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Abelian Arithmetic Chern-Simons Theory and Arithmetic Linking Numbers 5675
1 Introduction

Let M be an oriented three-manifold without boundary and «; and «, two knots that are
homologically equivalent to zero in it. One way of computing the linking number of «;

and o, uses the formula
Lk, o) = (T 1 02),

where X, is a Seifert surface for «; transversal to «; and (%,,, ;) is the oriented

intersection number. It is also suggestive to write this equality as
tk(ay, ap) = (d 'y, @),

d denoting the exterior derivative of currents. The pairing on the right is independent
of the choice of (smooth, transversal) inverse image: because de Rham cohomology
computed by forms and currents is the same, the ambiguity can be represented by
closed 1-forms, which then integrate to zero on «,, since the latter is assumed to be
homologically equivalent to zero.

We can also define a pairing between two 1-forms A; and A, by
(A1,4,) == (A, dA,) = /I;IAI AdA,.
Since
d(A, NAy) =dA, ANA, — AL AdA,,

we see right away that the pairing is symmetric by Stokes’ theorem.

According to [1], the Chern-Simons action
(A,A) = / AAdA
M

for a 1-form A is related to the helicity of a magnetic field. Indeed, if M is a space-like

slice of the spacetime M x R and A the electromagnetic potential, we have the equality

/AAdA:/ ® - Bdvol,
M M

where B is the magnetic field and ® the magnetic vector potential.
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5676 H.-J. Chung et al.

Here is an aside about the meaning of the integral [, A A dA as “helicity.” The
choice of a volume form dvol on M determines an isomorphism V + iydvol from vector
fields to 2-forms. The vector field V corresponding to dA will generate a flow so that we
can consider the trajectory ¢, that starts from any given point p. Arnold and Khesin [1]

define an asymptotic linking number ¢k(¢,, £;) and prove a formula of the form
/ AANdA = / d l(iydvol) A iydvol = C/ Ck(€,, £g) dvol,dvol,.
M M MxM

That is, the helicity is an average asymptotic linking number between pairs of magnetic
flows starting from two points in M.
Following Polyakov [13] and Schwarz [14], they also discuss the formal “Gauss-

ian” path integral
/exp (—7(A, dA)) DA = det(xd)" 2,

where * : Q2 — Qi is the Hodge star operator with respect to a metric and the deter-
minant is regularised (in this and the next formula, we will be somewhat vague with
the precise definitions and computations, since we will not be using them in this article
except as inspiration. In particular, [14] gives a careful discussion of the metric depen-
dence and the possibility that d has non-trivial kernel. Also, we have normalised the
constants slightly differently.) [1, p. 186]. Adding a linear term pairing the forms with

homologically trivial currents §;, we get (again formally)

/exp (—n(A, dA) +27mi) (A, gi)) DA = det(xd)"2 -exp | -7 > d7E, &)

ij

This can be viewed as an infinite dimensional analogue of a standard Gaussian integral
formula in finite dimensional Euclidean space [12] (our main result uses a finite field
analog of this formula). The pairings between currents on the right side are likely to
be problematic in general. However, the case of interest is when the &; are (oriented)
knots and the pairing with A denotes an integral. The operator d acts on currents in a
way compatible with boundary maps of singular chains. That is, if L, N are chains with
ON = L and [L] and [N] are the corresponding currents, then d[N] = [dN] = [L]. Hence,
if & is a current corresponding to a homologically trivial knot, then d~'¢&; will include
a two-chain with boundary equal to &. Thus, each term (d7'§;, &) = ¢k(&;, &) will be a

linking number. The integral is thereby viewed as a correlation between the “Wilson

1202 1SNBny 62 UO Jasn Ayisioaiun 91els UeBIUDIN Aq £91.9G9%/129G/81/610Z/2I0HE/UIW/Wod dNo"dlWapede//:sd)y wouj papeojumoq



Abelian Arithmetic Chern-Simons Theory and Arithmetic Linking Numbers 5677

loop functionals”
A exp (2wi{4A, &)),
associated to knots & with respect to a Chern-Simons measure
exp (—m(A,A))DA.

In any case, the Gaussian integral with linear term provides one elementary explanation
of how linking numbers come up in Chern-Simons theory.

The goal of this article is to present some preliminary investigations on arith-
metic analogues of the preceding discussion. That is, when X = Spec(Or) for a totally
imaginary number field F that contains the group u,2 of n?-th roots of unity, we use

arithmetic duality theorems to define a two term complex
d:H'(X,7Z/nZ) — Ext3(Z/nZ,G,,)

as a mod n arithmetic analogue of the map d : Q}, — QZ. The Ext group is isomorphic

to CI(F)/n, the ideal class group of F mod n. Thus, every ideal I has a mod n class
(I, € Ext3(Z/nZ,Gy),

and we define I to be n-homologically trivial if this class is in the image of d. On the

other hand, there is a duality pairing
1
() H'(X,Z/nZ) x Ext2(Z/nZ,G,) — EZ/Z'

and we define the arithmetic linking number of two prime ideals P and Q that are

n-homologically trivial by
lkny(P,Q) :=(d'P, Q).

Of course one needs to check that this is well-defined and symmetric. We verify this in
Section 2. In Section 3, we generalise the definition to arithmetic linking numbers on
Xs = Spec(Or[1/S]) for a finite set of primes S. We will see (Corollary 3.11) that this
linking number can be computed in terms of n-th power residue symbols in a manner
similar to Morishita’'s treatment in [10] (However, we do not carry out a direct compar-
ison). This pairing can be defined also for non-prime ideals, in which case we call it the

arithmetic mod n height pairing, denoted by ht,(I,J).
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5678 H.-J. Chung et al.

Parallel to the pairing on 1-forms, we also define a pairing
(.):H'(X,Z/nZ) x H'(X,Z/nZ) — %Z/Z
as
(A,B) = (A,dB)

and in such a way that (4, A) is the abelian arithmetic Chern-Simons function defined
in [4, 6].
It is then pleasant to note a precise analogue of the Gaussian path integral in

this arithmetic setting.

