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Abstract Let (G, µ) be a pair of a reductive group G over the p-adic integers and a minuscule cocharacter

µ of G defined over an unramified extension. We introduce and study ‘(G, µ)-displays’ which generalize

Zink’s Witt vector displays. We use these to define certain Rapoport–Zink formal schemes purely group

theoretically, i.e. without p-divisible groups.
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1. Introduction

In the theory of Shimura varieties, as interpreted by Deligne [9], one starts with a
‘Shimura datum’ (G, X). This is a pair of a (connected) reductive algebraic group
G over the field of rational numbers Q, and a symmetric Hermitian domain X =
{h} for G(R) given as a G(R)-conjugacy class of an algebraic group homomorphism
h : C⇤ ! GR over the real numbers R, that satisfies certain axioms. For each open
compact subgroup K of the finite adeles G(A f ), one considers the Shimura variety
ShK (G, X) = G(Q)\(X ⇥G(A f )/K ); this complex analytic space is actually an algebraic
variety with a canonical model over a number field, the so-called reflex field of the pair
(G, X).
The proposal that there should exist a similar theory of ‘p-adic local Shimura varieties’

was recently put forward by Rapoport and Viehmann [21]. The current paper can be
viewed as a contribution to this theory. In [21], one starts with the ‘local Shimura datum’.
This is a triple (G, {µ}, [b]) consisting of a connected reductive algebraic group G over
Qp, a conjugacy class {µ} of minuscule cocharacters of GQp

, and a � -conjugacy class [b]
of elements in G(L), satisfying some simple axioms. (Here, L is the completion of the
maximal unramified extension of Qp and � the canonical lift of Frobenius.) For each open
compact subgroup K ⇢ G(Qp) we should have the local Shimura variety MK (G, {µ}, [b]);
this is expected to be a rigid analytic space with a canonical model over the ‘local
reflex field’ which is a finite extension E of Qp that depends only on (G, {µ}). See [21]
for more details and expected properties of the local Shimura varieties. Examples of
such local Shimura varieties have first been constructed in the work of Rapoport and
Zink [22] in some special cases. There, they appear as covers of the generic fibers of
certain formal schemes over the ring of integers OE . These formal schemes (which we
call Rapoport–Zink formal schemes) are moduli spaces parametrizing p-divisible groups
(with additional structure) with a quasi-isogeny to a fixed p-divisible group. They can
be viewed as integral models of the desired local Shimura varieties.
In this paper, we consider the case in which the local Shimura datum is unramified. In

particular, the open compact subgroup K is maximal hyperspecial. Then, starting from
(G, {µ}, [b]), we give a functor RZG,µ,b on p-nilpotent algebras. As we explain below, this
functor has a direct group theoretic definition which uses only G, suitable representatives
µ and b, and involves rings of Witt vectors. We conjecture that RZG,µ,b is represented
by a formal scheme which should then be an integral model of the sought-after local
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Shimura variety for this hyperspecial level. We essentially show this conjecture when the
local Shimura datum is of Hodge type, i.e. when it embedds into a local Shimura datum
for GLn .
The main tool we use is a variation of the theory of Zink displays. By the work of Zink

and Lau, (formal) p-divisible groups over a p-adically complete and separated algebra R
are classified by displays. These are projective finitely generated modules P over the ring
of Witt vectors W (R) with additional structure given by a suitable filtration I (R)P ⇢
Q ⇢ P and a Frobenius semi-linear operator V�1 : Q ! P that satisfy certain axioms.
Here, I (R) is the kernel of the projection w

0

: W (R) ! R given by w
0

(r
0

, r
1

, . . .) = r
0

.
In this paper, we develop a theory of displays ‘with (G, µ)-structure’: Instead of

projective W (R)-modules, we use G-torsors over W (R) or, equivalently, L+G-torsors over
R. Here, G is a reductive group scheme over Zp and µ is a (minuscule) cocharacter of
G defined over a finite unramified extension W (k

0

). Then L+G is the positive ‘Witt
loop group scheme of G’ defined by L+G(R) = G(W (R)). To explain the definition of
(G, µ)-displays we need to introduce some more objects: We let Hµ be the subgroup
scheme of L+GW (k

0

) with R-valued points Hµ(R) given by those g 2 G(W (R)) whose
projection g

0

2 G(R) lands in the R-points of the parabolic subgroup Pµ ⇢ G associated
to µ. We then construct the ‘divided Frobenius’ which is a group scheme homomorphism

8G,µ : Hµ ! L+GW (k
0

)

such that, for h 2 Hµ(R), we have

8G,µ(h) = µ� (p) · F(h) ·µ� (p)�1

in G(W (R)[1/p]). Here F is induced by the Frobenius on W (R).

Definition 1.0.1. A (G, µ)-display is a triple D := (P, Q, u) which we can write

P  - Q
u�! P,

where P is a L+G-torsor and Q a Hµ-torsor. We ask that

P = Q ⇥Hµ L+GW (k
0

)

and that u is a morphism compatible with the actions on Q and P and with 8G,µ, in
the sense that u(q · h) = u(q) ·8G,µ(h), for all q 2 Q(R), h 2 Hµ(R).

(This definition first appeared in [3], see also [26] for a similar construction. One can
view this structure as formally similar to that of a Drinfeld shtuka with W (R) replacing
the a�ne ring R[t] of a curve.)
Locally the morphism u is given by a point of L+G and we can see that (G, µ)-displays

are objects of the quotient stack

[L+GW (k
0

)/8G,µH
µ]

where the action of Hµ is by 8G,µ-conjugation: g · h := h�1g8G,µ(h).
Apparently, the notion of a (G, µ)-display is su�ciently well-behaved and we can

generalize several of the results of Zink on Witt vector displays, for example, about
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deformation theory. We can also define a notion of a G-quasi-isogeny between two
(G, µ)-displays and show that a triple (G, µ, b) allows us to give a ‘base-point’
(G, µ)-display D

0

defined over k = k̄
0

. With these ingredients, we now describe the
‘Rapoport–Zink functor’ RZG,µ,b:
By definition, RZG,µ,b sends a p-nilpotent W (k)-algebra R to the set of isomorphism

classes of pairs (D, ⇢), where D is a (G, µ)-display over R, and ⇢ : D⇥R R/pR 99K D
0

⇥k
R/pR is a G-quasi-isogeny.
We can also view RZG,µ,b as given by a quotient stack. Set LG for the Witt loop group

scheme of G given by LG(R) = G(W (R)[1/p]). Then RZG,µ,b is given by the isomorphism
classes of objects of the (fpqc, or étale) quotient stack

RZG,µ,b := [(L+G ⇥LG,µ,b LG)/Hµ]
for the action of Hµ given by

(U, g) · h = (h�1 ·U ·8G,µ(h), g · h).
Here, the fiber product (L+G ⇥LG,µ,b LG)(R) is by definition the set of pairs (U, g) with
U 2 L+G(R), g 2 LG(R), such that

g�1bF(g) = Uµ� (p)

in LG(R). The � -centralizer group

Jb(Qp) = { j 2 G(L) | j�1b� ( j) = b}
acts on RZG,µ,b by

j · (U, g) = (U, j · g).
It follows from the definition that the k-valued points of RZG,µ,b are given by the a�ne

Deligne–Lusztig set

RZG,µ,b(k) = {g 2 G(L) | g�1b� (g) 2 G(W )µ� (p)G(W )}/G(W ).

Here, W = W (k), L = W (k)[1/p].
Assuming an additional mild condition on the slopes of b, we conjecture that the functor

RZG,b,µ is representable by a formal W -scheme which is formally locally of finite type and
W -formally smooth. For G = GLn , and when b has no zero slopes, this follows from the
results of Rapoport–Zink and Zink and Lau. Indeed, in that case, the results of Zink and
Lau imply that our functor is equivalent to the functor of isomorphism classes of (formal)
p-divisible groups with a quasi-isogeny to a fixed p-divisible group considered in [22];
the representability of that functor is one of the main results of loc. cit. For more general
(G, µ), we show that pairs (D, ⇢) over R have no automorphisms when R is Noetherian.
When (G, µ) is of Hodge type, i.e. when there is an embedding i : G ,! GLn with

i ·µ conjugate to one of the standard minuscule cocharacters of GLn , we show that the
restriction of the functor RZG,µ,b to Noetherian algebras is representable as desired. This
is one of the main results of the paper. The basic idea of the proof is as follows: We
show (Corollary 5.2.6) that when (G, µ) ,! (G 0, µ0) is an embedding of local Shimura
data, the corresponding morphism of stacks RZG,µ,b ! RZG 0,µ0,i(b), when restricted to
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Noetherian algebras, is relatively representable by a closed immersion. (Proving this is,
maybe surprisingly, involved; the main step is the descent result of Proposition 5.2.5. Part
of the di�culty comes from the need to handle the nilradical of various rings that appear
in the argument.) In the Hodge type case, we have an embedding (G, µ) ,! (GLn, µ

0)
and RZ

GLn ,µ0,i(b) is representable by the results of Zink, Lau, and Rapoport–Zink as
explained above. The result follows by combining these two statements. (In all of this,
we have to assume that the slopes of i(b) do not include 0.)
A construction of Rapoport–Zink formal schemes in the Hodge type case was also

given by Kim [15], and, under an additional condition, independently by Howard and
the second author [14]. It is easy to see that, in the Hodge type case, the formal scheme
representing RZG,µ,b given in this paper coincides with the corresponding formal schemes
constructed in [22] (in the PEL and EL cases), in [15], and in [14]. Hence, our results
give a unified group theoretic description of these formal schemes as moduli functors
and describe their R-valued points for all Noetherian algebras R. In particular, they
imply the existence of isomorphisms between ‘classical’ Rapoport–Zink spaces when the
corresponding local Shimura data are isomorphic (for example, because of exceptional
isomorphisms between the underlying groups); this answers a question of Rapoport.
Let us also mention here that the restriction of our functors to perfect k-algebras

has already appeared in the work of Zhu [27] (see also [2]). In fact, when we consider
functors with values in perfect algebras there is a more comprehensive theory that
employs the ‘Witt vector a�ne Grassmannian’ which does not require the assumption
that µ is minuscule. However, the techniques of [27] and [2] cannot handle p-nilpotent
algebras and only give information about the perfection of the special fiber. On the other
extreme, when one considers only the generic fibers, in the Hodge type case, Scholze
and Scholze–Weinstein [25] can give a construction of the inverse limit of the tower
of local Shimura varieties as a perfectoid space (see also [7]). There are also related
constructions of more general spaces (even for µ not minuscule) that use G-bundles
on the Fontaine–Fargues curve and Scholze’s theory of diamonds [11, 24]. Again, the
more classical integral theory in this paper is in a di↵erent direction. Nevertheless,
it would be interesting to directly compare these constructions with ours. In another
direction, it should also be possible to develop a theory of ‘relative’ Rapoport–Zink spaces
by combining our group theoretic constructions with the theory of relative displays of
T. Ahsendorf (see for example [1]). Then one can compare these with the ‘absolute’
Rapoport–Zink spaces of the current paper when the group is given by Weil restriction
of scalars (see [23] for an example of such a comparison).
We now briefly describe the contents of the paper: We start with preliminaries on Witt

vectors, various notions of ‘Witt loop schemes’ (these are variations of the Greenberg
transform), and a review of the main definitions of Zink’s theory of displays. In § 3,
we define the group theoretic displays ((G, µ)-displays). We discuss several of their
basic properties, study their deformation theory and define a notion of quasi-isogeny.
In § 4, we give our group theoretic definition of the Rapoport–Zink stacks and state
the representability conjecture. In § 5, we show representability for local Shimura data
of Hodge type over Noetherian rings. At the end of the paper, we include three short
appendices: The first reviews certain facts about parabolic subgroups of reductive groups
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and the second discusses torsors for Witt loop group schemes. Finally, the third appendix
gives some results on nilradicals of certain rings which are used in the proof of the main
representability theorem.

2. Preliminaries

Let p be a prime number. Denote by k an algebraic closure of Fp = Z/pZ. Set W = W (k)
for the ring of Witt vectors and K = W [1/p] for its fraction field. Denote by K̄ an
algebraic closure of K . We use the symbol k

0

to denote a finite field of cardinality q = p f

contained in k.
If O is a Zp-algebra, we denote by ANilpO the category of O-algebras in which p is

nipotent. Similarly, we let NilpO be the category of Spec(O)-schemes S which are such
that p is Zariski locally nilpotent on OS .
In most of the paper, G stands for a connected reductive group scheme over Zp. Its

generic fiber is a connected reductive group over Qp, and is unramified, i.e. quasi-split
and split over an unramified extension of Qp. Conversely, every unramified connected
reductive group over Qp is isomorphic to the generic fiber of such a G.

2.1. Witt vectors

If R is a commutative ring which is a Zp-algebra, we denote by Wn(R) the ring of p-typical
Witt vectors (r

0

, . . . , rn�1

) of length n with entries in R. We allow in the notation n = 1;
in this case, we simply denote by W (R) the ring of Witt vectors with entries in R. For
r 2 R, we set

[r ] = (r, 0, 0, . . .).

The ring structure on Wn(R) is functorial in R. Recall the ring homomorphisms (‘ghost
coordinates’)

wk : Wn(R) ! R; (r
0

, r
1

, . . . , rn�1

) 7! r p
k

0

+ pr p
k�1

1

+ · · ·+ pkrk .

We denote by In(R), or simply I (R) if n = 1, the kernel of w
0

: Wn(R) ! R. The
Frobenius Fn and Verschiebung Vn are maps Wn+1

(R) ! Wn(R), respectively Wn(R) !
Wn+1

(R), that satisfy the defining relations

wk(Fnx) = wk+1

(x), wk(Vnx) = pwk�1

(x), w
0

(Vnx) = 0.

The Frobenius Fn is a ring homomorphism. The Verschiebung Vn is additive, is given by

Vn(r0, r1, . . . , rn�1

) = (0, r
0

, r
1

, . . . , rn�1

),

and we have VnWn(R) = In+1

(R). Again, we usually omit the subscript n if n = 1. We
have the identities

F � V = p, V (Fx · y) = x · V (y).

The following will be used later in the paper. We denote by J (R) the Jacobson radical
of R.

Lemma 2.1.1. Let A ⇢ Wn(R) be an ideal, and suppose that one of the following two
assertions holds:
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(i) p 2 J (R) and Rw
0

(A) = R.

(ii) n < 1 and Rwk(A) = R holds for all 0 6 k < n.

Then A = Wn(R).

Proof. We begin with case (ii), which we handle by induction on n: It su�ces to
check V n�1([x]) = (0, 0, . . . , x) 2 A, for any x 2 R. (Here, for simplicity, we denote the
composition Vn�1

� Vn�2

� · · · � V
1

as V n�1.) The assumption allows us to write the element
x as a sum

Pm
i=1

aiwn�1

( fi ) where ai 2 R and fi 2 A. It follows that

V n�1([x]) =
mX

i=1

V n�1([aiwn�1

( fi )]) =
mX

i=1

fi V n�1([ai ]),

as elements of Wn(R), which gives what we wanted. It remains to consider (i). Notice
that w

0

is surjective, so that w
0

(A) = Rw
0

(A). It follows that we can assume A is
principal, i.e. A = Wn(R) f , and we only need to check that f is a unit in every quotient
Wn(R)/(Vn�1

� · · · � Vn�k)Wn�k(R) = Wk(R) of Witt vectors of finite length. (This then
also implies the case n = 1.) However, this follows from (ii) together with p 2 J (R) and
wk( f ) ⌘ w

0

( f )p
k
mod p for every k.

If X is a scheme over W (R), we denote by F X the scheme over W (R) obtained by
pulling back via the Frobenius, i.e.

F X = X ⇥
Spec(W (R)),F Spec(W (R)).

2.2. Greenberg transforms and Witt loop schemes

Suppose that X is an a�ne scheme which is of finite type, respectively of finite
presentation, over Wn(R). By [12, § 4] (see also [18, Proposition 29]), the functor
R0 ! X (Wn(R0)) is represented by an a�ne scheme FnX over R; this is of finite type,
respectively of finite presentation, if n < 1. The scheme FnX is sometimes called the
Greenberg transform of X . (Again, for n = 1, we simply write FX instead of F1X .
Also, if X is a scheme over W (R), we write FnX instead of Fn(X ⌦W (R) Wn(R)).)
We can also consider the functor R0 ! X (W (R0)[1/p]). By [18, Proposition 32], we

see that this functor is represented by an Ind-scheme F(p)X over R which we might call
the Witt loop scheme of X . In [18], F(p)X is called the ‘localized’ Greenberg transform
of X .
We collect a few useful properties of the Greenberg transforms Fn .

Proposition 2.2.1.

