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We introduce a notion of volume for an �-adic local system 
over an algebraic curve and, under some conditions, give a 
symplectic form on the rigid analytic deformation space of the 
corresponding geometric local system. These constructions 
can be viewed as arithmetic analogues of the volume and 
the Chern-Simons invariants of a representation of the 
fundamental group of a 3-manifold which fibers over the circle 
and of the symplectic form on the character varieties of a 
Riemann surface. We show that the absolute Galois group acts 
on the deformation space by conformal symplectomorphisms 
which extend to an �-adic analytic flow. We also prove 
that the locus of local systems which are arithmetic over a 
cyclotomic extension is the critical set of a collection of rigid 
analytic functions. The vanishing cycles of these functions 
give additional invariants.
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0. Introduction

In this paper, we introduce certain constructions for étale Z�-local systems (i.e. lisse 
Z�-sheaves) on proper algebraic curves defined a field of characteristic different from �. 
In particular, using an �-adic regulator, we define a notion of �-adic volume. We also 
give a symplectic form on the (formal) deformation space of a modular representation 
of the geometric étale fundamental group of the curve. (In what follows, we will use the 
essentially equivalent language of �-adic representations of the étale fundamental group.)

Our definitions can be viewed as giving analogues of constructions in the symplectic 
theory of character varieties of a Riemann surface and of the volume and the Chern-
Simons invariants of representations of the fundamental group of a 3-manifold which 
fibers over S1.

Let us recall some of these classical constructions, very briefly. We start with the 
symplectic structure on the character varieties of the fundamental group Γ = π1(Σ) of a 
(closed oriented) topological surface Σ. To fix ideas we consider the space

XG(Γ) = Hom(Γ, G)/G

parametrizing equivalence classes of representations of Γ with values in a connected 
real reductive group G; there are versions for complex reductive groups. (Here, we are 
being intentionally vague about the precise meaning of the quotient; what is clear is 
that it is taken for the conjugation action on the target.) Suppose that ρ : Γ → G is a 
representation which gives a point [ρ] ∈ XG(Γ). The tangent space T[ρ] of XG(Γ) at [ρ]
can be identified with H1(Γ, Adρ), where Adρ is the Lie algebra of G with the adjoint 
action. Consider the composition

H1(Γ, Adρ) × H1(Γ, Adρ) ∪−→ H2(Γ, Adρ ⊗R Adρ) B−→ H2(Γ,R) ∼= R,

where B is induced by the Killing form and the last isomorphism is given by Poincare 
duality. This defines a non-degenerate alternating form

T[ρ] ⊗R T[ρ] → R,

i.e. ω[ρ] ∈ ∧2T ∗
[ρ]. By varying ρ we obtain a 2-form ω over XG(Γ). Goldman [25] shows 

that this form is closed, i.e. dω = 0, and so it gives a symplectic structure (at least over 
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the space of “good” ρ’s which is a manifold). Note here that the mapping class group of 
the surface Σ acts naturally on the character variety by symplectomorphisms, i.e. maps 
that respect Goldman’s symplectic form. In turn, this action relates to many fascinating 
mathematical structures.

Next, we discuss the notion of a volume of a representation. Here, again to fix ideas, we 
start with a (closed oriented) smooth 3-manifold M and take Γ0 = π1(M). Let X = G/H

be a contractible G-homogenous space of dimension 3 and choose a G-invariant volume 
form ωX on X. A representation ρ : Γ0 = π1(M) → G gives a flat X-bundle space 
π : M̃ → M with G-action. The volume form ωX naturally induces a 3-form ωρ

X on M̃ . 
Take s : M → M̃ to be a differentiable section of π and set

Vol(ρ) =
∫
M

s∗ωρ
X ∈ R

which can be seen to be independent of the choice of section s ([24]). The map ρ �→ Vol(ρ)
gives an interesting real-valued function on the space XG(Γ0).

An important special case is when M is hyperbolic, G = PSL2(C), X = H3 = C×R>0
(hyperbolic 3-space), ωX is the standard volume form on H3, and ρhyp : π1(M) →
PSL2(C) = Isom+(H3) is the representation associated to the hyperbolic structure of 
M = H3/Γ0. Then, Vol(ρhyp) = Vol(M), the hyperbolic volume of M . The Chern-Simons 
invariant CS(M) of M is also related. For this, compose the map

H3(M,Z) = H3(π1(M),Z) ρhyp−−−→ H3(PSL2(C),Z)

with the “regulator”

R : H3(PSL2(C),Z) → C/π2Z.

The product of −i with the image of the fundamental class [M ] under this composition 
is the “complex volume”

VolC(ρhyp) = VolC(M) = Vol(M) + i2π2CS(M)

([45]); this can also be given by an integral over M .
A straightforward generalization of this construction leads to the definition of a com-

plex volume VolC(ρ) for representations ρ : π1(M) → SLn(C) (see, for example, [23]). 
This uses the regulator maps (universal Cheeger-Chern-Simons classes)

Rn : H3(SLn(C),Z) → C/(2πi)2Z.

(See also [16] and [26].)
We now return to the arithmetic set-up of local systems over algebraic curves. Recall 

that we are considering formal deformations of a modular (modulo �) representation. We 
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show that when the modular representation is the restriction of a representation of the 
arithmetic étale fundamental group, the absolute Galois group acts on the deformation 
space by “conformal symplectomorphisms” (i.e. scaling the symplectic form) which ex-
tend to an �-adic analytic flow. This gives an analogue of the action of the mapping class 
group on the character variety by symplectomorphisms we mentioned above. We show 
that if the curve is defined over a field k, the action of a Galois automorphism that fixes 
the field extension k(ζ�∞) generated by all �-power roots of unity, is “Hamiltonian”. We 
use this to express the set of deformed representations that extend to a representation 
of a larger fundamental group over k(ζ�∞) as the intersection of the critical loci for a set 
of rigid analytic functions Vσ, where σ ranges over Gal(ksep/k(ζ�∞)). The Milnor fibers 
and vanishing cycles of Vσ provide interesting constructions.

Let us now explain this in more detail. Let � be a prime which we assume is odd, for 
simplicity. Suppose that X is a smooth geometrically connected proper curve over a field 
k of characteristic prime to �. The properness of the curve is quite important for most of 
the constructions. We fix an algebraic closure k̄. Denote by Gk = Gal(ksep/k) the Galois 
group where ksep is the separable closure of k in k̄, by k(ζ�∞) = ∪nk(ζ�n) the subfield 
of ksep generated over k by all the �n-th roots of unity and by χcycl : Gk → Z∗

� the 
cyclotomic character. Fix a k̄-point x̄ of X, and consider the étale fundamental groups 
which fit in the canonical exact sequence

1 → π1(X ×k k̄, x̄) → π1(X, x̄) → Gk → 1.

