Lemma states that peer loss is invariant to label
noise in expectation. We have also empirically observed
this effect in our experiment. Therefore minimizing it over
noisy labels is equivalent to minimizing over the true clean
distribution. The theorems below establish the connection
between ED[`peer(f(X), Y )], the expected peer loss over
clean data, with the true risk:

Denote f̃∗1peer
= arg minf∈F R1peer,D̃(f). With Lemma 2,

we can easily prove the following:

Theorem 2. [Optimality guarantee with equal prior]
When p = 0.5, f̃∗1peer

∈ arg minf∈F RD(f).

The above theorem states that for a class-balanced dataset
with p = 0.5, peer loss induces the same minimizer
as the one that minimizes the 0-1 loss on the clean
data. Removing the constraint of F , i.e., f̃∗1peer

=

arg minf R1peer,D̃(f) ⇒ f̃∗1peer
= f∗. In practice we can

balance the dataset s.t. p → 0.5. When p 6= 0.5, denote
δp = P(Y = +1)− P(Y = −1), we prove:

Theorem 3. [Approximate optimality guar-
antee with unequal prior] When p 6= 0.5,
|RD(f̃∗1peer

)−minf∈F RD(f)| ≤ |δp|.

When |δp| is small, i.e., p is closer to 0.5, this bound be-
comes tighter.

Multi-class extension Our results in this section are
largely generalizable to the multi-class classification set-
ting. Suppose we have K classes of labels, denoting as
{1, 2, ...,K}. One can show that for many classes of noise
matrices, the M(·) matrix is again an identify matrix. This

above fact will help us reach the conclusion that minimiz-
ing peer loss leads to the same minimizer on the clean data.
We provide experiment results for multi-class tasks in Sec-
tion 5.

Why do we not need the knowledge of noise rates explic-
itly? Both of the terms 1(f(xn), ỹn) and 1(f(xn1

), ỹn2
)

encoded the knowledge of noise rates implicitly. The care-
fully constructed form as presented in Eqn. (4) allows peer
loss to be invariant against noise (Lemma 2, a property we
will explain later). For a preview, for example if we take
expectation of 1peer(f(xn) = +1, ỹn = +1) we will have

E [1peer(f(xn) = +1, ỹn = +1)]

= P(f(X) = +1, Ỹ = +1)− P(f(X) = +1)P(Ỹ = +1),

the marginal correlation between f and Ỹ , which is exactly
capturing the entries of ∆ defined between f and Ỹ ! The
second term above is a product of marginals because of
the independence of peer samples n1, n2. Using the con-
structed peer term is all we need to recover this information
measure in expectation. In other words, both the joint and
marginal product distribution terms encode the noise rate
information in an implicit way.

4.4. α-weighted Peer Loss

We take a further look at the case with p 6= 0.5. De-
note by R+1(f) = P(f(X) = −1|Y = +1), R−1(f) =
P(f(X) = +1|Y = −1). It is easy to prove:
Lemma 3. Minimizing E[1peer(f(X), Ỹ )] is equivalent to
minimizing R−1(f) +R+1(f).

However, minimizing the true risk RD(f) is equivalent to
minimizing p ·R+1(f) + (1−p) ·R−1(f), a weighted sum
of R+1(f) and R−1(f). The above observation and the
failure to reproduce the strong theoretical guarantee when
p 6= 0.5 motivated us to study a α-weighted version of peer
loss, to make peer loss robust to the case p 6= 0.5. We
propose the following α-weighted peer loss via adding a
weight α ≥ 0 to the second term, the peer term:

`α-peer
(
f(xn), ỹn

)
= `(f(xn), ỹn)− α · `(f(xn1

), ỹn2
)

Denote 1α-peer as `α-peer when ` = 1, f̃∗1α-peer
=

arg minf∈F R1α-peer,D̃(f) as the optimal classifier under

1α-peer, and δp̃ = P(Ỹ = +1) − P(Ỹ = −1). Then when
δp̃ 6= 0 (when this condition does not hold, we can perturb
the training data by downsampling one of the two classes
according to the noisy labels.), we prove:

Theorem 4. Let α = 1 − (1 − e−1 − e+1) · δpδp̃ . We have

f̃∗1α-peer
∈ arg minf∈F RD(f).

