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1 Introduction

LetM be an oriented three-manifold without boundary and α1 and α2 two knots that are

homologically equivalent to zero in it. One way of computing the linking number of α1

and α2 uses the formula

�k(α1,α2) = 〈�α1 ,α2〉,

where �α1 is a Seifert surface for α1 transversal to α2 and 〈�α1 ,α2〉 is the oriented

intersection number. It is also suggestive to write this equality as

�k(α1,α2) = 〈d−1α1,α2〉,

d denoting the exterior derivative of currents. The pairing on the right is independent

of the choice of (smooth, transversal) inverse image: because de Rham cohomology

computed by forms and currents is the same, the ambiguity can be represented by

closed 1-forms, which then integrate to zero on α2, since the latter is assumed to be

homologically equivalent to zero.

We can also define a pairing between two 1-forms A1 and A2 by

(A1,A2) := 〈A1, dA2〉 :=
∫
M
A1 ∧ dA2.

Since

d(A1 ∧ A2) = dA1 ∧ A2 − A1 ∧ dA2,

we see right away that the pairing is symmetric by Stokes’ theorem.

According to [1], the Chern–Simons action

(A,A) =
∫
M
A ∧ dA

for a 1-form A is related to the helicity of a magnetic field. Indeed, if M is a space-like

slice of the spacetime M × R and A the electromagnetic potential, we have the equality

∫
M
A ∧ dA =

∫
M

� · Bdvol,

where B is the magnetic field and � the magnetic vector potential.
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Here is an aside about the meaning of the integral
∫
M A ∧ dA as “helicity.” The

choice of a volume form dvol onM determines an isomorphism V �→ iVdvol from vector

fields to 2-forms. The vector field V corresponding to dA will generate a flow so that we

can consider the trajectory �p that starts from any given point p. Arnold and Khesin [1]

define an asymptotic linking number �k(�p, �q) and prove a formula of the form

∫
M
A ∧ dA =

∫
M
d−1(iVdvol) ∧ iVdvol = c

∫
M×M

�k(�p, �q)dvolp dvolq.

That is, the helicity is an average asymptotic linking number between pairs of magnetic

flows starting from two points in M .

Following Polyakov [13] and Schwarz [14], they also discuss the formal “Gauss-

ian” path integral

∫
exp (−π〈A, dA〉)DA = det(∗d)− 1

2 ,

where ∗ : �2
M → �1

M is the Hodge star operator with respect to a metric and the deter-

minant is regularised (in this and the next formula, we will be somewhat vague with

the precise definitions and computations, since we will not be using them in this article

except as inspiration. In particular, [14] gives a careful discussion of the metric depen-

dence and the possibility that d has non-trivial kernel. Also, we have normalised the

constants slightly differently.) [1, p. 186]. Adding a linear term pairing the forms with

homologically trivial currents ξi, we get (again formally)

∫
exp

(
−π〈A, dA〉 + 2πi

∑
i

〈A, ξi〉
)
DA = det(∗d)− 1

2 · exp
⎛
⎝−π

∑
i,j

〈d−1ξi, ξj〉
⎞
⎠.

This can be viewed as an infinite dimensional analogue of a standard Gaussian integral

formula in finite dimensional Euclidean space [12] (our main result uses a finite field

analog of this formula). The pairings between currents on the right side are likely to

be problematic in general. However, the case of interest is when the ξi are (oriented)

knots and the pairing with A denotes an integral. The operator d acts on currents in a

way compatible with boundary maps of singular chains. That is, if L,N are chains with

∂N = L and [L] and [N] are the corresponding currents, then d[N] = [∂N] = [L]. Hence,

if ξi is a current corresponding to a homologically trivial knot, then d−1ξi will include

a two-chain with boundary equal to ξi. Thus, each term 〈d−1ξi, ξj〉 = �k(ξi, ξj) will be a

linking number. The integral is thereby viewed as a correlation between the “Wilson
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loop functionals”

A �→ exp (2π i〈A, ξi〉),

associated to knots ξi with respect to a Chern–Simons measure

exp (−π(A,A))DA.

In any case, the Gaussian integral with linear term provides one elementary explanation

of how linking numbers come up in Chern–Simons theory.

The goal of this article is to present some preliminary investigations on arith-

metic analogues of the preceding discussion. That is, when X = Spec(OF ) for a totally

imaginary number field F that contains the group μn2 of n2-th roots of unity, we use

arithmetic duality theorems to define a two term complex

d : H1(X ,Z/nZ) → Ext2X (Z/nZ,Gm)

as a mod n arithmetic analogue of the map d : �1
M → �2

M . The Ext group is isomorphic

to Cl(F)/n, the ideal class group of F mod n. Thus, every ideal I has a mod n class

[I ]n ∈ Ext2X (Z/nZ,Gm),

and we define I to be n-homologically trivial if this class is in the image of d. On the

other hand, there is a duality pairing

〈·, ·〉 : H1(X ,Z/nZ) × Ext2X (Z/nZ,Gm) → 1

n
Z/Z,

and we define the arithmetic linking number of two prime ideals P and Q that are

n-homologically trivial by

�kn(P,Q) := 〈d−1P,Q〉.

Of course one needs to check that this is well-defined and symmetric. We verify this in

Section 2. In Section 3, we generalise the definition to arithmetic linking numbers on

XS := Spec(OF [1/S]) for a finite set of primes S. We will see (Corollary 3.11) that this

linking number can be computed in terms of n-th power residue symbols in a manner

similar to Morishita’s treatment in [10] (However, we do not carry out a direct compar-

ison). This pairing can be defined also for non-prime ideals, in which case we call it the

arithmetic mod n height pairing, denoted by htn(I , J).
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Parallel to the pairing on 1-forms, we also define a pairing

(·, ·) : H1(X ,Z/nZ) × H1(X ,Z/nZ) → 1

n
Z/Z

as

(A,B) = 〈A,dB〉

and in such a way that (A,A) is the abelian arithmetic Chern–Simons function defined

in [4, 6].

It is then pleasant to note a precise analogue of the Gaussian path integral in

this arithmetic setting.

Theorem 1.1. Let p be an odd prime, a = dimH1(X ,Z/pZ), b = dimKer(d), and {ξj} a
finite set of p-homologically trivial ideals. Denote by d̄ the induced isomorphism

d̄ : H1(X ,Z/pZ)/Ker(d)
∼→ Im(d).