Theorem 1.1. Let p be an odd prime, a = dimH'(X,Z/pZ), b = dimKer(d), and {§} a

finite set of p-homologically trivial ideals. Denote by d the induced isomorphism
d:H'(X,7/pZ)/Ker(d) — Im(d).
Then

Z exp [2711’((,0, o)+ Z(,O, [Ej]p))]

peHY(X,7./pZ) J

=p” (M)i[(ab)&p exp | —2mi | 3 Y htpen s | |- 0
P 44

The determinant requires some commentary. The map d goes from
HY(X,Z/pZ)/ Ker(d) to its dual, since Ker(d) is the exact annihilator of Im(d). It is
an easy exercise to check that the determinant is then well-defined modulo squares
in Z/pZ (it is just the discriminant of the corresponding quadratic form). Hence, its
Legendre symbol is well-defined. This formula is essentially a formal consequence of
the definitions. However, it does give indication that some notion of “quantisation” for
arithmetic Chern-Simons theory might not be entirely empty, and furthermore, provide
new interpretations of basic arithmetic invariants.

In Section 4, following up on the ideas of [2], we will also show how to realize
the arithmetic linking pairing in the compact case by a simple construction that only
involves Artin reciprocity and the “class invariant homomorphism,” which gives a mea-

sure of the Galois structure of unramified Galois extensions. More precisely, we show
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that under the class field theory isomorphism (CI(F)/n)" ~ H'(X,Z/nZ) the map
d:H'(X,7Z/n7) — Ext3(Z/nZ,G,,) ~ H (X, Z/nZ)"
giving (-, ) is identified with the class invariant homomorphism
(Cl(F)/n)" = Hom(CLl(F),Z/nZ) — CI(F)/n.

By definition, this sends the Artin map of a Z/nZ-unramified extension K /F to the class of
the (locally free) Or-submodule of K consisting of v € K such that a(v) = {%v. Regarding
Chern-Simons functionals, the first computation in terms of the Artin map was in Ref.
[2]. Martin Taylor observed a relation to the class invariant homomorphism when n = 2,
while Romyar Sharifi pointed out a connection to Bockstein maps.

As mentioned already, many of the ideas of the current article were explored
in various forms and in considerable depth by Ref. [10]. What we view as the main
contribution here, as in Ref. [4, 6], is an attempt to move beyond analogies to a pre-
cise correspondence of constructions and techniques used in topology (especially the
ideas inspired by topological quantum field theory), and in arithmetic geometry. What

is achieved is obviously modest. But we hope it is suggestive.

2 Arithmetic Linking Numbers in the Compact Case: Proof of Theorem 1.1

Let F be a totally imaginary algebraic number field with ring of integers Or such that
Un2 C F, and let X = Spec(Or). We fix a trivialisation of the n-th roots of unity

LINnZ = [y,
We have various isomorphisms

¢t H'(X,Z/nZ) ~ H(X, ptn);

¢* L Exti (Z/n7Z, Gy) =~ Extl (un, Gp).

Let 7 := m;(X,b), where b : Spec(F) — Spec(Oy) is the geometric point coming from an

algebraic closure F of F. For any natural number n, we have the isomorphism
3 1
Inv:H° X, un) ~ —72/7,
n
and a perfect pairing [7]

4 , 1
() 1 H'(X, F) x Exty "(F,Gp) — H3*(X, pn) =~ EZ/Z,
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5680 H.-J. Chung et al.

for any n-torsion sheaf F in the étale topology (the pairing usually goes to H3*(X, G,,) =~

Q/7Z. But the statement that it is perfect means it induces an isomorphism
Exty {(F,G,,) ~ HomH' (X, F), H}(X, G ).

But H(X, F) is n-torsion, which means that the image of any homomorphism lies in the
n-torsion subgroup H3*(X,G)[n] ~ H*(X, un)).
The cup product

U:HYX,Z/nZ) x HX (X, i) — H3(X, ) ~ %Z/Z,
induces a map
riHX X, ) — Extf{(Z/nZ, Gn),
such that
Inv(aUDb) = {(a, r(b)).
The Bockstein operator
81 H' (X, pn) — H*(X, ),
comes from the exact sequences of sheaves
0= pn = ppz > un = 0.
Define the coboundary map d as the composition
d:H'(X,Z/nZ) & H'(X, 1n) > HA(X, un) = Ext2(Z/nZ, Gp).
We view the two-term complex
HY(X,Z/nZ) 3 Ext2(Z/nZ,Gy),
as a mod n arithmetic analogue of the complex
Qy — Q

for three-manifolds. The idea that cohomology equipped with the Bockstein operation

can have the nature of differential forms occurs in the theory of the de Rham-Witt
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complex for a variety in characteristic p: there, the de Rham-Witt differentials are
sheaves of crystalline cohomology [5]. Also, recall that the curvature of a connection
is the obstruction to deforming a bundle along a deformation of the space on which it
lives. The Bockstein operator is a small piece of the obstruction to deforming it along a
deformation of the coefficients.

There is also a Bockstein operator
§ :H'(X,Z/nZ) — H*(X,Z/nZ),
associated with the exact sequence
0 — Z/nZ — 7/Jn*7Z — 7/nZ — 0,
and a Bockstein in degree 2,
82t HA (X, jin) — H¥(X, ).
By choosing an isomorphism Z/n? ~ u,. compatible with ¢, we see an equality of maps
{08 =80t H(X,Z/nZ) — H*(X, tty).

The following fact is of course well-known, but it seems to be hard to find a reference

for étale cohomology.
Lemma 2.1. The Bockstein operator §, satisfies
S2(@UB)=8aUB—aUsB
forall o € HY(X,Z/nZ) and B € H' (X, ). O

Proof. Since X is affine, the étale cohomology groups are isomorphic to the Cech coho-
mology groups (cf. [9, Theorem 10.2]). Thus, we can check the above formula using Cech
cocycles (cf. [9, Section 22]).

