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To explore correlated electrons in the presence of local and non-local disorder, the Blackman–
Esterling–Berk method for averaging over off-diagonal disorder is implemented into dynamical
mean-field theory using tensor notation. The impurity model combining disorder and correlations is
solved using the recently developed fork tensor-product state solver, which allows one to calculate
the single particle spectral functions on the real-frequency axis. In the absence of off-diagonal
hopping, we establish exact bounds of the spectral function of the non-interacting Bethe lattice with
coordination number Z. In the presence of interaction, the Mott insulating paramagnetic phase of
the one-band Hubbard model is computed at zero temperature in alloys with site- and off-diagonal
disorder. When the Hubbard U parameter is increased transitions from an alloy band-insulator
through a correlated metal into a Mott insulating phase are found to take place.

I. INTRODUCTION

The electronic structure and transport properties of
real materials are strongly influenced by the Coulomb
interaction between the electrons and the presence of dis-
order1–3. In particular, both electronic correlations and
randomness are driving forces behind a transition from a
metallic to an insulating state due to the localization of
electrons (“metal-insulator transition” (MIT)). While the
Mott–Hubbard MIT is caused by the repulsive interaction
between the electrons2,4,5, the Anderson MIT is a result
of coherent backscattering of non-interacting electrons
from randomly distributed impurities1,6–8. The interplay
between interactions and static disorder gives rise to many
unusual and often unexpected phenomena1,3,8–12. The
simplest model of disordered interacting electrons is the
Anderson–Hubbard model, obtained by supplementing a
single-band Hubbard model with local and/or non-local
disorder. If the disorder acts only locally, i.e., via ran-
dom local potentials (“diagonal disorder”), this model is
able to describe substitutionally disordered binary alloys.
However, in general disorder also affects the amplitudes
for hopping between two sites — especially when the
bandwidths of the host and dopant are very different —
leading to additional “off-diagonal disorder”. In analytic
calculations local disorder is easier to treat and was stud-
ied extensively13. In particular, the coherent potential
approximation (CPA)14–19 provides the best single-site

approximation for non-interacting systems with local dis-
order. For that reason the simultaneous investigation
of diagonal disorder within the CPA and of interacting
electrons with local (Hubbard) interaction within the
dynamical mean-field theory (DMFT)20–23 fit together
particularly well, since both DMFT20,22 and CPA24,25

become exact in the limit of infinite spatial dimensions
or lattice coordination number.

The treatment of the Anderson–Hubbard model with
off-diagonal disorder received somewhat less atten-
tion26–31. In particular, Dobrosavljević and Kotliar27,28

investigated this model within DMFT by employing a
functional integral representation for quantum averages
and the replica method for disorder averaging. Thereby
they were able to study Hubbard models with arbitrary
disorder on Bethe lattices, as well as models on an arbi-
trary lattice with a special distribution of the off-diagonal
disorder. In this way they studied the formation of local
moments and the Mott transition in disordered systems.

In 1971 Blackman, Esterling, and Berk (BEB)32,33

showed that off-diagonal disorder can, in principle, be
incorporated into the CPA framework, such that both
diagonal and off-diagonal disorder are tractable within a
single–site approximation. In the absence of electronic
interactions the BEB formalism was incorporated into
the dynamical cluster approximation within the typical
medium cluster theory34 and applied to multi-band sys-
tems35.
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In our paper we extend these investigations of disor-
dered systems by including a local (“Hubbard”) inter-
action between the electrons. To this end we investi-
gate the Anderson–Hubbard model with diagonal and
off-diagonal disorder within the CPA in the BEB formu-
lation32,33 in a tensor formulation36,37, while correlation
effects are treated within the DMFT22. We compute
the spectral function and discuss the occurrence of the
MIT in the presence of diagonal and off-diagonal disorder.
For these purposes an accurate zero-temperature many-
body solver on the real energies is used, the so-called fork
tensor-product state solver38. We observe successive alloy-
insulator to metal and metal to Mott-insulator transitions
with increasing values of the Hubbard U parameter. A
similar transition scenario was previously discussed for
models with diagonal disorder solved within DMFT, but
using finite temperature solvers such as the Hirsch-Fye
algorithm39 or the perturbative non-crossing approxima-
tion40. Contrary to the diagonal disorder model in which
the CPA solution provides a common bandwidth for all
alloy components, the presence of off-diagonal elements
causes the formation of different effective bandwidths for
alloy components.

The paper is organized as follows. In Section II the BEB
theory of the multi-component Anderson–Hubbard model
is formulated, and the computational scheme is discussed.
In Section III numerical results for a single-band Bethe
lattice are presented. Comparison with earlier results
on DMFT+CPA allow us to identify effects specifically
due to off-diagonal disorder. Finally, conclusions and a
summarizing discussion are presented in Section IV.

II. BLACKMAN–ESTERLING–BERK THEORY

FOR THE ANDERSON–HUBBARD MODEL

In the simplest case an alloy consists of two types of
atoms, A and B, with diagonal substitutional disorder,
such that only the site-diagonal elements of the Hamilto-
nian vary stochastically according to the atomic species
occupying the given site14–16. The physical quantities
of interest, for instance the spectral function, are those
averaged over the possible disorder realizations. There-
fore, the idea of the CPA is to replace the ensemble with
random configurations by a periodic system with “average”
atoms, whose properties are determined self-consistently.
The CPA finds a natural description in the language of
scattering theory. Assuming the origin to be occupied by
atoms of type A or B and all other sites by average atoms,
the scattering by the atom at the origin is easily com-
puted. The self-consistency condition of the CPA, which
expresses that the scattering at the origin vanishes on
average, then allows one to compute the coherent Green’s
function for the average atom.