Then

∑
ρ∈H1(X ,Z/pZ)

exp
[
2π i((ρ, ρ) +

∑
j

〈ρ, [ξj]p〉)
]

= p(a+b)/2
(
det(d̄)

p

)
i[

(a−b)(p−1)2
4 ] exp

⎡
⎣−2π i

⎛
⎝1

4

∑
i, j

htp(ξi, ξj)

⎞
⎠

⎤
⎦ . �

The determinant requires some commentary. The map d̄ goes from

H1(X ,Z/pZ)/Ker(d) to its dual, since Ker(d) is the exact annihilator of Im(d). It is

an easy exercise to check that the determinant is then well-defined modulo squares

in Z/pZ (it is just the discriminant of the corresponding quadratic form). Hence, its

Legendre symbol is well-defined. This formula is essentially a formal consequence of

the definitions. However, it does give indication that some notion of “quantisation” for

arithmetic Chern–Simons theory might not be entirely empty, and furthermore, provide

new interpretations of basic arithmetic invariants.

In Section 4, following up on the ideas of [2], we will also show how to realize

the arithmetic linking pairing in the compact case by a simple construction that only

involves Artin reciprocity and the “class invariant homomorphism,” which gives a mea-

sure of the Galois structure of unramified Galois extensions. More precisely, we show
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that under the class field theory isomorphism (Cl(F)/n)∨ � H1(X ,Z/nZ) the map

d : H1(X ,Z/nZ) → Ext2X (Z/nZ,Gm) � H1(X ,Z/nZ)∨

giving (·, ·) is identified with the class invariant homomorphism

(Cl(F)/n)∨ = Hom(Cl(F),Z/nZ) → Cl(F)/n.

By definition, this sends the Artinmap of aZ/nZ-unramified extensionK/F to the class of

the (locally free) OF -submodule of K consisting of v ∈ K such that a(v) = ζ av. Regarding

Chern–Simons functionals, the first computation in terms of the Artin map was in Ref.

[2]. Martin Taylor observed a relation to the class invariant homomorphismwhen n = 2,

while Romyar Sharifi pointed out a connection to Bockstein maps.

As mentioned already, many of the ideas of the current article were explored

in various forms and in considerable depth by Ref. [10]. What we view as the main

contribution here, as in Ref. [4, 6], is an attempt to move beyond analogies to a pre-

cise correspondence of constructions and techniques used in topology (especially the

ideas inspired by topological quantum field theory), and in arithmetic geometry. What

is achieved is obviously modest. But we hope it is suggestive.

2 Arithmetic Linking Numbers in the Compact Case: Proof of Theorem 1.1

Let F be a totally imaginary algebraic number field with ring of integers OF such that

μn2 ⊂ F , and let X = Spec(OF ). We fix a trivialisation of the n-th roots of unity

ζ : Z/nZ � μn.

We have various isomorphisms

ζ∗ : Hi(X ,Z/nZ) � Hi(X ,μn);

ζ ∗ : ExtiX (Z/nZ,Gm) � ExtiX (μn,Gm).

Let π := π1(X , b), where b : Spec(F̄) → Spec(OF ) is the geometric point coming from an

algebraic closure F̄ of F . For any natural number n, we have the isomorphism

Inv : H3(X ,μn) � 1

n
Z/Z,

and a perfect pairing [7]

〈·, ·〉 : Hi(X ,F) × Ext3−i
X (F ,Gm) → H3(X ,μn) � 1

n
Z/Z,
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for any n-torsion sheaf F in the étale topology (the pairing usually goes to H3(X ,Gm) �
Q/Z. But the statement that it is perfect means it induces an isomorphism

Ext3−i
X (F ,Gm) � Hom(Hi(X ,F),H3(X ,Gm)).

But Hi(X ,F) is n-torsion, which means that the image of any homomorphism lies in the

n-torsion subgroup H3(X ,Gm)[n] � H3(X ,μn)).

The cup product

∪ : H1(X ,Z/nZ) × H2(X ,μn) → H3(X ,μn) � 1

n
Z/Z,

induces a map

r : H2(X ,μn) → Ext2X (Z/nZ,Gm),

such that

Inv(a ∪ b) = 〈a, r(b)〉.

The Bockstein operator

δ : H1(X ,μn) → H2(X ,μn),

comes from the exact sequences of sheaves

0 → μn → μn2 → μn → 0.

Define the coboundary map d as the composition

d : H1(X ,Z/nZ)
ζ∗� H1(X ,μn)

δ→ H2(X ,μn)
r→ Ext2X (Z/nZ,Gm).

We view the two-term complex

H1(X ,Z/nZ)
d→ Ext2X (Z/nZ,Gm),

as a mod n arithmetic analogue of the complex

�1
M → �2

M

for three-manifolds. The idea that cohomology equipped with the Bockstein operation

can have the nature of differential forms occurs in the theory of the de Rham-Witt
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complex for a variety in characteristic p: there, the de Rham-Witt differentials are

sheaves of crystalline cohomology [5]. Also, recall that the curvature of a connection

is the obstruction to deforming a bundle along a deformation of the space on which it

lives. The Bockstein operator is a small piece of the obstruction to deforming it along a

deformation of the coefficients.

There is also a Bockstein operator

δ′ : H1(X ,Z/nZ) → H2(X ,Z/nZ),

associated with the exact sequence

0 → Z/nZ → Z/n2Z → Z/nZ → 0,

and a Bockstein in degree 2,

δ2 : H
2(X ,μn) → H3(X ,μn).

By choosing an isomorphism Z/n2 � μn2 compatible with ζ , we see an equality of maps

ζ∗ ◦ δ′ = δ ◦ ζ∗ : H1(X ,Z/nZ) → H2(X ,μn).

The following fact is of course well-known, but it seems to be hard to find a reference

for étale cohomology.

Lemma 2.1. The Bockstein operator δ2 satisfies

δ2(α ∪ β) = δ′α ∪ β − α ∪ δβ

for all α ∈ H1(X ,Z/nZ) and β ∈ H1(X ,μn). �

Proof. Since X is affine, the étale cohomology groups are isomorphic to the Čech coho-

mology groups (cf. [9, Theorem 10.2]). Thus, we can check the above formula using Čech

cocycles (cf. [9, Section 22]).

Choose a sufficiently fine étale covering (Ui)i∈I of X . Define Uij = Ui ×X Uj, Uijk =
Ui ×X Uj ×X Uk and so on. Typical elements of the index set I are denoted by i, j, k,

and l. Represent α and β as Čech cocycles (αij) and (βij). For any pair (i, j) of distinct

elements in I , choose a lifting α̃ij of αij to Z/n2Z, and similarly a lifting β̃ij of βij to

μn2 . The class of δ′α can be represented by the 2-cocycle whose section over Uijk is
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(δ′α)ijk := α̃ij|Uijk + α̃jk|Uijk − α̃ik|Uijk which takes values in Z/nZ ⊂ Z/n2Z. We represent δβ

in a similar way.