Denote α∗ := 1 − (1 − e−1 − e+1) · δpδp̃ . Several remarks
follow: (1) When p = 0.5, δp = 0, we have α∗ = 1,
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i.e. we recover the earlier definition of `peer. (2) When
e−1 = e+1, α∗ = 0 (see Appendix for details), we recover
the ` for the clean learning setting, which has been shown
to be robust under symmetric noise rates (Manwani & Sas-
try, 2013; Van Rooyen et al., 2015a). (3) When the signs
of P(Y = 1) − P(Y = −1) and P(Ỹ = 1) − P(Ỹ = −1)
are the same, α∗ < 1. Otherwise, α∗ > 1. In other words,
when the label noise changes the relative quantitative re-
lationship of P(Y = 1) and P(Y = −1), α∗ > 1 and
vice versa. (4) Knowing α∗ requires a certain knowledge
of e+1, e−1 when p 6= 0.5. Though we do not claim this
knowledge, this result implies tuning α∗ (using validation
data) may improve the performance.

Theorem 2 and 4 and sample complexity theories im-
ply that performing ERM with 1α∗-peer: f̂∗1α∗ -peer

=

arg minf R̂1α∗ -peer,D̃
(f) converges to f∗:

Theorem 5. With probability at least 1− δ,

RD(f̂∗1α∗ -peer
)−R∗ ≤ 1 + α∗

1− e−1 − e+1

√
2 log 2/δ

N
.

4.5. Calibration and Generalization

So far our results focused on minimizing 0-1 losses, which
is hard in practice. We provide evidence of `peer’s, and
`α-peer’s in general, calibration and convexity for a generic
and differentiable calibrated loss. We consider a ` that is
classification calibrated, convex and L-Liptchitz.

Classification calibration describes the property that the
excess risk when optimizing using a loss function ` would
also guarantee a bound on the excessive 0-1 loss:
Definition 1. ` is classification calibrated if there ∃ a
convex, invertible, nondecreasing transformation Ψ` with
Ψ`(0) = 0 s.t. Ψ`(RD(f̃) − R∗) ≤ R`,D(f̃) −
minf R`,D(f), ∀f̃ .

Denote f∗` ∈ arg minf R`,D(f). Below we provide suffi-
cient conditions for `α-peer to be calibrated.
Theorem 6. `α-peer is classification calibrated when ei-
ther of the following two conditions holds: (1) α = 1
(i.e., `α-peer = `peer), p = 0.5, and f∗` satisfies the fol-
lowing: E[`(f∗` (X),−Y )] ≥ E[`(f(X),−Y )], ∀f. (2)
α < 1,max{e+1, e−1} < 0.5, `′′(t, y) = `′′(t,−y), ∀t,
and α(1− 2p)(1− e+1 − e−1) = (1− α)(e+1 − e−1).

(1) states that f∗` not only achieves the smallest risk over
the clean distribution (X,Y ) but also performs the worst
on the “opposite” distribution with flipped labels −Y . (2)
`′′(t, y) = `′′(t,−y) is satisfied by some common loss
function, such as square and logistic losses, as noted in
(Natarajan et al., 2013),

Under the calibration condition, and denote the correspond-
ing calibration transformation function for `α-peer as Ψ`α-peer .

Denote by

f̂∗`α-peer = arg min
f∈F

R̂`α-peer,D̃
(f) :=

1

N

N∑
n=1

`α-peer(f(xn), ỹn).