(a) If X and Y are two a�ne finite type schemes over Wn(R), then there is a natural
isomorphism

Fn(X ⇥
Spec(Wn(R)) Y ) ⇠= FnX ⇥

Spec(R) FnY. (2.2.1.1)

(b) If f : X ! Y is a formally smooth, respectively formally étale, morphism of a�ne
schemes over Wn(R), then Fn f : FnX ! FnY is formally smooth, respectively
formally étale, morphism of a�ne schemes over R.
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(c) If X is a�ne and smooth over Wn(R), and n < 1, then FnX is smooth over R.

(d) If X is a�ne and smooth over W (R) (n = 1), then FX is flat and formally smooth
over R.

Proof. Part (a) follows quickly from the defining property of the Greenberg transforms
FnX (R0) = X (Wn(R0)), FnY (R0) = X (Wn(R0)). Let us show part (b). Consider an
R-algebra B with a nilpotent ideal I ⇢ B and set B̄ = B/I . Then there is a natural
map of sets

a : FnX (B) ! FnY (B)⇥FnY (B̄) FnX (B̄).

By definition, Fn f is formally smooth, respectively formally étale, if a is surjective,
respectively bijective, for all such pairs I ⇢ B. By definition, the map a is the natural
map

a : X (Wn(B)) ! Y (Wn(B))⇥Y (Wn(B̄)) X (Wn(B̄)).

However, we can easily see that the kernel Wn(I ) of Wn(B) ! Wn(B̄) is still nilpotent
(also for n = 1). In fact, if I r = 0, then Wn(I )r = 0. Hence, the surjectivity, respectively
bijectivity, of a follows since f is assumed to be formally smooth, respectively formally
étale. Part (c) follows from (b) and the above since then FnX ! Spec(R) is of finite
presentation, and so smooth amounts to formally smooth. Finally, to show (d) observe
that, under our assumptions, the natural morphism Fn+1

X ! FnX is formally smooth,
for all n. (This is obtained using the fact that if B̄ = B/I with I nilpotent, then the
natural homomorphism Wn+1

(B) ! Wn(B)⇥Wn(B̄) Wn+1

(B̄) is surjective with nilpotent
kernel.) If we write An for the R-algebra with Fn(X ⌦W (R) Wn(R)) = Spec(An), we have
FX = Spec(lim�!n

An). Formal smoothness of FX over R follows as above. Flatness also

follows from (c) since smooth implies flat, using also that a direct limit of flat R-algebras
is R-flat.

2.2.2. If X is an a�ne finite type scheme over W (k
0

), we write L+
n X and LX for the

Greenberg and localized Greenberg transforms of the base changes of X to Wn(W (k
0

))

by the natural Cartier ring homomorphism 1n : W (k
0

) ! Wn(W (k
0

)) characterized
by wk(1n(x)) = Fk(x). These Greenberg transforms are schemes, respectively an
Ind-scheme, over W (k

0

).
Since w

0

·1 is the identity, there is a natural morphism

L+X ! X

induced by w
0

: W (R) ! R. We denote by s
0

2 X (R) the image of the point s 2
L+X (R) = X (W (R)) under this map.
The homomorphism 1n commutes with the Frobenius on the source and target ([28,

Lemma 52]) and we can see that we have natural isomorphisms

F (L+X) ' L+(F X), F (LX) ' L(F X),

while F induces natural morphisms

F : L+X ! F (L+X), F : LX ! F (LX)

which cover the Frobenius isomorphism of Spec(W (k
0

)).
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If X is in addition a group scheme over W (k
0

), then L+
n X , respectively LX , are group

schemes, respectively is a Ind-group scheme, over W (k
0

). In this case, the isomorphisms
and morphisms above are group scheme, respectively Ind-group scheme, homomorphisms.

Remark 2.2.3. Suppose that R is a k
0

-algebra via � : k
0

! R and X = Spec(A) an a�ne
finite type W (k

0

)-scheme. We view R as a W (k
0

)-algebra via the composition W (k
0

) !
k
0

! R where the first map is w
0

. By our definition of the W (k
0

)-scheme L+X above,
which uses the Cartier homomorphism, the points L+X (R) = X (W (R)) are given by ring
homomorphisms A ! W (R) such that the composition W (k

0

) ! A ! W (R) is equal to

W (k
0

)
1�! W (W (k

0

))
✏�! W (k

0

)
W (�)���! W (R),

where the second map ✏ is the result of applying the functor W (�) to w
0

: W (k
0

) ! k
0

.
However, ✏ � 1 is the identity by [28, equation (92)] and so this composition is equal to
W (�) : W (k

0

) ! W (R).
This gives a simpler description of the special fiber L+X ⌦W (k

0

) k0; its R-valued
points for � : k

0

! R are the W (R)-valued points of X where W (R) is regarded as a
W (k

0

)-algebra via W (�). In particular, we see that

FX = L+X ⌦W (k
0

) k0.

As mentioned above, some authors call the special fiber FX = L+X ⌦W (k
0

) k0 the
Greenberg transform of X .

2.3. Displays

Let us now quickly review the definition of displays as in [28]. Suppose that R is a
(commutative) ring which is p-adically complete and separated. A display over R is a
quadruple

D = (M, N , F
0

, F
1

)

where M is a finitely generated projective W (R)-module, N a submodule such that
I (R)M ⇢ N and M/N a projective R-module, F

0

: M ! M and F
1

: N ! M are F-linear
maps such that the image F

1

(Q) generates M as a W (R)-module, and we have
F
1

(Vw · x) = wF
0

(x) for w 2 W (R) and x 2 M . See [28] and other places for the definition
of nilpotence and of a nilpotent display. To avoid confusion, let us note that in [28] displays
are called 3n-displays (3n = not necessarily nilpotent), while nilpotent displays are called
displays. The notation for these objects there is (P, Q, F, V�1) in which V�1 is just a
symbol.
Over a perfect field, a display is the same as a Dieudonné module (M, F, V ); then

N = V (M) and F
1

is the inverse of V . In that case, the nilpotence condition means that
V is p-adically topologically nilpotent.
Displays over R form a category and Zink constructs a functor BT from nilpotent

displays over R to formal p-divisible groups over R which he shows to be an equivalence
of categories in many cases, for example when R/pR is a finitely generated algebra over
Fp. Later, Lau [19] showed that BT gives an equivalence for all R which are p-adically
complete and separated.
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Let D = (M, N , F
0

, F
1

) be a display over R and suppose there exists a ‘normal
decomposition’ of D, i.e. a decomposition M = T � L with T , L two W (R)-modules such
that also N = I (R)T � L. Suppose that both T and L are free W (R)-modules of rank d
and h � d (we can always find such a decomposition Zariski locally on Spec(R), see [28]).
Assume e

1

, . . . , ed is a basis of T and ed+1

, . . . , eh a basis of L. Then there is an invertible
matrix U = (ui j ) in GLh(W (R)) = L+

GLh(R) such that

F
0

e j =
hX

i=1

ui j ei , 1 6 j 6 d,

F
1

e j =
hX

i=1

ui j ei , d + 1 6 j 6 h.

We can write this as a block matrix

U =
✓
A B
C D

◆

with A of size d ⇥ d and D of size (h � d)⇥ (h � d). Suppose that D0 is another display
over R which is also given by a block matrix U 0 with blocks of the same sizes. Then a
morphism of displays D ! D0 is given by a block matrix of the form

H =
✓
X V (Y )
Z T

◆

with X , Y , Z , T blocks with coe�cients in W (R) which satisfies
✓
A0 B 0
C 0 D0

◆✓
F(X) Y
pF(Z) F(T )

◆
=

✓
X V (Y )
Z T

◆✓
A B
C D

◆
. (2.3.0.1)

Set

8(H) = 8

✓✓
X V (Y )
Z T

◆◆
=

✓
F(X) Y
pF(Z) F(T )

◆
. (2.3.0.2)

The morphism D ! D0 is an isomorphism if and only if H is invertible. Then the identity
above can be written

H�1U 08(H) = U. (2.3.0.3)

By [28, Theorem 37] displays form a fpqc stack over NilpZp
. The above discussion then

implies that displays of rank h and rankR(M/N ) = d are given by the fpqc quotient stack

[L+
GLh /8 H (d,h�d)]

over NilpZp
. Here, H (d,h�d)(R) is the subgroup of L+

GLh(R) = GLh(W (R)) of matrices
of the form

H =
✓
X V (Y )
Z T

◆

as above and the quotient is for the right action by ‘8-conjugation’ as in (2.3.0.3). Of
course, here 8 is the F-linear map given by (2.3.0.2).
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3. (G, µ)-displays

In this section, we define (G, µ)-displays and show several basic properties.

3.1. The divided Frobenius 8G,µ

We start by defining the ‘divided Frobenius’. This generalizes the map 8 of the previous
section and plays a central role in everything that follows.

3.1.1. Suppose G is a reductive group scheme over Zp and that

µ : GmW (k
0

) ! GW (k
0

)

is a minuscule cocharacter. As in Appendix A we denote by Pµ ⇢ GW (k
0

) the parabolic
subgroup scheme defined by µ. This is the parabolic subgroup of G such that Pµ ⇥W (k

0

) W
contains exactly the root groups Ua of the split group GW , for all roots a with hµ, ai > 0.
We denote by Uµ the corresponding unipotent group which is the unipotent radical of Pµ.
We denote by g, p, p�, u, u�, the Lie algebras of G, Pµ, Pµ�1

, Uµ, Uµ�1

; these are finite
free Zp-, respectively W (k

0

)-modules, and we have the weight decompositions

W (k
0

)⌦Zp g = p� u�. (3.1.1.1)

We denote by Hµ the group scheme over Spec(W (k
0

)) with

Hµ(R) = {g 2 L+G(R) | g
0

2 Pµ(R)}.
We can see that Hµ is a closed subgroup scheme of L+G.

Proposition 3.1.2. There is a group scheme homomorphism

8G,µ : Hµ ! L+GW (k
0

)

characterized by the following property: We have

8G,µ(h) = F · (µ(p) · h ·µ(p)�1) 2 FG(W (R)[1/p]) = G(W (R)[1/p]). (3.1.2.1)

Proof. Consider the group scheme L>0Uµ�1

⇢ L+Uµ�1

with R-valued points u 2
Uµ�1

(W (R)) such that u
0

= 1.
We use the following:

Proposition 3.1.3. Assume that p is in the Jacobson radical J (R) of R. Then
multiplication in L+G(R) gives a bijection

L+Pµ(R)⇥ L>0Uµ�1

(R) ⇠= Hµ(R).

Proof. Let h 2 Hµ(R) ⇢ L+G(R) = G(W (R)). We would like to show that the
corresponding morphism h : Spec(W (R)) ! G factors through G⇤ = Pµ ⇥W (k

0

)Uµ�1

.
Recall that by A.0.2, G⇤ is an open subscheme of the a�ne scheme G = Spec(A

0

) with
the open immersion G⇤ ! G given by multiplication. Suppose

pI = I ⇢ A
0

is the ideal
corresponding to the reduced induced subscheme structure on the complement G �G⇤.
The element h is given by h⇤ : A

0

! W (R). Consider the composition

h⇤
0

= w
0

� h⇤ : A
0

! W (R) �! R.
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We know that h⇤
0

(I)R = R. By part (i) of Lemma 2.1.1 it follows that h⇤(I)W (R) =
W (R), and so h factors through G⇤. The result now follows from the definition of Hµ.

We now continue with the construction of 8G,µ. By Lemma A.0.5, we have Uµ�1

'
Gr

a ⇥Zp W (k
0

). We have L+Gr
a(R) = W (R)r , L>0Gr

a(R) = I (R)r and we can define

V�1 : L>0Gr
a ! F L+Gr

a

as given by the direct sum of r copies of V�1 : I (R) ! W (R). This gives

V�1 : L>0Uµ�1

! F L+Uµ�1

which is independent of choices. Consider also the composition

F · Intµ(p) : L+Pµ(R) ! L+Pµ(R) ! F L+G(R) = L+G(R).

Here we are using the extension of conjugation Intµ(p) : A1 ! End(Pµ) (see A.0.1) applied
to W (R) so that Intµ(p) 2 End(Pµ)(W (R)).
First suppose that p 2 J (R) and let h 2 Hµ(R); by Proposition 3.1.3, we can write

(uniquely)
h = h0 · h00, h0 2 L+Pµ(R), h00 2 L>0Uµ�1

(R),

and we set

8
1

(R)(h) := (F · Intµ(p))(h0) · V�1(h00) 2 F L+G(R) = L+G(R).

This gives
8

1

(R) : Hµ(R) ! L+G(R)

when p 2 J (R).
Now suppose R is arbitrary; consider R

1

= (1+ pR)�1R and R
2

= R[1/p]. This gives
a faithfully flat cover of Spec(R)

Spec(R) = Spec(R
1

)[ Spec(R
2

).

Notice that p is in every maximal ideal of R
1

; indeed if m is such an ideal and p is not in
m, we can find r = b/(1+ pb0) 2 R

1

, such that pr � 1 2 m. This gives 1+ p(b0 � b) 2 m,
a contradiction, since this is a unit in R

1

. Therefore, p is in the Jacobson radical of R
1

.

• Let h
2

2 Hµ(R
2

) = Hµ(R[1/p]). Since
p 2 W (R[1/p]))⇥ = Gm(W (R[1/p])),

we can consider µ(p), µ(p)�1 2 L+G(R[1/p]). We define

8
2

(R
2

)(h
2

) := F(µ(p) · h
2

·µ(p)�1) 2 L+G(R[1/p]).
• Let h

1

2 Hµ(R
1

) = Hµ((1+ pR)�1R). Since p 2 J (R
1

), we consider 8
1

(R
1

)(h
1

) 2
L+G(R

1

) as above.

Now let us apply this to R = OHµ the a�ne algebra of Hµ and the universal points hi 2
Hµ(Ri ). We obtain elements 8i (Ri )(hi ) 2 L+G(Ri ). These points agree over Spec(R

12

)

with R
12

= (1+ pR)�1R ⌦R R[1/p] = (1+ pR)�1R[1/p]. Indeed, when p is invertible,
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the map V�1 : L>0Uµ�1

! F L+Uµ�1

agrees with division by p followed by F . On the

other hand, the adjoint action of µ(p)�1 on u� = Lie(Uµ�1

) agrees with multiplication
by p. Therefore, by descent, we obtain a well-defined morphism

8G,µ : Hµ ! L+GW (k
0

). (3.1.3.1)

Notice that R = OHµ is p-torsion free and so R ⇢ R
2

= R[1/p] and W (R) ⇢ W (R[1/p]).
Since 8

2

(R
2

) is obviously a group homomorphism we conclude that 8G,µ is a group
scheme homomorphism which satisfies the identity (3.1.2.1). In fact, by considering R =
OHµ we see that 8G,µ is the unique morphism that satisfies that identity.

3.2. Definitions and basic properties

Suppose that (G, µ) is a pair of a reductive group scheme over Zp and a minuscule
cocharacter µ : GW (k

0

) ! GW (k
0

), where k
0

is a finite field of characteristic p. In the
previous paragraph, we have constructed Hµ and

8G,µ : Hµ ! F L+GW (k
0

) = L+GW (k
0

)

over Spec(W (k
0

)). Suppose S is a W (k
0

)-scheme.

Definition 3.2.1. A (G, µ)-display over S is a triple D := (P, Q, u) where

• Q is an (fpqc locally trivial) Hµ-torsor over S,

• P := Q ⇥Hµ L+GW (k
0

) is the induced L+GW (k
0

)-torsor,

• u : Q ! P is a morphism which is compatible with 8G,µ in the sense that u(q · h) =
u(q) ·8G,µ(h).

Notice that P is determined by Q by P := Q ⇥Hµ L+GW (k
0

) and so we sometimes omit
it from the notation. Our convention is that groups act on the right.
A morphism (P

1

, Q
1

, u
1

) ! (P
2

, Q
2

, u
2

) between two (G, µ)-displays is a Hµ-torsor

isomorphism Q
1

⇠�! Q
2

which is compatible with u
1

and u
2

in the obvious manner.
In most of the paper, we consider (G, µ)-displays over schemes in NilpW (k

0

). We can
see that (G, µ)-displays form a fpqc stack in groupoids over NilpW (k

0

) which we denote
by B(G, µ).

Example 3.2.2. For non-negative integers d 6 h, we let µd,h : Gm ! GLh be the
minuscule cocharacter of GLh over Zp given by1

µd,h(z) = diag(1(d), z(h�d)).

The discussion in 2.3 implies that there is an equivalence between the stack of
(GLh, µd,h)-displays, and the stack of (Zink, not-necessarily-nilpotent) displays of rank
h and dimension d.