The BEB formalism32,33 is a generalization of the CPA
such that it becomes applicable also to off-diagonal disor-
der. Similar to CPA it was formulated for a tight-binding
model in which the hopping matrix elements depend on

the species of atoms occupying the two sites connected
by the hopping. For the above binary alloy example, the
BEB hopping matrix elements are tAA, tAB and tBB. When
the hopping matrix elements are equal the BEB formalism
reduces to the CPA14,15, and for the binary alloy case the
scalar CPA equation becomes a 2 × 2 matrix equation.
An in-depth analysis of the BEB method was performed
in a tight-binding formalism by Gonis and Garland41 us-
ing locators, propagators, and a variational technique
proving the analyticity of the BEB-CPA Green’s func-
tion. A realistic multiband formulation of the BEB-CPA
was introduced more than three decades ago by Papa-
constantopoulos, Gonis, and Laufer42. Then Koepernik
et al.36 developed the BEB-CPA extension within a full
potential local-orbital approach, and more recently a sim-
ilar implementation was made within a pseudopotential
approach43. Shvaika44 found a connection between the
Falicov–Kimball model with correlated hopping and the
BEB-CPA by rewriting the Hamiltonian as a 2×2 matrix.
For Hamiltonians with interactions the BEB-CPA was
employed by Burdin and Fulde45 to study the interplay
between the Kondo effect and disorder. In an attempt
to address localization in strongly disordered electronic
systems, the typical medium theory27 was combined with
the dynamical cluster approximation including effects in-
duced by off-diagonal disorder34. However, this approach
did not include electronic interactions.

In the present paper we extend the BEB formalism to
interacting electrons such that it can be applied to the
multi-component Anderson–Hubbard model; localization
effects will not be addressed. The model is defined in
Section IIB. The corresponding DMFT equations are
solved using the recently developed fork tensor-product
state solver38.

A. Configurational averages and notation

In the conventional approach to systems with random
variables (diagonal and/or off-diagonal) the Green’s func-
tion is first expanded and then an average over an appro-
priate set of terms is performed. By contrast, the BEB
method treats both diagonal- and off-diagonal randomness
on equal footing by employing an extended representation,
which will be discussed below. The Green’s functions are
then evaluated using conventional expansion techniques.
The formalism introduced by Koepernik et al.36,37 is par-
ticularly suitable for the BEB approach. For this reason,
we adopt the notation introduced in Refs. 36 and 37.

We consider an alloy consisting of M types of atoms
(“alloy components”) denoted by the index α. Every lattice
site i is uniquely mapped to a particular component α as
expressed by

i 7→ α. (1)

While this notation corresponds, in principle, to that
of Ref. 37, we reverse the direction of the arrow to
focus on the alloy components rather than the lattice
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sites. To address multiple sites we use the notation
(i, j 7→ α, β) := (i 7→ α) ∧ (j 7→ β). We refer to a specific
mapping of the N lattice sites to the M components as
a “configuration” (conf) or “disorder realization”, and de-
note the set of all possible configurations by C = {conf}.
As the specific configuration of a sample measured in
an experiment is unknown, we average over all possible
configurations. Since the concentrations cα of the differ-
ent components α are assumed to be known we restrict
the average to configurations with these concentrations,
denoted by C|{cα}. In the absence of additional informa-
tion we further assume that the probability of all physical
configurations is the same:

P (conf) = 1/
∣∣C|{cα}

∣∣ ∀ conf ∈ C|{cα}. (2)

For a random variable X, the stochastic average over all
physical configurations is the weighted sum

E(X) =
∑

conf∈C|{cα}

P (conf)xconf =
1∣∣C|{cα}

∣∣
∑

conf∈C|{cα}

xconf .

(3)
This situation corresponds to the case of substitutional
disorder.

B. Multi-component Anderson–Hubbard model

For a specific configuration the Anderson–Hubbard
Hamiltonian reads

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ +

∑

iσ

(vi−µ)n̂iσ +
∑

i

Uin̂i↑n̂i↓, (4)

with the on-site energy vi, the local Hubbard interaction
Ui, and the amplitude tij for hopping between sites i
and j. The hopping parameters are Hermitian tij = t∗ji
and off-diagonal, with tii = 0. The Hamiltonian can be
written in the compact matrix form

Ĥ =
∑

σ

ĉ
†
σHσĉσ + n̂

⊺

↑Un̂↓, (5)

where we introduced N × 1 matrices to represent the
operators. The rows of the matrix ĉ

σ
are the annihilation

operators ĉiσ, and the rows of n̂σ are the number oper-
ators n̂iσ. The one-particle Hamiltonian matrix reads
(H)ij = −tij + δij(vi − µ). Here and in the following
we suppress the spin-index σ unless explicitly needed, to
simplify the notation. The local interaction is written as
a matrix (U)ij = δijUi.

The magnitude of the hopping parameters tij depends
on the alloy components located on sites i and j, re-
spectively, which are referred to as “terminal points”. In
the following we employ the “terminal-point approxima-
tion”36,37 which assumes that parameters with terminal
points i, j, k, . . . depend only on the components located
at i, j, k, . . . and not on the components surrounding these

sites. Thus, for a specific configuration (disorder realiza-
tion) every parameter vi, Ui, tij takes a value depend-
ing on the component occupying the respective site or
sites. In the representation of the BEB we denote these
configuration-specific values by an underline and a super-
script indicating the component. For instance, if site i is
occupied by component α (i 7→ α) the parameter vi takes
the value vα. For i, j 7→ α, β, we have vi = vα, Ui = Uα,
and tij = tαβ(|ri − rj |). This will now be formalized.
Denoting the set of sites i occupied by the component α
by

S
α := {i|i 7→ α}, (6)

the terminal point approximation can be expressed con-
veniently using the indicator function

1Sα(i) :=

{
1 if i ∈ S

α,

0 if i 6∈ S
α.

