Application of the Locally Self-Consistent Embedding
Approach to the Anderson Model with Non-Uniform
Random Distributions

K.-M.Tam®P, Y. Zhang®, H. Terletskad, Y. Wang®, M. Eisenbachf, L.
Chioncel®, J. Moreno®P

% Department of Physics € Astronomy, Louisiana State University, Baton Rouge, Louisiana
70803, USA
bCenter for Computation & Technology, Louisiana State University, Baton Rouge, LA
70803, USA
¢Kavli Institute for Theoretical Sciences, University of the Chinese Academy of Sciences,
Beijing, 100190, China
4 Department of Physics and Astronomy, Computational Science Program, Middle
Tennessee State University, Murfreesboro, Tennessee 37132, USA
€ Pittsburgh Supercomputing Center, Carnegie Mellon University, PA 15213, USA
fCenter for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN
37831, USA
9Theoretical Physics 111, Center for Electronic Correlations and Magnetism, Institute of
Physics, University of Augsburg, and Augsburg Center for Innovative Technologies,
University of Augsburg, D-86135 Augsburg, Germany

Abstract

We apply the recently developed embedding scheme for the locally self-consistent
method to random disorder electrons systems. The method is based on the lo-
cally self-consistent multiple scattering theory and the typical medium theory.
The locally self-consistent multiple scattering theory divides a system into many
small designated local interaction zones. The subsystem within each local in-
teraction zone is embedded in a self-consistent field from the typical medium
theory. This approximation allows the study of random systems with large num-
bers of sites. We present results for the three dimensional Anderson model with
different random disorder potential distributions. Using the typical density of
states as an indicator of Anderson localization, we find that the method can cap-
ture the localization for commonly studied disorder potentials. These include
the uniform distribution, the Gaussian distribution, and even the unbounded
Cauchy distribution.

Keywords: Anderson Localization, Typical Medium Theory, Locally
Self-Consistent Multiple Scattering

1. Introduction

The seminal work by Anderson highlights the importance of random disor-
der. Instead of a small perturbation on the otherwise metallic system, strong
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random disorder can lead to the absence of diffusion [1]. This remarkable result
has triggered a tremendous amount of fascinating research over the past six
decades [2, 3, 4].

The advances in computational condensed matter physics have led to rather
accurate descriptions of materials, often from first principles. However, even
with improvements in methodology and computer power, simulations of systems
with random disorder remain one of the most challenging topics in materials
science. One of the major obstacles is the large unit cell required for the study
of disorder systems. This problem is particularly acute for materials which hold
promising device applications where the density of impurities is rather low, such
as doped semiconductors.

One route to subdue the challenges for first principle simulations of disorder
materials is to consider methods not based on the conventional plane wave
expansion of the Kohn-Sham equations. A promising candidate is the multiple
scattering method, the Korringa—Kohn-Rostoker (KKR) method. Instead of
finding the eigenvalues and eigenstates of the Kohn-Sham equation, the KKR
method directly finds the Green function by the multiple scattering approach
[5, 6, 7, 8. This allows the modeling of systems with larger unit cells. Combined
with the coherent potential approximation (CPA) [9, 10, 11, 12, 13], the KKR
method has been applied to many systems, such as binary alloys, and more
recently high entropy alloys, in which multiple species are present in a well
mixed system [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

Even with its success in the study of alloys, the KKR method still suffers
from the limitation of the system size. An insightful idea is to limit the range of
the electronic couplings: for the portion of the system within a cutoff distance,
the coupling is treated by the density functional theory; outside of the cutoff
distance, the system is replaced by a vacuum. This approximation, coined as
locally self consistent multiple scattering (LSMS) method, renders the calcula-
tions to be order-N with respect to the system size [30, 31]. Tens of thousands
of atoms can be studied by this method. In addition, the method can readily
be parallelized in distributed memory computing clusters. The main class of
materials targeted by LSMS are alloys. Rather detailed studies have been con-
ducted on binary alloys, and its capability to handle larger systems has been
demonstrated [30].

An intuitive step to improve the method is to consider the system embedded
in some form of self-consistently determined bath in the same spirit as that of
the CPA or the dynamical mean field theory [9, 32, 13]. While this approach
should improve the quality of the approximation, the effects of localization are
absent in the CPA and its cluster extensions, such as the dynamical cluster
approximation (DCA)[33, 34].