1
The notation z(r) means that there are r copies of z.
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3.2.3. The fpqc quotient L+GW (k
0

)/Hµ can be identified with the homogeneous space
Xµ = GW (k

0

)/Pµ. If D := (P, Q, u) is a (G, µ)-display over S then the quotient P/Hµ

is a Xµ-bundle. Since the L+GW (k
0

)-torsor P admits a reduction (given by Q) to the
subgroup Hµ we also obtain a section

↵ : S = Q/Hµ ! P/Hµ

of this Xµ-bundle over S. We call this section the Hodge filtration of the (G, µ)-display
D. We also consider the vector bundle

TD := ↵⇤(N↵(S)|P/Hµ)

over S obtained by pulling back via ↵ the normal bundle of the (regular) closed immersion
↵(S) ,! P/Hµ. Under a condition on D, we see that the bundle TD controls the
deformations of D (see Theorem 3.5.11).

3.2.4. Suppose S = Spec(B) with B a p-adically complete and separated W (k
0

)-algebra.
Then using Proposition B.0.2 (see also Remark B.0.5(ii)) we can reinterpret the datum
of the Hµ-torsor Q as a pair (P,↵), where P is a G-torsor over Spec(W (B)) and ↵ a
section over Spec(B) of the Xµ-bundle obtained by first restricting P along the closed
immersion Spec(B) ! Spec(W (B)) and then taking quotient by the action of Pµ. The
G-torsor P corresponds, via Appendix B.0.2, to P := Q ⇥Hµ L+GW (k

0

) so that P = FP,
the Xµ-bundle is P/Hµ and the section is Q/Hµ ! P/Hµ as above.

Definition 3.2.5. We say that a (G, µ)-display D = (P, Q, u) is banal, if the torsor Q is
trivial. Banal (G, µ)-displays over S in NilpW (k

0

) give a full subgroupoid B(G, µ)(S) of
B(G, µ)(S).

Remark 3.2.6. By Corollary B.0.3, any (fpqc locally trivial) Hµ-torsor or L+G-torsor over
S in NilpW (k

0

) is locally trivial for the étale topology on S. Therefore, every (G, µ)-display
is banal locally for the étale topology on S.

3.2.7. Suppose that (P, Q, u) is banal. Then, after choosing a trivialization

↵ : Hµ ⇠�! Q

which also induces ↵ : L+GW (k
0

)
⇠�! P := Q ⇥Hµ L+GW (k

0

), the triple (P, Q, u) is
determined by

U := ↵�1u(↵(1)) 2 F L+G(OS(S)) = G(W (OS(S))).

A di↵erent trivialization ↵0 = ↵ · h gives U 0 = ↵0�1u(↵0(1)). We can see that

U 0 = h�1 ·U ·8G,µ(h).

Therefore, the groupoid of banal (G, µ)-displays B(G, µ)(S) can be identified with the
quotient groupoid

[L+G(S)/8G,µ Hµ(S)]
where the action is by 8G,µ-conjugation as above. This implies that the fpqc stack of
(G, µ)-displays can be identified with a fpqc quotient stack

B(G, µ) = [L+GW (k
0

)/8G,µ Hµ].
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3.2.8. By the definition, there is a natural forgetful morphism

q : B(G, µ) ! BHµ, (P, Q, u) 7! Q,

where BHµ is the fpqc stack of Hµ-torsors.

Lemma 3.2.9.

(a) The morphism q : B(G, µ) ! BHµ is representable and a�ne.

(b) The diagonal morphism 1 : B(G, µ) ! B(G, µ)⇥W (k
0

) B(G, µ) is representable and
a�ne.

Proof. If Qi ! S, i = 1, 2, are Hµ-torsors, we can see by descent, that the functor on
S-schemes

(T ! S) 7! IsomHµ(Q
1

⇥S T, Q2

⇥S T )

is represented by an a�ne S-scheme IsomHµ(Q
1

, Q
2

). This implies that the diagonal of
the stack BHµ is representable and a�ne. There is a similar statement for isomorphisms
between L+G-torsors.
Now suppose that S ! BHµ is the morphism corresponding to an Hµ-torsor Q. Recall

that we have P = Q ⇥Hµ L+G. Then the fibered product S ⇥BHµ B(G, µ) is represented
by the a�ne S-scheme IsomL+G(P

0, P), where P 0 = Q ⇥Hµ,8G,µ L+G. Part (a) now
follows easily from the definition of B(G, µ); then part (b) follows quickly from part
(a) and the above.

3.2.10. Suppose that A is a Noetherian W (k
0

)-algebra complete and separated for the
I -adic topology for I ⇢ A an ideal that contains a power of p. Then A is also complete
and separated for the p-adic topology.

Proposition 3.2.11. There is a natural equivalence between the category of (G, µ)-displays
D over A and the category of compatible systems of (G, µ)-displays Dn over A/I n, n > 1,
given by D 7! {D⇥A A/I n}n.
Proof. The full faithfulness of the functor D 7! {D⇥A A/I n}n follows easily by using
Lemma 3.2.9(b). Let us show essential surjectivity: Consider a compatible sequence of
(G, µ)-displays Dn = (Pn, Qn, un) over A/I n ; we would like to construct D = (P, Q, u)
over A. Using Lemma B.0.4(b) and Remark B.0.5(i) we can construct a L+G-torsor P over
A with compatible isomorphisms P ⇥A An ' Pn . To give the Hµ-torsor Q over A we use
Remark 3.2.4 and apply Grothendieck’s algebraization theorem to the proper morphism
P/Hµ ! Spec(A). Finally, the homomorphism u : Q ! P is given from {un}n using that
IsomL+G(Q ⇥Hµ,8G,µ L+G, P) is a�ne (see also the proof of 3.2.9(b) above).

3.2.12. Suppose that µ0 : Gm W (k
0

) ! GW (k
0

) is conjugate to µ, i.e. µ0 = Int(g) �µ, for
g 2 G(W (k

0

)). Then Int(g) : Hµ ⇠�! Hµ0
and

8G,µ0 = Int(Fg) ·8G,µ · Int(g)�1.

Using this, we see that conjugation by g gives an isomorphism B(G, µ)
⇠�! B(G, µ0), cf. [3,

§ 3.3.2].
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3.2.13. Suppose that (Gi , µi ), i = 1, 2, are two pairs as above and that we are given
a group scheme homomorphism ⇢ : G

1

! G
2

such that µ
2

= ⇢(µ
1

). We then write ⇢ :
(G

1

, µ
1

) ! (G
2

, µ
2

). Then ⇢ induces group scheme homomorphisms ⇢ : Hµ
1

1

! Hµ
2

2

and
⇢ : L+G

1

! L+G
2

and we have ⇢ ·8G
1

,µ
1

= 8G
2

,µ
2

· ⇢. Using this we obtain a morphism

⇢⇤ : B(G
1

, µ
1

) ! B(G
2

, µ
2

).

(cf. [3, § 3.3.1]).

3.2.14. Let us discuss (G, µ)-displays over the algebraically closed field k. Since I (k) =
VW (k) = pW (k), we have

Hµ(k) = µ�1(p)G(W )µ(p)\G(W )

and
8G,µ(h) = F(µ(p)hµ�1(p)) = µ� (p)� (h)µ� (p)�1.

Proposition 3.2.15. The set of isomorphism classes of (G, µ)-displays over k is in 1-to-1
correspondence with the quotient

G(W )µ� (p)G(W )/� G(W )

by � -conjugation.

Proof. Since both torsors Q and P are trivial, a (G, µ)-display D = (P, Q, u) over k is
given by u 2 G(W ). The action by 8G,µ-conjugation is given by

u 7! h�1 · u ·8G,µ(h) = h�1uµ� (p)� (h)µ� (p)�1.

If we set g = uµ� (p), we see that this action replaces g by h�1g� (h). Therefore, the
isomorphism classes of (G, µ)-displays over k are in 1-to-1 correspondence with the
quotient

G(W )µ� (p)/� (µ(p)
�1G(W )µ(p)\G(W ))

by � -conjugation. Consider the natural map

G(W )µ� (p)/� (µ(p)
�1G(W )µ(p)\G(W )) ! G(W )µ� (p)G(W )/� G(W ).

If gµ� (p) = h�1g0µ� (p)� (h) for h 2 G(W ), then g0�1hg = µ� (p)� (h)µ� (p)�1. This
implies � (h) 2 µ� (p)�1G(W )µ� (p), so h 2 µ(p)�1G(W )µ(p)\G(W ). This shows that
the above map is injective. The map is also surjective: consider u

1

µ� (p)u
2

and write
u
2

= � (h)�1, for h 2 G(W ). Then we have

h�1u
1

µ� (p)u
2

� (h) 2 G(W )µ� (p)

which shows u
1

µ� (p)u
2

is in the image.

3.2.16. Notice that the above proof also shows that, if D is a (G, µ)-display over k given
by u 2 G(W ), then the � -conjugacy class of b := uµ� (p) 2 G(W [1/p]) only depends on
the isomorphism class of D. The pair (µ, b) gives a filtered G-isocrystal over W [1/p] as
considered in [22, Chapter 1].
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We denote by D the algebraic torus over Qp whose character group is Q. Kottwitz [17]
associates to the Frobenius conjugacy class b a morphism of algebraic groups defined
over K := W [1/p]

⌫b : DK ! GK

called the slope morphism.
If ⇢ : G ! GL(V ) is a Qp-rational representation of G, the morphism ⇢ · ⌫b defines

a Q-grading on the vector space V ⌦Qp K . The morphism ⌫b is characterized by the
property that this grading is the slope decomposition of the isocrystal over K associated
to b and V . The rational number � is called a slope of ⇢ · ⌫b if the corresponding isotypic
component of V ⌦Qp K is not equal to zero. In particular, we can consider the adjoint

representation ⇢ = Ad

G : G ! GL(Lie(G)) and the slopes of AdG(b).

3.3. Quasi-isogenies

3.3.1. Suppose that S is a scheme over Spec(Fp) and denote by F : S ! S the absolute
Frobenius. Recall that if Y ! S is an S-scheme (or Ind-scheme) we set

FY = Y ⇥S,F S.

Since G is defined over Zp we have a natural isomorphism F LG
'�! LG.

Definition 3.3.2. Suppose that S is a scheme over Spec(Fp).
A G-isodisplay over S is a pair (T,�) of a LG-torsor T over S and an isomorphism

� : FT
⇠�! T .

An (iso)morphism ↵ : (T
1

,�
1

)
⇠�! (T

2

,�
2

) of two G-isodisplays over S is an isomorphism

of LG-torsors ↵ : T
1

⇠�! T
2

which is compatible with �
1

, �
2

, in the sense that: ↵ ·�
1

=
�
2

· F↵.

3.3.3. Let us now show how to associate a G-isodisplay

D[1/p] = (P[1/p],�)
to a (G, µ)-display D = (P, Q, u) over S 2 NilpW (k

0

).
We first assume p ·OS = 0. If P is a L+G-torsor over S in NilpW (k

0

), then we set

P[1/p] := P ⇥L+G LG

for the LG-torsor over S obtained from P using the natural L+G ! LG. Then if (P, Q, u)
is a (G, µ)-display over S, we construct an isomorphism

� : F P[1/p] ⇠�! P[1/p]
of LG-torsors over S. We can assume that S is a�ne S = Spec(R); the general case can
then be handled by descent as below.
Suppose first that Q is the trivial Hµ-torsor and choose a trivialization of Q so that u

is given by U 2 G(W (R)). Both P[1/p] and F P[1/p] are then identified with the trivial
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LG-torsor. Define � : F P[1/p] ⇠�! P[1/p] to be the morphism given by left multiplication
by Uµ� (p) 2 G(W (R)[1/p]) = LG(R):

�(x) = Uµ� (p) · x .
After changing the trivialization of Q by right multiplication by h 2 Hµ(R), U changes
to U 0 = h�1U8G,µ(h), and the morphism � now is given by multiplication by

U 0µ� (p) = h�1U8G,µ(h)µ� (p)

= h�1UF(µ(p)hµ(p)�1)µ� (p) = h�1Uµ� (p)F(h).

This shows that � : F P[1/p] ⇠�! P[1/p] is independent of our choice of trivialization of
the H -torsor Q. We can now easily see using descent that this construction also produces

� : F P[1/p] ⇠�! P[1/p] in general.
For S in NilpW (k

0

), set S̄ = S ⌦W (k
0

) k0 for its special fiber.

Definition 3.3.4. If D is a (G, µ)-display over S in NilpW (k
0

) we set D[1/p] = (P[1/p],�)
to be the G-isodisplay which is associated to its special fiber D⇥S S̄, by the above
construction.

Notice that for S in NilpW (k
0

), we have

(P ⇥L+G LG)⇥S S̄ = (P ⇥S S̄)[1/p].
This is because, if S = Spec(R), we have W (R)[1/p] = W (R/pR)[1/p], since pm R = 0

implies pmW (pR) = 0.

Definition 3.3.5. A G-quasi-isogeny

↵ : D
1

= (P
1

, Q
1

, u
1

) 99K D
2

= (P
2

, Q
2

, u
2

)

between two (G, µ)-displays over S in NilpW (k
0

) is an isomorphism

↵ : (P
1

[1/p],�
1

)
⇠�! (P

2

[1/p],�
2

)

between their corresponding G-isodisplays, i.e. an isomorphism of LG-torsors ↵ :
P
1

[1/p] ⇠�! P
2

[1/p] which is compatible with �
1

, �
2

, in the sense that ↵ ·�
1

= �
2

· F↵.

Remark 3.3.6. Recall (Example 3.2.2) that there is an equivalence between the stack of
(GLh, µd,h)-displays, and the stack of Zink (not-necessarily-nilpotent) displays of rank
h and dimension d, over NilpW (k

0

). It follows from [28, Proposition 66] that, under this
equivalence, GLn-quasi-isogenies as defined here, bijectively correspond to quasi-isogenies
between displays as considered in loc. cit.

3.4. The adjoint nilpotent condition

3.4.1. Suppose that D is a (G, µ)-display over a W (k
0

)-scheme S. Let x be a point of

S̄ = S ⌦W (k
0

) k0 and let k(x)ac be an algebraic closure of the residue field k(x). Set L(x) =
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W (k(x)ac)[1/p]. By 3.2.14 applied to k = k(x)ac, we see that D⇥S k(x)ac is described by
an element u := u(x) 2 G(W (k(x)ac)) and that the Frobenius conjugacy class of b(x) =
u(x)µ� (p) in G(L(x)) is well-defined.

Definition 3.4.2. We say that the (G, µ)-display D over S is adjoint nilpotent if, for all
x 2 S̄, all the slopes of AdG(b(x)) 2 GL(Lie(G))(L(x)) are >�1. We denote by Bnil(G, µ)

the full substack of B(G, µ) given by adjoint nilpotent (G, µ)-displays.

3.4.3. We continue with the above assumptions and notations. For every x 2 S̄, consider
the isocrystal given by the Frobenius semi-linear �(x) := Ad

G(b(x)) � Fk(x)ac acting on
GL(Lie(G))(L(x)). The Hodge weights of this isocrystal with respect to the lattice Lx =
gW (k(x)ac) = Lie(G)W (k(x)ac) ⇢ Lie(G)L(x) are just the weights of µ�1 on gW (k(x)ac). Since
µ is minuscule these weights lie in the set {�1, 0, 1}. Hence, the Newton slopes of the
isocrystal are all greater than or equal to �1, by the Hodge–Newton inequality. We then
obtain that D is adjoint nilpotent if and only if for all x 2 S̄, we have �(x)rLx ⇢ p1�rLx ,
with r = dimZp (g). Using this, we see that we also have (cf. [3, Definition 3.23]):

Lemma 3.4.4. Suppose ⇡ is the projector on W (k
0

)⌦Zp Lie(G) with im(⇡) = LieUµ�1

and
ker(⇡) = Lie Pµ. Let D be a banal (G, µ)-display over a k

0

-algebra R and let U 2 G(W (R))
be a representative for it. Then D is adjoint nilpotent if and only if the endomorphism
on R ⌦Zp Lie(G) defined by

Ad

G(w
0

(U )) � (FR ⌦ id

LieG) � (idR ⌦ ⇡)

is nilpotent.

Proof. When R = k is an algebraically closed field the condition that the endomorphism
in the statement is nilpotent is equivalent to

(� · p)r (Lie(G)W (k)) ⇢ p(Lie(G)W (k)),

where � := Ad

G(Uµ� (p)) � Fk ; given the above discussion this gives the result in this
case. The case of general R follows from this.