For simplicity, we set X̄ = X ×k k̄ and omit the base point x̄. Let F be an étale Z�-
local system of rank d > 1 over X. The local system F corresponds to a continuous 
representation ρ : π1(X) → GLd(Z�).

The �-adic volume Vol(F ) of F is, by definition, a continuous cohomology class

Vol(F ) ∈ H1(k,Q�(−1)).

Here, as usual, Q�(n) = Q� ⊗Z�
χn

cycl is the n-th Tate twist.
Note that if k is a finite field or a finite extension of Qp with p 	= �, then we have 

H1(k, Q�(−1)) = (0). If k is a finite extension of Q�, then

H1(k,Q�(−1)) 
 Q[k:Q�]
� .

If k is a number field with r1 real and r2 complex places, then assuming a conjecture of 
Schneider [53], we have

H1(k,Q�(−1)) 
 Qr1+r2
� .

In fact, using the restriction-inflation exact sequence, we can give Vol(F ) as a continuous 
homomorphism
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Vol(F ) : Gal(ksep/k(ζ�∞)) → Q�(−1)

which is equivariant for the action of Gal(k(ζ�∞)/k).
To define Vol(F ) we use a continuous 3-cocycle

rZ�
: Z��GLd(Z�)3� −→ Q�

that corresponds to the �-adic Borel regulator [31]. The quickest way is probably as 
follows (but see also §4.4): Using the Leray-Serre spectral sequence we obtain a homo-
morphism

H3(π1(X),Q�/Z�) → H3
ét(X,Q�/Z�) → H1(k, H2

ét(X̄,Q�/Z�)) = H1(k,Q�/Z�(−1)).

Taking Pontryagin duals gives

H1(k,Q�/Z�(−1))∗ = H1(Gk,Z�(1)) → H3(π1(X),Z�).

Now compose this with the map given by ρ and the �-adic regulator to obtain

H1(Gk,Z�(1)) → H3(π1(X),Z�)
H3(ρ)−−−→ H3(GLd(Z�),Z�)

rZ�−−→ Q�.

This, by the universal coefficient theorem, gives Vol(F ) ∈ H1(k, Q�(−1)), up to sign. In 
fact, we give an “explicit” continuous 1-cocycle that represents Vol(F ) by a construction 
inspired by classical Chern-Simons theory [20].

Let c be a fundamental 2-cycle in Z��π1(X̄)2�. Lift σ ∈ Gk to σ̃ ∈ π1(X) and consider 
the (unique up to boundaries) 3-chain δ(σ̃, c) ∈ Z��π1(X̄)3� with boundary

∂(δ(σ̃, c)) = σ̃ · c · σ̃−1 − χcycl(σ) · c.

Also, let Fρ(σ̃)(ρ(c)) be the (continuous) 3-chain for GLd(Z�) which gives the “canonical” 
boundary for the 2-cycle ρ(σ̃) · ρ(c) · ρ(σ̃)−1 − ρ(c). We set

B(σ) := rZ�
[ρ(δ(σ̃, c)) − Fρ(σ̃)(ρ(c))] ∈ Q�.

The map Gk → Q�(−1) given by σ �→ χcycl(σ)−1B(σ) is a continuous 1-cocycle which is 
independent of choices up to coboundaries and whose class is Vol(F ).

This explicit construction is more flexible and can be applied to continuous repre-
sentations ρ̄ : π1(X̄) → GLd(A), where A is a more general �-adic ring. In fact, we do 
not need that ρ̄ extends to π1(X) but only that it has the following property: There is 
continuous homomorphism ϕ : Gk → Aut(A) such that, for every σ ∈ Gk, there is a lift 
σ̃ ∈ π1(X), and a matrix hσ̃ ∈ GLd(A), with

ρ̄(σ̃ · γ · σ̃−1) = hσ̃ · ϕ(σ)(ρ̄(γ)) · h−1
σ̃ , ∀γ ∈ π1(X̄).
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(In the above case, A = Z�, ϕ(σ) = id, and hσ̃ = ρ(σ̃).) We again obtain a (continuous) 
class

Volρ,ϕ ∈ H1(k, O(D)(−1))

which is independent of choices. In this, O(D) is the ring of analytic functions on the 
rigid generic fiber D = Spf(A)[1/�] of A, with Gk-action given by ϕ.

In particular, with some more work (see §5.1, and especially Proposition 5.1.2), we 
find that this construction applies to the case that A is the universal formal deformation 
ring of an absolutely irreducible representation ρ̄0 : π1(X̄) → GLd(F�) which is the 
restriction of a continuous ρ0 : π1(X) → GLd(F�). Then the Galois group Gk acts on A
and the action, by its definition, satisfies the condition above. In this case, the ring A
is (non-canonically) a formal power series ring A 
 W (F�)�x1, . . . , xr� and O(D) is the 
ring of rigid analytic functions on the open unit �-adic polydisk.

Suppose now that � is prime to d. We show that, in the above case of a universal 
formal deformation with determinant fixed to be a given character ε : π1(X̄) → Z∗

� , the 
ring A carries a canonical “symplectic structure”. This is reminiscent of the canonical 
symplectic structure on the character varieties of the fundamental groups of surfaces [25]. 
Here, it is given by a continuous non-degenerate 2-form ω ∈ ∧2Ωct

A/W which is closed, 
i.e. dω = 0.

Let us explain our construction of ω. By definition,

Ωct
A/W = lim←−−n

ΩA/mn/W ,

where m is the maximal ideal of A. Consider the map

d log : Kct
2 (A) = lim←−−n

K2(A/mn) → ∧2Ωct
A/W = lim←−−n

ΩA/mn/W

obtained as the limit of

d log(n) : K2(A/mn) → ΩA/mn/W .

We first define a (finer) invariant

κ = lim←−−
n

κn

of the universal formal deformation ρA : π1(X̄) → GLd(A) with values in the limit 
Kct

2 (A) = lim←−−n
K2(A/mn). For n ≥ 1, κn is the image of 1 under the composition

Z�(1) tr∗
−−→ H2(π1(X̄),Z�) → H2(SLd+1(A/mn),Z�)

∼−→ K2(A/mn).

Here the second map is induced by ρ ⊕ ε−1, and the third is the isomorphism given by 
stability and the Steinberg sequence
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1 → K2(A/mn) → St(A/mn) → SL(A/mn) → 1.

Then the 2-form ω ∈ ∧2Ωct
A/W is, by definition, the image

ω = d log(κ).

The closedness of ω follows immediately since all the 2-forms in the image of d log are 
closed. We show that the form ω is also given via cup product and Poincare duality, 
just as in the construction of Goldman’s form above (see Theorem 5.5.2), and that is 
non-degenerate. This is done by examining the tangent space of the Steinberg extension 
using some classical work of van der Kallen.