Choose a sufficiently fine étale covering (U;);c; of X. Define Uy; = U; xx Uj, Uyx =
U; xx U; xx Uy and so on. Typical elements of the index set I are denoted by i,j, k,
and [. Represent « and 8 as Cech cocycles (a;) and (8). For any pair (i,j) of distinct
elements in I, choose a lifting &; of a; to Z/n?Z, and similarly a lifting f; of g; to

tn2. The class of §'a can be represented by the 2-cocycle whose section over Uy is
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5682 H.-J. Chung et al.

')k == &ij|Uijk + &jklUijk — &iklUijk which takes values in Z/nZ C Z/n?Z. We represent 88
in a similar way.

The cup product §’'a U 8 is represented by a family of sections Vil = (é’a)ijk|Uijkl ®
'3kl|Uijkl and similarly « U$g is represented by y;ju = aij|Uijkl ® (8,3)J~kl|Uijkl. On the other hand,

we have
(@ U Bk = ijluyy, ® Bikluy,

which lifts to &ij|Uijk ® Bjklyijk with values in Z/n?Z ® p,2 >~ 2. A u,-valued cocycle

representing §,(« U 8) takes the form

(82 (C{ U ﬁ))ijkl = <&]k : BkllUjkl> |Uijkl - (éik : EkllUl'kl> |Uijkl + (élj : BﬂlUijl) |Uijkl - (él] : ﬂjk'Uijk> |Uijkl
where the isomorphism Z/n?Z ® u,2 >~ pn,2 sends a ® b — a - b by viewing u,2 an
additive group. Since ;; and B;; are cocycles, @jlux — Gixlujx = —@ijlujx + Ny for some

¢y and similarly ,Bﬂ|Ujkl - ﬂjk|ujkl = ﬂkllujkl — nyy for some ;. Using these, the above

simplifies to
(B2 (ax U B))yjm = ((—&ij + N - Bkl) o + (&ij - (Bu — n‘/fjkl)) Ui
= <n¢ijk : Ekl) g + (@ - (=n¥m)) vy

which is equal to y;3; — yy. via the isomorphisms Z/nZ ~ nZ/n*Z sending a — na, and

Wn 2 L2/ 1, sending & — £1/7, Hence we have shown the desired property of §,. |
Define the pairings

(-, : H(X,Z/nZ) x H\(X,Z/nZ) — %Z/Z;

1
(o, B) = (a, dB) € EZ/Z'
Lemma 2.2. The pairing is symmetric:
(a,B) = (B, @)

for all «, B € HY(X,Z/nZ). O
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Proof. This follows from examining the second Bockstein operator above.
82t HX (X, pin) = H*(X, pin).
For the pro-sheaf Z,(1) := l(iﬂli W,i, we have an exact sequence
0— Zn(1) > Z,(1) > uy — 0.

Because H*(X, Z,(1)) ~ Z, is torsion-free, the boundary map H?(X, u,) — H*(X,Z,(1)) is
zero, and the map H*(X, Z,(1)) — H*(X, i) is surjective. Hence, H%(X, p,2) — H*(X, in)
is surjective, so that the map §, is zero.

As a consequence, we have
0=68@UB)=8aUB —aUSB.
Therefore,

(a,b) = (a, db) = Inv(a U éz,b) = Inv(§'a U ¢,.b) = Inv(Z,.(8'a U b))

=Inv(;.(bU&a)) =Inv(bU8a)) =Inv(bUéc.a)) = (b, da) = (b,a). |

Define K = Ker(d).
Corollary 2.3. If a € K, then (a,b) = 0 for all b. O
Proof. Ifa € K, then (a,b) = (b,a) = (b, da) = 0. [ |

According to duality, we have Ext3(Z/nZ, G,) ~ H (X, Z/nZ)" ~ Cl(X)/n, where
Cl(X) is the ideal class group of X = Spec(Or). We will say an ideal I C Or is n-
homologically trivial if its class in Ext%(Z/nZ,G,,) is in the image of d. Even though
there is some danger of confusion, when 7 is fixed for the discussion, we will also allow
ourselves merely to say that I is “homologically trivial.” If I and J are homologically

trivial ideals, we define the mod n height pairing between I and J by
htp (I, J) = (d 7 I, [T1n),

where [I], denotes the class of I in Cl(X)/n. Writing [J], = d(b) for some b € H'(X,Z/nZ),
for any a such that da = 0, we have (a, db) = (a,b) = 0 by Corollary 2.3. This implies
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that the mod n height pairing is well-defined. Using the pairing on H!(X,Z/nZ), note

that we can also write the height pairing as
(d ' Tn, d7' T n),

rendering the symmetry evident. For two prime ideals P and Q (which are homologically

trivial), we will also call their height pairing their linking number, and denote it
Ekn('P, Q) = htn(P: Q) = <d_1[P]nr [Q]n)

In the articles [4, 6], we fixed a class ¢ € H®*(Z/nZ, Z/nZ) and defined the

arithmetic Chern—-Simons action for homomorphisms
p:m=mX,b) > Z/nZ
as

1
CSc(p) = Inv(L.(°(p*(0))) € EZ/Z’

where j' : Hi(w, Z/nZ) — H'X,Z/nZ) is the natural map from group cohomology to
étale cohomology (cf. [8, Theorem 5.3 of Chapter Il). We can also define the arithmetic

Chern—Simons partition function as

Z(X):= Y exp(2mi-CSc(p)).
peHom(x,Z/nZ)
The class ¢ := IdUS(Id) is a generator of H*(Z/nZ, Z/nZ), where Id is the identity
from Z/nZ to Z/nZ regarded as an element of H'(Z/nZ,7Z/nZ) = Hom(Z/nZ, Z/nZ) and
§ : HY(Z/nZ, Z/nZ) — H?*(Z/nZ, Z/n7Z) is a Bockstein operator induced from the exact

sequence
0 —— Z/nZ —— 7Z/n*Z —— Z/nZ —— 0.