The cup product δ′α ∪β is represented by a family of sections γ ′
ijkl = (δ′α)ijk|Uijkl ⊗

βkl|Uijkl and similarly α∪δβ is represented by γijkl = αij|Uijkl ⊗ (δβ)jkl|Uijkl . On the other hand,

we have

(α ∪ β)ijk = αij|Uijk ⊗ βjk|Uijk

which lifts to α̃ij|Uijk ⊗ β̃jk|Uijk with values in Z/n2Z ⊗ μn2 � μn2 . A μn-valued cocycle

representing δ2(α ∪ β) takes the form

(δ2(α ∪ β))ijkl :=
(
α̃jk · β̃kl|Ujkl

)
|Uijkl −

(
α̃ik · β̃kl|Uikl

)
|Uijkl +

(
α̃ij · β̃jl|Uijl

)
|Uijkl −

(
α̃ij · β̃jk|Uijk

)
|Uijkl

where the isomorphism Z/n2Z ⊗ μn2 � μn2 sends a ⊗ b �→ a · b by viewing μn2 an

additive group. Since αij and βij are cocycles, α̃jk|Uijk − α̃ik|Uijk = −α̃ij|Uijk + nφijk for some

φijk and similarly β̃jl|Ujkl − β̃jk|Ujkl = β̃kl|Ujkl − nψjkl for some ψjkl. Using these, the above

simplifies to

(δ2(α ∪ β))ijkl =
(
(−α̃ij + nφijk) · β̃kl

)
|Uijkl +

(
α̃ij · (β̃kl − nψjkl)

)
|Uijkl

=
(
nφijk · β̃kl

)
|Uijkl +

(
α̃ij · (−nψjkl)

) |Uijkl

which is equal to γ ′
ijkl − γijkl via the isomorphisms Z/nZ � nZ/n2Z sending a �→ na, and

μn � μn2/μn sending ξ �→ ξ 1/n. Hence we have shown the desired property of δ2. �

Define the pairings

(·, ·) : H1(X ,Z/nZ) × H1(X ,Z/nZ) → 1

n
Z/Z;

(α,β) := 〈α, dβ〉 ∈ 1

n
Z/Z.

Lemma 2.2. The pairing is symmetric:

(α,β) = (β,α)

for all α,β ∈ H1(X ,Z/nZ). �
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Proof. This follows from examining the second Bockstein operator above.

δ2 : H
2(X ,μn) → H3(X ,μn).

For the pro-sheaf Zn(1) := lim←−i
μni , we have an exact sequence

0 → Zn(1)
n→ Zn(1) → μn → 0.

Because H3(X ,Zn(1)) � Zn is torsion-free, the boundary map H2(X ,μn) → H3(X ,Zn(1)) is

zero, and the map H2(X ,Zn(1)) → H2(X ,μn) is surjective. Hence, H2(X ,μn2) → H2(X ,μn)

is surjective, so that the map δ2 is zero.

As a consequence, we have

0 = δ2(α ∪ β) = δ′α ∪ β − α ∪ δβ.

Therefore,

(a, b) = 〈a, db〉 = Inv(a ∪ δζ∗b) = Inv(δ′a ∪ ζ∗b) = Inv(ζ∗(δ′a ∪ b))

= Inv(ζ∗(b ∪ δ′a)) = Inv(b ∪ ζ∗δ′a)) = Inv(b ∪ δζ∗a)) = 〈b, da〉 = (b,a). �

Define K = Ker(d).

Corollary 2.3. If a ∈ K, then (a, b) = 0 for all b. �

Proof. If a ∈ K, then (a, b) = (b,a) = 〈b, da〉 = 0. �

According to duality, we have Ext2X (Z/nZ,Gm) � H1(X ,Z/nZ)∨ � Cl(X)/n, where

Cl(X) is the ideal class group of X = Spec(OF ). We will say an ideal I ⊂ OF is n-

homologically trivial if its class in Ext2X (Z/nZ,Gm) is in the image of d. Even though

there is some danger of confusion, when n is fixed for the discussion, we will also allow

ourselves merely to say that I is “homologically trivial.” If I and J are homologically

trivial ideals, we define the mod n height pairing between I and J by

htn(I , J) = 〈d−1[I ]n, [J ]n〉,

where [I ]n denotes the class of I in Cl(X)/n. Writing [J ]n = d(b) for some b ∈ H1(X ,Z/nZ),

for any a such that da = 0, we have 〈a, db〉 = (a,b) = 0 by Corollary 2.3. This implies
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that the mod n height pairing is well-defined. Using the pairing on H1(X ,Z/nZ), note

that we can also write the height pairing as

(d−1[I ]n,d−1[J ]n),

rendering the symmetry evident. For two prime ideals P and Q (which are homologically

trivial), we will also call their height pairing their linking number, and denote it

�kn(P,Q) := htn(P,Q) = 〈d−1[P]n, [Q]n〉.

In the articles [4, 6], we fixed a class c ∈ H3(Z/nZ, Z/nZ) and defined the

arithmetic Chern–Simons action for homomorphisms

ρ : π = π1(X , b) → Z/nZ

as

CSc(ρ) := Inv(ζ∗(j3(ρ∗(c)))) ∈ 1

n
Z/Z,

where ji : Hi(π , Z/nZ) → Hi(X , Z/nZ) is the natural map from group cohomology to

étale cohomology (cf. [8, Theorem 5.3 of Chapter I]). We can also define the arithmetic

Chern–Simons partition function as

Zc(X) :=
∑

ρ∈Hom(π ,Z/nZ)

exp (2π i · CSc(ρ)).

The class c := Id∪ δ̃(Id) is a generator ofH3(Z/nZ, Z/nZ), where Id is the identity

from Z/nZ to Z/nZ regarded as an element of H1(Z/nZ,Z/nZ) = Hom(Z/nZ,Z/nZ) and

δ̃ : H1(Z/nZ, Z/nZ) → H2(Z/nZ, Z/nZ) is a Bockstein operator induced from the exact

sequence

0 �� Z/nZ �� Z/n2Z �� Z/nZ �� 0.

There is a natural bijection between Hom(π ,Z/nZ) and H1(X , Z/nZ) (defined by j1) and

we will simply identify the two. One then checks immediately that for the cocycle c =
Id ∪ δ̃(Id) we have

CSc(ρ) = (ρ, ρ).
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Thus for the partition function, we have

Zc(X) =
∑

ρ∈Hom(π ,Z/nZ)

exp (2π i · CSc(ρ)) =
∑

ρ∈H1(X ,Z/nZ)

exp (2π i · (ρ, ρ)).

Proof of Theorem 1.1. By Corollary 2.3 and the definition (ρ, ρ) = 〈ρ, dρ〉, both (ρ, ρ)

and 〈ρ, [ξj]p〉 depend only on the class of ρ in H1(X ,Z/pZ)/K, which we denote by ρ̄. So

we can write the sum as

pb
∑

ρ̄∈H1(X ,Z/pZ)/K

exp[2π i((ρ̄, ρ̄) +
∑
j

〈ρ̄, [ξj]p〉)].