In fact, this also provides an alternate argument for the closedness of Goldman’s 2-form 
[25] on character varieties. Showing that this form (which is defined using cup product 
and duality) is closed, and thus gives a symplectic structure, has a long and interesting 
history. The first proof, by Goldman, used a gauge theoretic argument that goes back 
to Atiyah and Bott. A more direct proof using group cohomology was later given by 
Karshon [34]. Other authors gave different arguments that also extend to parabolic 
character varieties for surfaces with boundary, see for example [28]. The approach here 
differs substantially: We first define a 2-form which is easily seen to be closed using 
K2, and then we show that it agrees with the more standard form constructed using 
cup product and duality. Let us mention here that Pantev-Toen-Vaquié-Vezzosi have 
given in [47] a general approach for constructing symplectic structures on similar spaces 
(stacks) which uses derived algebraic geometry. In fact, following this, the existence 
of the canonical symplectic structure on Spf(A)[1/�] was also shown, and in a greater 
generality, by Antonio [3], by extending the results of [47] to a rigid-analytic set-up. This 
uses, among other ingredients, the theory of derived rigid-analytic stacks developed in 
work of Porta-Yu [49] (see also [50]). Our argument is a lot more straightforward and, 
in addition, gives the symplectic form over the formal scheme Spf(A). (However, the 
derived approach would be important for handling the cases in which the representation 
is not irreducible.)

It is not hard to see (cf. [15]), that the automorphisms ϕ(σ) of A given by σ ∈ Gk, 
respect the form ω up to Tate twist:

ϕ(σ)(ω) = χ−1
cycl(σ)ω.

(So they are “conformal symplectomorphisms” of a restricted type.) In particular, if k
is a finite field of order q = pf , prime to �, and σ is the geometric Frobenius Frobq, the 
corresponding automorphism ϕ = ϕ(Frobq) satisfies ϕ(ω) = q · ω.

The automorphism ϕ(σ) can be extended to give a “flow”: Using an argument of 
Poonen on interpolation of iterates, we show that we can write D as an increasing union 
of affinoids

D =
⋃

D̄c

c∈N
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(each D̄c isomorphic to a closed ball of radius �−1/c) such that the following is true:
There is N ≥ 1, and for each c, there is a rational number ε(c) > 0, such that, for 

σ ∈ Gk, the action of σnN on A interpolates to an �-adic analytic flow ψt := σtN on D̄c, 
defined for |t|� ≤ ε(c), i.e. to a rigid analytic map

{t | |t|� ≤ ε(c)} × D̄c → D̄c, (t, x) �→ ψt(x),

with ψt+t′ = ψt · ψt′ . As c �→ +∞, ε(c) �→ 0, and so we can think of this as a flow on 
D which, as we approach the boundary, only exists for smaller and smaller times. (A 
similar construction is given by Litt in [38] and, in the abelian case, by Esnault-Kerz 
[17].) We show that if χcycl(σ) = 1, this flow is symplectic and in fact Hamiltonian, i.e. 
it preserves the level sets of an �-adic analytic function Vσ ∈ O(A). More precisely, the 
flow σtN gives a vector field Xσ on D whose contraction with ω is the exact 1-form dVσ. 
It follows that the critical points of the function Vσ are fixed by the flow. We use this 
to deduce that the intersection of the critical loci of Vσ corresponds to representations 
of π1(X̄) that extend to π1(X ×k k′) for some finite extension k′ of k(ζ�∞). The flow 
ψt is an interesting feature of the rigid deformation space D that we think deserves 
closer study. Versions of this flow construction have already been used in [38], [17], [18], 
to obtain results about the set of representations which extend to the arithmetic étale 
fundamental group. It remains to see if its symplectic nature, explained here, can provide 
additional information.

The inspiration for these constructions comes from a wonderful idea of M. Kim [36] (see 
also [13]) who, guided by the folkore analogy between 3-manifolds and rings of integers 
in number fields and between knots and primes, gave a construction of an arithmetic 
Chern-Simons invariant for finite gauge group. He also suggested ([37]) to look for more 
general Chern-Simons type theories in number theory that resemble the corresponding 
theories in topology and mathematical physics. An important ingredient of classical 
Chern-Simons theory is the symplectic structure on the character variety of a closed 
orientable surface: When the surface is the boundary of a 3-manifold, the Chern-Simons 
construction gives a section of a line bundle over the character variety. The line bundle 
has a connection with curvature given by Goldman’s symplectic form. One can try to 
imitate this construction in number theory by regarding the 3-manifold with boundary 
as analogous to a ring of integers with a prime inverted.

In this paper, we have a different, simpler, analogy: Our topological model is a closed 
3-manifold M fibering over the circle S1 with fiber a closed orientable surface Σ of genus 
≥ 1 with fundamental group Γ = π1(Σ). The monodromy gives an element σ of the 
mapping class group Out(Γ), so we can take M to be the “mapping torus” Σ × [0, 1]/∼, 
where (a, 0) ∼ (σ̃(a), 1) with σ̃ : Σ → Σ representing σ. There is an exact sequence

1 → Γ → π1(M) → Z = π1(S1) → 1

and conjugation by a lift of 1 ∈ Z = π1(S1) to π1(M) induces σ ∈ Out(Γ). A smooth 
projective curve X over the finite field k = Fq is the analogue of M ; in the analogy, X̄
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corresponds to Σ and the outer action of Frobenius on π1(X̄) to σ. The formalism extends 
to general fields k with the Galois group Gk replacing π1(S1). The �-adic volume Vol(F )
of a local system F on X corresponds to the (complex) volume of a representation of 
π1(M); this invariant includes the Chern-Simons invariant of the representation. Note 
that a representation of Γ gives a bundle with flat connection over Σ. This extends to 
a bundle with connection on M which corresponds to a representation of π1(M) if the 
connection is flat. Flatness occurs at critical points of the Chern-Simons functional. So, 
in our picture, Vσ is an analogue of this functional. In fact, it is reasonable to speculate 
that the value Vσ(x) at a point x which corresponds to a representation ρ of π1(X)
relates to the �-adic volume Vol(ρ); we have not been able to show such a statement.