The failure to capture the Anderson localization transition is apparently due
to the fact that these mean field methods are based on the average of a single
particle quantity, which does not become critical around the critical disorder
strength. One may naively expect that the local density of states can serve as
an indicator of localization transition. However, this is not the case because a
small number of itinerant states dominates the average value of the local density
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of states which remains finite [35]. For this reason, the averaged local density
of states fails as an order parameter of the localization transition.

The typical medium theory (TMT) employs the concept of the typical den-
sity of states to generalize the CPA [36, 37, 38]. Instead of using the average
density of states to compute the self-consistent mean field bath, the typical den-
sity of states is used. Large numerical simulations using the kernel polynomials
method have shown that the typical density of states does become critical near
the localization transition in the three dimensional Anderson model [39]. It
has been further demonstrated that the local density of states has a log normal
distribution near the localization transition [39].

The TMT replaces the arithmetic averaging method in the CPA by the
geometric average. Note that the geometric average is equal to the typical
value for the log normal distribution. One can show that the typical density
of states decreases as the disorder strength increases and eventually vanishes as
the disorder reaches the critical value. The TMT thus represents a mean field
theory of localization which is not admissible by the CPA [37].

The typical medium dynamical cluster approximation (TMDCA) extends
the TMT to a cluster theory in line with the development of the DCA [38].
Over the past few years, the TMDCA has been applied on the three dimensional
Anderson model [40, 41], off-diagonal disorder, [42], phonon localization [43],
multi-orbital models [44], and materials studies [45, 46, 47]. In particular, it
has been shown that the re-entrance effect because of non-local scattering in
the three dimensional Anderson model, which is absent in the TMT single site
theory, is captured by the TMDCA [41].

The locally self-consistent embedding approach uses the locally self-consistent
multiple scattering (LSMS) method to study each subsystem within the local
interaction zone, but unlike the LSMS the local interaction zone is embedded in
a mean field bath [48]. Similar to that of the TMT method, the mean field bath
is calculated using the geometric average of the Green functions from disorder
realizations rather than the linear average, as in the conventional CPA method.

The embedding method is not an altogether unfamiliar concept by itself, it
has been extensively used in the study of strongly correlated systems under the
name of quantum cluster theory [33]. It has also been applied for the study of
random disorder systems [38]. The objective for the embedded typical medium
theory is not to construct a dynamical cluster approximation [49, 23, 38], a
cellular dynamical mean field theory [50], nor a real space supercell effective
medium approximation [51, 52], but to build up a linearly scaling method which
generalizes the concept of LSMS and TMT to study lattice models, and to
capture the localization transition [48]. The method should also be readily
pertinent to the KKR method for materials studies [48].

The goal of the present paper is to further benchmark the locally self-
consistent embedding approach by studying the three dimensional Anderson
model with different random disorder distributions. The paper is organized as
follows. In section II, we provide a short overview of the method. In section III,
we present and discuss the results for the three dimensional Anderson model
with uniform, Gaussian, and Cauchy (Lorentzian) distributions. We conclude



96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

and provide a discussion of the prospect of the method in the last section.

2. Typical Medium Theory and Embedding Method

The central idea of the embedding method is to consider a small system
coupled to an environment. The simplest example is the Weiss mean field theory
of the Ising model, in which a single spin is coupled to a mean magnetization.
For a fermionic system the coupling between the system and the environment
can be embodied in the self-energy.

The LSMS is based on the approximation which divides the system into
many smaller subsystems. Each subsystem can be studied by accurate but
computational expensive methods. Within the multiple scattering theory, each
site or ion in the system is encircled by the so-called local interaction zone (LIZ).
The original LSMS treats the LIZ embedded in a vacuum.

In the following we describe the embedding of the LIZ in a self-consistently
determined dynamical mean field. Consider a one dimensional system with a
four-site supercell (Fig. 1). We denote the number of sites in a supercell as N,.
Each site in the supercell has its own LIZ, we denote the size of the LIZ as Ny 7.
Fig. 1 shows an example of N, = 4 and Np;z = 3. In practical calculations
Nr1z is smaller, often much smaller, than N.. For the four sites supercell,
there are four different LIZ. The top row of Fig. 1 displays the supercell of
the system. The next four rows are the LIZ for the four different sites, the
site in consideration is painted in red, and the LIZ is represented by an empty
rectangle.