Remark 3.4.5. Suppose that (G, µ) = (GLh, µd,h). Recall that, by Example 3.2.2, there
is an equivalence between B(GLh, µd,h), i.e. the stack of (GLh, µd,h)-displays, and the
stack of (Zink, not-necessarily-nilpotent) displays of rank h and dimension d.
Suppose that R is in ANilpW (k

0

) and that D is a (GLh, µd,h)-display over R. The adjoint
nilpotence condition on D (as defined above) is related to Zink’s nilpotence condition [28,
Definition 11/Definition 13] on the corresponding Zink display as follows:
First assume that R = k is an algebraically closed field and that the display D

is given by b = uµd,h(p) 2 GLh(W (k)[1/p]): Then we observe that the isocrystal on
Lie(GLh)W (k)[1/p] given by Ad

G(b) has a non-trivial isotypic component of slope �1 if
and only if the isocrystal given by b has non-trivial isotypical components for both slopes
0 and 1. (This is obtained by a simple consideration of roots and weights for GLh .) For
a general R as above, this now implies that D is adjoint nilpotent if and only if there
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exist radical R-ideals I
nil

and I
uni

with I
nil

\ I
uni

= p
pR, such that both the Zink display

DR/I
nil

and the dual (DR/I
uni

)t satisfy Zink’s nilpotence condition. In particular, if either
DR/pR or (DR/pR)

t satisfy Zink’s nilpotence condition then D is adjoint nilpotent.

3.5. Liftings and deformation theory

In this subsection, we describe the deformation theory of (G, µ)-displays which satisfy
the adjoint nilpotence condition. Many of our results are group theoretic versions of
corresponding results of Zink [28] about deformations of nilpotent displays.

3.5.1. Let A be a p-adically separated and complete W (k
0

)-algebra and fix a p-adically
closed ideal a ⇢ A with divided powers which are compatible with the natural divided
powers on pW (k

0

). In addition, let us assume that a is p-adically topologically nilpotent.
Then A is also complete for the a-adic topology. (The most useful case is when A is in
ANilpW (k

0

) and a ⇢ A is a nilpotent pd-ideal.)
We set Ia(A) := W (a)+ I (A), which is a pd-ideal of W (A). In this situation, Zink’s

logarithmic ghost coordinates [28, § 1.4] establish an isomorphism

log : W (a)
'�!

1Y

i=0

a

leading to splittings W (a) = a� I (a) and Ia(A) = a� I (A). We write the elements ofQ1
i=0

a using brackets [a
0

, a
1

, . . .]. We have F([a
0

, a
1

, . . .]) = [pa
1

, pa
2

, . . .], so F(a) = 0.
The splittings allow one to define the important F-linear extension V�1

a : Ia(A) ! W (A)
of V�1 = V�1

a |I (A) by setting 0 = V�1

a |a (see [28, Lemma 38]).

3.5.2. Now let (G, µ) be as above. We set Hµ(A, a) to be the inverse image of Hµ(A/a)
in L+G(A). Using an argument as in the proof of Proposition 3.1.3 we deduce that

Hµ(A, a) = Uµ�1

(W (a))Hµ(A).

We obtain further decompositions

Hµ(A, a) = Uµ�1

(a)Hµ(A) = G(a)Hµ(A),

where G(a) = ker(G(A) ! G(A/a)) and similarly for Uµ�1

(a). We can now see that
8G,µ(A) : Hµ(A) ! L+G(A) can be extended to a map

9a : Hµ(A, a) ! L+G(A)

vanishing on G(a). (Notice that 8G,µ takes the identity value on Pµ(a) = Hµ(A)\G(a),
cf. [3, Corollary 3.11].) We similarly get

9a(G(W (a)) ⇢ G(W (a)).

3.5.3. Recall the weight decomposition

W (k
0

)⌦Zp g = p� u�

induced by our minuscule cocharacter µ. We can also construct Lie-theoretic analogs of
the group Hµ(A, a) and the homomorphism 9a. Namely, we set

hµa (A) = (Ia(A)⌦W (k
0

) u
�)� (W (A)⌦W (k

0

) p), (3.5.3.1)
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and we define

 a : hµa (A) ! W (A)⌦Zp g (3.5.3.2)

to be V�1

a on Ia(A)⌦W (k
0

) u�, and pmF on all summands of µ-weight m > 0.

Theorem 3.5.4. Under the above assumptions on a ⇢ A, and with the above notations,
suppose in addition that we have U , U 0 2 L+G(A) = G(W (A)) that satisfy the adjoint
nilpotence condition and are such that

U 0 ⌘ U mod W (a).

Then there is a unique element h 2 G(W (a)) such that U 0 = h�1U9a(h).

Proof. We endow G(W (a)) = ker(G(W (A)) ! G(W (A/a))) with the topology coming
from the restriction of the p-adic topology of A, with respect to which it is separated
and complete. Consider the chain of ideals an = a(pA+ a)n which are pd-subideals of a.
Then the ideal a is complete and separated for the topology given by (an). Note that
9a(G(W (an)) ⇢ G(W (an)), because an is a pd-subideal of a. By an inductive procedure
we construct elements hn 2 G(W (a)) such that

hn ⌘ hn�1

mod G(W (an�1

))

and

h�1

n U9a(hn) ⌘ U 0
mod G(W (an)):

Then h = lim �n
hn is the required element. Set h

0

= 1 and for n > 1 consider the element

U 00 := h�1

n�1

U9a(hn�1

).

By the induction hypothesis we have

U 00 ⌘ U 0
mod G(W (an�1

)).

We can define a function K from

W (an�1

/an)⌦Zp g
exp⇠= G(W (an�1

/an)) ⇠= G(W (an�1

))/G(W (an)).

to itself by setting

K (X) := exp

�1(U 009a(êxp(X))U 0�1

mod G(W (an))),

where the tilde denotes a lift of exp(X) 2 G(W (an�1

/an)) to G(W (an�1

)). For Y, X 2
W (an�1

/an)⌦Zp g, we have

K (Y + X) = K (Y )+ (AdG(U ) �  an�1

/an )(X). (3.5.4.1)

(Here  an�1

/an is the map of our construction above applied to the ring A/an and its
pd-ideal an�1

/an . Note also that since U , U 0 and U 00 are congruent modulo W (an�1

), the
maps AdG(U ), AdG(U 0) and Ad

G(U 00) induce the same operator on W (an�1

/an)⌦Zp g.)

3)3� 34 7�3D�:DDAC���*** 53!4%��97 #%9�5#%7�D7%!C �:DDAC����#� #%9��� �����1�	�	�	����������
.#*" #3�7��8%#!�:DDAC���*** 53!4%��97 #%9�5#%7 �0�5:�93"�1D3D7�2"�)7%C�D+�/�4%3%�7C��#"��
�,(9������3D����	���
��C(4�75D�D#�D:7��3!4%��97��#%7�D7%!C�#8�(C7�



1232 O. Bültel and G. Pappas

Now observe that W (an�1

/an) ' Q1
i=0

an�1

/an can be regarded as a A/(pA+ a)-
module; the module structure on the i-th component of the right hand side is given
by s · a = Fi (s)a, where F is the absolute Frobenius on A/(pA+ a). Let

 ⇤ : (A/(pA+ a))⌦Zp g ! (A/(pA+ a))⌦Zp g

be the composition of the absolute Frobenius on (A/(pA+ a))⌦Zp g with the projection ⇡

of W (k
0

)⌦Zp g onto u� killing p. Since V�1

a ([x
0

, x
1

, x
2

, . . .]) = [x
1

, x
2

, . . .], we can deduce
from the definition of  an�1

/an that

 an�1

/an = idW (an�1

/an) ⌦A/(pA+a) 
⇤.

This together with Lemma 3.4.4 shows that the adjoint nilpotence of U implies
that Ad

G(U ) �  an�1

/an is nilpotent on W (an�1

/an)⌦Zp g. In turn, this nilpotence
together with (3.5.4.1) implies that K has a unique fixed point in G(W (an�1

/an)) '
W (an�1

/an)⌦Zp g. Finally, let us choose a lift h⇤ to G(W (an�1

)) of the fixed point of K ,
and let us write hn := hn�1

h⇤. We can now see that

h�1

n U9a(hn) = h�1⇤ h�1

n�1

U9a(hn�1

)9a(h⇤) = h�1⇤ U 009a(h⇤) = U 0

modulo G(W (an)). This completes the inductive step that shows the existence of h.
(Notice that this is a group theoretic generalization of the proof of [28, Theorem 44].)
Now let us show the uniqueness of h: We can see that it is enough to show that

h�1U9a(h) = U = U 0 and h 2 G(W (a)) imply h = 1. In fact, it is enough by induction
to assume that h 2 G(W (an�1

)). Apply the argument above to h instead of hn�1

; then
we have U 00 ⌘ U mod G(W (an�1

)). Since obviously K (0) = 0, the uniqueness of the fixed
point of the map K implies that h 2 G(W (an)). Since

T
n an = (0), we conclude that

h = 1.

3.5.5. Recall that by Lemma 3.2.9 the diagonal of B(G, µ) is a�ne. We now show that

the diagonal of Bnil(G, µ) is p-adically formally unramified, cf. [28, Proposition 40], [3,
Corollary 3.26(ii)]:

Corollary 3.5.6. Let A be a a-adically separated algebra in ANilpW (k
0

), where a is an
ideal that contains some power of p. Let � be an automorphism of an adjoint nilpotent
(G, µ)-display D over Spec A. Then �A/a is the identity if and only if � is the identity.

Proof. It is enough to prove, that if �A/a is the identity, then �A/an is the identity for
every n, since by Lemma 3.2.9(b), the diagonal of the stack (G, µ)-displays is a�ne,
hence separated. By a straightforward induction argument it su�ces to do this under
the additional assumption that a2 = 0. After passing to some a�ne étale covering we
can also assume that D is banal. Then since ideals of vanishing square have a natural
pd-structure we can apply Theorem 3.5.4 and the result follows immediately from the
uniqueness in the statement there.

3.5.7. Suppose that D
0

is a adjoint nilpotent (G, µ)-display over A
0

= A/a which
is banal, and so given by a U

0

2 G(W (A
0

)). Using Theorem 3.5.4 we classify lifts
(‘deformations’) of D

0

to displays over A, up to isomorphism. By definition, a lift
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of D
0

is a pair (D, �) of a (G, µ) display D over A together with an isomorphism

� : D
0

⇠�! D⌦A A/a. Since D is also banal by B.0.3, such pairs are given by pairs (U, h
0

)

with U 2 G(W (A)), h
0

2 Hµ(A
0

), such that

U mod a = h�1

0

U
0

8G,µ(h0);
two such pairs (U, h

0

), (U 0, h0
0

), are isomorphic if there is h 2 Hµ(A) with

h mod a = h�1

0

h0
0

, U 0 = h�1U8G,µ(h).

Suppose we are given a pair (U, h
0

) up to isomorphism. Under our assumptions, since also
Hµ is formally smooth, we can lift h

0

2 Hµ(A
0

) to h̃
0

2 Hµ(A); this gives an isomorphism
of (U, h

0

) to a pair of the form (U 0, 1), i.e. with U 0
mod a = U

0

; hence, in classifying
pairs (U, h

0

) up to isomorphism, we can always assume that the second component is
trivial, i.e. h

0

= 1; then U mod a = U
0

. Suppose that (U, 1), (U 0, 1), are two such pairs.
By Theorem 3.5.4 there is unique g 2 G(W (a)) such that

U 0 = g�1U9a(g).

Using this and the fact that the restriction of 9a to Hµ(a) coincides with 8G,µ, we see
that the following is true:
After choosing a lift U of U

0

, we can identify the set of lifts of the (G, µ)-display D
0

up to isomorphism with the set of right cosets G(W (a))/Hµ(a); the bijection is given by

gHµ(a) 7! [(g�1U9a(g), 1)].
We can see that the natural map

G(W (a))/Hµ(a) ,! G(W (A))/Hµ(A) ! (G/Pµ)(A)

identifies G(W (a))/Hµ(a) with the set of A-valued points of the homogeneous space G/Pµ
that reduce to the identity coset modulo a. (As usual, we can then also see that this set
is in bijection with the set of liftings of the Hodge filtration of D

0

.)

3.5.8. Continue with the above assumptions and notations but suppose that in addition

we have a2 = (0). Then we have as above

a⌦W (k
0

) u
� ⇠�! G(W (a))/Hµ(a).

Hence, if a2 = (0), the choice of a lift U of U
0

gives a bijection between the set of all lifts
of D

0

up to isomorphism and the set a⌦W (k
0

) u�. In fact, the above discussion shows that
there is an action of the group a⌦W (k

0

) u� on the set of all lifts of D
0

up to isomorphism,
and this set is a (trivial) principal homogeneous space for the group a⌦W (k

0

) u�.

3.5.9. Suppose that k is a separably closed field of characteristic p and let D
0

be an
adjoint nilpotent (G, µ) display over S

0

= Spec(k). We can then consider the functor
DefD

0

of formal deformations of D
0

. This is a functor on the category of augmented local
Artinian W (k)-algebras, i.e. local Artinian W (k)-algebras (A,m) with an isomorphism

A/m
⇠�! k with DefD

0

(A) the set of isomorphism classes of lifts of D
0

to a (G, µ)-display
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over A. Here, as above, a lift of D
0

is by definition a pair (D, �) of a (G, µ)-display D
over A together with an isomorphism � : D

0

⇠�! D⌦A k.
The display D

0

is banal and given by a matrix U
0

2 G(W (k)). Choose a basis e
1

, . . . , er
of the W (k

0

)-module u� = Lie(Uµ�1

). By A.0.5 this induces an isomorphism Gr
a

⇠�! Uµ�1

;
we write by exp(a

1

e
1

+ · · ·+ ar er ) the point of Uµ�1

which is the image of (a
1

, . . . , ar ).
Set A = W (k)[[t

1

, . . . , tr ]] for the power series ring with r variables. (More canonically,
we can take A to be the formal completion of Uµ�1

⌦W (k
0

) W (k) at the origin.) Let us set

g
uni

= exp([t
1

]e
1

+ · · ·+ [tr ]er ) 2 Uµ�1

(W (A)) ⇢ G(W (A))

where [ti ] = (ti , 0, 0, . . .) 2 W (A) is the Teichmuller lift. Set

U
uni

= g�1

uni

U
0

2 G(W (A)).

The element U
uni

defines a (G, µ)-display D
uni

over A.
We claim that D

uni

prorepresents the functor DefD
0

of formal deformations of D
0

:
Given the above work, the proof of this is very similar to the proof of the corresponding

statement for Zink displays given in [28, pp. 173–176]. We just sketch the argument here:
We first observe that, by the discussion in the above paragraph, DefD

0

is formally smooth.
Next, we notice that Theorem 3.5.4 (or the discussion above) quickly implies that the
reduction of D

uni

over A
2

:= A/(t
1

, . . . , tr )2 is universal for deformations over augmented
local Artinian W (k)-algebras with maximal ideal of square zero. (Notice that over A

2

,
we have 9(t

1

,...,tr )(guni) = 1.) This implies that the morphism of functors on augmented
local Artinian W (k)-algebras ✏ : Spf(A) ! DefD

0

given by D
uni

induces an isomorphism
on tangent spaces. It now follows that ✏ is an isomorphism and this concludes the proof.
The same argument works even if the field k is not separably closed provided D

0

is banal.

3.5.10. We can similarly obtain a global version of some deformation theory statements
in which we consider adjoint nilpotent (G, µ)-displays over general schemes in NilpW (k

0

)

(cf. [3, § 3.5] and especially [3, Corollary 3.27]).
Let S be a scheme in NilpW (k

0

) and recall that if D = (P, Q, u) is a (G, µ)-display over
S, then the Hodge filtration of D is a section

↵ : S ! P/Hµ

of the Xµ = G/Pµ-bundle P/Hµ ! S. Recall also the vector bundle TD over S obtained
by pulling back via ↵ the normal bundle of the (regular) closed immersion ↵(S) ,! P/Hµ.
Suppose I ⇢ OS is an ideal sheaf with I2 = 0. For any S-scheme X we denote S

0

⇥S X =
X
0

, where S
0

,! S is the nilimmersion defined by I. We can view

0 ! I ,! OS ⇣ OS
0

! 0

as an exact sequence on abelian sheaves on the fpqc site of S: More specifically let OS
0

(X),
OS(X), and I(X) be the global sections of X

0

, X , and the kernel of OS(X) ! OS
0

(X).
Now let D

0

be an adjoint nilpotent (G, µ)-display over S
0

. Again, by a lift of D
0

over
an S-scheme X we mean a pair (D, �) where D is a (G, µ)-display over X , and � : D

0

⇥S
0

X
0

⇠�! D⇥X X
0

is an isomorphism. By Corollary 3.5.6 no lift has any automorphism
other than the identity. Let DD

0

,S(X) be the set of isomorphism classes of lifts over
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X . By pull-back of lifts this is a presheaf on S. Let us check that DD
0

,S satisfies the
sheaf axiom for a faithfully flat map Y ! X : If the pull-backs pr

⇤
1

(D) and pr

⇤
2

(D) of
some (D, �) 2 DD

0

,S(Y ) agree for the two projections pr

1

, pr
2

: Y ⇥X Y ! Y , then this

means that there exists � : pr⇤
1

(D)
'! pr

⇤
2

(D) which restricts to the identity on Y
0

⇥X
0

Y
0

.
We easily deduce the cocycle condition for �, because any equality of isomorphisms of
displays over Y ⇥X Y ⇥X Y can be checked over Y

0

⇥X
0

Y
0

⇥X
0

Y
0

, by Corollary 3.5.6. This
shows that D (respectively �) descends to X (respectively X

0

). It follows that DD
0

,S is a
fpqc-sheaf on S.