There is a natural bijection between Hom(r,Z/nZ) and H'(X, Z/nZ) (defined by j!) and
we will simply identify the two. One then checks immediately that for the cocycle ¢ =
Id U §(Id) we have

CSc(p) = (p, p)-
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Thus for the partition function, we have

ZX)= Y exp@mi-CS.(p)= Y  exp(2ri-(p,p)).
peHom(, Z/nZ) peH(X,Z/nZ)
Proof of Theorem 1.1. By Corollary 2.3 and the definition (p, p) = {(p, dp), both (p, p)
and (p, [§],) depend only on the class of p in H'(X,Z/pZ)/K, which we denote by 4. So

we can write the sum as

P’ Y. expl2wi((5, )+ Y (5, [§1p)].
peHY(X,7./p7)/K J

After a choice of basis for H'(X,Z/pZ)/K and Im(d), this becomes a Gaussian integral

over a finite field. Now the formula follows from [12, Proposition 3.2 of Chapter 9]. W

3 Boundaries

In this section, we fix a natural number n and a finite set S of places of F containing
all the places that divide n and the Archimedean places. As before, we assume p,2 C F.
Put U = Spec(Ors), the spectrum of the ring of S-integers in F. Let ny := m;(U) and
7, := m,(Spec(F,)) for each place v of F. Denote by C*(U, G) the complex of continuous
cochains of 7y with coefficients in a locally constant torsion Z, = 1<i£1i Z/n'Z-sheaf G on
U and by C*(F,, F), the complex of continuous cochains of 7, with coefficients in a sheaf

F on Spec(F,). As in [4, Section 2], we will use the “inclusion of the boundary” map

is=][i,: 90U =] [Spec®,) — U.

veS vesS

Let G be a sheaf on U, F a sheaf on 9U, and f : F — i{G a map of sheaves. In view of
the applications in mind, we will refer to such a map as a boundary pair. Denote by

C*(U,G xs F), the two product of complexes defined by the following diagram:

C'(U,GxsF) —— [l,es C"Fy, F)

veS

f.

C*(Ur g) EEE— l_[VES C*(FVrl:g):

lOCS

where locs refers to the localisation map on cochains. Thus,

C'(U,G xs F) =C'(U,9) x [ [ C'E,, ) x [ [ €7 (F,, i),

veS veS
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5686 H.-J. Chung et al.

and its elements will be denoted by (c,bs, as), where ¢ € CY(U,G), bs = (by)yes €
[1,es C'(Fy, F), and as = (@y)ves € [[,es C (Fy,i2G). The differential is defined by

d(c, bs, as) = (dc,dbs, das + (—1)'(f.(bs) — locs(c)).

Hence, a cocycle in Z{(U, G xg F) consists of (c, bs, as) such that dc = 0,dbs = 0, and

Define

das = (—=1)'(locs(c) — f.(bs)).

HYU,G x5 F) := H{(C"(U,G x5 F)).

Here are some general properties that follow immediately from the definitions.

(1)

(2)

When F = 0, then H(U, G x50) = H.(U, G), the compact support cohomology
of G.

Given maps F — F', G — G’ and a commutative diagram

F——F

|

56 —— i5G’
we have an induced map of complexes
C'(U,G xs F) - C(U,G x5 F),
and hence, a map of cohomologies
HY(U,G xs F) — H'(U,G' x5 F).

More precisely, the formation of the complex and the cohomology is
functorial in the diagrams in an obvious sense.

Suppose you have two exact sequences

O—-F' -F—->F =0

0-¢ -GG -0
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and a commutative diagram

0 F F F 0
0 156" 159 159’ 0.

Then you get an exact sequence of complexes
0—C"(U,G"xsF") — C*(U,G xs F) - C*(U,§ x5 F) — 0,

and hence, a long exact sequence at the level of cohomology.

(4) Cup product is given by

C(U,G xs F) x C/(U,G xs F) = CH(U,(GR®G) x5 (F®F))

(c,bs,as)U (c', b, a5) = (cUc',bsU by, (—=1Yag U fi(bs) + locs(c) U ay).
Another possibility for the cup product, temporarily denoted by U, is
(¢, bs,as) U (¢, by, as) = (cUCc,bs Ubg, (—1Yas Ulocs(c) + f.(bs) U aj).
The difference is
A =(0,0,(—=1Yas U (fibg) —locs(c")) + (locs(c) — fi(bs)) U ay).
It will be useful to note that
Lemma 3.1. When the two cochains are cocycles, the difference above is exact. O
Proof. The cocycle condition says
das = (=1)'(locs(c) — fu(bs));  dag = (=1Y (locs(c') — f. ().
Hence,

d(as U ay) = (—1)'(locs(c) — fu(bs)) U as + (=17 'ag U (locs(c) — fi (b))
= (=1)(locs(c) — fu(bs) Uas + (=) ags U (fi(by) — locs(c))
= (—=1)" (docs(c) — fu(bs)) Uas + (—1Yas U (f.(by) — locs(c))) .
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Hence,
d(0,0,(~1)asUajy) = A. [ ]
The differential is compatible with the cup product:
Lemma 3.2. If (c,bs,as) € C' and (¢, by, ay) € C’, then
di(c,bs,as) U (c', b, as)] = [d(c,bs,as)]U(c, b, as) + (—=1)¥(c, bs, as) U [d(c, b, ,ag)]. O
Proof. We have

dl(c, bs, as) U (¢, bs, as)] = d(c U c',bs Ub, (=1Yas U f.(bs) + locs(c) U a)
=dcUc + (-1)cudc,dbs Ubj+ 1)'bs Udby, (~1Ydas Uf,®y + (—1)"7'ag U f.dbly

+ locs(de) U ay + (—1)'locs(c) U da + (—1)™ (fu(bs U by) — locs(c U €)),

where the last component is the only thing we need to focus on. On the other hand,

we have

d(c,bs,as) U (¢, by, ay) = (dc,dbs, das + (—1)'(f.(bs) — locs(c)) U (¢, b, a)
= (dc U c',dbs Ubj, (—1Y(das + (—1)(f.(bs) — locs(c))) U f.(by) + locs(dc) U ay).