Figure 1: An example of the local interaction zone (LIZ) for a one dimensional system with
a four-site supercell. The top row shows the supercells. The next four rows display the LIZ
for the four sites in a supercell. The site in consideration is painted in red, and the LIZ is
represented by an empty rectangle.

Consider the Fourier transform of the Green function G(w, K):

Grafw) = - MG, ), M
¢ K
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where K is the wavenumber, N, the number of sites, and (I, J) the coordinates of
the supercell sites [53]. The LIZ Green function is obtained simply by restricting
the indices (I, J) to the given LIZ.

_ 1 . _
G W) =+ S KRG, K),  (1,J) € LIZ. 2)
¢ K

G(w, K) is defined through the coarse-graining procedure as

N, 1
G(W’K):N;w—E(K—f—iﬂ)—Z(w)’ (3)

where the local effective self-energy is denoted by ¥(w) and e(K + k) is the
lattice dispersion. The supercell wavenumbers K correspond to the N, cells as
prescribed by the dynamical cluster approximation [54, 53, 49]. k labels the
wavenumbers surrounding K within each patch in the Brillouin zone.

The LIZ excluded Green function can be obtained as,

~LIZ

g w) = (@) 3w L (W

where G(w) is the real space Green function within a LIZ in the absence of
disorder. The underline denotes the quantities are Np;z X Nprz matrices.
Note that for a translational invariant system G(w) is the same for all possible
LIZs obtained by running the center of the LIZ (I.) through each sites of the
supercell [48].

Within a supercell the cluster Green function with the disorder potential
can be obtained for each site for solving the real space cluster Green function
of the corresponding LIZ centered around the site I.:

(QLIZ(LU, Vv, Ic))_l = Qil(w) — Z(Ic)? (5)

where V (1I..) is a diagonal matrix of size Np;z X Nprz. The index I, (the center
of the LIZ) serves also as an additional label indicating the presence of disorder
at that specific site. N,, number of random realizations are solved for each LIZ.

The cluster Green function averaged over disorder realizations and the sites
within the supercell can be obtained as G2 (w) = ﬁ donv G (w,V, I.).
As we discussed above, the linear average of the Green function fails to capture
the localization transition. We thus follow the TMT to promote the linear
average to geometric average (typical average for log-normal distribution) as

follow [37],

LIZ
GLIZ (w) — eNic >or n(prerc(w,Vi1e)))y, x Ni Z <G (Wa ‘/7 Ic) > , (6)

== t
ave(typ) S prer. (w,Vi1e)

where pr, 1, (w,V, I.) is the local density of state at the center of the LIZ defined
as

1
pr.1.(w,V,I) = ——Im(G"*(w,V, I.)) 1. 1. (7)

™
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Figure 2: The self-consistency loop for the TMT embedding method. It can be broken down
into the following steps. 1. Starting from the top of the figure, the lattice Green function is
obtained by coarse-graining over each patch labelled by K in the Brillouin zone. 2. The Green
function within the LIZ in real space is obtained by Fourier transforming the lattice Green
function. 3. The bath Green function is obtained by the cluster excluded Green function
using the Dyson equation. 4. The impurity cluster Green function within the LIZ is obtained
by solving the system exactly within the LIZ. 5. The typical averaged Green function is
obtained by solving the impurity cluster Green function over many random realizations. 6.
The self-energy is obtained via the Dyson equation. 7. Repeat from the initial step until the
self energy is converged.

With the averaged cluster Green function, we update the self-energy via the
Dyson equation as follow,

E(w) = (Q_l(w))f I~ (Qﬂg(—t;m (w))IC 1.’ ®)

sde

where G(wc(typ (w) is the disorder averaged G*"%(w, V, I,) via geometric averag-
ing. The algorithm is summarized in Fig. 2

3. Results

In the present study we focus on the standard Anderson model in a simple
cubic lattice.

H=—t Z (c;racjg + H.c)+ Z Vinio, (9)
<%,j>,0 io
where c;rg and ¢;, are the creation and annihilation operators, respectively, for

electrons at site ¢ and spin 0. n;, is the number operator for site ¢, spin o,
t is the hopping parameter between nearest neighbors, and the local random
disorder is given by V;. We set ¢t = 1 to serve as the energy scale.
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Three vastly different disorder distributions are studied:

1. The bounded uniform distribution, also called box disorder. The disorder
distribution function is P(V) = #;©(|W/2 — V), where the disorder strength
is characterized by W.