Theorem 3.5.11. Suppose that D
0

is an adjoint nilpotent (G, µ)-display over S
0

and that
S
0

,! S is a closed immersion defined by an ideal sheaf I of square zero. Then the above
functor DD

0

,S has the structure of a locally trivial principal homogeneous space for the
sheaf I ⌦OS TD0

. In particular, the set DD
0

,S(S) of isomorphism classes of lifts of D
0

over
S is either empty or is a principal homogeneous space for 0(S, I ⌦OS TD0

).

Proof. The case that S is a�ne and the display is banal is given by 3.5.8. (To see this
one uses the fact that the Lie algebra u� gives the tangent space of the homogeneous
space Xµ at the identity 1 · Pµ.) The general case follows from this and descent.

Corollary 3.5.12. If S
0

is a�ne, then DD
0

,S is globally trivial, i.e. DD
0

,S(S) 6= ;.

3.6. Faithfulness up to isogeny

If B is a ring such that both pB and
p
0B are nilpotent the forgetful functor from

(Zink-)displays to isodisplays is faithful (see [28, p. 186]). Here, we describe an extension
of this which needs the notion of Frobenius separatedness defined in Appendix C. We
write ANilp

aFs

W for the full subcategory of ANilpW consisting of W -algebras which are
almost Frobenius separated.

Proposition 3.6.1. Suppose that B is in ANilp

aFs

W . Then the functor of 3.3.3 from adjoint
nilpotent (G, µ)–displays over B to G-isodisplays over B/pB is faithful.

Proof. Let � be an automorphism of a display D = (P, Q, u) with (G, µ)-structure over
B, such that � and idD give rise to the same self-G-quasi-isogeny. We would like to prove
� = idD. Using Corollary 3.5.6 and since p is nilpotent in B, we can easily reduce to the
case pB = 0. Let a be the smallest ideal of B such that � ⌘ idD mod a; this ideal exists
since by Lemma 3.2.9(b) the diagonal of B(G, µ) is representable and a�ne. In fact,
the B-scheme representing the automorphisms of the display D is a closed subscheme of
the Greenberg transform FI of I := AutG(P), where P is the G-torsor over W (B) that
corresponds to the L+G-torsor P by Proposition B.0.2. Corollary 3.5.6 on the rigidity of
automorphisms implies that a = a2. For simplicity, set Jn = ker(Fn

B) = {x 2 B|x pn = 0}.
Note that W (Jn) = W (B)[pn], and

[

n

W (Jn) = ker(W (B) ! W (B)Q = W (B)[1/p]).

Since G is of finite type over Zp, by descent we see that the G-torsor P and also the scheme
I, are of finite presentation over W (B). Since � becomes the identity in F(p)I(B) =
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I(W (B)[1/p]), there must exist some integer N such that � is equal to the identity in
I(W (B/JN )). We deduce that a ⇢ JN which is bounded nilpotent, while a = a2. Hence,
by Lemma C.0.4, a = 0 which completes the proof.

3.7. Display blocks

In this subsection, we define and discuss the notion of a display block. This is a technical
construction which is useful for handling a certain type of descent that appears in the
proof of Proposition 5.2.5 and of the main result Theorem 5.1.3. The subsection can be
omitted at first reading.

3.7.1. We consider two pairs (G, µ) and (G 0, µ0) where both G and G 0 are reductive
group schemes over Zp, and µ and µ0 are, respectively, minuscule cocharacters of G
and G 0 defined over W (k

0

). We suppose that there is a group scheme homomorphism
i : G ! G 0 which is a closed immersion and is such that µ0 = i ·µ as in 3.2.13. We denote
this set-up by writing i : (G, µ) ,! (G 0, µ0).
Note that if for a (G, µ)-display D the (G 0, µ0)-display i(D) is adjoint nilpotent then

D is also adjoint nilpotent (since the Frobenius isocrystal given by Ad

G(D)[1/p] is a
sub-isocrystal of the one given by Ad

G 0
(i(D))[1/p]).

Definition 3.7.2. Fix i : (G, µ) ,! (G 0, µ0) as above. Consider an injective homomorphism
A ,! B in ANilpW (k

0

). An (A, B)-display block is a triple (D0,D, ) where

• D0 is a (G 0, µ0)-display over A,

• D is a (G, µ)-display over B, and

•  : i(D)
⇠�! D0 ⇥A B is an isomorphism of (G 0, µ0)-displays.

An isomorphism of two (A, B)-display blocks

(C0, C,�) ⇠�! (D0,D, ).

is a pair of isomorphisms ✏0 : C0 ⇠�! D0 and ✏ : C ⇠�! D satisfying

 � i(✏) � ��1 = ✏0 ⇥A B.

Definition 3.7.3. The (A, B)-display block (D0,D, ) is called e↵ective if there exists a
(G, µ)-display D3 over A such that

(D0,D, ) ⇠= (i(D3),D3 ⇥A B, i(idD3)⇥A B).

Then the (G, µ)-display D3 is unique up to a unique isomorphism.

3.7.4. Consider an ideal b ⇢ B and write a := b\ A ⇢ A. By the reduction of (D0,D, )

modulo b we mean the (A/a, B/b)-display block given by the triple (D0 ⇥A A/a,D⇥B
B/b, ⇥B B/b).
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3.7.5. We first need the following result, which is a slight generalization of [3, Corollary
3.28]:

Lemma 3.7.6. Suppose i : (G, µ) ,! (G 0, µ0) is as above, and consider homomorphisms
A ,! B ⇣ B/b in ANilpW (k

0

). We assume that

(i) B is b-adically separated, i.e. (0) = T
n b

n, and

(ii) A is b-adically closed as a subset of B, i.e. A = T
n(A+ bn).

Let a := A\ b so that we have A/a ,! B/b.
Suppose that D

1

and D
2

are two (G, µ)-displays over A. We assume that i(D j ⇥A A/a),
j = 1, 2 are adjoint nilpotent (G 0, µ0)-displays (so that then D j ⇥A A/a are also adjoint
nilpotent (G, µ)-displays). Let

 : i(D
1

)⇥A B
⇠�! i(D

2

)⇥A B

be a (G 0, µ0)-isomorphism over B, and

�
0

: D
1

⇥A A/a
⇠�! D

2

⇥A A/a

a (G, µ)-isomorphism over A/a. Assume the base changes of �
0

and  to B/b are

compatible in the obvious sense. Then there is a unique (G, µ)-isomorphism � : D
1

⇠�! D
2

over A that induces both �
0

and  .

Proof. We first deal with the case that b is nilpotent. Then, by induction we can assume
that b2 = 0. Now we can use the map �

0

in order to view D
1

as a lift of D̄
2

:= D
2

⇥A A/a,
so that there exists a well-defined element N 2 TD̄

2

⌦A a that measures the di↵erence
between the elements D

1

and D
2

of the deformation DD̄
2

,Spec A. The existence of  implies
that the image of N in Ti(D̄

2

) ⌦A b has to vanish. Since TD̄
2

⌦A a ! Ti(D̄
2

) ⌦A b is injective,
this yields N = 0 which implies the existence of � over A.
We now deal with the general case: The argument above gives that, for every n > 1,

there is a (G, µ)-display isomorphism �n : D
1

⇥A A/(A\ bn)
⇠�! D

2

⇥A A/(A\ bn) which
lifts �

0

and is compatible with  ⇥B B/bn . This, since the diagonal of B(G 0, µ0) is a�ne
by Lemma 3.2.9, implies that  , as a (G 0, µ0)-display isomorphism, is actually defined
over the subring A+ bn ⇢ B and therefore over A = T

n(A+ bn). Now, by the above,
 ⇥A A/(A\ bn) = �n which is a (G, µ)-isomorphism for all n > 1. Since

T
n(A\ bn) = 0

we obtain that  is also a (G, µ)-isomorphism.

3.7.7. We end this paragraph with two lemmas that, roughly speaking, show that under
some assumptions, certain deformations and liftings of e↵ective display blocks are still
e↵ective. In both of these, we fix i : (G, µ) ,! (G 0, µ0) as above.

Lemma 3.7.8. Consider homomorphisms A ,! B ⇣ B/b in ANilpW (k
0

). Suppose that b is
nilpotent and set a := b\ A. Let D3

0

be a (G, µ)-display over A/a such that i(D3
0

) is an
adjoint nilpotent (G 0, µ0)-display. Then the assignment

D3 7! (i(D3),D3 ⇥A B, i(idD3)⇥A B)
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induces a canonical bijection from the set of isomorphism classes of deformations of
the (G, µ)-display D3

0

over A to the set of isomorphism classes of deformations of the
(A/a, B/b)-display block

(i(D3
0

),D3
0

⇥A/a B/b, i(idD3
0

)⇥A/a B/b)

over (A, B).

Proof. We can assume b2 = 0, by induction. In this case, Corollary 3.5.12 shows that
both of the two sets in question are principal homogeneous spaces, the former one under
TD3

0

⌦A a and the latter one under

(Ti(D3
0

) ⌦A a)\ (TD3
0

⌦A b),

the intersection taking place in Ti(D3
0

) ⌦A b. We get the result as these two groups are
equal.

Lemma 3.7.9. Consider homomorphisms A ,! B ⇣ B/b in ANilpW (k
0

). Assume that
(A,m) is a complete local Noetherian ring, and that one of the following two assertions
holds:

(i) There exists a regular sequence ( f, g) in m such that B = A[g�1] and b is generated
by f .

(ii) B is a finitely generated A-module and b = J (B).

Let (D0,D, ) be a (A, B)-display block with D0 adjoint nilpotent whose reduction modulo
b is e↵ective and given by a (G, µ)-display over A/A\ b which is banal over A/m. Then
(D0,D, ) is e↵ective.

Proof. Let us write an for the intersection A\ bn . In case (ii) the Artin–Rees lemma
implies that the ideals an form a basis of neighborhoods for the m-adic topology on A. In
case (i) each an is generated by f n . Thus, in both cases B is b-adically separated and A
is b-adically closed as a subset of B, as an tends m-adically toward 0A. By Lemma 3.7.8
we can choose a sequence of suitable adjoint nilpotent (G, µ)-displays D3

n over A/an and
isomorphisms:

(i(D3
n ),D3

n ⇥A/an B/b
n, i(idD3

n
)⇥A/an B/b

n) ⇠= (D0,D, ) mod bn .

Using the existence of the universal deformation over the formal deformation space of
the (banal) (G, µ)-display D3

1

⇥A/A\b A/m over A/m we can now construct a ‘limit’
(G, µ)-display lim �n

D3
n = D3 over A = lim �n

A/an (cf. Proposition 3.2.11). Passing to the
limit we get:

(i(D3),D3 ⇥A B̂, i(idD3)⇥A B̂) ⇠= (D0,D⇥B B̂, ⇥B B̂),

where B̂ = lim �n
B/bn . Since B is b-adically separated B ,! B̂. The above isomorphisms

allows us to identify the L+G-torsors corresponding to the two displays D and D3 ⇥A B
over B as two L+G-equivariant subschemes of the L+G 0-torsor corresponding D0 ⇥A B
which are the same after base changing by B ! B̂. Using that G 0/G is represented by
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an a�ne scheme [8, 6.12] we can see that this implies that these subschemes are equal.
This gives an isomorphism

(i(D3),D3 ⇥A B, i(idD3)⇥A B) ⇠= (D0,D, ),

which shows that (D0,D, ) is e↵ective.

4. Rapoport–Zink spaces

We now give our definition of the Rapoport–Zink stack and functor, state the
representability conjecture and prove our main result on representability in the Hodge
type case.

4.1. Local Shimura data

Let G be a connected reductive group scheme over Zp. We follow [21] and [14].

4.1.1. Let ([b], {µ}) be a pair consisting of:

• a G(K̄ )-conjugacy class {µ} of cocharacters µ : Gm K̄ ! GK̄ ,

• a � -conjugacy class [b] of elements b 2 G(K ); here, as usual, b and b0 are � -conjugate
if there is g 2 G(K ) with b0 = gb� (g)�1.

We let E ⇢ K̄ be the field of definition of the conjugacy class {µ}. This is the local
reflex field. Denote by OE its valuation ring and by kE its (finite) residue field. In fact,
under our assumption on G, the field E ⇢ K̄ is contained in K and there is a cocharacter
µ : GmE ! GE in the conjugacy class {µ} that is defined over E ; see [16, Lemma (1.1.3)].
In fact, we can find a representative µ that extends to an integral cocharacter

µ : GmOE ! GOE , (4.1.1.1)

and the G(OE )-conjugacy class of such an µ is well-defined. In what follows, we usually
assume that µ is such a representative. We can identify OE with the ring of Witt vectors
W (kE ) and we have E = W (kE )[1/p].
We write µ� = � (µ) for the Frobenius conjugate of (4.1.1.1).

Definition 4.1.2 (cf. [21, Definition 5.1]). A local unramified Shimura datum is a triple
(G, [b], {µ}), in which G is a connected reductive group over Zp, the pair ([b], {µ}) is as
above, and we assume

(i) {µ} is minuscule,

(ii) for some (equivalently, any) integral representative (4.1.1.1) of {µ}, the � -conjugacy
class [b] has a representative

b 2 G(W )µ� (p)G(W ). (4.1.2.1)

By [20, Theorem 4.2], assumptions (i) and (ii) imply that [b] lies in the set
B(GQp , {µ}) of neutral acceptable elements for {µ}; see [21, Definition 2.3]. In particular,
(GQp , [b], {µ}) is a local Shimura datum in the sense of [21, Definition 5.1].
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4.2. Definitions and a representability conjecture

Fix a local unramified Shimura datum (G, [b], {µ}) and choose an integral representative
µ of the conjugacy class {µ} as in (4.1.1.1). Choose a representative b of the � -conjugacy
class [b] such that b = uµ� (p), with u 2 G(W ). Consider the (G, µ)-display D

0

=
(P

0

, Q
0

, u
0

) over k given by P
0

= L+GW , Q
0

= Hµ, and u
0

: Hµ ! L+GW given as the
composition of the inclusion followed by left multiplication by u.
Suppose that S is a scheme in NilpW and consider pairs (D, ⇢) with

• D a (G, µ)-display over S,

• ⇢ : D̄ 99K D
0

⇥k S̄ a G-quasi-isogeny over S̄.

(In the above, S̄ and D̄ denote the reductions of S and D modulo p.) Consider the natural
notion of isomorphism between two such pairs.
We denote by RZG,µ,D

0

the stack of groupoids over NilpW that classifies pairs (D, ⇢)

as above. We can see that this is a fpqc stack. Denote by RZG,µ,b the corresponding
functor NilpW ! Sets which sends S to the isomorphism classes of pairs (D, ⇢) over S as
above.
Consider the group of automorphisms Aut(D

0

[1/p]) of the G-isodisplay given by D
0

.
We can see that

Aut(D
0

[1/p]) ' Jb(Qp) := { j 2 G(L) | j�1b� ( j) = b}.
This group acts RZG,µ,D

0

and on the functor RZG,µ,b on the left by

j · (D, ⇢) = (D, j · ⇢).
We can now state:

Conjecture 4.2.1. Assume that �1 is not a slope of Ad

G(b). The functor RZG,µ,b is
representable by a formal scheme which is formally smooth and formally locally of finite
type over W .

Here, representability by a formal scheme is in the sense explained in [22]. For G = GLn
and for b with no slopes equal to 0, the conjecture follows by a combination of the results
of Rapoport–Zink and Zink and Lau: By Lau and Zink and the discussion of 2.3 (see
also 3.2.2, 3.3.6 and 3.4.5) the functor for GLn is equivalent to the Rapoport–Zink functor
of deformations up to quasi-isogeny of the p-divisible group over k that corresponds
to D

0

. For local unramified Shimura data of Hodge type, we prove this conjecture
for the restriction of the functor RZG,µ,b to locally Noetherian schemes in NilpW , see
Theorem 5.1.3.
For general (G, µ) and b as above, it follows easily from Proposition 3.6.1 that, if B is

Noetherian, then the objects of the groupoid RZG,µ,D
0

(B) have no automorphisms.