(7)

The identity
∑

α 1Sα(i) = 1 holds since every site must be
occupied by exactly one component. Thus, the parameters
read

vi =
∑

α

1Sα(i)v
α,

tij =
∑

αβ

1Sα(i)t
αβ(|ri − rj |)1Sβ (j),

Hij =
∑

αβ

1Sα(i)H
αβ
ij 1Sβ (j),

Ui =
∑

α

1Sα(i)U
α,

(8)

with Hαβ
ij = δijδ

αβ(vα − µ) − tαβ(|ri − rj |). We further
note, that the conditional expectation value of the param-
eters equals the underlined component variables:

E(vi|i 7→ α) = vα, E(tij |i, j 7→ α, β) = tαβ , . . . (9)

The dependence on the components is therefore shifted
from the parameters into the indicator function 1Sα(i).
Depending on the component occupying a site, the indi-
cator function selects the corresponding parameter from
a finite set of choices. We note that for elements diagonal
in lattice sites i, one has 1Sα(i)1Sβ (i) = 1Sα(i)δ

αβ , i.e.,
they are diagonal in the components. In the following we
refer to a quantity with multiple indices, which include
both site and component indices, as a “tensor”.

We introduce the indicator tensor

ηα
ij
= 1Sα(i)δij = ηα

i j
. (10)

Graphically we represent this tensor as a box with legs
as seen on the right-hand side of Eq. (10). The order
of the tensor is given by the number of its legs, here
three. The upper leg carries the alloy component indices
α, and the lower legs correspond to the site indices i, j.
Within our matrix notation this tensor is equivalent to
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i, j, . . . site indices cα concentration of component α

α, β, . . . alloy components vα on-site energy of component α

i 7→ α mapping of a site to an alloy component Uα Hubbard parameter of component α

S
α set of sites occupied by component α tαβ(|ri − rj |) hopping between component α and β

C|{cα} set of configurations (disorder realization) Hαβ
ij extended Anderson–Hubbard Hamiltonian matrix

X scalar random variable ηα

ij
indicator tensor, represented as equivalent matrix

E(X) Expectation value defined according to Eq. (3) χ projector onto specific disorder configuration
Tαβ dimensionless hopping parameter

describing hopping between components α and β

Table I. Notations specific to the extended basis and Hamiltonian parameters used in BEB method.

a MN ×N matrix. We group the left indices for sites i
and components α, or in the graphical notation the legs
above each other. In the following we refer to the MN -
dimensional vector space of grouped sites and components
as “extended space”. Matrix products in the extended
space sum over the grouped MN elements for component
and site indices; they are equivalent to the tensor contrac-
tion of two legs, one for the component and one for the
sites. In this matrix notation the Hamiltonian reads

Ĥ =
∑

σ

ĉ
†
ση

⊺Hσηĉσ + n̂
⊺

↑η
⊺Uηn̂↓, (11)

where we introduced the local interaction tensor (U)
αβ
ij =

δijU
αδαβ . In the non-interacting case the Hamiltonian

matrix of a specific configuration is the extended matrix
sandwiched by the indicator tensors

H = η⊺Hη = η⊺
H η . (12)

For every lattice site in the extended representation each
component of the non-interacting Hamiltonian matrix
H is assigned a corresponding element. In this way the
non-interacting Hamiltonian can be generated by H for
every disorder configuration. The matrix product in the
algebraic equation equals the tensor contractions of the in-
ternal legs as illustrated by the right hand side of Eq. (12).
Appendix A provides an explicit example for a system of
N = 3 sites and M = 2 components. In Table I we collect
the symbols used in our paper.

We note, that the only configuration dependent parts in
Eq. (11) are the matrices η and η⊺; the rest is independent
of the specific disorder realization. In other words: Com-
paring Eq. (11) with Eq. (5) the configuration dependence
of the former equation is moved from the Hamiltonian
matrix to the local indicator tensors Eq. (10). This is the
main point of the BEB algorithm: One can work with a
non-random but extended Hamiltonian matrix H, which
contains the parameters for all possible configurations. A
specific configuration can be selected by applying indi-
cator tensors η. What remains to be averaged over are
these local indicator tensors.

1. Alloy component Green’s function

In the absence of interaction, U = 0, the model can be
solved by the generalized CPA introduced by Blackman,
Esterling and Berk32,33 (BEB). Using the indicator tensor
η Eq. (10) we define the projector:

χ = ηη⊺ = η η⊺ ; χ2 = χ. (13)

It maps a vector in the extended space onto a single con-
figuration; all elements corresponding to different configu-
rations are set to 0. The projector property follows from
the indicator identity η⊺η = 1. For the non-interacting
system, we define the component Green’s function as

G(z) := ηG(z)η⊺ = η G(z) η⊺ ;

∑

αβ

Gαβ(z) = G(z).
(14)

The arrangement of indicator tensors η is different com-
pared to Eq. (12): Both the Green’s function G and
the component Green’s function G are configuration de-
pendent. We note that local elements are diagonal in
component space, i.e., Gαβ

ii (z) ∝ δαβ . We sandwich the
resolvent for the Green’s function

1 = [1z −H]G(z) (15)

by η from the left and η⊺ from the right; this yields the
equation for the component Green’s function

χ = [1z − χHχ]G(z). (16)

The law of total probability46 relates the average of the
component Green’s functions and the conditional average
of the physical Green’s function in the following way:

E(Gαβ
ij ) =

{
cα E(Gii(z)|i 7→ α)δαβ for i = j,

cαcβ E(Gij(z)|i, j 7→ α, β) for i 6= j.