Consider a bounded ` with ¯̀, ` denoting its max and min
value. We have the following generalization bound:
Theorem 7. With probability at least 1− δ:

RD(f̂∗`α∗ -peer
)−R∗ ≤ 1

1− e−1 − e+1
·

Ψ−1
`α∗ -peer

(
min
f∈F

R`α∗ -peer,D̃
(f)−min

f
R`α∗ -peer,D̃

(f)

+ 4(1 + α∗)L · <(F) + 2

√
log 4/δ

2N

(
1 + (1 + α∗)(¯̀− `)

))
where <(F) is Rademacher complexity of F .

4.6. Convexity

In experiments, we use neural networks which are more
robust to non-convex loss functions. Nonetheless, despite
the fact that `α-peer(·) is not convex in general, Lemma
5 in (Natarajan et al., 2013) informs us that as long as
R̂`α-peer,D̃

(f) is close to some convex function, mirror gra-
dient type of algorithms will converge to a small neigh-
borhood of the optimal point when performing ERM with
`α-peer. A natural candidate for this convex function is the
expectation of R̂`α-peer,D̃

(f) as R̂`α-peer,D̃
(f)→ R`α-peer,D̃(f)

when N →∞.

Lemma 4. When α < 1,max{e+1, e−1} < 0.5,
`′′(t, y) = `′′(t,−y), ∀t, and α(1− 2p)(1− e+1− e−1) =
(1− α)(e+1 − e−1), R`α-peer,D̃(f) is convex.

This is the same condition as specified in (2) of Thm. 6.

5. Experiments
We implemented a two-layer ReLU Multi-Layer Percep-
tron (MLP) for classification tasks on 10 UCI Benchmarks
and applied our peer loss to update their parameters. We
show the robustness of peer loss with increasing rates of
label noise on 10 real-world datasets. We compare the per-
formance of our peer loss based method with surrogate loss
method (Natarajan et al., 2013) (unbiased loss correction
with known error rates), symmetric loss method (Ghosh
et al., 2015), DMI (Xu et al., 2019), C-SVM (Liu et al.,
2003) and PAM (Khardon & Wachman, 2007), which are
state-of-the-art methods for dealing with random binary-
classification noise, as well as a neural network baseline
solution with binary cross entropy loss (NN). We use a
cross-validation set to tune the parameters specific to the
algorithms. For surrogate loss, we use the true e−1 and
e+1 instead of learning them separately. Thus, surrogate
loss could be considered a favored and advantaged baseline
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Task With Prior Equalization p = 0.5 Without Prior Equalization p 6= 0.5
(d,N+, N−) e−1, e+1 Peer Surr Symm DMI NN Peer Surr Symm DMI NN

0.1, 0.3 0.977 0.968 0.969 0.974 0.964 0.977 0.968 0.969 0.974 0.964
Twonorm 0.2, 0.4 0.976 0.919 0.959 0.966 0.911 0.976 0.919 0.959 0.966 0.911

(20,3700,3700) 0.4, 0.4 0.973 0.934 0.958 0.936 0.883 0.973 0.934 0.958 0.936 0.883
0.1, 0.3 0.919 0.878 0.851 0.875 0.811 0.925 0.885 0.868 0.889 0.809

Splice 0.2, 0.4 0.901 0.832 0.757 0.801 0.714 0.912 0.84 0.782 0.81 0.725
(60,1527,1648) 0.4, 0.4 0.819 0.754 0.657 0.66 0.626 0.822 0.755 0.674 0.647 0.601

0.1, 0.3 0.833 0.78 0.777 0.797 0.756 0.856 0.802 0.803 0.83 0.75
Diabetes 0.2, 0.4 0.755 0.681 0.634 0.682 0.596 0.739 0.705 0.695 0.707 0.672

(8,268,500) 0.4, 0.4 0.719 0.645 0.619 0.637 0.551 0.651 0.685 0.68 0.633 0.583
0.1, 0.3 0.639 0.563 0.507 0.529 0.519 0.727 0.645 0.709 0.666 0.648