Also,

(¢, bs,as) Ud(c, by, ay) = (¢, bs, as) U (dc’, db, dag + (1Y (f.(by) — locs(c')))
= (cudc',bs Udb, (—1Yas U £.(dby) + locs(c) U [dajy + (—1Y (f.(by) — locs(c)]).

So the third component of
d(c,bs, as) U (¢, b, a5) + (—1)'(c, bs, as) U d(c’, b, a)
is

(=1Y(das + (—1)'(fi(bs) — locs(c))) U f.(by) + locs(dc) U aj
+ (=D'((=1Y M ag U f.(db}) + locs(c) U [day + (=1 (f.(bs) — locs(c'))))

1202 1SNBny 62 UO Jasn Ayisioaiun 91els UeBIUDIN Aq £91.9G9%/129G/81/610Z/2I0HE/UIW/Wod dNo"dlWapede//:sd)y wouj papeojumoq



Abelian Arithmetic Chern—-Simons Theory and Arithmetic Linking Numbers 5689
= (—1Ydas U£.(by) + (—1)"™ (f.(bs U by) + (—=1)""'locs(c) U f.(by) + locs(dc) U a
+ (=) 'as U f.(dbs) + (—1)'locs(c) U dag
+ (=1)"locs(c) U fi(by) + (=1 ocs(c U ).
= (=1Ydas U£.(by) + (1) (f.(bs Ub}) + locs(dc) U aj

+ (=)™ ag U f.(dby) + (=1)locs(c) U day + (1) ocs(c U ).
This is easily seen to be the third component of d[(c, bs, as) U (¢, by, as)] above. |
Corollary 3.3. The cup product of cocycles is a cocycle. |

Corollary 3.4. The cup product of cocycles induces a graded product map on coho-

mologies. O

Proof. Of course this is because if 8 is a cocycle, then d(e¢ U 8) = +(dw) U B is a
coboundary. |

The main case of interest is when F = pu,2, G = Z/nZ and f : u,2 — Z/nZ is
the natural reduction followed by the trivialisation ¢~! : u, ~ Z/nZ. From the exact

sequence of pairs

Id

0 0 Mn2 Hn2 0
&t f
0 —— Z/nZ Mp2 Z/nZ —— 0

and (1), (3) above, we get natural boundary maps
d:H"(U,Z/nZ x5 pty2) — H-(U,Z/n7Z)
and
dy : H*(U,Z/N7Z x5 iy2) — H2(U,Z/Nn7Z).
Proposition 3.5. The map d, is zero. O
Proof. We will show that the previous map

H*(U, jiy2 X5 tp2) — H2(U,Z/n7 Xg j1,2)
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in the long exact sequence of cohomology is surjective. First we note that the map
H*(U, u,2) — H*(U,Z/nZ)

is surjective. To see this, use the map of exact sequences

0 —— H(U,C)[n?] —— [lyes 22/Z —— [yes %2/Z — 0

veS p2 veS pn2

0 —— H2(U,Gu)[1n?] —— [lyes 22/Z —— [N 22/Z —— 0

veS n VES n

from class field theory. The sum map is surjective from the kernel of the middle vertical
map to the kernel of the right vertical map. The middle vertical map is trivially surjective.
Hence, the left vertical map is surjective by the snake lemma. On the other hand, we also

have the map of exact sequences
0 — HYU,G,)/n?H'(U,G,,) —— H?(U, u,2) — H?*(U,G,)[n*] —— 0
0 —— H'(U,Gu)/nH"(U,Gp) — H*(U, uy) — H*(U,Gp)[n] — 0,

where the left vertical map is the natural projection. Since the vertical maps on the left
and right are surjective, so is the one in the middle.

Now let (¢, bs, as) € Z*(U,Z/nZ x5 py2). Choose ¢’ € Z*(U, u,2) lifting ¢ and ay €
[T,cs C*(Fy, puy2) lifting as under the map f : u,2 — Z/nZ. Then

das = bs — locs(c’) + (b)"

for some b € C*(U, u,2). However, (b;)" is a cocycle, since this is true of all other terms

in the equality. Hence,
(¢ bs + (by)", ay) € Z2(U, ppz Xs fn2)
is a lift of (c, bs, as). [ |
Lemma 3.6. Foro € H'(U,Z/nZ xs ju,2) and B € H:(U,Z/nZ), we have
aUB=B8U«

in H3(U,Z/nZ). O
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Proof. Choose cocycle representatives (c, bs, as) and (c¢’,0, ay) for « and g. Then
aUB =[(c,bs,as)U(c,0,a5)]=[(cuc,0,locs(c) Uag)]
and
BUa =[(c'Uc,0,—asUbs+locs(c’) Uas)] =[(c' Uc,0,—as Ulocs(c))].
Here the last equality follows from Lemma 3.1. We have the map
n:HYU,Z/nZ xs uy2) — H (U, Z/n7Z)

that sends (c, bs, as) to c. So, using n, the desired commutativity « U 8 = 8 U @ reduces

to the commutativity of the following two products:

H'(U,Z/nZ) x HX(U, Z/nZ)
([(c,0,0)],[(c,0,as)]D)

H3(U,Z/nZ)
[(cuc,0,locs(c)Uag)]
H2(U,Z/nZ) x H(U,Z/nZ)

([(c’,0,ay)], (c,0,0)])

H3(U,Z/nZ)
[(c'Uc,0,—ajs Ulocs(c))].