In topology, such constructions are often a first step in the development of various 
“Floer-type” theories. It seems that the most relevant for our analogy are theories for 
non-compact complex groups like SL2(C), for which there is a more algebraic treatment. 
A modern viewpoint for a particular version of these is, roughly, as follows: Since the 
character variety of Γ has a (complex, or even algebraic) symplectic structure and σ

acts by a symplectomorphism, the fixed point locus of σ (which are points extending 
to representations of π1(M)) is an intersection of two complex Lagrangians. Hence, it 
acquires a (−1)-shifted symplectic structure in the sense of [47]; this is the same as the 
shifted symplectic structure on the derived moduli stack of SL(2, C)-local systems over 
M constructed in [47]. By [9], the fixed point locus with its shifted symplectic structure 
is locally the (derived) critical locus of a function and one can define Floer homology 
invariants of M by using the vanishing cycles of this function, see [1]. There are similar 
constructions in Donaldson-Thomas theory (see, for example, [4]). Such a construction 
can also be given in our set-up by using the potentials Vσ, see §6.4. Passing to the realm 
of wild speculation, one might ponder the possibility of similar, Floer-type, constructions 
on spaces of representations of the Galois group of a number field or of a local p-adic 
field. We say nothing more about this here. We will, however, mention that the idea 
of viewing certain spaces of Galois representations as Lagrangian intersections was first 
explained by M. Kim in [37, Sect. 10].

Classically, the Chern-Simons invariant and the volume are hard to calculate directly 
for closed manifolds. They can also be defined for manifolds with boundary; combined 
with various “surgery formulas” this greatly facilitates calculations. We currently lack 
examples of such calculations in our arithmetic set-up. We hope that extending the theory 
to non-proper curves will lead to some explicit calculations and a better understanding 
of the invariants. Indeed, there should be such an extension, under some assumptions. 
For example, we expect that there is a symplectic structure on the space of formal 
deformations of a representation of the fundamental group of a non-proper curve when 
the monodromy at the punctures is fixed up to conjugacy. We also expect that, in the 
case that k is an �-adic field, the invariants Vol(F ) and Vσ can be calculated using 
methods of �-adic Hodge theory. We hope to return to some of these topics in another 
paper.
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Notations: Throughout the paper N denotes the non-negative integers and � is a prime. 
We denote by F� the finite field of � elements and by Z�, resp. Q�, the �-adic integers, resp. 
�-adic numbers. We fix an algebraic closure Q̄� of Q� and we denote by | |� (or simply 
| |), resp. v�, the �-adic absolute value, resp. �-adic valuation on Q̄�, normalized so that 
|�|� = �−1, v�(�) = 1. We will denote by F a field of characteristic � which is algebraic over 
the prime field F� and by W (F), or simply W , the ring of Witt vectors with coefficients 
in F . If k is a field of characteristic 	= � we fix an algebraic closure k̄. We denote by ksep

the separable closure of k in k̄, by k(ζ�∞) = ∪n≥1k(ζ�n) the subfield of ksep generated 
over k by the (primitive) �n-th roots of unity ζ�n and by χcycl : Gal(ksep/k) → Z×

� the 
cyclotomic character defined by

σ(ζ�n) = ζ
χcycl(σ)
�n

for all n ≥ 1. We set Gk = Gal(ksep/k). Finally, we will denote by ( )∗ the Pontryagin 
dual, by ( )∨ the linear dual, and by ( )× the units.

1. Preliminaries

We start by giving some elementary facts about �-adic convergence of power series 
and then recall constructions in the homology theory of (pro)-finite groups.

1.1. Factorials

For a ∈ N we can write its unique �-adic expansion a = a0+a1� +· · ·+ad�d, 0 ≤ ai < �. 
Write s�(a) = a0 + · · · + ad, resp. d�(a) = d + 1, for the sum, resp. the number of digits. 
We obviously have |a−1|� ≤ �d�(a)−1 and the following identity is well-known:

v�(a!) =
∞∑

i=1

[ a

�i

]
= a − s�(a)

� − 1 . (1.1.1)

It follows that

|a!|� ≥ �−a/(�−1) = (�−1/(�−1))a. (1.1.2)

For a = (a0, . . . , an) ∈ Nn+1, we write a = a0 + · · · + an.



G. Pappas / Advances in Mathematics 387 (2021) 107836 11
Lemma 1.1.3. For all a = (a0, . . . , an) ∈ Nn+1,

|(a0!a1! · · · an!
( a + n)! )|� ≤ |n!|−1

� · �(n+1)d�( a +n).

Proof. By (1.1.1),

v�((
a0!a1! · · · an!
( a + n)! )) =

−n + s( a + n) −
∑n

i=0 s(ai)
� − 1 .

For a, b ≥ 1, we have

(s(a) + s(b)) − (� − 1)d�(a + b) ≤ s(a + b) ≤ s(a) + s(b).

This gives

s( a + n) −
n∑

i=0
s(ai) ≥ s(n) − (n + 1)(� − 1)d�( a + n).

Hence,

v�((
a0!a1! · · · an!
( a + n)! )) ≥ −n + s(n)

� − 1 + (n + 1)d�( a + n) = −v�(n!) − (n + 1)d�( a + n)

which gives the result. �
Fix c, f ∈ Q>0. We have limx→+∞(cd�(x) − fx) = −∞. Set

N(c, f) = supx∈N≥1
(cd�(x) − fx).

The proof of the following is left to the reader.

Lemma 1.1.4. For each c, we have limf→+∞ N(c, f) = −∞. �
1.2. �-adic convergence

Let E ⊂ Q̄� be a finite extension of Q� with ring of integers O = OE and residue field 
F . Then O is a finite W (F)-algebra with ramification index e. Let l be a uniformizer of 
O; then |l|� = (1/�)1/e. Let R = O�x1, . . . , xm� be the local ring of formal power series 
with coefficients in O and maximal ideal m = (l, x1, . . . , xm). We will allow m = 0 which 
gives R = O.

For x = (x1, . . . , xm) ∈ Q̄m
� , set ||x|| = supi|xi|�. For a multindex i = (i1, . . . , im), we 

use the notations i = i1 + · · · + im and xi = xi1
1 · · · xim

m . For r ∈ �Q, 0 < r ≤ 1, denote 
by

Dr(m) = {x | ||x|| < r}, D̄r(m) = {x | ||x|| ≤ r},
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the rigid analytic open polydisk, resp. closed polydisk, of radius r over E. (We omit E
from the notation). We let

O(D̄r(m)) = {
∑

i∈Nm
aixi | ai ∈ E, lim

i →∞
|ai|�r i = 0},

O(Dr(m)) =
⋂

r′<r

O(D̄r′(m)),

for the E-algebra of rigid analytic functions on the open, resp. closed, polydisk. For 
f =

∑
i aixi ∈ O(D̄r(m)), set

||f ||r = sup
i

|ai|�r i = sup
x∈D̄r(m)

||f(x)||

for the Gauss norm. The E-algebra O(D̄r(m)) is complete for || ||r and O(Dr(m)) is a 
Fréchet space for the family of norms {|| ||r′}r′<r. For simplicity, we will write D = D1(m)
when m is understood, and often write O(D) or simply O instead of O(D1(m)).