After a choice of basis for H1(X ,Z/pZ)/K and Im(d), this becomes a Gaussian integral

over a finite field. Now the formula follows from [12, Proposition 3.2 of Chapter 9]. �

3 Boundaries

In this section, we fix a natural number n and a finite set S of places of F containing

all the places that divide n and the Archimedean places. As before, we assume μn2 ⊂ F .

Put U = Spec(OF ,S), the spectrum of the ring of S-integers in F . Let πU := π1(U) and

πv := π1(Spec(Fv)) for each place v of F . Denote by C∗(U ,G) the complex of continuous

cochains of πU with coefficients in a locally constant torsion Zn = lim←−i
Z/niZ-sheaf G on

U and by C∗(Fv ,F), the complex of continuous cochains of πv with coefficients in a sheaf

F on Spec(Fv). As in [4, Section 2], we will use the “inclusion of the boundary” map

iS =
∏
v∈S

iv : ∂U =
∐
v∈S

Spec(Fv) → U .

Let G be a sheaf on U , F a sheaf on ∂U , and f : F → i∗SG a map of sheaves. In view of

the applications in mind, we will refer to such a map as a boundary pair. Denote by

C∗(U ,G ×S F), the two product of complexes defined by the following diagram:

C∗(U ,G ×S F) ��

��

∏
v∈S C

∗(Fv ,F)

f∗

��

2

C∗(U ,G)
locS

��
∏

v∈S C
∗(Fv , i∗vG),

where locS refers to the localisation map on cochains. Thus,

Ci(U ,G ×S F) = Ci(U ,G) ×
∏
v∈S

Ci(Fv ,F) ×
∏
v∈S

Ci−1(Fv , i
∗
vG),
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and its elements will be denoted by (c, bS,aS), where c ∈ Ci(U ,G), bS = (bv)v∈S ∈∏
v∈S C

i(Fv ,F), and aS = (av)v∈S ∈ ∏
v∈S C

i−1(Fv , i∗vG). The differential is defined by

d(c, bS,aS) = (dc,dbS,daS + (−1)i( f∗(bS) − locS(c)).

Hence, a cocycle in Zi(U ,G ×S F) consists of (c, bS,aS) such that dc = 0,dbS = 0, and

daS = (−1)i(locS(c) − f∗(bS)).

Define

Hi(U ,G ×S F) := Hi(C∗(U ,G ×S F)).

Here are some general properties that follow immediately from the definitions.

(1) When F = 0, then Hi(U ,G ×S 0) = Hi
c(U ,G), the compact support cohomology

of G.
(2) Given maps F → F ′, G → G ′ and a commutative diagram

F ��

��

F ′

��

i∗SG �� i∗SG ′

we have an induced map of complexes

C∗(U ,G ×S F) → C∗(U ,G ′ ×S F ′),

and hence, a map of cohomologies

Hi(U ,G ×S F) → Hi(U ,G ′ ×S F ′).

More precisely, the formation of the complex and the cohomology is

functorial in the diagrams in an obvious sense.

(3) Suppose you have two exact sequences

0 → F ′′ → F → F ′ → 0

0 → G ′′ → G → G ′ → 0

5686 H.-J. Chung et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/18/5674/4656167 by M
ichigan State U

niversity user on 29 August 2021



and a commutative diagram

0 �� F ′′ ��

��

F ��

��

F ′ ��

��

0

0 �� i∗SG ′′ �� i∗SG �� i∗SG ′ �� 0.

Then you get an exact sequence of complexes

0 → C∗(U ,G ′′ ×S F ′′) → C∗(U ,G ×S F) → C∗(U ,G ′ ×S F ′) → 0,

and hence, a long exact sequence at the level of cohomology.

(4) Cup product is given by

Ci(U ,G ×S F) × Cj(U ,G ′ ×S F ′) → Ci+j(U , (G ⊗ G ′) ×S (F ⊗ F ′))

(c, bS,aS) ∪ (c′, b′
S,a

′
S) = (c ∪ c′, bS ∪ b′

S, (−1)jaS ∪ f∗(b′
S) + locS(c) ∪ a′

S).

Another possibility for the cup product, temporarily denoted by ∪′, is

(c, bS,aS) ∪′ (c′, b′
S,a

′
S) = (c ∪ c′, bS ∪ b′

S, (−1)jaS ∪ locS(c
′) + f∗(bS) ∪ a′

S).

The difference is

� = (0, 0, (−1)jaS ∪ ( f∗(b′
S) − locS(c

′)) + (locS(c) − f∗(bS)) ∪ a′
S).

It will be useful to note that

Lemma 3.1. When the two cochains are cocycles, the difference above is exact. �

Proof. The cocycle condition says

daS = (−1)i(locS(c) − f∗(bS)); da′
S = (−1)j(locS(c

′) − f∗(b′
S)).

Hence,

d(aS ∪ a′
S) = (−1)i(locS(c) − f∗(bS)) ∪ a′

S + (−1)i+j−1aS ∪ (locS(c
′) − f∗(b′

S))

= (−1)i(locS(c) − f∗(bS)) ∪ a′
S + (−1)i+jaS ∪ ( f∗(b′

S) − locS(c
′))

= (−1)i
(
(locS(c) − f∗(bS)) ∪ a′

S + (−1)jaS ∪ ( f∗(b′
S) − locS(c

′))
)
.
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Hence,

d(0, 0, (−1)iaS ∪ a′
S) = �. �

The differential is compatible with the cup product:

Lemma 3.2. If (c, bS,aS) ∈ Ci and (c′, b′
S,a

′
S) ∈ Cj, then

d[(c, bS,aS) ∪ (c′, b′
S,a

′
S)] = [d(c, bS,aS)] ∪ (c′, b′

S,a
′
S) + (−1)i(c, bS,aS) ∪ [d(c′, b′

S,a
′
S)]. �

Proof. We have

d[(c, bS,aS) ∪ (c′, b′
S,a

′
S)] = d(c ∪ c′, bS ∪ b′

S, (−1)jaS ∪ f∗(b′
S) + locS(c) ∪ a′

S)

= (dc ∪ c′ + (−1)ic ∪ dc′,dbS ∪ b′
S + (−1)ibS ∪ db′

S, (−1)jdaS ∪ f∗(b′
S) + (−1)i+j−1aS ∪ f∗(db′

S)

+ locS(dc) ∪ a′
S + (−1)ilocS(c) ∪ da′

S + (−1)i+j( f∗(bS ∪ b′
S) − locS(c ∪ c′)),

where the last component is the only thing we need to focus on. On the other hand,

we have

d(c, bS,aS) ∪ (c′, b′
S,a

′
S) = (dc,dbS,daS + (−1)i( f∗(bS) − locS(c)) ∪ (c′, b′

S,a
′
S)

= (dc ∪ c′,dbS ∪ b′
S, (−1)j(daS + (−1)i( f∗(bS) − locS(c))) ∪ f∗(b′

S) + locS(dc) ∪ a′
S).