Pl b e

These products are the same as the ones defined in [11, Section 5.3.3]. Moreover,

Nekovar defined the involution
T :C*(U,Z/nZ) — C*(U,Z/nZ), T :C(U,Z/nZ xs0)— C*(U,Z/nZ x5 0),

which are homotopic to the identity, and showed that the following diagram is

commutative:

C*(U,Z/nZ) x C*(U,Z/nZ x5 0) —— C*(U,Z/nZ xs 0)

lslzo('T@T) J To(s12)x
U

C*(U,Z/nZ x5 0) x C*(U,Z/nZ) —— C*(U,Z/nZ x5 0),

where s, is the permutation between Z/nZ and Z/nZ xs 0 defined similarly as in [11,
3.4.5.4]. This finishes the proof. |

The proof of the previous lemma makes use of the natural map

n:HY(U,Z/nZ x5 w,2) — H (U, Z/nZ)
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that sends (c, bs, as) to c. In fact, we have proved:
Lemma 3.7. The cup product
HY(U,Z/n7Z xs py2) x H*(U,Z/nZ) — H2(U,Z/n7Z)
factors through the product
HY(U,Z/nZ) x HX(U,Z/nZ) — H2(U,Z/n7Z)
via the map 5. This is also true with the factors switched.
We now use the tools developed above to define a pairing
H (U, Z/n7 x5 pu,2) x HY(U,Z/NZ x5 p2) = %Z/Z
given by
(a,b) =Invo . (aUdb).
The pairing goes through
HY(U,Z/nZ x5 py2) x H*(U,Z/nZ x5 0) = H'(U,Z/nZ x5 py2) x H*(U,Z/nZ),
and hence, through H*(U,Z/nZ x5 0) = H3(U,Z/nZ) il H3(U, pn) >~ LZ/Z.
Lemma 3.8. The pairing is symmetric.
Proof. Wehave 0 =d,(aUb) =daUb —aUdb. So
(a,b) =Invo,(aUdb) =Invoi,(daUb) =Invo . (bUda) = (b,a).
Lemma 3.9. If a € Ker(d), then
(@,b)=0
for all b.
Proof.

(a,b) = (b,a) =Invo . (bUda) =0.
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Denote by H (U, [Z/nZ]) C H'(U,Z/nZ) the classes that locally (at all v € S)
lift to u,2. Equivalently, H (U, [Z/nZ]) is the image of 1. Because the pairing () is
symmetric and given by the form (a, b) = Invo ¢,(n(a) Udb) by Lemma 3.7, it follows that

it factors to a pairing
1
HY(U,[Z/nZ)) x HY(U,[Z/nZ]) — ;Z/Z.

Let Ag = (7y)? be the maximal Abelian quotient of 7y. By the Poitou-Tate dual-
ity, we have H*(U,Z/nZ) ~ As/n. Given an ideal I coprime to S, we can consider its class
[Ils,, € H2(U,Z/nZ) via class field theory and the previous isomorphism. We will say I
is (S, n)-homologically trivial if [I]s, is in the image of d. We can now define the height

pairing of two (S, n)-homologically trivial ideals that are coprime to S via
htsn(I,J) := (A" Ilsp, d " [Jsp) = IV o £(d s U [Jlsn) =: (A7 Tsn, [Tsn),

which is well-defined by the discussion above.
Let I be an ideal such that I" is principal in Ogs. Write I" = (f~!). Then the
Kummer cocycles k,(f) will be in Z'(U,Z/nZ). For any a € F, denote by as its image in

[I,cs Fv. Thus, we get an element

[Flsn = [(kn(f), k2 (f5), 0)] € Z' (U, Z/NZ X j1y2)

which is well-defined in cohomology independently of the choice of roots used to define

the Kummer cocycles.

Proposition 3.10. We have d[fls, = [I]s, in H2(U,Z/nZ). In particular, for any ideal I
such that I" is principal in Org, [I]s,, is (S, n)-homologically trivial. O

Proof. Let T = S U S’ be large enough that for V. = U\ S, H'(V,G,)[n] = 0, and
such that the support of I is still in V. Then I defines a class [Ilr, in H>(V,Z/nZ).
Similarly, f defines a class [flr,, = [(kn(f), k,2(fr),0)] in HY(V,Z/NnZ x5 u,2). It is clear
that the elements [I]r, and d[ f]r, map to [I]s, and d[ f]s, under the pushforward map
H*(V,Z/nZ) — H?(U,Z/nZ). Hence, it suffices to prove equality of the elements on V.
We will prove that the two elements pair the same way with elements of H'(V, ,). On

V, by the exact sequence

0= Gu(V)/Gu(V)" = H'(V, ) — H'(V,Gp)[n] — 0,
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every element of H'(V, u,,) comes from g € G,,(V) via the Kummer map. For this, we can
compute the pairing between 8 = (k,(9), k,2(gr), 0), which lifts note that [k,(g)] along 5,

and the cocycle representative « of d[ f1r

o = (dkn(£), 0, kn(F)z — o2 (Fr)),

where % is a lift of k,(f) to u,2. We find

BUa = (kn(g) Udkn(£),0, —(kn(@)r U [k (F))r — Kz (f)])

We note that the cup product k,(g) U % takes values in Z/nZ ~ @, C w@,2. So we
have the cochain (k,(g) U k,,(f), 0, 0) whose differential is (k,(g) U dk,(f),0, —(k,.(g))r U

—_~—

(k,(f))r). Hence, it suffices to compute the invariant of

(01 OI (kn(g))T ) an (fT))

which is homologous to 8 U «.
Let T’ be the support of I. Then T U T is the full set of places where the global
cocycle (k,(9))r U k,2(fr) with coefficients in u, C p,2 is possibly ramified. By global

reciprocity, we have

3 IV ((ka(@)r Uk (fr) = — O v,y ((kn(@)rr U Kz ().

veT veT’

Let ord,(I) = e, and let @, be a uniformiser at v. Then f, = u,@* for a unit u, € F,, so
that k,2(f,) = k,(u,@$"). Also, F(}/g) is unramified at v € T'. Hence, for v € T’, we get

Ian((kn(g))T’ ) knz(fT’)) = (gVI uvwvev)v,n = (gvr w‘fv)V,Tll

where the bracket (-, -), , now refers to the n-th Hilbert symbol in F,.