(17)

2. Effective medium in the extended space

As in CPA, in the BEB formalism one calculates an
effective local Green’s function g

loc
(z) from an effec-

tive medium S(z), which approximates the average local
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Green’s function E(Gii(z)). We consider only substitu-
tional disorder without structural disorder, i.e., the lattice
structure is assumed to be fixed. Therefore, we decom-
pose the hopping tensor tαβ(|ri − rj |) into its component
part, Tαβ , and its lattice part, t(|ri − rj |):

tαβ(|ri − rj |) =: Tαβ t(|ri − rj |). (18)

Depending on the component of the endpoints, the matrix
elements Tαβ scale the amplitudes for hopping on a given
lattice structure by a dimensionless factor. In the fol-
lowing we refer to Tαβ simply as “dimensionless hopping
parameter”. We perform the lattice Fourier transform for
the hopping matrix elements as

T
1

N

∑

ij

t(|ri − rj |)eik·(ri−rj) = Tǫk. (19)

For a given effective medium S(z), the effective local
Green’s function reads

g
loc

(z) =
1

N

∑

k

[1z − S(z)−Tǫk]
−1

. (20)

The effective medium as well as the effective local Green’s
function are represented by M×M matrices in the compo-
nents. Being local quantities they no longer carry lattice
indices. The effective medium S(z) is determined by
demanding that the averaged t-matrix vanishes:

E(t(z))
!
= 0, (21)

t(z) := −[χ[1− χ(1z − S(z) + v)χ]
−1

χ+ g
loc

(z)]
−1

.

(22)

C. Inclusion of electronic interactions and the

BEB+DMFT self-consistency loop

We treat the local Hubbard interaction within the dy-
namical mean-field theory20,22,23, which assumes a local
self-energy Σij(z) = δijΣii(z); this property becomes ex-
act in the limit of infinite coordination number. The
problem of interacting disordered electrons may equally
be viewed as a system of non-interacting particles moving
in an effective local, energy dependent potential Σii(z);
for details see Ref. 25 and 47. The DMFT self-consistency
equations22 are equivalent to a fixed-point problem which
can be expressed by a functional Σ̂: Given a self-energy Σii

and the resulting local Green’s function Gii(Σii) this func-
tional provides a new self-energy Σ̂

[
Gii(Σii),Σii

]
, such

that the DMFT self-energy is determined self-consistently
by the fixed-point

Σii = Σ̂
[
Gii(Σii),Σii

]
. (23)

Within the CPA, the local Green’s function for a given
self-energy Gii(Σii) is replaced by the conditional average
E(Gii(Σii)|i 7→ α) = gαα

loc
(Σii)/c

α, see Eqs. (17) and (20).

Thus, the self-energy Σ̂
[
gαα
loc

(Σii)/c
α,Σii

]
depends on the

component α. Consequently, the self-energy at the fixed-
point depends on the component α, but not on the explicit
site i:

Σα = Σ̂
[
gαα
loc

(Σα)/cα,Σα
]
. (24)

This allows one to introduce the BEB+DMFT self-
consistency which we will discuss next.

By merging the BEB formalism with DMFT a two-fold
self-consistency arises, one for the BEB and one for the
DMFT corresponding to the fixed-point Eq. (24). The self-
consistency equation of the BEB formalism is pointwise
in the frequencies and is therefore much simpler than the
self-consistency condition of the DMFT, where frequencies
mix due to the energy exchange caused by the interaction
between the electrons. We view the former self-consistence
as an internal part of the full self-consistency loop. In
the BEB method we calculate an effective local Green’s
function g

loc
(z), Eq. (20). The effective medium S(z)

and, therefore, the effective local Green’s function have
to be calculate self-consistently from Eqs. (21) and (22).
This condition simplifies to

g−1
loc

(z) = g−1(z) (25)

with the diagonal matrix

gαβ(z) =
cαδαβ

(g−1
loc

)
αα

(z) + Sαα(z) + µ− vα − Σα(z)
, (26)

where Σα(z) is the DMFT self-energy for the component α.
The self-consistent Eq. (25) can be solved with standard
root-search algorithms or by simple iteration. In practice,
we use an implementation of the BEB formalism without
interactions and merely shift the on-site energy vα → vα+
Σα(z). An efficient evaluation of the BEB self-consistency
equation is discussed in Appendix B; an implementation
is provided in Ref. 48. To emphasize the dependence on
the self-energy we denote the self-consistently determined
effective local Green’s function for a given self-energy
Eq. (25) by g

loc
(z,Σ(z)).

With the BEB self-consistency condition Eq. (25) for
the local Green’s function g

loc
(z,Σ(z)), the combined

algorithm corresponds to the conventional DMFT self-
consistency condition Eq. (24), where the local Green’s
function, calculated from the lattice Hilbert transform, is
now replaced by the average

E(Gii|i 7→ α) = gαα
loc

(z,Σ(z))/cα.

The reciprocal concentration factor can be avoided by
introducing a renormalized indicator tensor, which leads
to a slightly modified BEB self-consistency as elaborated
in Appendix C. We have to solve a separate impurity prob-
lem for every component α. Starting from an initial guess
for the DMFT self-energy Σα(z) for every component, the
BEB+DMFT scheme is the following:
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1. Calculate the effective local Green’s function
Eq. (20) using Eqs. (25) and (26), which yields

g
loc

(z,Σ(z)), (27a)

2. calculate the hybridization function

∆α(z) = z + µ− vα − Σα(z)− cα/gαα
loc

(z,Σ(z)), (27b)

for every component α,

3. solve the impurity problem for the self-energy

Σα(z) = Σ[vα,Uα,∆α] (27c)

for every component α,

4. repeat from step 1 until self-consistency is reached.

