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Abstract

We apply the recently developed embedding scheme for the locally self-consistent
method to random disorder electrons systems. The method is based on the lo-
cally self-consistent multiple scattering theory and the typical medium theory.
The locally self-consistent multiple scattering theory divides a system into many
small designated local interaction zones. The subsystem within each local in-
teraction zone is embedded in a self-consistent field from the typical medium
theory. This approximation allows the study of random systems with large num-
bers of sites. We present results for the three dimensional Anderson model with
different random disorder potential distributions. Using the typical density of
states as an indicator of Anderson localization, we find that the method can cap-
ture the localization for commonly studied disorder potentials. These include
the uniform distribution, the Gaussian distribution, and even the unbounded
Cauchy distribution.

Keywords: Anderson Localization, Typical Medium Theory, Locally
Self-Consistent Multiple Scattering

1. Introduction1

The seminal work by Anderson highlights the importance of random disor-2

der. Instead of a small perturbation on the otherwise metallic system, strong3
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random disorder can lead to the absence of diffusion [1]. This remarkable result4

has triggered a tremendous amount of fascinating research over the past six5

decades [2, 3, 4].6

The advances in computational condensed matter physics have led to rather7

accurate descriptions of materials, often from first principles. However, even8

with improvements in methodology and computer power, simulations of systems9

with random disorder remain one of the most challenging topics in materials10

science. One of the major obstacles is the large unit cell required for the study11

of disorder systems. This problem is particularly acute for materials which hold12

promising device applications where the density of impurities is rather low, such13

as doped semiconductors.14

One route to subdue the challenges for first principle simulations of disorder15

materials is to consider methods not based on the conventional plane wave16

expansion of the Kohn-Sham equations. A promising candidate is the multiple17

scattering method, the Korringa–Kohn–Rostoker (KKR) method. Instead of18

finding the eigenvalues and eigenstates of the Kohn-Sham equation, the KKR19

method directly finds the Green function by the multiple scattering approach20

[5, 6, 7, 8]. This allows the modeling of systems with larger unit cells. Combined21

with the coherent potential approximation (CPA) [9, 10, 11, 12, 13], the KKR22

method has been applied to many systems, such as binary alloys, and more23

recently high entropy alloys, in which multiple species are present in a well24

mixed system [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].25

Even with its success in the study of alloys, the KKR method still suffers26

from the limitation of the system size. An insightful idea is to limit the range of27

the electronic couplings: for the portion of the system within a cutoff distance,28

the coupling is treated by the density functional theory; outside of the cutoff29

distance, the system is replaced by a vacuum. This approximation, coined as30

locally self consistent multiple scattering (LSMS) method, renders the calcula-31

tions to be order-N with respect to the system size [30, 31]. Tens of thousands32

of atoms can be studied by this method. In addition, the method can readily33

be parallelized in distributed memory computing clusters. The main class of34

materials targeted by LSMS are alloys. Rather detailed studies have been con-35

ducted on binary alloys, and its capability to handle larger systems has been36

demonstrated [30].37

An intuitive step to improve the method is to consider the system embedded38

in some form of self-consistently determined bath in the same spirit as that of39

the CPA or the dynamical mean field theory [9, 32, 13]. While this approach40

should improve the quality of the approximation, the effects of localization are41

absent in the CPA and its cluster extensions, such as the dynamical cluster42

approximation (DCA)[33, 34].43

The failure to capture the Anderson localization transition is apparently due44

to the fact that these mean field methods are based on the average of a single45

particle quantity, which does not become critical around the critical disorder46

strength. One may naively expect that the local density of states can serve as47

an indicator of localization transition. However, this is not the case because a48

small number of itinerant states dominates the average value of the local density49
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of states which remains finite [35]. For this reason, the averaged local density50

of states fails as an order parameter of the localization transition.51

The typical medium theory (TMT) employs the concept of the typical den-52

sity of states to generalize the CPA [36, 37, 38]. Instead of using the average53

density of states to compute the self-consistent mean field bath, the typical den-54

sity of states is used. Large numerical simulations using the kernel polynomials55

method have shown that the typical density of states does become critical near56

the localization transition in the three dimensional Anderson model [39]. It57

has been further demonstrated that the local density of states has a log normal58

distribution near the localization transition [39].59

The TMT replaces the arithmetic averaging method in the CPA by the60

geometric average. Note that the geometric average is equal to the typical61

value for the log normal distribution. One can show that the typical density62

of states decreases as the disorder strength increases and eventually vanishes as63