Also,

(c, bS,aS) ∪ d(c′, b′
S,a

′
S) = (c, bS,aS) ∪ (dc′,db′

S,da
′
S + (−1)j( f∗(b′

S) − locS(c
′)))

= (c ∪ dc′, bS ∪ db′
S, (−1)j+1aS ∪ f∗(db′

S) + locS(c) ∪ [da′
S + (−1)j( f∗(b′

S) − locS(c
′))]).

So the third component of

d(c, bS,aS) ∪ (c′, b′
S,a

′
S) + (−1)i(c, bS,aS) ∪ d(c′, b′

S,a
′
S)

is

(−1)j(daS + (−1)i( f∗(bS) − locS(c))) ∪ f∗(b′
S) + locS(dc) ∪ a′

S

+ (−1)i((−1)j+1aS ∪ f∗(db′
S) + locS(c) ∪ [da′

S + (−1)j( f∗(b′
S) − locS(c

′))))
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= (−1)jdaS ∪ f∗(b′
S) + (−1)i+j( f∗(bS ∪ b′

S) + (−1)i+j−1locS(c) ∪ f∗(b′
S) + locS(dc) ∪ a′

S

+ (−1)i+j−1aS ∪ f∗(db′
S) + (−1)ilocS(c) ∪ da′

S

+ (−1)i+j locS(c) ∪ f∗(b′
S) + (−1)i+j−1locS(c ∪ c′).

= (−1)jdaS ∪ f∗(b′
S) + (−1)i+j( f∗(bS ∪ b′

S) + locS(dc) ∪ a′
S

+ (−1)i+j−1aS ∪ f∗(db′
S) + (−1)ilocS(c) ∪ da′

S + (−1)i+j−1locS(c ∪ c′).

This is easily seen to be the third component of d[(c, bS,aS) ∪ (c′, b′
S,a

′
S)] above. �

Corollary 3.3. The cup product of cocycles is a cocycle. �

Corollary 3.4. The cup product of cocycles induces a graded product map on coho-

mologies. �

Proof. Of course this is because if β is a cocycle, then d(α ∪ β) = ±(dα) ∪ β is a

coboundary. �

The main case of interest is when F = μn2 , G = Z/nZ and f : μn2 → Z/nZ is

the natural reduction followed by the trivialisation ζ−1 : μn � Z/nZ. From the exact

sequence of pairs

0 �� 0 ��

��

μn2
Id

��

��

μn2 ��

f

��

0

0 �� Z/nZ
ζ−1∗

�� μn2
f

�� Z/nZ �� 0

and (1), (3) above, we get natural boundary maps

d : H1(U ,Z/nZ ×S μn2) → H2
c (U ,Z/nZ)

and

d2 : H
2(U ,Z/nZ ×S μn2) → H3

c (U ,Z/nZ).

Proposition 3.5. The map d2 is zero. �

Proof. We will show that the previous map

H2(U ,μn2 ×S μn2) → H2(U ,Z/nZ ×S μn2)
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in the long exact sequence of cohomology is surjective. First we note that the map

H2(U ,μn2) → H2(U ,Z/nZ)

is surjective. To see this, use the map of exact sequences

0 �� H2(U ,Gm)[n2] ��

n

��

∏
v∈S

1
n2

Z/Z
�

��

n

��

∏
v∈S

1
n2

Z/Z ��

n

��

0

0 �� H2(U ,Gm)[n2] ��
∏

v∈S
1
nZ/Z

�
��
∏

v∈S
1
nZ/Z �� 0

from class field theory. The sum map is surjective from the kernel of the middle vertical

map to the kernel of the right verticalmap. Themiddle verticalmap is trivially surjective.

Hence, the left vertical map is surjective by the snake lemma. On the other hand, we also

have the map of exact sequences

0 �� H1(U ,Gm)/n2H1(U ,Gm) ��

��

H2(U ,μn2)
��

n

��

H2(U ,Gm)[n2] ��

n

��

0

0 �� H1(U ,Gm)/nH1(U ,Gm) �� H2(U ,μn)
�� H2(U ,Gm)[n] �� 0,

where the left vertical map is the natural projection. Since the vertical maps on the left

and right are surjective, so is the one in the middle.

Now let (c, bS,aS) ∈ Z2(U ,Z/nZ ×S μn2). Choose c
′ ∈ Z2(U ,μn2) lifting c and a′

S ∈∏
v∈S C

1(Fv ,μn2) lifting aS under the map f : μn2 → Z/nZ. Then

da′
S = bS − locS(c

′) + (b′
S)

n

for some b′
S ∈ C2(U ,μn2). However, (b′

S)
n is a cocycle, since this is true of all other terms

in the equality. Hence,

(c′, bS + (b′
S)

n,a′
S) ∈ Z2(U ,μn2 ×S μn2)

is a lift of (c, bS,aS). �

Lemma 3.6. For α ∈ H1(U ,Z/nZ ×S μn2) and β ∈ H2
c (U ,Z/nZ), we have

α ∪ β = β ∪ α

in H3
c (U ,Z/nZ). �
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Proof. Choose cocycle representatives (c, bS,aS) and (c′, 0,a′
S) for α and β. Then

α ∪ β = [(c, bS,aS) ∪ (c′, 0,a′
S)] = [(c ∪ c′, 0, locS(c) ∪ a′

S)]

and

β ∪ α = [(c′ ∪ c, 0,−a′
S ∪ bS + locS(c

′) ∪ aS)] = [(c′ ∪ c, 0,−a′
S ∪ locS(c))].

Here the last equality follows from Lemma 3.1. We have the map

η : H1(U ,Z/nZ ×S μn2) → H1(U ,Z/nZ)

that sends (c, bS,aS) to c. So, using η, the desired commutativity α ∪ β = β ∪ α reduces

to the commutativity of the following two products:

H1(U ,Z/nZ) × H2
c (U ,Z/nZ)

∪−→ H3
c (U ,Z/nZ)

([(c, 0, 0)], [(c′, 0,a′
S)]) �−→ [(c ∪ c′, 0, locS(c) ∪ a′

S)]
H2
c (U ,Z/nZ) × H1(U ,Z/nZ)

∪−→ H3
c (U ,Z/nZ)

([(c′, 0,a′
S)], (c, 0, 0)]) �−→ [(c′ ∪ c, 0,−a′

S ∪ locS(c))].