2. The Gaussian distribution with distribution function given as P(V) =

\V6/m 6V2 )

W2 e:cp(—m .

3. The Cauchy distribution or the Lorentzian distribution which is an un-
bounded distribution. The distribution is given as P(V) = W(VQLJFQWZ\)

We use the TMT embedding algorithm to study the three dimensional An-
derson model for the above three random distributions. We only study the case
for zero energy. Most of the studies in the literature are also focused at zero en-
ergy and very accurate data is available [3, 55, 56]. There are interesting physics
at non-zero energy, a prominent feature is the reentrance of the metallic phase
as disorder is increased at high energies. Since there are not many studies on
this issue and our purpose is benchmarking our approach for different disorder
distributions, we reserve the study at high energies for future work.

In the simulations, we use 1,000 random realizations for disorder averaging.
The supercell size is chosen to be N. = 8 x 8 x 8, and the LIZ size is chosen to
be Nprz = 3 x3x3. According to the TMT, the indicator or ‘order parameter’
for the localization transition can be represented by the geometric averaged
local density of states, piyp(w). After the self-consistency for the self energy is
attained, we calculate pyyp(w) = e:cp[Nip o I (pra (w, Vi 1))yl

From Fig. 3, one can observe that the typical density of states decreases
as the disorder strength increases. It approaches zero above a certain value
of disorder, which can be identified as the critical disorder strength for the
localization transition [37]. The three random distributions we consider have
very different values of the critical disorder. From the highly accurate transfer
matrix calculation, the critical disorder strengths are 16.536, 21,293, 4.2707 for
the box, Gaussian, and Cauchy distributions, respectively [56].

The critical disorder strengths calculated by the present method follow roughly
the values predicted by the transfer matrix calculations, but our values are over-
estimated for all three distributions (Fig. 3). Note that the results presented are
for a fixed LIZ size and a supercell size. A rather accurate estimate for critical
disorder can be obtained for proper scaling of the typical density of state as a
function of LIZ size and supercell size [48]. The present results show the trend
that the typical density of state drops appreciably near the expected critical
disorder strength.

4. Conclusion

We use the embedding locally self-consistent method to study the Anderson
model in three dimensions with different disorder distributions. The method
provides a path for the study of random disorder systems without solving a large
lattice or cluster problem. The computational cost scales with the third power
of the size of the local interaction zone but only linearly with the system size.
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Figure 3: Geometric averaged local density of states at zero energy, ptyp(w = 0), as a function
of disorder strength for a 8 x 8 x 8 supercell, and 3 x 3 X 3 local interaction zone. Upper
Panel: p¢yp(w = 0) for the box distribution. Middle Panel: ptyp(w = 0) for the Gaussian
distribution. Lower Panel: p¢yp(w = 0) for the Cauchy distribution.
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The approximation being used renders it to be a linearly scaling method as that
of the locally self-consistent multiple scattering theory; moreover, the method
can be easily parallelized to run in distributed memory computer clusters [30].
The present results on the single band model with local random potentials are
encouraging for the prospect of its application in other models and materials
study.

We emphasize that the purpose of the present method is to construct an
order-N theory for the study of random disorder systems, particularly for cap-
turing localization transition so that it can be used to generalize the locally
self-consistent multiple scattering theory [30]. For the Anderson model in three
dimensions, accurate embedding methods which are not an order- N method are
available, such as the well studied typical medium dynamical cluster approxima-
tion [38]. The real space supercell effective medium approximation is another
possible proposal [51, 52].

The immediate future work for the present method is to investigate the scal-
ing of the typical density of state as a function of supercell size and the LIZ
size. The next step will be to employ the present scheme with the KKR multiple
scattering theory [57, 46] for disorder materials such as high entropy alloys and
doped semiconductors. This method, in principle, can also be used to calcu-
late two particle quantities [58], which allows the access of physically relevant
quantities such as the conductivity. Combining with the ab initio KKR multiple
scattering method, this approach thus provides a route for the investigation of
the effect of localization in weakly interacting materials [59].
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