The hybridization function can also be expressed in terms
of BEB quantities using the self-consistency condition
Eq. (25):

∆α(z) = z − Sαα(z)− (g−1
loc

)
αα

(z,Σ(z)). (28)

This is different from CPA+DMFT, where only one unique
hybridization functions exists independent of the alloy
components. Analogous to the non-disordered case, an
expression for the hybridization function of the Bethe
lattice in terms of the local Green’s function g

loc
(z,Σ(z))

is given in Appendix D.
Central to the DMFT problem is the impurity solver

which provides the local dynamic self-energy Eq. (27c).
To this end, we employ a tensor network based zero tem-
perature solver, the fork tensor-product state (FTPS)
solver38. The FTPS impurity solver is a Hamiltonian-
based method which discretizes the hybridization function
Eq. (27b) using a large number of bath sites. We use
249 sites per spin resulting in a median energy distance
of 0.03D, where the half-bandwidth D sets our energy
scale. We calculate the ground state |GS〉 of the finite size
impurity problem using the density matrix renormaliza-
tion group (DMRG)49,50. Subsequently, we perform the
time evolution using the time dependent variational prin-
ciple (TDVP)51–54. To obtain the retarded time impurity
Green’s function Gret(t), the states ĉσ |GS〉, ĉ†σ |GS〉, as
well as their adjoint states are time-evolved, where ĉσ (ĉ†σ)
is the annihilation (creation) operator of the impurity
site. For DMRG we chose a truncated weight of 10−15

and a maximal bond-dimension of 100. We perform the
TDVP using time-steps of 0.1/D up to a maximal time
tmax = 150/D with a truncated weight of 10−9 and a
maximal bond-dimension of 150. The convergence with
respect to these parameters is checked.

We can calculate the Green’s function Gret(t) only up
to a maximal time, and we have (small) finite size effects
due to the discretization of the bath. Therefore, we cannot
evaluate the retarded Green’s function directly on the
real-frequency axis G(ω + i0+). Instead we calculate it

on a parallel contour G(ω + iη) shifted by a fixed finite
η > 0; this corresponds to the Laplace transform:

G(ω + iη) =

∫ ∞

0

dt ei(ω+iη)t Gret(t) =: Fη[G
ret(t)](ω).

(29)
The shift η acts as a broadening for the Green’s function
G(z) as can be seen from the Cauchy integral formula

2πiG(ω + iη) =

∮
dz

G(z)

z − ω − iη
=

∫ ∞

−∞
dω′ G(ω′)

ω′ − ω − iη−
,

(30)
with η− = η − 0+, where 0+ is a positive infinitesimal.
We write the Green’s function on the real axis in terms
of the shifted Fourier transform

G(ω + i0+) = lim
η′ց0

Fη′ [Gret(t)](ω) = Fη[e
tη−

Gret(t)](ω)

=
∑

k

1

k!
(η−)

k
Fη[t

kGret(t)](ω).

(31)
The second equality replaces the limit η′ ց 0 using
limη′ց0 exp(−η′t) = exp(−ηt) exp(η−t) introducing a fi-
nite variable η, in the last line we use the series repre-
sentation of the exponential function exp(η−t). The first
term k = 0 is the Green’s function on the shifted contour
G(ω+ iη), higher order terms give systematic corrections.
In Section III, we calculate the first order correction

G(ω+i0+) = G(ω+iη)+η Fη

[
tGret(t)

]
(ω)+O

(
η2
)

(32)

with a typical shift η = 0.08. The self-energy is calculated
from the equation of motion of the impurity model55

Σσ(z) = UFσ(z)/Gσ(z), (33)

F ret(t) = 〈GS|ĉσ(t)n̂−σ(t)ĉ
†
σ|GS〉 , (34)

where F (z) is the Laplace transform of F ret(t).

D. General properties of the BEB formalism

We shortly review some properties of the BEB formal-
ism19,37,41. First, the BEB formalism is equivalent to
the CPA when off-diagonal disorder is absent. This limit
was already proven in the original formulation32,33. Since
the BEB theory includes the off-diagonal disorder in the
single-site approximation, the Herglotz property56,57 of
the CPA is preserved in the BEB as well41.

Second, for a non-interacting tight-binding Hamiltonian
the density of states (DOS) is non-zero only within certain
energy ranges, determined by the Hamiltonian matrix el-
ements. This is also holds for the CPA58. Koepernick
et al.37 found the same in their numerical study of one-
dimensional chains using the BEB formalism. Likewise,
we find no violations of this property in our numerical re-
sults. In the following subsection we derive exact bounds
for the spectral function of a Bethe lattice with coordi-
nation number Z using the BEB formalism in the limit
of independent alloy components, i.e., when there is no
hopping between different components.
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E. Limit of independent components

We consider the limit of vanishing hopping between
different components. If the hopping is diagonal in the
components, Tαβ ∝ δαβ , the BEB effective medium S(z)
is also diagonal in the components and the self-consistency
equations Eq. (25) decouple. In this case, the effective
local Green’s function Eq. (20) can be readily calculated,
since the matrix inverse is the reciprocal of the diagonal
elements

gαβ
loc

(z) =
1

N

∑

k

δαβ

z − Sαα(z)− Tααǫk

= δαβgα0
(
z − Sαα(z)

)
.