These products are the same as the ones defined in [11, Section 5.3.3]. Moreover,

Nekovar defined the involution

T : C∗(U ,Z/nZ) → C∗(U ,Z/nZ), T : C∗(U ,Z/nZ ×S 0) → C∗(U ,Z/nZ ×S 0),

which are homotopic to the identity, and showed that the following diagram is

commutative:

C∗(U ,Z/nZ) × C∗(U ,Z/nZ ×S 0)
∪

��

s12◦(T ⊗T )

��

C∗(U ,Z/nZ ×S 0)

T ◦(s12)∗
��

C∗(U ,Z/nZ ×S 0) × C∗(U ,Z/nZ)
∪

�� C∗(U ,Z/nZ ×S 0),

where s12 is the permutation between Z/nZ and Z/nZ ×S 0 defined similarly as in [11,

3.4.5.4]. This finishes the proof. �

The proof of the previous lemma makes use of the natural map

η : H1(U ,Z/nZ ×S μn2) → H1(U ,Z/nZ)
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that sends (c, bS,aS) to c. In fact, we have proved:

Lemma 3.7. The cup product

H1(U ,Z/nZ ×S μn2) × H2
c (U ,Z/nZ) → H3

c (U ,Z/nZ)

factors through the product

H1(U ,Z/nZ) × H2
c (U ,Z/nZ) → H3

c (U ,Z/nZ)

via the map η. This is also true with the factors switched. �

We now use the tools developed above to define a pairing

H1(U ,Z/nZ ×S μn2) × H1(U ,Z/nZ ×S μn2) → 1

n
Z/Z

given by

(a, b) = Inv ◦ ζ∗(a ∪ db).

The pairing goes through

H1(U ,Z/nZ ×S μn2) × H2(U ,Z/nZ ×S 0) � H1(U ,Z/nZ ×S μn2) × H2
c (U ,Z/nZ),

and hence, through H3(U ,Z/nZ ×S 0) = H3
c (U ,Z/nZ)

ζ∗→ H3
c (U ,μn) � 1

nZ/Z.

Lemma 3.8. The pairing is symmetric. �

Proof. We have 0 = d2(a ∪ b) = da ∪ b− a ∪ db. So

(a, b) = Inv ◦ ζ∗(a ∪ db) = Inv ◦ ζ∗(da ∪ b) = Inv ◦ ζ∗(b ∪ da) = (b,a). �

Lemma 3.9. If a ∈ Ker(d), then

(a, b) = 0

for all b. �

Proof.

(a, b) = (b,a) = Inv ◦ ζ∗(b ∪ da) = 0. �
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Denote by H1(U , [Z/nZ]′) ⊂ H1(U ,Z/nZ) the classes that locally (at all v ∈ S)

lift to μn2 . Equivalently, H
1(U , [Z/nZ]′) is the image of η. Because the pairing (·, ·) is

symmetric and given by the form (a, b) = Inv◦ζ∗(η(a)∪db) by Lemma 3.7, it follows that

it factors to a pairing

H1(U , [Z/nZ]′) × H1(U , [Z/nZ]′) → 1

n
Z/Z.

Let AS = (πU )ab be the maximal Abelian quotient of πU . By the Poitou–Tate dual-

ity, we have H2
c (U ,Z/nZ) � AS/n. Given an ideal I coprime to S, we can consider its class

[I ]S,n ∈ H2
c (U ,Z/nZ) via class field theory and the previous isomorphism. We will say I

is (S,n)-homologically trivial if [I ]S,n is in the image of d. We can now define the height

pairing of two (S,n)-homologically trivial ideals that are coprime to S via

htS,n(I , J) := (d−1[I ]S,n,d−1[J ]S,n) = Inv ◦ ζ∗(d−1[I ]S,n ∪ [J ]S,n) =: 〈d−1[I ]S,n, [J ]S,n〉,

which is well-defined by the discussion above.

Let I be an ideal such that In is principal in OF ,S. Write In = ( f −1). Then the

Kummer cocycles kn( f ) will be in Z1(U ,Z/nZ). For any a ∈ F , denote by aS its image in∏
v∈S Fv . Thus, we get an element

[ f ]S,n := [(kn( f ), kn2( fS), 0)] ∈ Z1(U ,Z/nZ ×S μn2)

which is well-defined in cohomology independently of the choice of roots used to define

the Kummer cocycles.

Proposition 3.10. We have d[ f ]S,n = [I ]S,n in H2
c (U ,Z/nZ). In particular, for any ideal I

such that In is principal in OF ,S, [I ]S,n is (S,n)-homologically trivial. �

Proof. Let T = S ∪ S′ be large enough that for V = U \ S′, H1(V ,Gm)[n] = 0, and

such that the support of I is still in V . Then I defines a class [I ]T ,n in H2
c (V ,Z/nZ).

Similarly, f defines a class [ f ]T ,n = [(kn( f ), kn2( fT ), 0)] in H1(V ,Z/nZ ×S μn2). It is clear

that the elements [I ]T ,n and d[ f ]T ,n map to [I ]S,n and d[ f ]S,n under the pushforward map

H2
c (V ,Z/nZ) → H2

c (U ,Z/nZ). Hence, it suffices to prove equality of the elements on V .

We will prove that the two elements pair the same way with elements of H1(V ,μn). On

V , by the exact sequence

0 → Gm(V)/Gm(V)n → H1(V ,μn) → H1(V ,Gm)[n] → 0,
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every element of H1(V ,μn) comes from g ∈ Gm(V) via the Kummer map. For this, we can

compute the pairing between β = (kn(g), kn2(gT ), 0), which lifts note that [kn(g)] along η,

and the cocycle representative α of d[ f ]T ,n

α = (dk̃n( f ), 0, (k̃n( f ))T − kn2( fT )),

where k̃n( f ) is a lift of kn( f ) to μn2 . We find

β ∪ α = (kn(g) ∪ dk̃n( f ), 0,−(kn(g))T ∪ [(k̃n( f ))T − kn2( fT )]).

We note that the cup product kn(g) ∪ k̃n( f ) takes values in Z/nZ � μn ⊂ μn2 . So we

have the cochain (kn(g) ∪ k̃n( f ), 0, 0) whose differential is (kn(g) ∪ dk̃n( f ), 0,−(kn(g))T ∪
(k̃n( f ))T ). Hence, it suffices to compute the invariant of

(0, 0, (kn(g))T ∪ kn2( fT ))

which is homologous to β ∪ α.

Let T ′ be the support of I . Then T ∪ T ′ is the full set of places where the global

cocycle (kn(g))T ∪ kn2( fT ) with coefficients in μn ⊂ μn2 is possibly ramified. By global

reciprocity, we have

∑
v∈T

Invv((kn(g))T ∪ kn2( fT )) = −
∑
v∈T ′

Invv((kn(g))T ′ ∪ kn2( fT ′)).

Let ordv(I) = ev and let �v be a uniformiser at v. Then fv = uv�
nev
v for a unit uv ∈ Fv , so

that kn2( fv) = kn(uv�
ev
v ). Also, F( n

√
g) is unramified at v ∈ T ′. Hence, for v ∈ T ′, we get

Invv((kn(g))T ′ ∪ kn2( fT ′)) = (gv ,uv�
ev
v )v,n = (gv ,�

ev
v )v,n,

where the bracket (·, ·)v,n now refers to the n-th Hilbert symbol in Fv .