Remark 4.2.2. We refer to [22, Definition 3.45] for the notion of a Weil descent datum
relative to the extension W/OE for a functor on the category NilpW . Set f = [E : Qp].
(Recall that E/Qp is finite and unramified.) Denote by ⌧ : Spec(OE ) ! Spec(OE ) the
morphism induced by � f : OE ! OE and by ⌧̄ its reduction ⌧̄ : Spec(kE ) ! Spec(kE ).
Using the construction of loc. cit. 3.48, we can define a Weil descent datum on RZG,µ,b
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(relative to ⌧ ). This datum is given by the isomorphism of functors ↵ : RZG,µ,b ! RZ

⌧
G,µ,b

(see loc. cit.) obtained by sending the pair (D, ⇢) to the pair of ⌧ ⇤D together with the
G-quasi-isogeny

⌧̄ ⇤D̄ 99K ⌧̄ ⇤(D
0

⇥k S̄) 99K D
0

⇥k S̄

where the first arrow is ⌧̄ ⇤(⇢) and the second arrow is given by the relative Frobenius
of D

0

.

4.2.3. Suppose that (D, ⇢) is as above with S = Spec(R) a�ne and D banal; then D is

determined by U 2 L+G(R); the corresponding G-isocrystal over R̄ is given by Uµ� (p).
The G-quasi-isogeny ⇢ is given by left multiplication by g 2 LG(R̄) which satisfies the
identity

bF(g) = uµ� (p)F(g) = gUµ� (p) (4.2.3.1)

in LG(R̄) = G(W (R̄)[1/p]). Note that since p is nilpotent in R, the ideal W ((p)) ⇢ W (R)
is p-power torsion and so

W (R)[1/p] = W (R̄)[1/p].
We conclude that in the banal case, the pair (D, ⇢) is given by a pair (U, g) 2 L+G(R)⇥
LG(R) which satisfies

g�1bF(g) = Uµ� (p). (4.2.3.2)

By the definitions, two pairs (U 0, g0), (U, g) give isomorphic pairs (D, ⇢), (D0, ⇢0), when
there exists h 2 Hµ(R) such that

(U 0, g0) = (h�1 ·U ·8G,µ(h), g · h). (4.2.3.3)

This implies that RZG,µ,b is given by the isomorphism classes of objects of the (fpqc, or
étale) quotient stack

[(L+G ⇥LG,µ,b LG)/Hµ].
Here the fiber product is

L+G ⇥LG,µ,b LG //

✏✏

LG

cb
✏✏

L+G // LG

with cb(g) := g�1bF(g) and the bottom horizontal map is the natural map followed by
right multiplication by µ� (p) 2 G(E) ⇢ LG(R). The quotient is for the action of Hµ

given by

(U, g) · h = (h�1 ·U ·8G,µ(h), g · h).
4.2.4. Continue with the set-up above and assume that I ⇢ R is a nilpotent ideal. Set
R
0

= R/I . Then, sinceW (R)[1/p] = W (R
0

)[1/p], the pair (U, g) is determined by (U, g
0

).
We can use this to deduce that for any (D

0

, ⇢
0

) over R
0

, the forgetful functorRZG,µ,D
0

!
B(G, µ), (D, ⇢) 7! D, induces an equivalence of deformation functors D(D

0

,⇢
0

),S
⇠�! DD

0

,S .
In particular, our results in § 3.5 apply to the deformation theory of RZG,µ,D

0

.
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4.2.5. Let k0 be an algebraically closed field extension of k and set W 0 = W (k0), K 0 =
W 0[1/p]. In this case, since W (k0) is torsion free, the equation g�1bF(g) = Uµ� (p) shows
that U is determined from g. By the above discussion, we have

RZG,µ,b(k0) = {g 2 G(K 0) | g�1bF(g) 2 G(W 0)µ� (p)}/Hµ(k0), (4.2.5.1)

where Hµ(k0) ⇢ G(K 0) acts on G(K 0) on the right. Since k0 is perfect, we have I (k0) =
pW (k0). This gives

Hµ(k0) = G(W 0)\µ(p)�1G(W 0)µ(p).

(Hence, the group Hµ(k0) is equal to group of W 0-valued points of a parahoric subgroup
scheme defined over W (k

0

).)

Proposition 4.2.6. We have a bijection

RZG,b,µ(k0) ⇠= {g 2 G(K 0) | g�1bF(g) 2 G(W 0)µ� (p)G(W 0)}/G(W 0)

where the quotient is for the natural right action of G(W 0) on G(K 0).

The right hand side of the identity in this statement is, by definition, the a�ne
Deligne–Lusztig set

XG,µ� ,b(k0) ⇢ G(K 0)/G(W 0)

for the data (G, µ� , b) and the field k0.
Proof. This follows from 4.2.5.1 and an argument as in the proof of Proposition 3.2.15
(or [14, Proposition 2.4.3(i)]) which shows that the map

G(K 0)/Hµ(k0) ! G(K 0)/G(W 0); gHµ(k0) 7! gG(W 0),

restricts to a bijection between the set in the right side of 4.2.5.1 and XG,µ� ,b(k0).

Remark 4.2.7. By [14, Proposition 2.4.3(iii)], the map g 7! ��1(b�1g) gives a bijection

XG,µ� ,b(k0) ⇠�! XG,µ,b(k0) and so we also have

RZG,µ,b(k0) ⇠= XG,µ,b(k0).

5. Rapoport–Zink spaces of Hodge type

5.1. Hodge type local Shimura data

The two definitions below are slight variants of definitions in [14].

Definition 5.1.1. The local unramified Shimura datum (G, [b], {µ}) is of Hodge type if
there exists a closed group scheme embedding ◆ : G ,! GL(3), for a free Zp-module 3 of

finite rank, with the following property: After a choice of basis 3OE

⇠�! On
E , the composite

◆ �µ : GmOE ! GLn,OE

is the minuscule cocharacter µr,n(a) = diag(1(r), a(n�r)), for some 1 6 r < n.
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Definition 5.1.2. Let (G, [b], {µ}) be a local unramified Shimura datum of Hodge type.
A local Hodge embedding datum for (G, [b], {µ}) consists of
• a group scheme embedding ◆ : G ,! GL(3) as above,

• the G(W )–� -conjugacy class {gb� (g)�1 : g 2 G(W )} of a representative b 2
G(W )µ� (p)G(W ) of [b] as in (4.1.2.1).

Notice that the G(W )-conjugacy class of an integral representative µ as in (4.1.1.1) is
determined from {µ}.
We refer to the quadruple (G, b, µ,3), where µ is given up to G(W )-conjugation, and

b up to G(W )-� -conjugation, as a local unramified Shimura–Hodge datum.
The following is the main result of the paper:

Theorem 5.1.3. Assume that (G, [b], {µ}) is a local unramified Shimura datum of Hodge
type with a local Hodge embedding datum such that ◆(b) has no slope 0. Then the
restriction of the functor RZG,µ,b to locally Noetherian schemes in NilpW is representable
by a formal scheme which is formally smooth and formally locally of finite type over W .

5.1.4. Fix a local unramified Shimura–Hodge datum (G, b, µ,3). The following is
obtained similarly to [14, Lemma 2.2.5]. Note however that, here, we are using the
covariant Dieudonné module.

Lemma 5.1.5 [14]. There is a unique, up to isomorphism, p-divisible group

X
0

= X
0

(G, b, µ,3)

over k whose (covariant) Dieudonné module is D(X
0

)(W ) = 3 ⌦Zp W with Frobenius F =
b � � . Moreover, the Hodge filtration

V Dk ⇢ Dk = D(X
0

)(k)

is induced by a conjugate of the reduction µk : Gmk ! Gk of µ modulo (p).

In what follows, we show Theorem 5.1.3. We use a natural morphism from RZG,µ,b
to the functor represented by the ‘classical’ Rapoport–Zink formal scheme RZX

0

, where
X
0

= X
0

(G, b, µ,3) is as above.

5.2. The proof of the representability theorem

5.2.1. In this subsection we show Theorem 5.1.3. We are going to use the notion

of Frobenius separatedness defined in Appendix C. We write ANilp

noeth

O , ANilp

ared

O ,
ANilp

aFs

O be the full subcategories of ANilpO consisting of O-algebras which are
respectively Noetherian, respectively with nilpotent nilradical, respectively which are
almost Frobenius separated.

5.2.2. In what follows we fix a closed group scheme immersion

i : (G, µ) ,! (G 0, µ0)
as in 3.7.1. We eventually apply the following statements to the case that G 0 = GLh ,
µ0 = µd,h , and i is given by a Hodge embedding datum.
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Proposition 5.2.3. Suppose that B is in ANilp

aFs

W . Let D
1

and D
2

be banal displays with
(G, µ)-structure over B such that i(D

1

) and i(D
2

) are adjoint nilpotent. Then a pair
(�, ) with

(i) � : D
1

99K D
2

a G-quasi-isogeny,

(ii)  : i(D
1

) ! i(D
2

) a G 0-isomorphism,

is induced from a G-isomorphism ✏ : D
1

! D
2

if and only if

i(�) =  [1/p],
i.e. if and only if i(�) and  give the same G 0-quasi-isogeny i(D

1

) 99K i(D
2

). (By
Proposition 3.6.1, the isomorphism ✏ is then uniquely determined.)

Proof. Using Lemma 3.7.6 we can reduce to the case pB = 0. Again set Jn = ker(Fn
B) ={x 2 B|x pn = 0}. Since the displays Di are banal, they are represented by elements

Ui 2 G(W (B)). The quasi-isogeny � gives us an element k 2 G(W (B)Q) such that U
2

=
k�1U

1

8µ(k) holds in G(W (B)Q). The isomorphism  gives us an element l 2 Hµ0
(B)

such that i(U
2

) = l�1i(U
1

)8µ0
(l) holds in G 0(W (B)). By our assumption, the images of

i(k) and l agree in the group G 0(W (B)Q).
Since i is a closed immersion there exists a smallest ideal I

0

of W (B) such that
the restriction of the W (B)-valued point l to Spec(W (B)/I

0

) factors through, say
h 2 G(W (B)/I

0

). Since i : G ! G 0 is of finite presentation, I
0

is a finitely generated ideal
of W (B).
The existence of k shows that I

0

is contained in W (B)[p1] = S
n W (Jn). By the finite

generation of I
0

, we can choose a large enough n such that I
0

⇢ W (Jn) and we can
consider hn 2 G(W (B)/W (Jn)) = G(W (B/Jn)) = L+G(B/Jn). Since Hµ = L+G \ Hµ0

,
we see that hn is in Hµ(B/Jn). LetUi,n be the images ofUi in the group G(W (B/Jn)). Note
that the elements U

2,n and h�1

n U
1,n8

µ(hn) are well-defined in G(W (B/Jn)) and have the
same image in G 0(W (B)Q). Since G 0 is of finite type, there exists another integer n0 > n
such that these elements agree already in G 0(W (B/Jn0)) and so also in G(W (B/Jn0)).
Therefore, we have constructed an isomorphism

⌘ : D
1

⇥B B/Jn0
⇠�! D

2

⇥B B/Jn0

with ⌘[1/p] = � and i(⌘) ⌘  mod Jn0 . Now use deformation theory (as in the proof of
Lemma 3.7.6) to extend ⌘ to a compatible system of isomorphisms ⌘N over B/J N

n0 , for all

N , which are given by hN 2 Hµ(W (B/J N
n0 )) and which, when viewed in Hµ0

(W (B/J N
n0 )),

are all the reduction of a single element h0 2 Hµ0
(W (B)). Set I = T

N J N
n0 ; by our

assumption that B is almost Frobenius separated, I is nilpotent. It follows that h0
mod I is

in Hµ(W (B/I )) and so it gives a lift of ⌘ to an isomorphism ⌘̃ : D
1

⇥B B/I
⇠�! D

2

⇥B B/I
with ⌘̃[1/p] = � and i(⌘̃) ⌘  mod I . We can now conclude by a similar deformation
theory argument as before.

5.2.4. Now let D
0

be a (G, µ)-display defined over an algebraically closed field extension
k of k

0

. Suppose that the (G 0, µ0)-display i(D
0

) is adjoint nilpotent, then the same
holds true for D

0

. We can consider the Rapoport–Zink stacks of groupoids RZG,µ,D
0

,
respectively RZG 0,µ0,i(D

0

), of pairs of (G, µ)-displays, respectively (G 0, µ0)-displays,
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together with a G-quasi-isogeny to D
0

, respectively a G 0-quasi-isogeny to i(D
0

). There is
a natural transformation

i : RZG,µ,D
0

! RZG 0,µ0,i(D
0

).

(Note that by Lemma 3.6.1, for B in ANilp

aFs

W (k), the objects of RZG,µ,D
0

(B),
RZG 0,µ0,i(D

0

)(B), have no automorphisms.)

Proposition 5.2.5. Suppose that B is an object of ANilparedW (k) and let A ⇢ B a Noetherian
W (k)-subalgebra. Suppose we are given:

• (D, �) is an object of RZG,µ,D
0

(B),

• (D0, �0) is an object of RZG 0,µ0,i(D
0

)(A),

•  an isomorphism  : i((D, �)) �! (D0, �0)⇥A B.

Then there is an object (D3, �3) of RZG,µ,D
0

(A) together with isomorphisms

(D3, �3)⇥A B
⇠�! (D, �), i((D3, �3))

⇠�! (D0, �0),
which are compatible with  in the appropriate manner.

Proof. Given the above, the data (D0,D, ) give an (A, B)-display block as in
Definition 3.7.2. Part of the desired conclusion is that (D0,D, ) is e↵ective. In fact,
we first show that it is enough to show this e↵ectivity: Indeed, assume we have
that, i.e. suppose that we have constructed a (G, µ)-display D3 over A together with

isomorphisms i(D3)
⇠�! D0, D3 ⇥A B

⇠�! D, which are compatible with  . We can then
give the G-quasi-isogeny �3 over Ā as follows: The data �, �0 together with the above
isomorphisms give a G 0-quasi-isogeny �̃0 : i(D̄3) 99K i(D

0

)⇥k Ā and a G-quasi-isogeny
�̃ : D̄3 ⇥ Ā B̄ 99K D

0

⇥k B̄. These two are compatible in the sense that

i(�̃) = �̃0 ⇥ Ā B̄.

We claim that this implies that �̃ is defined over Ā and so it gives the desired �3.
To see this we can assume that the display D3 is banal (by using étale descent on
A and Corollary B.0.3). Then �̃, �̃0 are given by elements in g 2 G(W (B)[1/p]) and
g0 2 G 0(W (A)[1/p]) respectively and the condition is that these elements coincide in
G 0(W (B)[1/p]). Now observe that our conditions on A ⇢ B imply

W (A)[1/p] ⇢ W (B)[1/p].
(Indeed, since A, B are in ANilp

ared

W there is an integer n such that pn annihilates
both W (rad(A)) and W (rad(B)). Hence, W (A)[1/p] = W (A

red

)[1/p], W (B)[1/p] =
W (B

red

)[1/p]. Since W (A
red

), W (B
red

) are p-torsion free and A ⇢ B induces A
red

⇢ B
red

,
the inclusion follows.) Now g is given by OG ! W (B)[1/p] and g0 by OG 0 ! W (A)[1/p].
The compatibility condition is that the following diagram commutes

OG 0 �! OG
g0 # # g

W (A)[1/p] ,! W (B)[1/p].
SinceOG 0 ! OG is surjective this implies that g factors through W (A)[1/p]; this provides
the G-quasi-isogeny �3.
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To show (D0,D, ) is e↵ective we now proceed in several steps, some of which are
similar to [3, proof of Proposition 5.4.(ii)]. As it turns out, the two most important cases
that we need to handle are when B is faithfully flat over A (Step 1), and when A = K [[t]]
and B = K ((t)), with K a field (Step 3).
Observe that the statement holds for a finite product A = Qn

i=1

Ai if and only if it
holds for each factor Ai , so that it does no harm to assume the connectedness of Spec A
in each of the steps below.

Step 1. B is faithfully flat over A (e.g. if A is a field).

By Lemma B.0.3, there is an étale faithfully flat B ! B 0 such that D⇥B B 0 is banal.
Notice that B 0 has also nilpotent radical and so we can replace B by B 0 and assume
that D is banal. Then the conclusion will be a consequence of fpqc descent for A ! B
and RZG,µ,D

0

. We can use Corollary C.0.6 and Proposition 5.2.3 applied to B ⌦A B to
construct the descent datum as follows:
Let d

1

: B ! B ⌦A B, d
2

: B ! B ⌦A B, be the coprojections and d : A ! B ⌦A B their
common restriction to A. Consider

d⇤
i (D, �) := (D, �)⇥B,di (B ⇥A B),

for i = 1, 2, in RZG,µ,D
0

(B ⌦A B). Define a G-quasi-isogeny � : d⇤
1

D 99K d⇤
2

D by setting

� = d⇤
2

(�)�1 · d⇤
1

(�) : d⇤
1

D 99K d⇤D
0

99K d⇤
2

D.