(35)

Here, gα0 is the lattice Hilbert transform g0(z) =
1
N

∑
k

1
z−ǫk

; the superscript α indicates that the band-

width is scaled by Tαα:

gα0 (z) =
1

N

∑

k

1

z − Tααǫk
=

1

Tαα g0(z/T
αα). (36)

For the component α, the decoupled self-consistency
Eq. (25) reads

0 =
cα

gα0 (z − Sαα)
+ Sαα − vα, (37)

with the concentration complement cα = 1−cα ≥ 0. For a
Bethe lattice with coordination number Z and the lattice
Hilbert transform18

g0(z, Z) = 2(Z − 2)/
[
z
(
Z − 2 + Z

√
1−D2/z2

)]
,

(38)

where D is the half-bandwidth, the self-consistency condi-
tion is an algebraic equation and can be solved analytically.
The BEB effective medium reads

Sαα(z, Z) =
(Z − 2)vαcα + Zvα + (Z + 2)cαz − Zz − 2(cα)

2
z − Zcαs

√
(z − vα)

2 − cα(Dα)
2 Z−cα

Z−1

2cα(Z − cα)
, (39)

where s is the sign s = sign(Re(z−vα)), and Dα is the half-
bandwidth scaled by Tαα; this is the retarded solution.
A conjugate solution exists with −s and therefore with a
plus sign in front of the square root.

We are interested in the bandwidth of the resulting
component spectrum

Aα(ω) = − 1

cαπ
Im gα0 (ω + i0+ − Sαα(ω + i0+)). (40)

For non-interacting systems, the Gershgorin circle
theorem59 gives the maximal spectral bounds

|z − vα| ≤ Dα. (41)

In the limit Tαβ ∝ δαβ , we can make a more precise
statement and derive exact spectral bounds as will be
discussed below. The spectral function can only vanish
when the imaginary part of the effective medium vanishes.
Thus, for non-interacting systems, we need to check where
the argument of the square root is negative. One finds an
imaginary part and therefore spectral weight for

|z − vα| <
√
cα

Z − cα

Z − 1
Dα. (42)

Therefore, for the Bethe lattice with coordination number
Z and Tαβ ∝ δαβ , the bandwidth is reduced due to
concentration by a factor

√
cα(Z − cα)/(Z − 1). We then

obtain the effective bandwidth

Dα
eff =

√
cα

Z − cα

Z − 1
TααD. (43)

Our numerical results in Section III were obtained for
a semicircular DOS, i.e., the Bethe lattice with infinite
coordination number Z → ∞. In this limit one finds an
effective bandwidth

Dα
eff =

√
cαTααD. (44)

The same factor
√
c was found in Ref. 60 in the CPA

(TAA = TAB = TBB = 1) in the limit of high disorder
strength (vB − vA)/D = δ ≫ max(1, U/D). While the
parameters in these limits are different, both describe
the same physics, namely the decoupling of components.
Indeed, the components decouple not only for vanishing
hopping between the components TAB = 0, but also in
the case of a large separation in energy (δ ≫ 1).

For coordination number Z = 2 another interesting
limit of the Bethe lattice is obtained; this is the one-
dimensional lattice18, where

g1D0 (z) = g0(z, Z = 2) = 1/
[
z
√

1−D2/z2
]
. (45)

The spectral bounds are given by

Dα
eff =

√
cα(2− cα)TααD. (46)

Therefore, for the one-dimensional lattice and Tαβ ∝ δαβ

the bandwidth is reduced by the factor
√

cα(2− cα).
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This is a random matrix since it depends on the config-
uration. We consider cA = 1/3 and cB = 2/3; then one
possible configuration is A− B− B. According to Eq. (8),
the Hamiltonian matrix of this configuration takes the
values

HABB =




vA tAB(a) tAB(2a)
tBA(a) vB tBB(a)
tBA(2a) tBB(a) vB


− 1µ, (A2)

where a is the distance between neighboring sites. By
contrast, the extended Hamiltonian matrix H does not
depend on the specific configuration. We can choose a
matrix representation of the tensor H shown in Eq. (12),
by grouping the legs i and α on the same side. This is
done explicitly defining the combined index n = (i, α)
[m = (j, β)]. We count n = 2i− 1 + nα with nA = 0 and
nB = 1. Then the extended Hamiltonian Hαβ

ij = Hnm

reads

H+ 1µ =



vA 0
0 vB

tAA(a) tAB(a)
tBA(a) tBB(a)

tAA(2a) tAB(2a)
tBA(2a) tBB(2a)

tAA(a) tAB(a)
tBA(a) tBB(a)

vA 0
0 vB

tAA(a) tAB(a)
tBA(a) tBB(a)

tAA(2a) tAB(2a)
tBA(2a) tBB(2a)

tAA(a) tAB(a)
tBA(a) tBB(a)

vA 0
0 vB




.

(A3)

This MN ×MN = 6×6 matrix contains all MN possible
configurations for the N = 3 site problem with M = 2
components and is independent of the concentrations cα.
A specific configuration can be selected by applying an
appropriate indicator tensor η. For the configuration
A− B− B, ηα

ij
= η

nj
takes the form

η⊺

ABB
=



1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


 , (A4)

and we obtain the Hamiltonian matrix for this configura-
tions from

HABB = η⊺

ABB
Hη

ABB
. (A5)

While the matrix representation is suitable for per-
forming calculations, the tensors notation is often clearer.
The elements diagonal in components α of the extended
Hamiltonian read