Therefore, we conclude that

∑
v∈T

Invv(kn(g)T ′ ∪ kn2( fT ′))= −
∑
v∈T ′

kn(g)v(recv(�
ev
v )) = kn(g)(rec(I)) =〈[β], [I ]T ,n〉,

where recv is the local Artin map and rec is the global Artin map (cf. [3, p. 174–176]),

finishing the proof. �
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Corollary 3.11. Let I , J be ideals in OF supported outside S that are n-torsion in the

Picard group of U . Choose any f ∈ F ∗ such that In = ( f −1) as ideals of OF ,S. Let T be the

support of J , �v be a uniformiser at v, and ev = ordv(J). Then

htS,n(I , J) =
∑
v∈T

( fv ,�
ev
v )v,n,

where the bracket denotes the n-th Hilbert symbol in Fv . �

Proof. By Proposition 3.10, we have [ f ]S,n ∈ H1(U ,Z/nZ ×S μn2) such that η([ f ]S,n) =
kn( f ) and d[ f ]S,n = [I ]S,n ∈ πab

U � H2
c (U ,Z/nZ). The pairing htS,n(I , J) is given by the

Poitou-Tate pairing 〈kn( f ), [J ]S,n〉, which is equal to kn( f )([J ]S,n) = ∑
v∈T ( fv ,�

ev
v )v,n by

the local-global compatibility of Artin maps. �

The referee points out that the definition of n-th power residue symbols for non-

principal ideals is a long-standing problem in algebraic number theory. This corollary

indicates that the linking pairing for homologically trivial ideals is a modest solution.

4 Arithmetic Linking, Class Invariants and the Artin Map

We continue with the assumption of a fixed trivialization ζ : Z/nZ � μn over the totally

imaginary number field F .

Let us recall the construction of the class invariant homomorphism

� : H1(X ,Z/nZ) → Cl(X) := Cl(F)

of Waterhouse [16] and Taylor [15]. Suppose x ∈ H1(X ,Z/nZ) is the class of the Z/nZ-

torsor given as the spectrum of an étale OF -algebra O with Z/nZ-action. To avoid

confusion we will write σa(v) for the effect of the action of a ∈ Z/nZ = Gal(O/OF )

on v ∈ O. We consider the OF -module L consisting of all elements v ∈ O such that

σa(v) = ζ(a) · v

for all a ∈ Z/nZ. Using étale descent along the extension O/OF we can easily see that

L is OF -locally free of rank 1. Then we set �(x) = �(O/OF ) to be the class of L in

Pic(X) = Cl(X). This homomorphism � can also be viewed as follows: The Z/nZ � μn-

torsor over X that corresponds to x induces by μn → Gm a Gm-torsor, that is, a line

bundle whose class is �(x).
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This construction plays a central role in the theory of Galois module structure;

indeed,�(x) is an important invariant of the structure ofO as anOF [Z/nZ] = OF [x]/(xn−
1)-module. The general form of the class invariant homomorphism for the constant

group scheme Z/nZ with Cartier dual μn is

H1(X ,Z/nZ) → Pic((μn)X ) = Pic(OF [x]/(xn − 1)).

(See e.g., [16]). The map � above is obtained by composing the above with the restriction

along the section X → (μn)X given by x �→ ζ(1).

Combining this with class field theory allows us to define the class invariant

pairing

(·, ·)c : (Cl(X)/n)∨ × (Cl(X)/n)∨ → Z/nZ

as follows: Take f , f ′ ∈ (Cl(X)/n)∨ = HomZ(Cl(X),Z/nZ). By class field theory, f and

f ′ correspond to unramified Z/nZ-extensions Kf and Kf ′ of F . Let Of and Of ′ be the

normalisations of OF in Kf and Kf ′ respectively; these are étale OF -algebras with Z/nZ-

action. By definition, the class invariant pairing is

( f , f ′)c := f ′(�(Of /OF )).

Theorem 4.1. Under the class field theory isomorphism

Ar : H1(X ,Z/nZ)
∼−→ (Cl(X)/n)∨,

the class invariant pairing

(·, ·)c : (Cl(X)/n)∨ × (Cl(X)/n)∨ → Z/nZ

is identified with the pairing

(·, ·) : H1(X ,Z/nZ) × H1(X ,Z/nZ) → 1

n
Z/Z = Z/nZ, (α,β) = Inv ◦ ζ∗(α ∪ δ′β),

defined as in Section 2. �

Remark 4.2.

(a) It follows that the arithmetic Chern–Simons invariant

CSc : H
1(X ,Z/nZ) → Z/nZ, CSc(x) = (x, x),
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for c = Id ∪ δ̃(Id) can be identified under (Cl(X)/n)∨ � H1(X ,Z/nZ) with

the quadratic form (Cl(X)/n)∨ → Z/nZ, f �→ ( f , f )c, of the class invariant

pairing (·, ·)c. This statement was first shown in [2] by a different argument.

This result of [2] inspired us to obtain the above theorem.

(b) Under the additional hypothesis that μn2 ⊂ F , the pairing (·, ·) is symmetric

and agrees with the pairing defined in Section 2. This follows from Lemma

2.2 and its proof. �

Corollary 4.3. Assuming μn2 ⊂ F , the class invariant pairing (·, ·)c is symmetric. �

Proof. This follows from Lemma 2.2 and its proof and Theorem 4.1. �

Proof of Theorem 4.1. Recall that Artin–Verdier duality [7] gives isomorphisms

H1(X ,Z/nZ)∨ � Ext2X (Z/nZ,Gm), H2(X ,Z/nZ)∨ � Ext1X (Z/nZ,Gm). (4.1)

Applying ExtiX (−,Gm) to 0 → Z
×n−→ Z → Z/nZ → 0 gives an exact sequence

0 → Ext0X (Z,Gm)/n
∂−→ Ext1X (Z/nZ,Gm) → Ext1X (Z,Gm)[n] = Cl(X)[n] → 0, (4.2)

where the connecting ∂ is given via the Yoneda product

Ext0X (Z,Gm) × Ext1(Z/nZ,Z) → Ext1X (Z/nZ,Gm)

with the class of R(n) = (0 → Z
×n−→ Z → Z/nZ → 0). This combined with (4.1) induces a

surjective homomorphism

h : H2(X ,Z/nZ)∨ → Cl(X)[n].

Similarly, we have

0 → Ext1X (Z,Gm)/n
∂ ′−→ Ext2X (Z/nZ,Gm) → Ext2X (Z,Gm)[n] = Br(X)[n] = 0,

in other words, an isomorphism

∂ ′ : Cl(X)/n
�−→ Ext2X (Z/nZ,Gm).

The composition of ∂ ′ with the duality Ext2X (Z/nZ,Gm) � H1(X ,Z/nZ)∨ is the dual Ar∨ of

the isomorphism

Ar : H1(X ,Z/nZ)
∼−→ (Cl(X)/n)∨
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given by the Artin map of class field theory, that is, Ar(x) is the Artin reciprocity map

Cl(X) → Z/nZ for the Z/nZ-torsor given by x (see [7, p. 539]).