Therefore, we conclude that

Y v, (kn(@r Uk (fr))= — Y kn(@)v(rec, (m")) = kn(g)(recD)) =([B], lr.n),

veT veT’

where rec, is the local Artin map and rec is the global Artin map (cf. [3, p. 174-176]),
finishing the proof. u
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Corollary 3.11. Let I,J be ideals in Or supported outside S that are n-torsion in the
Picard group of U. Choose any f € F* such that I" = (f~') as ideals of Ors. Let T be the

support of J, @, be a uniformiser at v, and e, = ord,(J). Then

htsn(I,J) =Y (frr B um,

veT

where the bracket denotes the n-th Hilbert symbol in F,. O

Proof. By Proposition 3.10, we have [fls, € H'(U,Z/nZ xs u,z2) such that n([flsn) =
k.(f) and d[flsn = Ulsn € 7% ~ H>*(U,Z/nZ). The pairing hts,(I,J) is given by the
Poitou-Tate pairing (k,(f),[Jls,), which is equal to k,(f)([J1sn) = X per(for, @E)vn by
the local-global compatibility of Artin maps. |

The referee points out that the definition of n-th power residue symbols for non-
principal ideals is a long-standing problem in algebraic number theory. This corollary

indicates that the linking pairing for homologically trivial ideals is a modest solution.

4 Arithmetic Linking, Class Invariants and the Artin Map

We continue with the assumption of a fixed trivialization ¢ : Z/nZ ~ u, over the totally
imaginary number field F.

Let us recall the construction of the class invariant homomorphism
Vv : H'(X,Z/nZ) — Cl(X) := CL(F)

of Waterhouse [16] and Taylor [15]. Suppose x € H'(X,Z/nZ) is the class of the Z/nZ-
torsor given as the spectrum of an étale Op-algebra O with Z/nZ-action. To avoid
confusion we will write o,(v) for the effect of the action of a € Z/nZ = Gal(O/Of)

on v € O. We consider the Or-module £ consisting of all elements v € O such that
oq(Vv) =¢(a) v

for all a € Z/nZ. Using étale descent along the extension O/Or we can easily see that
L is Og-locally free of rank 1. Then we set ¥ (x) = W¥(O/Or) to be the class of £ in
Pic(X) = Cl(X). This homomorphism ¥ can also be viewed as follows: The Z/nZ ~ u,-
torsor over X that corresponds to x induces by u, — G,, a G, -torsor, that is, a line

bundle whose class is ¥ (x).
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This construction plays a central role in the theory of Galois module structure;
indeed, ¥ (x) is an important invariant of the structure of O as an Oz[Z/nZ] = Or[x]/(x"—
1)-module. The general form of the class invariant homomorphism for the constant

group scheme Z/nZ with Cartier dual u,, is
H'(X,Z/nZ) — Pic((,)x) = Pic(Op[x]/(x" — 1)).

(See e.g., [16]). The map ¥ above is obtained by composing the above with the restriction
along the section X — (u,)x given by x — ¢(1).
Combining this with class field theory allows us to define the class invariant

pairing
G, )e s (CLUX) /n)Y x (CLX)/n)Y — Z/nZ

as follows: Take f, f' € (Cl(X)/n)" = Homy(Cl(X),Z/nZ). By class field theory, f and
f' correspond to unramified Z/nZ-extensions Ky and Ky of F. Let Oy and Oy be the
normalisations of Or in Kr and Ky respectively; these are étale Or-algebras with Z/nZ-

action. By definition, the class invariant pairing is
(f1 e == (¥ (Or/Or)).
Theorem 4.1. Under the class field theory isomorphism
Ar: HY(X,Z/nZ) - (Cl(X)/n)",
the class invariant pairing
(/) (ClX)/n)” x (CUX)/n)” — Z/nZ
is identified with the pairing
¢, : H\(X,Z/nZ) x H\(X,Z/nZ) — %Z/Z =7Z/nZ, (a,B)=Invo.(axUSR),
defined as in Section 2. O
Remark 4.2.
(a) It follows that the arithmetic Chern-Simons invariant

CS, : H'(X,Z/nZ) — 7/nZ, CSe(x) = (x,x%),
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for ¢ = Id U §(Id) can be identified under (Cl(X)/n)" ~ H'(X,Z/nZ) with
the quadratic form (Cl(X)/n)" — Z/nZ, f — (f,f)c, of the class invariant
pairing (-, -).. This statement was first shown in [2] by a different argument.
This result of [2] inspired us to obtain the above theorem.

(b) Under the additional hypothesis that u,2 C F, the pairing (-, -) is symmetric

and agrees with the pairing defined in Section 2. This follows from Lemma

2.2 and its proof. O
Corollary 4.3. Assuming p,2 C F, the class invariant pairing (-, -), is symmetric. O
Proof. This follows from Lemma 2.2 and its proof and Theorem 4.1. |

Proof of Theorem 4.1. Recall that Artin-Verdier duality [7] gives isomorphisms
H'(X,Z/nZ)" ~ Ext2(Z/nZ,G,,), H*(X,Z/nZ)" ~ Exty(Z/nZ,Gy,). (4.1)
Applying Ext’(—,G,) to 0 — Z X7 7Z/nZ — 0 gives an exact sequence
0 - Ext%(Z, Gp)/n > ExtL(Z/nZ, Gy) — Exth(Z, Gy)[n] = Cl(X)[n] — 0, (4.2)
where the connecting 9 is given via the Yoneda product
Ext)(Z, G,) x Ext'(Z/nZ, Z) — ExtL(Z/nZ, Gp)

with the class of R(n) = (0 > Z =5 Z — Z/nZ — 0). This combined with (4.1) induces a

surjective homomorphism
h:HXX,7/n7)" — CLX)[n].
Similarly, we have
0 — ExXtY(Z, Gn)/n > Ext2(Z/nZ, Guw) — EXt:(Z, Gy)[n] = Br(X)[n] = 0,
in other words, an isomorphism
9" : Cl(X)/n = Ext3(Z/nZ,Gp).