the disorder reaches the critical value. The TMT thus represents a mean field64

theory of localization which is not admissible by the CPA [37].65

The typical medium dynamical cluster approximation (TMDCA) extends66

the TMT to a cluster theory in line with the development of the DCA [38].67

Over the past few years, the TMDCA has been applied on the three dimensional68

Anderson model [40, 41], off-diagonal disorder, [42], phonon localization [43],69

multi-orbital models [44], and materials studies [45, 46, 47]. In particular, it70

has been shown that the re-entrance effect because of non-local scattering in71

the three dimensional Anderson model, which is absent in the TMT single site72

theory, is captured by the TMDCA [41].73

The locally self-consistent embedding approach uses the locally self-consistent74

multiple scattering (LSMS) method to study each subsystem within the local75

interaction zone, but unlike the LSMS the local interaction zone is embedded in76

a mean field bath [48]. Similar to that of the TMT method, the mean field bath77

is calculated using the geometric average of the Green functions from disorder78

realizations rather than the linear average, as in the conventional CPA method.79

The embedding method is not an altogether unfamiliar concept by itself, it80

has been extensively used in the study of strongly correlated systems under the81

name of quantum cluster theory [33]. It has also been applied for the study of82

random disorder systems [38]. The objective for the embedded typical medium83

theory is not to construct a dynamical cluster approximation [49, 23, 38], a84

cellular dynamical mean field theory [50], nor a real space supercell effective85

medium approximation [51, 52], but to build up a linearly scaling method which86

generalizes the concept of LSMS and TMT to study lattice models, and to87

capture the localization transition [48]. The method should also be readily88

pertinent to the KKR method for materials studies [48].89

The goal of the present paper is to further benchmark the locally self-90

consistent embedding approach by studying the three dimensional Anderson91

model with different random disorder distributions. The paper is organized as92

follows. In section II, we provide a short overview of the method. In section III,93

we present and discuss the results for the three dimensional Anderson model94

with uniform, Gaussian, and Cauchy (Lorentzian) distributions. We conclude95
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where K is the wavenumber, Nc the number of sites, and (I, J) the coordinates of119

the supercell sites [53]. The LIZ Green function is obtained simply by restricting120

the indices (I, J) to the given LIZ.121

ḠLIZ
IJ (ω) =

1

Nc

∑

K

eiK·RIJ Ḡ(ω,K), (I, J) ∈ LIZ. (2)

Ḡ(ω,K) is defined through the coarse-graining procedure as122

Ḡ(ω,K) =
Nc

N

∑

k̃

1

ω − ǫ(K + k̃) − Σ(ω)
, (3)

where the local effective self-energy is denoted by Σ(ω) and ǫ(K + k̃) is the123

lattice dispersion. The supercell wavenumbers K correspond to the Nc cells as124

prescribed by the dynamical cluster approximation [54, 53, 49]. k̃ labels the125

wavenumbers surrounding K within each patch in the Brillouin zone.126

The LIZ excluded Green function can be obtained as,127

G−1(ω) =
(

Ḡ
LIZ

(ω)
)−1

+ Σ(ω) · I, (4)

where G(ω) is the real space Green function within a LIZ in the absence of128

disorder. The underline denotes the quantities are NLIZ × NLIZ matrices.129

Note that for a translational invariant system G(ω) is the same for all possible130

LIZs obtained by running the center of the LIZ (Ic) through each sites of the131

supercell [48].132

Within a supercell the cluster Green function with the disorder potential133

can be obtained for each site for solving the real space cluster Green function134

of the corresponding LIZ centered around the site Ic:135

(

GLIZ(ω, V, Ic)
)−1

= G−1(ω) − V (Ic), (5)

where V (Ic) is a diagonal matrix of size NLIZ ×NLIZ . The index Ic (the center136

of the LIZ) serves also as an additional label indicating the presence of disorder137

at that specific site. Nr number of random realizations are solved for each LIZ.138

The cluster Green function averaged over disorder realizations and the sites139

within the supercell can be obtained as GLIZ
ave(ω) = 1

NrNc

∑

Ic,V
GLIZ(ω, V, Ic).140

As we discussed above, the linear average of the Green function fails to capture141

the localization transition. We thus follow the TMT to promote the linear142

average to geometric average (typical average for log-normal distribution) as143

follow [37],144

GLIZ
ave(typ)(ω) = e

1

Nc

∑
Ic

〈ln(ρIcIc
(ω,V,Ic))〉V × 1

Nc

∑

Ic

〈

GLIZ(ω, V, Ic)

ρIcIc
(ω,V,Ic)