Taking Yoneda product with the class

[E(n)] = (0 → Z/nZ → Z/n2Z → Z/nZ → 0)

in Ext1
Z
(Z/nZ,Z/nZ) gives the Bockstein homomorphisms:

δ′′ : Ext1X (Z/nZ,Gm) → Ext2X (Z/nZ,Gm),

δ′ : Ext1X (Z,Z/nZ) = H1(X ,Z/nZ) → Ext2X (Z,Z/nZ) = H2(X ,Z/nZ).

Under the duality isomorphisms (4.1), the dual δ′∨ is identified with the Bockstein δ′′.

This easily follows from the fact that the Artin–Verdier duality pairings are also given

via Yoneda products.

Proposition 4.4. The dual δ′∨ : H2(X ,Z/nZ)∨ → H1(X ,Z/nZ)∨ of the Bocksteinhomo-

morphism δ′ is equal to the composition

H2(X ,Z/nZ)∨ h−→ Cl(X)[n] → Cl(X)/n
Ar∨−−→ H1(X ,Z/nZ)∨.

where the map Cl(X)[n] → Cl(X)/n is induced by the identity on Cl(X). �

Proof. Consider the composition δ′ ◦ ∂ where ∂ is as in (4.2). The connecting ∂ is given

as Yoneda product

Ext0X (Z,Gm) × Ext1(Z/nZ,Z) → Ext1X (Z/nZ,Gm)

with the class of R(n) = (0 → Z → Z → Z/nZ → 0). Hence the composition δ′′ ◦ ∂ is

given by

(β ′ ◦ ∂)(a) = a ∪ [R(n)] ∪ [E(n)].

But [R(n)] ∪ [E(n)] = 0, since Ext2
Z
(Z/nZ,Z) = (0). Therefore, δ′′ factors through the

quotient by the image of ∂:

δ′′ : Ext1X (Z/nZ,Gm) → Ext1X (Z,Gm)[n] = Cl(X)[n] −→ Ext2X (Z/nZ,Gm).

Combining this with the isomorphism ∂ ′ gives a factorization of δ′′ as a composition

Ext1X (Z/nZ,Gm) → Cl(X)[n] ε−→ Cl(X)/n
∼−→ Ext2X (Z/nZ,Gm).
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Since duality identifies δ′∨ with δ′′ it remains to see that, in the above, ε is induced by

the identity map on Cl(X):

Write an element y ∈ Cl(X)[n] as the extension 1 → Gm → J ′ → Z → 0 coming

from pulling back x = (1 → Gm → J → Z/nZ → 0) ∈ Ext1X (Z/nZ,Gm) via Z → Z/nZ.

Then δ′′(x) is the class of

1 → Gm → J → Z/n2Z → Z/nZ → 0

concatenating x with E(n). On the other hand, y corresponds under Cl(X)/n
�−→

Ext2X (Z/nZ,Gm) to the extension

1 → Gm → J ′ → Z → Z/nZ → 0

obtained by concatenating 1 → Gm → J ′ → Z → 0 with R(n) : 0 → Z → Z → Z/nZ → 0.

Pushing out R(n) : 0 → Z → Z → Z/nZ → 0 by Z → Z/nZ gives E(n) : 0 → Z/nZ →
Z/n2Z → Z/nZ → 0 and so we have a commutative diagram

1 �� Gm
�� J �� Z/n2Z �� Z/nZ �� 0

1 �� Gm

��

�� J ′

��

�� Z

��

�� Z/nZ

��

�� 0

which shows the statement. This concludes the proof of the Proposition. �

By the definition of the arithmetic linking pairing

(·, ·) : H1(X ,Z/nZ) × H1(X ,Z/nZ) → 1

n
Z/Z = Z/nZ

the corresponding homomorphism D : H1(X ,Z/nZ) → H1(X ,Z/nZ)∨ (i.e., with D(x)(x ′) =
(x, x ′)) is given as the composition

H1(X ,Z/nZ) → H2(X ,Z/nZ)∨ δ′∨−→ H1(X ,Z/nZ)∨

of the homomorphism given by cup product and Artin–Verdier duality with the dual of

the Bockstein. By combining this with Proposition 4.4 we see that D is the composition

H1(X ,Z/nZ) −→ H2(X ,Z/nZ)∨ h−→ Cl(X))[n] → Cl(X)/n
Ar∨−−→ H1(X ,Z/nZ)∨.

Lemma 4.5. Suppose that the Z/nZ-torsor x ∈ H1(X ,Z/nZ) has generic fiber F(ξ 1/n)/F

where ξ ∈ F ∗ is a Kummer generator. Then the fractional ideal of F generated by ξ is the
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n-th power (ξ) = In of a well-defined fractional ideal I of F ; the class [I ] = [I(x)] ∈ Cl(X)

only depends on x, is n-torsion, and is equal to the image �(x) of the class invariant

homomorphism. The image of x under the composition of the first two maps above

H1(X ,Z/nZ) −→ H2(X ,Z/nZ)∨ h−→ Cl(X)[n]

is �(x) = [I(x)]. �

Proof. The first part of the statement is standard. In fact, we have i : L⊗OF F � F ·ξ 1/n �
F and, by definition, I = i(L) and so �(x) = [I(x)].

The rest of the statement of the lemma follows from Artin–Verdier duality, the

computation of the group H2(X ,Z/nZ)∨ � Ext1X (Z/nZ,Gm), and of the local duality pair-

ings via Hilbert symbols, in Ref. [7, p. 540–541, 550–551]. A more detailed statement

appears in Ref. [2]. �

It now follows that D : H1(X ,Z/nZ) → H1(X ,Z/nZ)∨ is the map

x �→ (x ′ �→ Ar(x ′)([I(x)])) ∈ Hom(H1(X ,Z/nZ),Z/nZ),

where Ar(x ′) : Cl(X) → Z/nZ is the Artin (reciprocity) homomorphism associated to the

Z/nZ-torsor given by x′. The statement of the theorem follows. �

Remark 4.6.

(a) It follows from the above description of the map

H1(X ,Z/nZ)
D−→ H1(X ,Z/nZ)∨ � Ext2X (Z/nZ,Gm) � Cl(X)/n

that the group of n-homologically trivial ideal classes in Cl(X)/n coincides

with the image of the class invariant homomorphism � in Cl(X)/n. In the

theory of Galois module structure, ideal classes which are in the image of

the class invariant homomorphism are often called “realisable.”

(b) Assuming μn2 ⊂ F , the class invariant pairing can be viewed as a canonical

symmetric tensor

c(F ,n) ∈ TS2
Z/nZ

(Cl(F)/n) := (Cl(F)/n⊗ Cl(F)/n)S2 .

It would be interesting to study this tensor and its variation in families of

number fields. �
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