There is also a G 0-isomorphism  0 : d⇤
1

i(D) ! d⇤
2

i(D) given by the composition

d⇤
1

i(D)
d⇤
1

( )���! d⇤
1

(D0 ⇥A B) = d⇤D0 = d⇤
2

(D0 ⇥A B)
d⇤
2

( )�1

�����! d⇤
2

i(D).

We can now see that  0 gives the G 0-quasi-isogeny i(�). By Corollary C.0.6, B ⌦A B
is in ANilp

aFs

W and so we can apply Proposition 5.2.3 to construct the descent datum

which is given by a G-isomorphism ✏ : d⇤
1

D ⇠�! d⇤
2

D over B ⌦A B. The G-isomorphism ✏

is compatible with the G-quasi-isogenies d⇤
1

� and d⇤
2

�.

Step 2. A is a complete local Noetherian ring and B is finite over A.

First let us make the following observation: Let A ! A0 be an étale extension of local
rings with a finite separable extension of residue fields k0 over the residue field k = A/m
(then A0 is also complete Noetherian). Assume we have the result for A0 ,! B 0 := B ⌦A A0,
and for the base changes of our displays to A0 (B 0 is then also in ANilpW ). Then we can
apply descent (or Step 1) to the faithfully flat A ! A0 to further descent to A and obtain
the result for A ! B.
Now apply Step 1 to the inclusion A/m ,! B/J (B). This shows that the display block

(D0 ⇥A A/m,D⇥B B/J (B), ⇥B B/J (B)) is e↵ective and is given by a (G, µ)-display
over k = A/m. There is a finite separable extension k0 of k such that this display is banal
and we can find an étale extension A0 as above with k0 as residue field. Now apply part
(ii) of Lemma 3.7.9 to the base changes by A0 to descent to A0 and conclude by using the
observation above.

Step 3. A = K [[t]] and B = K ((t)), where K is a field extension of k.
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By using Step 1 we may assume that K is algebraically closed. By base changing to
a finite separable extension L of K ((t)) we can arrange that the (G, µ)-display D is
banal. Notice that if A is the integral closure of K [[t]] in L, then A = K [[u]] for some
variable u and L = K ((u)). Since A = K [[u]] is finite over K [[t]], an application of Step
2 shows that we can always descend along K [[t]] ,! K [[u]]; hence, we can reduce to the
situation A = K [[t]] ,! B = K ((t)) with K algebraically closed and all displays banal.
For simplicity of notation, set R = K [[t]], E = K ((t)). Hence we can find U 0 2 G 0(W (R))
for D0, and U 2 G(W (E)) for D. The isomorphism  : i(D) �! D0 ⇥R E is given by l 2
Hµ0

(E) ⇢ G 0(W (E)) with U = l�1U 08G,µ(l). Using the two isogenies �, �0 we obtain a
factorization

l = ab�1

in G 0(W (E)[1/p]). In this, b 2 G(W (E)[1/p]) gives � : D 99K D
0

⇥k K ((t)) and a 2
G 0(W (R)[1/p]) gives �0 : D0 99K i(D

0

)⇥k R. Consider the quotient G 0/G which is
represented by an a�ne scheme Z [8, 6.12]. The above identity implies that the
W (E)-valued point of Z which is given by l is equal to the W (R)[1/p]-valued point
which is given by a with the equality of points considered in Z(W (E)[1/p]). Now use

W (E)\W (R)[1/p] = W (R).

(The intersection takes place in W (E)[1/p].) Using that Z is a�ne, we see that there
is a W (R)-valued point z of Z which gives both l and a. Since G 0 ! Z = G 0/G is a
G-torsor and W (R) = W (K [[t]]) is henselian, there is c 2 G 0(W (R)) that lifts z. Then
c = a · d with d 2 G(W (R)). Thus we can adjust b by multiplying by d�1 and assume
now that l = ab�1 with a 2 G 0(W (R)) and b 2 G(W (E)). Now use that, by the Iwasawa
decomposition, we have

G(E) = Pµ(E) ·G(R).

This and the surjectivity of G(W (E)) ! G(E), G(W (R)) ! G(R) (which holds
by Hensel’s lemma, since W (E), respectively W (R), is I (E)-adically, respectively
I (R)-adically, complete and G is smooth) gives

G(W (E)) = Hµ(E) ·G(W (R)).

Write b = h · g with h 2 Hµ(E), g 2 G(W (R)). Then l = ab�1 = ag�1 · h�1. Hence, we
may write l = ab�1 with a 2 G 0(W (R)) and b 2 Hµ(E). Observe that then a 2 Hµ(R).
Now set

U3 = a�1U 08G 0,µ0(a) = b�1U8G,µ(b).

This element is in both G 0(W (R)) and G(W (E)), hence it belongs to the intersection
G(W (R)). We can now see that it defines the desired display D3; the elements a and b
give the isomorphisms of i(D3) to D and of D3 ⇥R E to D respectively.

In what follows, we denote by Q(R) the total quotient ring of R, i.e. the localization
N�1R of R at the set of non-zero divisors N ⇢ R.

Step 4. A is a reduced complete local one-dimensional Noetherian ring.

Consider A ⇢ Q(A) ⇢ B ⌦A Q(A); we can apply Step 1 to the base change Q(A) ⇢
B ⌦A Q(A). This allows us to reduce to considering A ⇢ Q(A), i.e. we can assume B =
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Q(A). Consider the normalization A0 of A in Q(A). By [13, Théorème (23.1.5)] this is
a finite extension of A. By the Cohen structure theorem we have A0 ' K [[t]], Q(A) '
K ((t)). The result follows by applying sucessively Step 3 and Step 2.

The sequence of the following four steps settles the case of Noetherian rings of finite
Krull dimension, we argue by induction on dim(A):

Step 5. A is an integrally closed complete local Noetherian ring.

By Serre’s condition S
2

, there exists a regular sequence of length two, i.e. elements f
and g such that f is neither a unit nor a zero-divisor of A and g is neither a unit nor
a zero-divisor of A/ f A. Notice that A[1/g] is a Noetherian ring of dimension strictly
less than dim A, so by induction we can apply Step 8 (for a ring of smaller dimension)
to the inclusion A[1/g] ⇢ B[1/g] and we obtain the desired display D3 over the ring
A[1/g]. Thus we may replace B by A[1/g], and so do consider the inclusion A ⇢ A[1/g],
which satisfies the assumption of part (i) of Lemma 3.7.9. (Here, to make sure that the
(G, µ)-display over the residue field A/m is banal, we might need to base change by a
finite étale local extension A ! A0 as in Step 2.)

Step 6. A is a complete local Noetherian ring.

Using Lemma 3.7.8 we see that we can assume that A is reduced. Then by an argument
as in Step 4, we can reduce to the case B = Q(A). Just as in the Step 4 we consider the
normalization A0 of A in Q(A). Using the previous step we can replace B by the ring
A0. However, by [13, Théorème (23.1.5)], A0 is a finite extension of A, so that we can
conclude by applying Step 2.

Step 7. A is a local Noetherian ring.

Just as in the step above we can assume A is reduced, putting us into a position
where B may be replaced by Q(A). Apply Step 6 to the ring extension Â ⇢ Q(A)⌦A Â,
where Â denote the completion of the local ring A. This allows us to reduce to the case
A ! B = Â. Since A ! Â is faithfully flat we can conclude by applying Step 1.

Step 8. A is a Noetherian ring of finite Krull dimension.

As before we can assume A
red

= A and B = Q(A). By base change, for every maximal
ideal m of A we obtain a (Am, Q(Am))-display block

(D0 ⇥A Am,D⇥Q(A) Q(Am), ⇥Q(A) Q(Am)),

where Am stands for the localization of A at m.
Set A] := Q

m Am, which is reduced (m runs through the set of maximal ideals). Observe
that the fact that Am are all reduced implies that the union

S
m Spec(Am) ,! Spec(A])

of the closed immersions Spec(Am) ⇢ Spec(A]) is dense in Spec(A]). (In fact, in general,
if the radical of

Q
i Ai is nilpotent, then [i Spec(Ai ) is dense in Spec(

Q
i Ai ).)

Now let us write (D3
m, �3m) for its descent to RZG,µ,D

0

(Am), of which the existence is
granted by the previous step. Now let us construct a product display D] := (P], Q], u]) =Q

mD3
m over the ring A]:

(i) We obtain the L+G-torsor P] by applying Remark B.0.5. To obtain the descent
Q] to an Hµ-torsor use the observation 3.2.4: We need a section over Spec(A]) of the
corresponding Xµ-bundle P]/Hµ for Xµ = G/Pµ. By assumption, we have such a section
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over Spec(Am), for all m, while the Xµ0 -bundle P 0/Hµ0
for Xµ0 = G 0/Pµ0 has a section over

Spec(A) and therefore over Spec(A]). These agree as sections of P 0/Hµ0
over Spec(Am), for

all m. Now notice that, by descent, P]/Hµ ⇢ P 0]/Hµ0
is a closed immersion and hence,

by the above density of [m Spec(Am) ,! Spec(A]), we see that these give a section of
P]/Hµ over A].
(ii) The construction of u] from (um) is obtained by an argument as in the proof of

essential surjectivity in Lemma B.0.4.
In addition, we need to construct a ‘compatible’ G-quasi-isogeny �] : D] 99K D

0

⇥k
A]/(p): Let us first assume that D0, D3

m are banal and fix trivializations of the torsors
P 0, P3

m . Then (�3m) is given by

(gm) 2
Y

m

G(W (Am)[1/p]) = G
✓Y

m

(W (Am)[1/p])
◆
;

this also lies in G 0(W (A])[1/p]) and therefore in G(W (A])[1/p]). The non-banal case is
treated in a similar way by working with, instead of points of a�ne group schemes, points
of the a�ne schemes of suitable torsor isomorphisms.
Notice that the morphism A ! A] is faithfully flat. By construction, D0 ⇥A A] ⇠= i(D]),

and so (D], �]), (D0, �0), provide data to which we can apply the special case of Step 1.

Step 9. A is an arbitrary Noetherian ring.

Since every local Noetherian ring has finite Krull dimension, we can apply the previous
step one more time, because meanwhile we know the local result without a restriction on
the dimension.

Corollary 5.2.6. Fix a Noetherian algebra A in ANilpW . Let (D0, �0) be an object of the
stack RZG 0,µ0,i(D

0

) over A. Then there exists an ideal I ⇢ A such that the following
statement is true: For each A-algebra f : A ! B in ANilp

ared

W , we have f (I ) = 0 if and
only if there exists an object (D, �) of RZG,µ,D

0

over B together with an isomorphism

� : (D0, �0)⇥A B
⇠�! i((D, �)).

This implies that the morphism RZG,µ,D
0

! RZG 0,µ0,i(D
0

) of stacks, when restricted
over ANilpnoethW , is represented by a closed immersion.

Proof. This is similar to [3, proof of Theorem 5.5]: Let us say (D0, �0) has G-structure over

f : A ! B if there is an isomorphism � : (D0, �0)⇥A B
⇠�! (D, �). Then Proposition 5.2.5

implies that (D0, �0) has a G-structure over the quotient A/ker( f ). Denote by S(D0, �0) the
set of ideals of A for which (D0, �0) has a G-structure over A/I . If I and J are in S(D0, �0)
we can apply Proposition 5.2.5 to A/(I \ J ) ,! A/I ⇥ A/J and deduce that I \ J is also
in S(D0, �0). In general, finite intersections of ideals in S(D0, �0) are also in S(D0, �0). Now
consider the ideal

I := I(D0,�0) =
\

I2S(D0,�0)
I.

Consider the reduced product B[ = Q
I2S(D0,�0) A/ rad(I ) of the reduced rings A/ rad(I ).

We can construct a product (G, µ)-display D and a G-quasi-isogeny of D to D
0

over
this product ring B[ by an argument as in the proof of Step 8 above. Now apply
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Proposition 5.2.5 to
A/ rad(I) ,! B[ =

Y

I2S(D0,�0)
A/ rad(I ).

We obtain that rad(J) also belongs to S(D0, �0). Now repeat the argument and apply
Proposition 5.2.5 to

A/I ,!
Y

I2S(D0,�0),I⇢I⇢rad(I)

A/I.

(Notice that the radical of this product is also a nilpotent ideal.) This implies that
I 2 S(D0, �0) which is enough to deduce the result.

Apply the above to the case that G 0 = GLh , µ0 = µd,h , and i is given by a Hodge
embedding datum. By the results of Rapoport–Zink, Zink, and Lau, the functor
RZ

GLh ,µd,h ,i(b) is representable by a W -formal scheme which is locally formally of finite
type over W (see 4.2; notice that the base-point p-divisible group is X

0

, given in
Lemma 5.1.5). By Corollary 5.2.6, we obtain that the restriction of RZG,µ,b to ANilp

noeth

W is
represented by a W -formal closed subscheme of RZ

GLh ,µd,h ,i(b) which is then also formally
locally of finite type over W . Formal smoothness over W follows from our deformation
theory results. This concludes the proof of Theorem 5.1.3.

Remark 5.2.7. We now easily see that, in the Hodge type case of Theorem 5.1.3, the
W -formal scheme representing the restriction of RZG,µ,b above to locally Noetherian
schemes is isomorphic to formal schemes constructed in [15] and [14] (when these are
defined, for example, when the local Hodge embedding is globally realizable, see loc.
cit.) Indeed, all of these are W -formal closed subschemes of the classical Rapoport–Zink
W -formal scheme RZ

GLh ,µd,h ,i(b) with the same k-valued points (given by the a�ne
Deligne–Lusztig set, Proposition 4.2.6), and the same formal completions at these points
(by deformation theory, see 4.2.4 and 3.5) so they agree by flat descent. Let us note,
however, a slight di↵erence in notation: The Rapoport–Zink formal scheme for (G, µ, b) in
this paper agrees with the one for (G, � ·µ�1, pb�1) in [14], with � : Gm ! G ⇢ GL(3) the
central diagonal torus. (The existence of � is part of the assumption of being of Hodge type
in loc. cit.). The reason for this discrepancy is that [14] uses the contravariant Dieudonné
functor for the construction of the base-point p-divisible group X

0

corresponding to i(D
0

).

Remark 5.2.8. In the Hodge type case of Theorem 5.1.3, we can use the descent datum
↵ given in Remark 4.2.2 to descend RZG,µ,b over OE as in [22, 3.49, 3.51]. This is done
by an argument as in loc. cit., see for example loc. cit. Lemma 3.50.

Acknowledgements. We thank M. Hadi Hedayatzadeh, B. Howard, R. Noot, and
M. Rapoport for useful discussions and suggestions, and the referee for his/her careful
reading of the paper.

Appendix A. Minuscule cocharacters and parabolics

Here we collect some notations and standard results on (minuscule) cocharacters and
corresponding parabolic and unipotent subgroups of reductive group schemes. We refer
the reader to [10] or [6] for more details.

3)3� 34 7�3D�:DDAC���*** 53!4%��97 #%9�5#%7�D7%!C �:DDAC����#� #%9��� �����1�	�	�	����������
.#*" #3�7��8%#!�:DDAC���*** 53!4%��97 #%9�5#%7 �0�5:�93"�1D3D7�2"�)7%C�D+�/�4%3%�7C��#"��
�,(9������3D����	���
��C(4�75D�D#�D:7��3!4%��97��#%7�D7%!C�#8�(C7�



(G, µ)-displays and Rapoport–Zink spaces 1251

A.0.1. We consider a perfect field k
0

and a smooth a�ne group scheme G over W (k
0

)

with connected fibers. Let µ : Gm,W (k
0

) ! G be a group scheme homomorphism (a
‘cocharacter’ of G). We consider the closed subgroup schemes Uµ and Pµ of G which
are defined by the following subfunctors of G on W (k

0

)-algebras

Pµ(R) =
�
g 2 G(R) | lim

t 7!0

µ(t)gµ(t)�1

exists

 

Uµ(R) =
�
g 2 G(R) | lim

t 7!0

µ(t)gµ(t)�1 = 1

 

(See [4, 2.1], or [6, Theorem 4.1.17].)
Here ‘limt!0

exists’, by definition, implies that the conjugation action GW (k
0

) ⇥W (k
0

)

Pµ ! Pµ extends to a morphism

Intµ : A1

W (k
0

) ⇥W (k
0

) Pµ ! Pµ.

This gives an action of the monoid scheme A1

W (k
0

) on Pµ by group scheme endomorphisms.

Under this the zero section of A1

W (k
0

) maps Uµ to the neutral section.

A.0.2. By [6, Theorem 4.1.17] we have:

• Under our assumption, Uµ and Pµ are smooth group schemes over W (k
0

) with
connected fibers.