Hαα =




vα tαα(a) tαα(2a)
tαα(a) vα tαα(a)
tαα(2a) tαα(a) vα


− 1µ, (A6)

the off-diagonal elements α 6= β read

Hαβ =




0 tαβ(a) tαβ(2a)
tαβ(a) 0 tαβ(a)
tαβ(2a) tαβ(a) 0


 , (A7)

and the indicator tensor for the configuration A− B− B

is given by the elements

ηA

ABB
=



1 0 0
0 0 0
0 0 0


 and ηB

ABB
=



0 0 0
0 1 0
0 0 1


 . (A8)

Appendix B: Efficient evaluation of the local Green’s

function and its inverse

To solve the BEB self-consistency equation, we need to
repeatedly evaluate the effective local Green’s function

g
loc

(z) =
1

N

∑

k

[ξ(z)−Tǫk]
−1

, (B1)

with ξ(z) = 1z − S(z), or rather its inverse (g
loc

)
−1. A

naive evaluation would be computational costly, since
one needs to invert a matrix for every k-point and every
frequency point. While this is feasible for small matrices,
it has the potential risk of inaccurate k-summations (or
integrations), especially for a DOS with singularities as
for a one-dimensional or square lattice. Therefore, we
employ an algorithm based on the compact singular value
decomposition (SVD) of the matrix T

T = UσV † = Uσ1/2 σ1/2V † =: Ũ Ṽ
†
, (B2)

which we use to split the matrix; here we partitioned

the singular values symmetrically as Ũ = Uσ1/2, Ṽ
†
=

σ1/2V †. It is important to use the compact SVD as we
will explicitly use the inverse σ−1. Numerically, the need
to truncate small singular values arises. We note that for
the binary alloy the rank-1 case, where the SVD has to
be truncated, is given for a hopping matrix of the type

 TAA

√
TAATBB

√
TAATBB TBB


=



√
TAA

√
TBB



(√

TAA

√
TBB

)
.

(B3)
This is the structure of the hopping matrix discussed by
Shiba63. Another prominent rank-1 example is the CPA
limit with TAA = TAB = TBB = 1. The matrix inverse
[ξ(z)−Tǫk]

−1 is calculated using the Woodbury matrix
identity64. Furthermore, we calculate the eigendecompo-
sition

Ṽ
†
ξ−1(z)Ũ = P (z)d(z)P−1(z), (B4)

where d(z) is the diagonal matrix of eigenvalues. The
k-dependent Green’s function can be expressed as

G(z, k) = ξ−1 − ξ−1ŨP

[
d− 1

ǫk

]−1

P−1Ṽ
†
ξ−1, (B5)

where we did not write the z-dependence explicitly. We
note that only the term in the square bracket depends on
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k. Since it contains only diagonal matrices, the matrix
inverse only involves the reciprocal matrix elements. We
look at a particular diagonal element with the z-dependent
eigenvalue dii(z) = λi(z)

−
[
λi(z)−

1

ǫk

]−1

=
1

1/λi(z)− ǫk

1

λ2
i (z)

− 1

λi(z)
. (B6)

It is straightforward to perform the k-summation, as we
have the standard form of the lattice Hilbert transform

1

N

∑

k

1

z − ǫk
=: g0(z), (B7)

evaluated at 1/λi. For simple lattices like the Bethe
lattice we know the analytic expression for g0; a numerical
integration can then be avoided. For the local Green’s
function we obtain the lengthy expression

g
loc

= ξ−1 + ξ−1ŨP [d−1g0(d
−1)− 1]d−1P−1Ṽ

†
ξ−1,

(B8)
where again the z-dependence was not written out. For
the self-consistency equation of the BEB formalism one
only needs the inverse of g

loc
. The Woodbury matrix

identity yields the simpler expression,

g−1
loc

(z) =

ξ(z) + ŨP (z)

[
1

g0
(
1/d(z)

) − 1/d(z)

]
P−1(z)Ṽ

†
, (B9)

where we explicitly noted the inverse of the diagonal
matrices by reciprocal matrix elements.

Considering that the main cost of a naive evaluation
of g−1

loc
arises from the matrix inversion, this amounts to

Nz(Nk + 1) matrix inversions, where Nz is the number
of frequency points and Nk is the number of k-points
required for the integration. The alternative algorithm
proposed here requires, on the other hand, Nz matrix
inversions due to the calculation of ξ−1(z), and another
Nz matrix diagonalizations in the compact space of the
SVD. In practice, the calculations were well behaved,
and we encountered no numerical problems regarding the
diagonalization of Eq. (B4).

For the common case of full rank T, we can use the
unitarity U † = U−1 and V † = V −1 to simplify the
formulas further. We obtain the simple formulas for the
local Green’s function

g
loc

(z) = V σ−1/2P (z)g0
(
1/d(z)

)
P−1(z)σ−1/2U †

(B10)
and its inverse

g−1
loc

(z) = ŨP (z)
1

g0
(
1/d(z)

)P−1(z)Ṽ
†
. (B11)

Furthermore, we can directly calculate the matrix diago-
nalization of

σ−1/2U †ξ(z)V σ−1/2 = P (z)d−1(z)P−1(z), (B12)

avoiding the need of the Nz matrix inversions for ξ(z).