German 0.2, 0.4 0.664 0.59 0.6 0.618 0.572 0.676 0.681 0.537 0.573 0.535
(23,300,700) 0.4, 0.4 0.606 0.55 0.573 0.573 0.556 0.654 0.632 0.549 0.611 0.553

0.1, 0.3 0.89 0.895 0.892 0.856 0.868 0.893 0.898 0.883 0.785 0.863
Waveform 0.2, 0.4 0.881 0.89 0.828 0.835 0.81 0.884 0.884 0.745 0.761 0.837

(21,1647,3353) 0.4, 0.4 0.87 0.866 0.867 0.773 0.835 0.853 0.852 0.852 0.672 0.828
0.1, 0.3 0.906 0.9 0.89 0.87 0.909 0.943 0.909 0.897 0.811 0.93

Image 0.2, 0.4 0.836 0.862 0.719 0.845 0.832 0.672 0.755 0.722 0.86 0.599
(18,1320,990) 0.4, 0.4 0.741 0.72 0.788 0.763 0.732 0.806 0.803 0.823 0.762 0.8

Table 1. Experiment results on 6 UCI Benchmarks (The full table of all details on 10 UCI Benchmarks are deferred to Appendix;
N+, N− are the numbers of positive and negative samples). Surr: surrogate loss method (Natarajan et al., 2013); DMI: (Xu et al.,
2019); Symm: symmetric loss method (Ghosh et al., 2015). Entries within 2% from the best in each row are highlighted in bold.
All results are averaged across 8 random seeds. Neural-network-based methods (Peer, Surrogate, NN, Symmetric, DMI) use the same
hyper-parameters.

method. Accuracy of a classification algorithm is defined
as the fraction of examples in the test set classified correctly
with respect to the clean and true label. For given e+1 and
e−1, labels of the training data are flipped accordingly.

Figure 2. Accuracy on test set during training. Splice (e−1 = 0.4,
e+1 = 0.4). More examples can be found in Appendix.

A subset of the experiment results is shown in Table 1. A
full table with all details can be found in the Appendix.
Equalized Prior means that we balance the dataset to guar-
antee p = 0.5. For this case we used `peer (i.e., α = 1 as in
`α-peer). For p 6= 0.5, we use validation dataset (still with
noisy labels) to tune α. Our method is competitive across
all datasets and is even able to outperform the surrogate
loss method with access to the true noise rates in a number
of datasets, as well as the symmetric loss functions (which

does not require the knowledge of noise rates when error
rates are symmetric) and the recently proposed information
theoretical loss (Xu et al., 2019). Figure 2 shows that peer
loss can prevent over-fitting when facing noisy labels.

A closer look at our decision boundary To have a bet-
ter understanding of peer loss, we visualize the decision
boundary returned by peer loss with a 2D synthetic experi-
ment: the outer circle of randomly places points correspond
to one class and the inner one is the other class. From Fig-
ure 3 we observe that when using cross entropy for training,
the decision boundary is sharp on clean data but becomes
much less so on noisy data (we have more examples with
higher noise rate in the Appendix). Peer loss returns sharp
boundaries even under a high noise rate (Figure 4).

Figure 3. Decision boundary for cross entropy. Left: trained on
clean data. Right: trained on noisy labels, e+1 = e−1 = 0.2.
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Figure 4. Decision boundary for peer loss. Left: e+1 = e−1 =
0.2. Right: e+1 = 0.2, e−1 = 0.3.

Preliminary results on multi-class classification We
provide preliminary results on CIFAR-10 (Krizhevsky
et al., 2009) in Table 2. We followed the setup in (Xu et al.,
2019) and used ResNet (He et al., 2016) as the underlying
optimization solution. However, different from settings in
(Xu et al., 2019) where label noise only exists between spe-
cific class pairs, our noise is universal across classes. For
each class, we flip the label to any other label with a proba-
bility of ε/9, where ε is the error rate and 9 is the number of
other classes. We do show peer loss is competitive against
cross entropy and DMI (Xu et al., 2019).