• The subgroup scheme Uµ is unipotent and the multiplication

m : Pµ ⇥W (k
0

)Uµ�1

! G

is an open immersion. We denote by G⇤
µ or G⇤, if µ is clear from the context, the open

subscheme of G given as the image of this morphism.

• If g = Lie(G) = L
n2Z gn is the weight space decomposition of the Lie algebra under

the adjoint action (i.e. gn = {v 2 g | µ(t)vµ(t)�1 = tnv}), then we have

pµ = Lie(Pµ) =
M

n>0

gn,

uµ�1

= Lie(Uµ�1

) =
M

n<0

gn .

A.0.3. Suppose that G is connected split reductive over W (k
0

) and T ⇢ G is a split
maximal torus such that µ factors through T . Denote by 8 the roots of G and for a 2 8

by ga ⇢ g, respectively Ua , the root W (k
0

)-subspace of g, respectively root subgroup
scheme of G. Then gn = L

a|hµ,ai=n ga . Denote by 8(µ) ⇢ 8 the set of roots a such that
hµ, ai > 0. Then the multiplication (with the factors in the product taken in any order)

Y

a28(µ)

Ua ! Uµ

gives an isomorphism of W (k
0

)-schemes [6, 5]. The subgroup scheme Pµ ⇢ G is a parabolic
subgroup. The group scheme Uµ is the unipotent radical of Pµ. It contains a finite
filtration

Uµ = U8(µ)>1

◆ U8(µ)>2

◆ · · ·
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of normal subgroup schemes such that the multiplication map
Y

a|hµ,ai=n

Ua ! U8(µ)>n/U8(µ)>n+1

(with the factors in the product taken in any order) is an isomorphism of group schemes [6,
Proposition 5.1.16].
Recall that µ defines a decreasing filtration Fil

•(V ) on each representation G ! GL(V ).
We can view Pµ ⇢ G as the subgroup scheme that respects the filtration Fil

•(V ). Then
Uµ ⇢ Pµ is the subgroup scheme of Pµ that acts trivially on the graded gr

•(V ).

A.0.4. We assume that G is a connected reductive group scheme over W (k
0

) with k
0

a
finite field. Then there is a finite field extension k0

0

/k
0

such that G ⇥W (k
0

) W (k0
0

) is split.
We now assume that the cocharacter µ is minuscule, i.e. that hµ, ai 2 {�1, 0, 1} for all
absolute roots a 2 8.

Lemma A.0.5. The unipotent group scheme Uµ is commmutative and is isomorphic to
Gr

a ⇥Zp W (k
0

), where r > 0 and Ga = Spec(Zp[T ]) is the additive group scheme over Zp.

Proof. First we see that Uµ ⇥W (k
0

) W (k0
0

) ' Gr
a ⇥Zp W (k0

0

): This follows from [6,
Proposition 5.1.16] and étale descent (see also loc. cit. Theorem 5.4.3). Indeed, since
there are no absolute roots a with hµ, ai > 2, the subgroup scheme U8(µ)>2

of loc. cit.
is trivial. We can now conclude using [10, XVII.4.1.5] and the fact that all projective
finitely generated W (k

0

)-modules are free.

Appendix B. Loop group torsors

Suppose that R is a W (k
0

)-algebra. As usual, G is a connected reductive group scheme
over Zp. We compare between L+G-torsors over R and G-torsors over W (R). Here, we
view W (R) as a W (k

0

)-algebra via W (k
0

) ! W (W (k
0

)) ! W (R). The torsors are, by
definition, locally trivial for the fpqc topology. Our convention is that the group acts on
the right.

Lemma B.0.1. If P is a G-torsor over W (R), then the Greenberg transform FP is a
L+G-torsor over R.

Proof. Observe that P is a�ne of finite presentation and smooth by descent, and so by
Proposition 2.2.1 the Greenberg transform FP is a�ne flat and formally smooth over
R. We can also easily see that FP ! Spec(R) is surjective, hence faithfully flat. By
Proposition 2.2.1 the action morphism P ⇥W (R) (G ⇥W (k

0

) W (R)) ! P gives an action

FP ⇥R L+G ! FP.

Since P is a G-torsor the morphism P ⇥W (R) (G ⇥W (k
0

) W (R))
⇠�! P ⇥W (R) P given by

(x, g) 7! (x, x · g) is an isomorphism. By Proposition 2.2.1 again, the morphism FP ⇥R
L+G ' FP ⇥R FP given by the above action is an isomorphism and the result follows
since FP ! Spec(R) is fpqc.
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Proposition B.0.2. Let R be in ANilpW (k
0

).

(a) If P is a G-torsor over W (R), then there is an étale faithfully flat ring
homomorphism R ! R0 such that P ⇥W (R) W (R0) is trivial (i.e. has a section).

(b) The functor P 7! FP provides an equivalence from the category of G-torsors over
W (R) to the category of L+G-torsors over R.

Proof. Let us first show part (a): Since G is smooth, the base change P
0

= P ⇥W (R),w
0

R
of P by w

0

: W (R) ! R splits locally for the étale topology on R, i.e. there is R ! R0
étale faithfully flat such that P

0

⇥R R0 has a section s0
0

. Now since p is nilpotent in R0,
the Witt ring W (R0) is separated and complete for the topology defined by the powers
of I (R0) = ker(W (R0) ! R0) (see [28, Proposition 3]). By Hensel’s lemma, the section s0

0

lifts to a section s0 of P ⇥W (R) W (R0).
Now let us prove part (b). We first show that the functor is fully faithful. Let �, :

P ! P 0 be (iso)morphisms of G-torsors over W (R) such that F(�) = F( ). By part (a),
there is an étale faithfully flat R ,! R0 such that P ⇥W (R) W (R0), P 0 ⇥W (R) W (R0), are
both trivial G-torsors. Hence, � and  are given by multiplication by g� , g 2 G(W (R0)).
Our assumption F(�) = F( ) now quickly implies that g� = g and so � =  . It now
remains to show the essential surjectivity of P 7! FP. First notice that in the case
G = GLh this is provided by Zink’s Witt descent [28, Proposition 33, Corollary 34]).
Indeed, a (fpqc locally trivial) L+

GLh-torsor over R gives by definition ‘Witt descent
data’ on W (R0)h with respect to the faithfully flat R ! R0; by loc. cit. these determine
a projective finitely generated W (R)-module; this is locally free of rank h on W (R) and
its scheme of linear automorphisms produce the desired GLh-torsor over W (R). Let us
now handle the case of a general reductive group G. There is a closed group scheme
immersion i : G ,! GLh and the fpqc quotient GLh /G = Spec(A) is represented by an
a�ne scheme [8, Proposition 6.11, Corollary 6.12]. Suppose now that Q is a L+G-torsor
over R and consider the induced L+

GLh-torsor

i(Q) = Q ⇥L+G,i L
+
GLh .

By the above discussion, there is a GLh-torsor P over W (R) such that FP ⇠= i(Q); this
gives a closed immersion j : Q ,! FP of schemes over R which is L+G-equivariant. By
descent, the quotient P/G is represented by an a�ne W (R)-scheme Z and P ! Z = P/G
is a G-torsor. Then by a similar argument as in the proof of Lemma B.0.1, FP ! FZ is
a L+G-torsor. Now by applying fpqc descent (i.e. ‘taking the quotient of j ’ by the action
of L+G) we obtain a morphism

j/L+G : Spec(R) ! FZ

which amounts to a W (R)-valued point of Z . The pull-back of the G-torsor P ! Z along
this point gives the desired G-torsor over W (R).

Corollary B.0.3. Suppose S is a scheme in NilpW (k
0

). Then all (fpqc locally trivial)
L+G-torsors over S split locally for the étale topology of S.
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Lemma B.0.4.

(a) Let An, n > 1, be a sequence of local W (k
0

)-algebras. Then the functor from the
category of G-torsors over A = Q

n An to the product of the categories of G-torsors
over An is an equivalence of categories.

(b) Let A be a W (k
0

)-algebra with a descending chain of ideals an, n > 1, with aia j ⇢
ai+ j and a

1

/an nilpotent in An := A/an, for all n, and such that A ⇠= lim �n
An. Then

the functor from the category of G-torsors over A to the category of compatible
systems of G-torsors over An is an equivalence of categories.

Proof. In both cases (a) and (b), the full faithfulness is clear and follows from the fact
that the scheme of isomorphisms between two G-torsors over A is represented by an
a�ne A-scheme. Also, when G = GLh , both functors are essentially surjective (for (b)
this follows from lifting of projective modules, see for example [28, p. 146–148]). In
general, pick a closed group scheme embedding i : G ,! GLh . Consider a (compatible,
for part (b)) sequence of G-torsors Qn over An and the corresponding GLh-torsors Qn ⇥G
GLh . (In case (a), since An is local, the GLh-torsor Qn ⇥G GLh is trivial: GLh ⇥A An ⇠=
Qn ⇥G GLh .) By essential surjectivity for GLh , there is a GLh-torsor P over A with
(compatible) isomorphisms P ⇥A An ⇠= Qn ⇥G GLh . As in the proof of Proposition B.0.2,
the fpqc quotient P/G is representable by an a�ne A-scheme Z and P ! Z is a G-torsor.
The Qn ’s give rise to a (compatible) sequence of elements of Z(An), which yields a point
Z(A); this gives the desired G-torsor over A.

Remark B.0.5.

(i) Lemma B.0.4 remains true if G is replaced by L+G provided that, in addition,
all An are in ANilpW (k

0

). Indeed, we see that the proof of part (a) goes through
after the observation that all L+

GLh-torsors over An are trivial, given by free
W (An)-modules, of rank h. This is a corollary of Zink’s Witt descent (also obtained
by combining Proposition B.0.2 with [28, Proposition 35]). For part (b), we can
again apply Proposition B.0.2 and observe that we have W (A) ⇠= lim �n

W (An) with
W (a

1

/an) nilpotent in W (A/an).

(ii) As a corollary of the above, it also follows that the equivalence of Proposition B.0.2
(b) extends to the case that R is a p-adically complete and separated W (k

0

)-algebra.

Appendix C. On certain nilradicals

Suppose that R is a (commutative) Fp-algebra. Denote by FR : R ! R the Frobenius
FR(x) = x p so that ker(Fn

R) = {x 2 R | x pn = 0}.
Definition C.0.1.

(a) We say that a Fp-algebra R is Frobenius separated (Fs) when, for all n > 1, R is
ker(Fn

R)-separated, i.e. when for all n > 1, we have
\

m

ker(Fn
R)

m = 0. (C.0.1.1)
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(b) We say that a Z(p)-algebra R is almost Frobenius separated (aFs) when there exists
a nilpotent ideal a such that p 2 a and R/a is Frobenius separated.

Lemma C.0.2. We have:

(1) Noetherian rings with pR = 0 (respectively p 2 p
0R) are (almost) Fs.

(2) If R ⇢ R0 and R0 is (almost) Fs, then so is R.
(3) If Ri , i 2 I , are Fs then the product

Q
i2I Ri is Fs.

Proof. These properties are easy consequences of the definition.

The following is a slight generalization of [3, lemma 5.1]:

Lemma C.0.3. Let k be a field of characteristic p, and let B and B 0 be reduced k-algebras.
The tensor product R = B ⌦k B 0 is Frobenius separated.

Proof. Notice that we can write B ⌦k B 0 ,! Q
i Li ⌦k

Q
j L

0
j where Li , L 0

j are field

extensions of k; then B ⌦k B 0 ⇢ (
Q

i Li )⌦k (
Q

j L
0
j ) ,! Q

i, j Li ⌦k L 0
j . Hence, as Frobenius

separatedness is inherited by products and subrings (Lemma C.0.2), without loss of
generality, we can assume that B and B 0 are algebraically closed fields. We may clearly
also assume B = B 0. Zorn’s lemma allows us to pick a maximal separable subextension
k ⇢ S ⇢ B, so that B = S1/p

1
. Notice that T := B ⌦k S is a reduced ring. Let {xi |i 2 I }

be a p-basis of S (i.e. a subset such that every element of S has a unique representation
as a sum x = P

n a
p
n xn where n = (ni )i2I runs through the set of multiindices with

p� 1 > ni > 0 and ni = 0 for almost all i). It is easy to see that B is the quotient of the
polynomial algebra S[{bi,e|i 2 I , e > 1}] by the ideal which is generated by bp

i,e+1

� bi,e
and bp

i,1 � xi for i 2 I , e > 1. Now consider

ri,e := bi,e ⌦ 1� 1⌦ bi,e 2 R.

It follows that R is the quotient of the polynomial algebra

T [{ri,e|i 2 I , e > 1}]
by the ideal which is generated by r pi,e+1

� ri,e and r pi,1, for i 2 I , e > 1. We can deduce
that, for each subset I

0

⇢ I , there exists a ring endomorphism ✓I
0

: R ! R, defined by
✓I

0

(ri,e) = ri,e if i 2 I
0

, ✓I
0

(ri,e) = 0, if i /2 I
0

. Notice that each ✓I
0

preserves an := ker(Fn
R),

and that ✓I
0

= ✓I
0

� ✓I
0

.
Now we can see that an is generated by the elements ri,n , so that a⌫

n is generated by
the set {Qi r

⌫i
i,n|

P
i ⌫i = ⌫}. The only multiindices which give rise to non-zero products

are bounded by ⌫i 6 pn � 1, and these are seen to involve factors indexed by at least
⌫/(pn � 1) many elements of I . Consequently one has ✓I

0

(a⌫
n) = 0 provided that #(I

0

) <
⌫/(pn � 1). Now consider some x 2 T

⌫ a
⌫
n , and choose a large finite set I

0

with ✓I
0

(x) = x .
We deduce x 2 ✓I

0

(a1+(pn�1)#(I
0

)) = 0.

Lemma C.0.4. Suppose that A is an almost Frobenius separated Z(p)-algebra. Let a ⇢ A
be an idempotent ideal, i.e. a = a2, which is in addition bounded nilpotent, i.e. there exists
m > 1 such that for all x 2 a, xm = 0. Then a is the zero ideal.
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Proof. Consider the image ā of a in A/pA. It is enough to show ā = 0; then a ⇢ pA and
so a = a2 ⇢ p2A which gives a ⇢ pm A = 0 for m � 0. Therefore, it is enough to show
the result when pA = 0. Our assumption implies that there is n > 1 such that a = a2 ⇢
ker(Fn

A). The result follows since then a = am ⇢ ker(Fn
A)

m which gives a ⇢ T
m(ker(F

n
A))

m .
Therefore a is nilpotent and a = a2 gives a = 0.

Remark C.0.5. In fact, the proof only uses that \m ker(FA/pA)
m is nilpotent. Indeed,

suppose that pA = 0 and that we have a = a2 ⇢ ker(Fn
A) with n > 1. We can induct

on n. Consider a0 = {Pi xi y
p
i |xi 2 A, yi 2 a}. This satisfies a0 = a02 ⇢ ker(Fn�1

A ) and by
induction a0 = 0. This gives a ⇢ ker(FA) and we can conclude the proof.

Corollary C.0.6. Let R be a Noetherian ring. If p is nilpotent in R and if B is a flat
R-algebra for which

p
0B is nilpotent, then B ⌦R B is almost Frobenius separated (aFs).

Proof. Recall that we denote by Q(A) the total quotient ring of A, i.e. Q(A) is the
localization N�1A on the set of non-zero divisors N ⇢ A. Lemma C.0.3 implies that
Q(B

red

)⌦Q(R
red

) Q(B
red

) is almost Frobenius separated, and we claim that the kernel of
the canonical homomorphism

B ⌦R B ! Q(B
red

)⌦Q(R
red

) Q(B
red

)

is nilpotent. We first argue that we can quickly reduce to the case that R is reduced.
Indeed, since R is Noetherian,

p
0R is a nilpotent ideal we can replace R and B by R

red

and B/
p
0R B. Now assuming that R = R

red

, let us write S for the set of non-zero divisors
of R. Observe that since B is R-flat the images of the elements of S in B are also non-zero
divisors of B, yielding natural injections B ,! S�1B and also B ⌦R B ,! S�1B ⌦R S�1B.
However, since the kernels of both maps

S�1B ⌦Q(R) Q(B
red

) ! Q(B
red

)⌦Q(R) Q(B
red

),

and
S�1B ⌦R S�1B ! S�1B ⌦R Q(B

red

)

are nilpotent, the statement easily follows.

In particular Corollary C.0.6 applies when

• B = Q
m Rm, where m runs through the set of maximal ideals of the Noetherian ring

R and Rm stands for the localization at m, and

• R is a local Noetherian ring and B = R̂ is its completion.

(In the first situation, the flatness of B = Q
m Rm over the Noetherian ring R follows

from [5, Theorem 2.1].)
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