The composition of 8’ with the duality Ext%(Z/nZ, G,,) ~ H (X, Z/nZ)" is the dual Ar" of

the isomorphism

Ar: HY(X,Z/nZ) — (CL(X)/n)"
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given by the Artin map of class field theory, that is, Ar(x) is the Artin reciprocity map
Cl(X) — 7Z/nZ for the Z/nZ-torsor given by x (see [7, p. 539]).
Taking Yoneda product with the class

[Em)] = (0 - Z/nZ — Z/n*Z — Z/nZ — 0)
in Ext}(Z/nZ,7/n7Z) gives the Bockstein homomorphisms:

8" Exty(Z/nZ,Gy) — Exti(Z/nZ,Gy,),

8 : ExtL(Z,Z/nZ) = H' (X, Z/nZ) — Ext3(Z,Z/nZ) = H*(X, Z/n7).

Under the duality isomorphisms (4.1), the dual §V is identified with the Bockstein §”.
This easily follows from the fact that the Artin—Verdier duality pairings are also given

via Yoneda products.

Proposition 4.4. The dual §" : H*(X,Z/nZ)" — H'(X,Z/nZ)" of the Bocksteinhomo-

morphism §’ is equal to the composition
H?*(X,Z/nZ)¥ 2 aom) — ClX)/n A HY\(X,Z/nZ)".
where the map CI(X)[n] — Cl(X)/n is induced by the identity on CI(X). O

Proof. Consider the composition &' o 8 where 9 is as in (4.2). The connecting 9 is given

as Yoneda product
ExtY(Z, G,,) x Ext'(Z/nZ,Z) — Exty(Z/nZ,Gy)

with the class of R(n) = (0 - Z - Z — Z/nZ — 0). Hence the composition §” o 9 is
given by

(B 0d)(a) =aU[RM)]UI[EM)].

But [R(n)] U [E(n)] = 0, since Ext(Z/nZ,7Z) = (0). Therefore, §” factors through the
quotient by the image of 9:

8" Exty(Z/nZ, Gy) — Exty(Z,Gy)n] = CU(X)[n] — Exti(Z/nZ,Gy).
Combining this with the isomorphism 9’ gives a factorization of §” as a composition

Ext}(Z/nZ,G,,) — Cl(X)[n] = CL(X)/n = Ext2(Z/nZ,G,).
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Since duality identifies 6"V with §” it remains to see that, in the above, € is induced by
the identity map on CI(X):

Write an element y € Cl(X)[n] as the extension 1 - G,, - J' — Z — 0 coming
from pulling back x = (1 - G,, - J — Z/nZ — 0) € Ext,(Z/nZ,G,,) via Z — Z/nZ.
Then §”(x) is the class of

1> Gp—J—Z/n*7Z—7/n7 — 0

concatenating x with E(n). On the other hand, y corresponds under Cl(X)/n —
Ext%(Z/nZ,G,,) to the extension

1-G,—>J —>7Z—7Z/nZ—0

obtained by concatenating 1 - G,, > J — Z - OwithR(n) : 0 > Z - Z — Z/nZ — 0.
Pushing out R(n) : 0 > Z - Z — Z/nZ — 0 by Z — Z/nZ gives E(n) : 0 —> Z/nZ —

7/n*Z — 7Z/nZ — 0 and so we have a commutative diagram

1 Gm J Z/n*7 Z/nZ 0
1 Gm J’ Z Z/nZ 0
which shows the statement. This concludes the proof of the Proposition. |

By the definition of the arithmetic linking pairing
1
(,): H'(X,Z/nZ) x H'(X,Z/nZ) — ZZ/Z =7/nZ

the corresponding homomorphism D : H (X, Z/nZ) — H (X,Z/nZ)" (i.e., with D(x)(x') =

(x,x)) is given as the composition
H'(X,Z/nZ) — H*(X,Z/nZ)" LAy 2 (X,Z/nZ)

of the homomorphism given by cup product and Artin—Verdier duality with the dual of

the Bockstein. By combining this with Proposition 4.4 we see that D is the composition
H'(X,7Z/nZ) — H*(X,Z/nZ)" LN ClX)[n] — Cl(X)/n A HY(X,Z/nZ)".

Lemma 4.5. Suppose that the Z/nZ-torsor x € H (X, Z/nZ) has generic fiber F(§V/")/F

where & € F* is a Kummer generator. Then the fractional ideal of F generated by £ is the
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n-th power (§) = I" of a well-defined fractional ideal I of F; the class [I] = [I(x)] € Cl(X)
only depends on x, is n-torsion, and is equal to the image W (x) of the class invariant

homomorphism. The image of x under the composition of the first two maps above
H'(X,7Z/nZ) — H*(X,Z/nZ)" LN Cl(X)[n]
is U(x) = [I(x)]. O

Proof. The first part of the statement is standard. In fact, we havei : L&o, F ~ F.gln ~
F and, by definition, I = i(£) and so ¥ (x) = [[(x)].

The rest of the statement of the lemma follows from Artin—-Verdier duality, the
computation of the group H?(X,Z/nZ)" ~ Exty(Z/nZ,G,,), and of the local duality pair-
ings via Hilbert symbols, in Ref. [7, p. 540-541, 550-551]. A more detailed statement
appears in Ref. [2]. |

It now follows that D : H'(X,Z/nZ) — H'(X,Z/nZ)" is the map
x> (X — Ar(x)([I(x)])) € HomH" (X, Z/nZ),Z/nZ),

where Ar(x’) : CI(X) — Z/nZ is the Artin (reciprocity) homomorphism associated to the

Z/nZ-torsor given by x'. The statement of the theorem follows. |
Remark 4.6.
(@) It follows from the above description of the map
H'(X,Z/nZ) 3 H'(X,Z/nZ)" ~ Ext:(Z/nZ, Gy) ~ Cl(X)/n

that the group of n-homologically trivial ideal classes in Cl(X)/n coincides
with the image of the class invariant homomorphism ¥ in CI(X)/n. In the
theory of Galois module structure, ideal classes which are in the image of
the class invariant homomorphism are often called “realisable.”

(b) Assuming pu,2 C F, the class invariant pairing can be viewed as a canonical

symmetric tensor
c(F,n) e Tsz/nZ(Cl(F)/n) := (CI(F)/n ® CI(F)/n)*2.

It would be interesting to study this tensor and its variation in families of
number fields. O
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