The following will be used in §3.4 and §7.

Proposition 1.2.1. a) Consider the formal power series in E[[x1, . . . , xm]]

F =
∑

a∈Nk

ξa · Ga,

with ξa ∈ E, |ξa|� ≤ C1�C2d�( a ), Ga ∈ mB a , where C1, C2, B are positive constants. 
Then F converges to a function in O(D1(m)), and for every a ∈ Q ∩ (0, 1/e]

||F ||(1/�)a ≤ C1�N(C2,aB). (1.2.2)

b) Suppose that (Fn) is a sequence in O(D1(m)) whose terms are power series given as 
in part (a), i.e.

Fn =
∑

a∈Nk

ξa,n · Ga,n

with ξa,n ∈ E, Ga,n ∈ mB(n) a . Assume that |ξa,n|� ≤ C1�C2d�( a ), where C1, C2
are constants and B(n) a function of n with limn �→+∞ B(n) = +∞. Then the series 
F =

∑
n≥0 Fn converges in O = O(D1(m)).

Proof. Observe that G ∈ mk implies that ||G||(1/�)a ≤ ((1/�)a)k = �−ak, for all a ∈
Q ∩ (0, 1/e]. We obtain that

||ξa · Ga||(1/�)a ≤ C1�C2d�( a )−aB a .
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Since lim a →∞ C2d�( a ) − aB a = −∞, F converges. The inequality (1.2.2) fol-
lows from the definition of N(c, f). This shows (a). Part (b) now follows by using (a), 
Lemma 1.1.4, and the Fréchet property of O(D1(m)). �
1.3. Homology of groups

Let H be a (discrete) group and suppose that C•(H) → Z → 0 is the bar resolution 
of Z by free (left) Z[H]-modules. Set C̄•(H) = Z ⊗Z[H] C•(H) = (C̄j(H), ∂j) for the 
corresponding complex which calculates the homology groups H•(H, Z). Then, C̄n(H)
is the free abelian group generated by elements [h1|h2| · · · |hn] and the boundary map

∂n : C̄n(H) → C̄n−1(H)

is given by the usual formula

∂n([h1| · · · |hn]) = [h2| · · · |hn] +

+
∑

0<j<n

(−1)j [h1| · · · |hjhj+1| · · · |hn] + (−1)n[h1| · · · |hn−1].

Set

C̄3,2(H) = τ[−3,−2]C̄•(H)[−2]

for the complex in degrees −1 and 0 obtained by shifting the truncation

C̄3(H)/Im(∂4) ∂3−→ ker(∂2)

of C̄•(H). Its homology groups are

H−1(C̄3,2(H)) = H3(H,Z), H0(C̄3,2(H)) = H2(H,Z).

For h ∈ H, denote by innh = h( ) : H → H the inner automorphism given by x �→ hx =
hxh−1. It induces chain homomorphisms

innh : C•(H) → C•(H), innh : C̄•(H) → C̄•(H).

Note

innh([g1| · · · |gn]) = [hg1h−1| · · · |hgnh−1].

It is well-known that innh induces the identity on homology groups. In fact, the formula

Fh([g1| · · · |gn]) =
∑

(−1)r[g1| · · · |h−1|hgr+1h−1| · · · |hgnh−1],

0≤r≤n
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defines a graded chain map

Fh : C̄•(H) → C̄•+1(H)

such that, for all c ∈ C̄•(H),

innh(c) − c = Fh(∂(c)) + ∂(Fh(c)),

i.e. giving a homotopy between innh and the identity. (cf. [36] Appendix B by Noohi, 
Prop. 7.1.) By [36], Cor. 7.3, we have

Fhh′ = Fh · innh′ + Fh′ (1.3.1)

in C̄•+1(H)/Im(∂). (In [36], Noohi gives an explicit Fh,h′ : C̄•(H) → C̄•+2(H) such that 
Fhh′ − Fh′ − Fh · innh′ = ∂Fh,h′ .)

1.3.2. Suppose that H ′ ⊂ H is a subgroup and h ∈ H is in the centralizer ZH(H ′) of H ′

in H. Then, for h′
1, . . . , h′

n ∈ H ′,

Fh([h′
1| · · · |h′

n]) =
∑

0≤r≤n

(−1)r[h′
1| · · · |h′

r|h−1|h′
r+1| · · · |h′

n]. (1.3.3)

Furthermore, if z ∈ Z2(H ′) ⊂ Z2(H) is a 2-cycle, then homotopy identity gives ∂3Fh(z) =
0. Hence, Fh induces [Fh] : H2(H ′) → H3(H). The identity (1.3.1) gives

[Fh1h2 ] = [Fh1 ] + [Fh2 ]

for h1, h2 centralizing H ′. Therefore, we obtain a homomorphism

H1(ZH(H ′)) ⊗Z H2(H ′) → H3(H); (h′, z) �→ [Fh′(z)]. (1.3.4)

We can now see that this homomorphism agrees up to sign with the composition

H1(ZH(H ′)) ⊗Z H2(H ′) ∇−→ H3(ZH(H ′) × H ′) i−→ H3(H)

where the first map is obtained by the ×-product in group homology and the second is the 
natural map given by the group homomorphism ZH(H ′) ×H ′ → H, (h, h′) �→ hh′ = h′h. 
Indeed, the ×-product is given by the shuffle product and so the class of

(i · ∇)([h] ⊗ [h′
1| · · · |h′

n])

is (up to sign) the same as in formula (1.3.3). In view of this fact, we will set

∇h,H′ = [Fh] : H2(H ′) → H3(H),

for h ∈ ZH(H ′) and denote the map (1.3.4) by ∇ZH (H′),H′ .
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1.4. Homology of profinite groups

Let now H be a profinite group. Set

Z��H� = lim←−−U
Z�[H/U ]

for the complete Z�-group ring of H, where the limit is over finite index open normal 
subgroups U ⊂ H.

We can consider homology Hi(H, −) with coefficients in compact Z��H�-modules 
(see [10], [59], [44]). Recall that a Z��H�-module is called compact if it is given by 
the inverse limit of finite discrete �-power torsion discrete H-modules. The category of 
compact Z��H�-modules has enough projectives. In fact, there is a standard profinite 
bar resolution ([52]) C•(H)� → Z� → 0 with terms

Cn(H)� = Z��H
n+1� = lim←−−U,i

Z/�iZ[(H/U)n+1]

and the standard differential.
We can now give the complexes

C̄•(H)� = C•(H)�⊗̂Z��H�Z�, C̄3,2(H)� = (τ[−3,−2]C̄(H)�)[−2]

similarly to before. We have

H−1(C̄3,2(H)�) = H3(H,Z�), H0(C̄3,2(H)�) = H2(H,Z�).