Model Error Rate ε = 0.2 Error Rate ε = 0.4

cross entropy 86.67 82.09
DMI (Xu et al., 2019) 85.11 81.67

Peer Loss 87.72 83.81

Table 2. Accuracy on CIFAR-10.

6. Conclusion and Discussion
This paper introduces peer loss, a family of loss functions
that enables training a classifier over noisy labels, but with-
out using explicit knowledge of the noise rates of labels.

Peer loss had made the assumption that label noise is ho-
mogeneous across training data instances. Future exten-
sions of this work includes extension to instance based
(Cheng et al., 2020; Xia et al., 2020) and margin based
(Amid et al., 2019) label noise. We are also interested
in exploring the application of peer loss in differentially
private ERM (Chaudhuri et al., 2011), as well as in semi-
supervised learning.

Proof for Lemma 2
Proof. We sketch the main steps. We denote by Xn1

, Ỹn2

the random variable corresponding to the peer samples
xn1 , ỹn2 .

First we have

E[`peer(f(X), Ỹ )] = E[`(f(X), Ỹ )]− E[`(f(Xn1
), Ỹn2

)]
(7)

Consider the two terms on the RHS separately.

E[`(f(X), Ỹ )]

=EX,Y=−1
[
P(Ỹ = −1|Y = −1) · `(f(X),−1)

+ P(Ỹ = +1|Y = −1) · `(f(X),+1)
]

+ EX,Y=+1

[
P(Ỹ = +1|Y = +1) · `(f(X),+1)

+ P(Ỹ = −1|Y = +1) · `(f(X),−1)
]

(Independence between Ỹ and X given Y )

=EX,Y=−1
[
(1− e−1)`(f(X),−1) + e−1`(f(X),+1)

]
+EX,Y=+1

[
(1− e+1)`(f(X),+1) + e+1`(f(X),−1)

]
(8)

The above is done mostly via law of total probability and
using the assumption that Ỹ is conditionally (on Y ) inde-
pendent of X . Subtracting and adding e+1 · `(f(X),−1)
and e−1 · `(f(X),+1) to the two expectation terms sepa-
rately we have

Eqn. (8) =EX,Y=−1
[
(1− e−1 − e+1) · `(f(X),−1)

+ e+1 · `(f(X),−1) + e−1 · `(f(X),+1)
]

+ EX,Y=+1

[
(1− e−1 − e+1) · `(f(X),+1)

+ e−1 · `(f(X),+1) + e+1 · `(f(X),−1)
]

=(1− e−1 − e+1) · EX,Y
[
`(f(X), Y )

]
+ EX

[
e+1 · `(f(X),−1) + e−1 · `(f(X),+1)

]
And consider the second term:

E[`(f(Xn1
), Ỹn2

)]

=EX [`(f(X),−1)] · P(Ỹ = −1)

+ EX [`(f(X),+1)] · P(Ỹ = +1)
(Independence between n1 and n2)

=EX
[
(e+1 · p+ (1− e−1)(1− p)) · `(f(X),−1)

+ ((1− e+1)p+ e−1(1− p)) · `(f(X),+1)
]

(Expressing P(Ỹ ) using p and e+1, e−1)

=EX
[
(1− e−1 − e+1)(1− p) · `(f(X),−1)

+ (1− e−1 − e+1)p · `(f(X),+1)
]

+ EX
[
(e+1 · p+ e+1(1− p)) · `(f(X),−1)

+ (e−1(1− p) + e−1p) · `(f(X),+1)
]

=(1− e−1 − e+1) · E[`(f(Xn1), Yn2)]

+ EX
[
e+1 · `(f(X),−1) + e−1 · `(f(X),+1)

]
Subtracting the first and second term on RHS of Eqn. (7):

E[`peer(f(X), Ỹ )] = E[`(f(X), Ỹ )]− E[`(f(Xn1
), Ỹn2

)]

=(1− e−1 − e+1) · E[`peer(f(X), Y )] (9)
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