Appendix C: BEB self-consistency equation with

renormalized indicator tensors

With α 6= β, the high-frequency expansion of the effec-
tive medium yields

Sαβ(z) = −ǫ(1)T
αβ +O

(
z−1

)
, (C1)

Sαα(z) =
cα − 1

cα
z +

vα − µ+ cαTααǫ(1)

cα
+O

(
z−1

)
,

(C2)

where ǫ(1) =
∫
dǫρ(ǫ)ǫ is the first moment of the DOS,

which vanishes for lattices with a symmetric DOS, v in-
corporates the static part of the self-energy Σα(z), and
cα = 1− cα is the concentration complement. The diago-
nal of the effective medium, Sαα(z), has a contribution
which grows linearly in z, and the on-site energies are
multiplied by the inverse of the concentration. The origin
of this peculiar structure is evident from Eq. (17) and the
definition Eq. (20). Unlike the diagonal elements of a one-
particle Green’s function which behave like 1/z for large
z, the effective local Green’s function g

loc
(z) behaves like

c/z. The definition in terms of the effective medium, how-
ever, has the regular form of [1z + . . . ]

−1. This can be
resolved by introducing a renormalized version of the com-
ponent space. Instead of the indicator tensor η, Eq. (10),
we use the concentration-scaled indicator tensor

γα
ij
=

√
cα1Sα(i)δij (C3)

and the Moore–Penrose inverse65,66 γ+ (which is in this
case the left-inverse, i.e., γ+γ = 1) of its equivalent
matrix representation. The components of the Moore–
Penrose inverse read

γ+ α

ij
=

{
1√
cα
1Sα(i)δij if cα > 0,

0 if cα = 0.
(C4)

We can express the projector Eq. (13) with the γ tensor:

χ = γγ+. (C5)

For the renormalized BEB formalism, we define the com-
ponent Green’s function and the Hamiltonian matrix in
terms of γ and the inverse γ+ as

G̃(z) := (γ+)
⊺

G(z)γ+,

H =: γH̃γ⊺.
(C6)

Compared to the definitions in Section II B, the Green’s
function and the Hamiltonian are scaled by the concen-
tration. This can be conveniently demonstrated in the
locator expansion

G(z) = g(z) + g(z)TG(z), (C7)

where g(z) = [1z − v]
−1 is the locator and (T )ij = tij .

Sandwiching this equation by (γ+)
⊺ and γ+, we obtain

(γ+)
⊺

G(z)γ+ = (γ+)
⊺

g(z)γ+

+ (γ+)
⊺

g(z)γ+γTγ⊺(γ+)
⊺

G(z)γ+, (C8)
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where we inserted the identity γ+γ = 1. This can be
written in terms of the renormalized component quantities

G̃(z) = g̃(z) + g̃(z)T̃ G̃(z). (C9)

Compared to the regular BEB formalism the Green’s
functions are scaled with the reciprocal concentration,

and the hopping matrix with the concentration T̃
αβ

ij =√
cαtαβ(|ri − rj |)

√
cβ . The renormalized component

Green’s function relates now to the one-particle Green’s
function in the following way:

E(G̃
αβ

ij ) =

{
E(Gii(z)|i 7→ α)δαβ if i = j,√
cαcβ E(Gii(z)|i, j 7→ α, β). if i 6= j

(C10)
There is no more concentration prefactor for the local
Green’s function, which is the central quantity of the BEB
formalism, since it is a local theory. The renormalized
version of the self-consistency equation Eqs. (25) and (26)
reads

0 = g̃−1

loc
(z)− g̃

−1
(z), (C11)

with the diagonal matrix

g̃
αβ

(z) =
cαδαβ

(g̃−1

loc
)
αα

+ S̃
αα − cαz + cα(µ− vα − Σα)

.

(C12)
With α 6= β, the high-frequency expansion of the renor-
malized effective medium yields

S̃
αβ

(z) = −ǫ(1)
√
cαTαβ

√
cβ +O

(
z−1

)
(C13)

S̃
αα

(z) = vα − µ+ cαTααǫ(1) +O
(
z−1

)
. (C14)

The scaling removes the contribution proportional to z,
and for a symmetric DOS the static part is simply the
on-site energy of the components. Furthermore, the static
part remains finite with vanishing concentration.

Appendix D: Hybridization of the Bethe lattice

Specific to the BEB+DMFT scheme is an alloy-
component dependent hybridization function ∆α(z) com-
puted according to Eq. (28). The hybridization function

describes the hopping process into and out-of the impurity
site. The special form of the lattice Hilbert transform
g0(z) for the Bethe lattice

z − 1/g0(z) = (D/2)
2
g0(z) (D1)

gives a direct relation between the hybridization function
∆α(z) and the effective local Green’s function g

loc
(z)

Eq. (20). We promote the hybridization function Eq. (28)
to a full hybridization matrix

∆(z) = 1z − S(z)− g−1
loc

(z) =: ξ(z)− g−1
loc

(z), (D2)
whose diagonal elements are the physical hybridization
function ∆αα = ∆α. Using the representation Eq. (B9)
given in Appendix B, we can apply the identity Eq. (D1):

∆(z) = (D/2)
2
ŨP (z)g0

(
1/d(z)

)
P−1(z)Ṽ

†
. (D3)

Likewise, the matrix Tg
loc

(z)T can be expressed using
Eqs. (B2), (B4) and (B8):

Tg
loc

(z)T = ŨP (z)g0
(
1/d(z)

)
P−1(z)Ṽ

†
. (D4)

Thus, comparing Eqs. (D3) and (D4), we identify the
relation for the Bethe lattice:

∆(z) = (D/2)
2
Tg

loc
(z)T. (D5)

The diagonal elements are the hybridization function,
which reads

∆α(z) = (D/2)
2
∑

β

∣∣∣Tαβ
∣∣∣
2

gββ
loc

(z). (D6)

In the CPA case Tαβ = 1 we evidently recover the com-
ponent independent hybridization:

∆α(z) = (D/2)
2
∑

α

gαα
loc

(z) = (D/2)
2
E
(
G(z)

)
. (D7)

For the case of a binary alloy shown by Fig. 5, we see
that for TAB < 1 = Tαα the hybridization for A stems
mostly from A sites, while for TAB > 1 = Tαα the main
contribution to the hybridization of A comes from the B

sites.
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