Similarly to the above, we have chain morphisms

innh : C•(H)� → C•(H)�, innh : C̄•(H)� → C̄•(H)�,

and a homotopy Fh : C̄•(H)� → C̄•+1(H)� between innh and the identity which satisfies 
(1.3.1) in C̄•+1(H)/Im(∂)�. The rest of the identities in the previous paragraph are also 
true.

2. K2 invariants and 2-forms

In this section, we recall the construction of “universal” invariants of representations 
with trivial determinant. These take values in the second cohomology of the group with 
coefficients either in Milnor’s K2-group or in (closed) Kähler 2-forms of the ground ring. 
Using some old work of van der Kallen, we reinterpret the evaluation of these invariants 
on the tangent space via a cup product in cohomology. This allows us to show that 
a representation of a Poincare duality group in dimension 2 with trivial determinant 
gives a natural closed 2-Kähler form over the ground ring. This construction provides 
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an algebraic argument for the existence of Goldman’s symplectic form on the character 
variety of the fundamental group of a closed Riemann surface ([25]).

Let A be a (commutative) local ring so that K1(A) = A× and SL(A) is generated by 
elementary matrices. We have the canonical Steinberg central extension ([43])

1 → K2(A) → St(A) → SL(A) → 1.

The group GL(A) acts on St(A) by conjugation in a way that lifts the standard conju-
gation action on SL(A) and the action fixes every element of K2(A) ([62], Exerc. 1.13, 
Ch. III).

2.1. A K2 invariant

Suppose that Γ is a discrete group and ρ : Γ → SL(A) is a group homomorphism. For 
each γ ∈ Γ, choose a lift s(ρ(γ)) ∈ St(A) of ρ(γ). Then

κρ : Γ × Γ → K2(A)

given by

κρ(γ1, γ2) := s(ρ(γ1γ2))s(ρ(γ2))−1s(ρ(γ1))−1 ∈ K2(A)

is a 2-cocycle. The corresponding class

κρ ∈ H2(Γ, K2(A))

is independent of the choice of lifts and depends only on the equivalence class of ρ

up to GL(A)-conjugation. The class κρ is the pull-back via ρ of a universal class in 
H2(SL(A), K2(A)) defined by the Steinberg extension.

Remark 2.1.1. A very similar construction is described in [19, §15].

2.1.2. Recall that there is a group homomorphism

d log : K2(A) → Ω2
A := Ω2

A/Z; {f, g} �→ d log(f) ∧ d log(g)

where {f, g} is the Steinberg symbol of f , g ∈ A∗. Here, under our assumption that A is 
local, K2(A) is generated by such symbols ([58]). Since d(f−1df) = 0, the image of d log
lies in the subgroup of closed 2-forms. We denote by

ωρ ∈ H2(Γ, Ω2
A)

the image of κρ under the map induced by d log.
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2.1.3. If H2(Γ, Z) 
 Z and [a] ∈ H2(Γ, Z) is a generator, we set

κ[a],ρ := [a] ∩ κρ ∈ K2(A).

Alternatively, we can obtain this class by evaluating the homomorphism

H2(Γ,Z) H2(ρ)−−−→ H2(SL(A),Z) = K2(A)

at [a]. We can now set

ω[a],ρ := d log(κ[a],ρ) ∈ Ω2
A.

This construction applies, in particular, when Γ is the fundamental group of a closed 
surface. Note that by its construction, the 2-form ω[a],ρ is closed. When the choice of [a]
is understood, we will omit it from the notation.

2.2. The tangent of the Steinberg extension

Suppose now that R is a local ring in which 2 is invertible. Let V be a finite free 
R-module of rank n. Let us consider the (local) R-algebra

A = R × V = Sym•
R(V )/M2

with multiplication (r, v) · (r′, v′) = (rr′, rv′ + r′v). Set

(r, v)0 = r.

Notice that

Ω2
A/R

∼= ∧2V

by d(0, v) ∧ d(0, v′) �→ v ∧ v′ and so we have a group homomorphism

ι : K2(A) → K2(R) × ∧2V ; {f, g} �→ ({f0, g0}, d log({f, g})).

We can write

SL(A) ∼= SL(R) � M0(V ),

where M0(V ) = lim−−→m
M0

m×m(V ). Here, M0
m×m denotes the m × m matrices with trace 

zero. In the above, g = γ(1 + m) ∈ SL(A) maps to (γ, m) and the semi-direct product is 
for the action of SL(R) on M0(V ) by conjugation.
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Define

Tralt : M0(V ) × M0(V ) → ∧2V

by

Tralt(X, Y ) = 1
2(Tr(X ⊗ Y ) − Tr(Y ⊗ X)) ∈ ∧2V.

Here, X ⊗ Y denotes the square matrix with entries in V ⊗ V which is obtained from X
and Y (which have entries in V ) by replacing in the formula for the product of matrices 
the multiplication by the symbol ⊗.

Proposition 2.2.1. Consider the Cartesian product

S(A) = St(R) × M0(V ) × ∧2V,

on which we define the operation

(γ, m, ω) · (γ′, m′, ω′) = (γγ′, γ′ −1mγ′ + m′, ω + ω′ + Tralt(γ′ −1mγ′, m′)).

a) This operation makes S(A) into a group and there is a surjective group homomorphism

S(A) → SL(A); (γ, m, ω) �→ (γ, m),

whose kernel is the central subgroup K2(R) × ∧2V of S(A).
b) There is a unique group homomorphism

ι̃ : St(A) −→ S(A)

which extends ι and which lifts the identity on SL(A).
c) Assume in addition Ω1

R/Z = 0. Then ι and ι̃ are isomorphisms

ι : K2(A) ∼−−→ K2(R) × ∧2V, ι̃ : St(A) ∼−−→ S(A).

Proof. Part (a) is obtained by a straightforward calculation. Part (b) follows from (a) 
and the universal property of the Steinberg extension. Using the same universal property 
of the Steinberg extension, we see that to show (c) is enough to show that ι : K2(A) →
K2(R) × ∧2V is an isomorphism, assuming Ω1

R/Z = 0. By [63] there is a functorial 
isomomorphism

∂ : K2(R[ε]) ∼−→ K2(R) × Ω1
R,
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where R[ε] = R[x]/(x2) is the ring of dual numbers and ε = x mod (x)2. Since R is 
local, we can represent elements of K2(R) and K2(R[ε]) by Steinberg symbols. Then, the 
isomorphism is given using

d log : K2(R[ε]) → Ω2
R[ε] = Ω2

R ⊕ εΩ2
R ⊕ dε ∧ Ω1

R.