〉

V

, (6)

where ρIcIc(ω, V, Ic) is the local density of state at the center of the LIZ defined145

as146

ρIcIc(ω, V, Ic) = − 1

π
Im(GLIZ(ω, V, Ic))Ic,Ic . (7)
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Three vastly different disorder distributions are studied:158

1. The bounded uniform distribution, also called box disorder. The disorder159

distribution function is P (V ) = 1
W Θ(|W/2 − V |), where the disorder strength160

is characterized by W .161

2. The Gaussian distribution with distribution function given as P (V ) =162 √
6/π

W 2 exp(− 6V 2

W 2 ).163

3. The Cauchy distribution or the Lorentzian distribution which is an un-164

bounded distribution. The distribution is given as P (V ) = W 2

π(V 2+W 2) .165

We use the TMT embedding algorithm to study the three dimensional An-166

derson model for the above three random distributions. We only study the case167

for zero energy. Most of the studies in the literature are also focused at zero en-168

ergy and very accurate data is available [3, 55, 56]. There are interesting physics169

at non-zero energy, a prominent feature is the reentrance of the metallic phase170

as disorder is increased at high energies. Since there are not many studies on171

this issue and our purpose is benchmarking our approach for different disorder172

distributions, we reserve the study at high energies for future work.173

In the simulations, we use 1,000 random realizations for disorder averaging.174

The supercell size is chosen to be Nc = 8 × 8 × 8, and the LIZ size is chosen to175

be NLIZ = 3×3×3. According to the TMT, the indicator or ‘order parameter’176

for the localization transition can be represented by the geometric averaged177

local density of states, ρtyp(ω). After the self-consistency for the self energy is178

attained, we calculate ρtyp(w) = exp[ 1
Nc

∑

Ic
〈ln (ρIcIc(ω, V, Ic))〉V ].179

From Fig. 3, one can observe that the typical density of states decreases180

as the disorder strength increases. It approaches zero above a certain value181

of disorder, which can be identified as the critical disorder strength for the182

localization transition [37]. The three random distributions we consider have183

very different values of the critical disorder. From the highly accurate transfer184

matrix calculation, the critical disorder strengths are 16.536, 21, 293, 4.2707 for185

the box, Gaussian, and Cauchy distributions, respectively [56].186

The critical disorder strengths calculated by the present method follow roughly187

the values predicted by the transfer matrix calculations, but our values are over-188

estimated for all three distributions (Fig. 3). Note that the results presented are189

for a fixed LIZ size and a supercell size. A rather accurate estimate for critical190

disorder can be obtained for proper scaling of the typical density of state as a191

function of LIZ size and supercell size [48]. The present results show the trend192

that the typical density of state drops appreciably near the expected critical193

disorder strength.194

4. Conclusion195

We use the embedding locally self-consistent method to study the Anderson196

model in three dimensions with different disorder distributions. The method197

provides a path for the study of random disorder systems without solving a large198

lattice or cluster problem. The computational cost scales with the third power199

of the size of the local interaction zone but only linearly with the system size.200
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Figure 3: Geometric averaged local density of states at zero energy, ρtyp(ω = 0), as a function
of disorder strength for a 8 × 8 × 8 supercell, and 3 × 3 × 3 local interaction zone. Upper
Panel: ρtyp(ω = 0) for the box distribution. Middle Panel: ρtyp(ω = 0) for the Gaussian
distribution. Lower Panel: ρtyp(ω = 0) for the Cauchy distribution.
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The approximation being used renders it to be a linearly scaling method as that201

of the locally self-consistent multiple scattering theory; moreover, the method202

can be easily parallelized to run in distributed memory computer clusters [30].203

The present results on the single band model with local random potentials are204

encouraging for the prospect of its application in other models and materials205

study.206

We emphasize that the purpose of the present method is to construct an207

order-N theory for the study of random disorder systems, particularly for cap-208

turing localization transition so that it can be used to generalize the locally209

self-consistent multiple scattering theory [30]. For the Anderson model in three210

dimensions, accurate embedding methods which are not an order-N method are211

available, such as the well studied typical medium dynamical cluster approxima-212

tion [38]. The real space supercell effective medium approximation is another213

possible proposal [51, 52].214

The immediate future work for the present method is to investigate the scal-215

ing of the typical density of state as a function of supercell size and the LIZ216

size. The next step will be to employ the present scheme with the KKR multiple217

scattering theory [57, 46] for disorder materials such as high entropy alloys and218

doped semiconductors. This method, in principle, can also be used to calcu-219

late two particle quantities [58], which allows the access of physically relevant220

quantities such as the conductivity. Combining with the ab initio KKR multiple221

scattering method, this approach thus provides a route for the investigation of222

the effect of localization in weakly interacting materials [59].223
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