Indeed, we have (see [27, 2.3], or [8])

∂({f, g}) = ({f0, g0}, (d log)2{f, g})

where dε ∧ (d log)2{f, g} is the projection of d log({f, g}) on the last component above. 
In particular,

dε ∧ (d log)2{1 + srε, r} = dε ∧ sdr, ∂({1 + srε, r}) = (0, sdr).

Suppose that n = rkRV = 1, so A 
 R[ε]. Since Ω1
R/Z = (0), ∧2V = (0) and, by the 

above, ι is an isomorphism (both sides are K2(R)). We now argue by induction on n. 
Set A′ = R × V ′, with rkRV ′ = n − 1 and basis v′

1, . . . , v′
n−1, so that A is a quotient of 

A′[ε] by ε · v′
i = 0. We have ∧2V = ∧2(R · ε ⊕ V ′) = ∧2V ′ ⊕ (ε ∧ V ′) and by the induction 

hypothesis

K2(A′) 
 K2(R) × ∧2V ′, so,

K2(A′[ε]) = K2(A′) × dε ∧ Ω1
A′/Z 
 K2(R) × ∧2V ′ × dε ∧ V ′ 
 K2(R) × ∧2V.

Since A′[ε]× → A× is surjective and K2(A) is generated by Steinberg symbols, the group 
K2(A) is a quotient of K2(A′[ε]) and the composition

K2(A′[ε]) → K2(A) ι−→ K2(R) × ∧2V

is the isomorphism above. The claim that ι is an isomorphism follows. �
2.3. Tangent space and pairings

Suppose now that A = R × V is as in the previous paragraph and that

ρ : Γ → SL(A) = SL(R) � M0(V )

is a representation that lifts ρ0 : Γ → SL(R). Then we can write

ρ(γ) = ρ0(γ)(1 + c(γ))

where c : Γ → M0(V ) is a 1-cocycle with M0(V ) carrying the adjoint action γ · M =
ρ0(γ)−1Mρ0(γ). We can consider the cup product
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c ∪ c ∈ H2(Γ, M0(V ) ⊗R M0(V )).

This is given by the 2-cocycle

(c ∪ c)(γ1, γ2) = ρ0(γ2)−1c(γ1)ρ0(γ2) ⊗ c(γ2).

Applying the map H2(Γ, Tralt) induced by Tralt : M0(V ) × M0(V ) → ∧2V gives

Tralt(c ∪ c) ∈ H2(Γ, ∧2V ).

The following Proposition, in conjuction with §2.4 below, shows that the form ωρ agrees, 
under some conditions, with a more standard construction which uses cup product and 
duality.

Proposition 2.3.1. We have

ωρ = Tralt(c ∪ c)

in H2(Γ, Ω2
A) = H2(Γ, ∧2V ).

Proof. Since ι̃ : St(A) ∼−→ S(A), we can calculate ωρ using the extension S(A). We can 
first calculate

κ′
ρ(γ1, γ2) = s(ρ(γ1γ2))s(ρ(γ2))−1s(ρ(γ1))−1

by using the lifts:

s(ρ(γ)) = (s(ρ0(γ)), c(γ), 0) ∈ St(R) × M0(V ) × ∧2V = S(A).

A straightforward calculation using the group operation on S(A) gives

κ′
ρ(γ1, γ2) = (κ′

ρ0
(γ1, γ2), 0, Tralt(ρ0(γ2)−1c(γ1)ρ0(γ2), c(γ2)).

The cohomology class of κρ maps to the one of κ′
ρ in H2(Γ, K2(R) ×∧2V ) under the map 

given by ι. Hence,

ωρ(γ1, γ2) = Tralt(ρ0(γ2)−1c(γ1)ρ0(γ2), c(γ2)) = Tralt((c ∪ c)(γ1, γ2)),

in cohomology. �
2.4. The 2-form and duality

Suppose that Γ satisfies Poincare duality in dimension 2 “over R” in the following 
sense:
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i) There is an isomorphism tr : H2(Γ, R) 
 R.
ii) For any Γ-module W which is a finite free R-module, Hi(Γ, W ) is a finite free R-

module which is trivial unless i = 0, 1, 2.
iii) The cup product pairing

Hi(Γ, W ) × H2−i(Γ, W ∨) → H2(Γ, W ⊗R W ∨) → H2(Γ, R) tr−→ R

is a perfect R-bilinear pairing. (Here, W ∨ = HomR(W, R).)

Consider ρ0 : Γ → SLn(R) and apply the above to W = Ad0
ρ = M0

n×n(R). The trace 
form (X, Y ) �→ Tr(XY ) gives an R-linear map

W → W ∨.

(This is an isomorphism when n is invertible in R. We then use this to identify W with 
W ∨.) Combining with the above we obtain

〈 , 〉 : H1(Γ, W ) × H1(Γ, W ) → R.

(If n is invertible in R this is a perfect pairing.)
Suppose that c1 and c2 are two 1-cocycles of Γ in W that correspond to lifts of ρ0 to 

representations ρ1 and ρ2 with values in R[ε]. Recall that there is a natural isomorphism 
between the tangent space of the functor of deformations of ρ0 to Artin local R-algebras 
and the cohomology group H1(Γ, W ) (cf. [41] §21). Set V ∨ = H1(Γ, W ) which is a finite 
free R-module and denote by ρ : Γ → SLn(A), with A = R × V the universal first-
order deformation of ρ0. Then, ρi, i = 1, 2, correspond to vi ∈ V ∨ and ρi is given by 
specializing A = R × V → R[ε] = R × Rε with V → Rε given by vi ∈ V ∨.

We can consider v1 ∧ v2 ∈ ∧2V ∨ = (∧2V )∨. From the above description, it follows 
that

〈c1, c2〉 = (v1 ∧ v2)(Tralt(c ∪ c)).

Therefore, by Proposition 2.3.1,

〈c1, c2〉 = (v1 ∧ v2)(ωρ).

This translates to

〈c1, c2〉 = ωρ(c1, c2), (2.4.1)

in which we think of (c1, c2) as a pair of tangent vectors.
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Remark 2.4.2. The equality (2.4.1) implies that the form ωρ can be used to recover the 
symplectic form on the SLn-character varieties of fundamental groups of closed surfaces 
constructed by Goldman [25]. Since ωρ is visibly closed, this gives a direct and completely 
algebraic argument for the closedness of Goldman’s form. This approach is also suggested 
in [19]. There an identity like (2.4.1) for Γ the fundamental group of a surface is explained 
by topological means.

2.5. K2 invariants and 2-forms; profinite groups

Let Γ be a profinite group and A a complete local Noetherian ring with finite residue 
field F of characteristic � and maximal ideal m. We will view A as a W = W (F)-algebra 
where W (F) is the ring of Witt vectors. The ring A carries the natural profinite m-adic 
topology which induces a profinite topology on GLd(A), SLd(A). There are “continuous 
variants” of the constructions of the previous paragraphs for continuous representations

ρ : Γ → SLd(A) ⊂ SL(A).

For n ≥ 1, set An = A/mn.

2.5.1. Our constructions give classes

κ̂ρ = (κρ,n)n ∈ lim←−−n
H2(Γ, K2(An)), ω̂ρ = (ωρ,n)n ∈ lim←−−n

H2(Γ, Ω2
An/W ).

Now let

Kct
2 (A) := lim←−−n

K2(An), Ω̂1
A/W = lim←−−n

Ω1
An/W .

There is a continuous map

d log : Kct
2 (A) → Ω̂2

A/W

obtained as the inverse limit of d log : K2(An) → Ω2
An/W .

3. Chern-Simons and volume

In this section we give the main algebraic construction. We first assume that Γ is 
a discrete group. This case is less technical but still contains the main idea. The con-
struction depends on the suitable choice of a 3-cocycle. The profinite case (for �-adic 
coefficients) is explained later; in this case, we show that such a 3-cocycle can be given 
using the �-adic Borel regulator.
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3.1. The Chern-Simons torsor

Until further notice, Γ is a discrete group and ρ : Γ → GLd(A) is a homomorphism, 
d ≥ 2. Also, in what follows, we always assume

(H) H2(Γ, Z) 
 Z and H3(Γ, Z) = 0.

Let C•(Γ), C•(GLd(A)), be the bar resolutions. We may regard Cj(GLd(A)) as Z[Γ]-
modules using ρ and obtain a morphism of complexes

ρ : C•(Γ) → C•(GLd(A)).

This gives

ρ : C̄3,2(Γ) → C̄3,2(GLd(A))

where C̄3,2 is as defined in §1.3.
For simplicity, set

D(Γ) := C̄3(Γ)/Im(∂4), and D(A) := C̄3(GLd(A))/Im(∂4).

Note that D(Γ) acts on Z2(Γ) × D(A) by

d + (c, v) = (c + ∂3(d), v + ρ(d)).

Now define the D(A)-torsor Tρ of “global sections” (cf. [20], [21]):

Definition 3.1.1. We set Tρ to be the set of group homomorphisms T : Z2(Γ) → D(A)
which are D(Γ)-equivariant, i.e. satisfy

T (c + ∂3(d)) = T (c) + ρ(d).

Alternatively, since

∂3 : D(Γ) = C̄3(Γ)/Im(∂4) ↪→ Z2(Γ),

is injective, the set Tρ can be described as the set of homomorphic extensions of ρ :
D(Γ) → D(A) to Z2(Γ) → D(A), or as the set of splittings of the extension

0 → D(A) → E → H2(Γ,Z) → 0

obtained by pushing out 0 → D(Γ) → Z2(Γ) → H2(Γ, Z) → 0 by ρ : D(Γ) → D(A). 
This set is non-empty and hence a D(A)-torsor, since H2(Γ, Z) 
 Z.
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3.1.2. Suppose in the above construction, we replace ρ : Γ → GL(A) by innh · ρ, for some 
h ∈ GL(A). We obtain a new torsor Tinnh·ρ defined using the D(Γ)-action on D(A) by

v +′ d = v + hρ(d)h−1.

Observe that, for c′ − c = ∂3(d), we have

hρ(d)h−1 = ρ(d) + Fh(ρ(c′ − c)) = ρ(d) + Fh(ρ(c′)) − Fh(ρ(c)),

so

hρ(d)h−1 + v − Fh(ρ(c′)) = ρ(d) + v − Fh(ρ(c)).

The last identity shows that

T �→ T ′ = T + Fh · ρ,

gives a D(A)-equivariant bijection Tρ
∼−→ Tinnh·ρ.

Even though it would be possible to formulate the constructions that follow in terms 
of the torsor Tρ, we choose a more concrete treatment that uses group co/cycles.

3.2. Cocycles and cohomology classes

Suppose we are given a representation ρ : Γ → GLd(A), d ≥ 2, and a group G

together with two homomorphisms ψ : G → Out(Γ), ϕ : G → AutO−alg(A). We assume 
the following condition:

(E) For each σ ∈ G, the representation ρσ given by

ρσ(γ) = ϕ(σ)−1(ρ(ψ̃(σ)(γ)))

is equivalent to ρ. Here, we denote by ψ̃(σ) some automorphism of Γ that lifts ψ(σ).

In what follows, we omit the notation of ϕ and ψ for simplicity. We write σ(a) instead 
of ϕ(σ)(a) and also write σ̃ for an automorphism of Γ that lifts ψ(σ). Then, equivalently, 
the condition (E) amounts to:

(E’) For each σ ∈ G, there is hσ̃ ∈ GLd(A) such that

ρ(σ̃ · γ) = hσ̃ · σ(ρ(γ)) · h−1
σ̃ (3.2.1)

for all γ ∈ Γ.
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Let ZA(ρ) be the centralizer of the image Im(ρ) ⊂ GLd(A). The image of hσ̃ in 
GLd(A)/ZA(ρ) is uniquely determined by the automorphisms σ̃, σ and by ρ.

3.2.2. Suppose that B(A) is a G-module which supports a G-equivariant homomorphism

r = rA : D(A) = C̄3(GLd(A))/Im(∂4) → B(A)

such that

r(Fh(u)) = 0,

for all h ∈ ZA(ρ), u ∈ Z2(Im(ρ)).
As explained in §1.3.1, for u ∈ Z2(Im(ρ)), h ∈ ZA(ρ), the homotopy property gives 

∂3Fh(u) = 0 and so Fh gives

∇h,Im(ρ) = [Fh] : H2(Im(ρ)) → H3(GLd(A)).

The condition r(Fh(u)) = 0 is equivalent to:

(V) For r : H3(GLd(A)) → B(A), we have r · ∇h,Im(ρ) = 0, for all h ∈ ZA(ρ).

Let Hdec
3 (GLd(A)) be the subgroup of H3(GLd(A)) generated by the images of

∇h,C : H1(〈h〉) ⊗Z H2(C) → H3(GLd(A)),

where C runs over all subgroups of GLd(A) and h all elements centralizing C. For (V) 
to be satisfied for all ρ, it is enough to have

(V’) r : H3(GLd(A)) → B(A) vanishes on Hdec
3 (GLd(A)).

3.2.3. Choose, once and for all, a generator of H2(Γ, Z). Pick c ∈ Z2(Γ) with [c] = 1 in 
H2(Γ, Z) 
 Z. Suppose that σ̃ acts on H2(Γ, Z) 
 Z via multiplication by aσ ∈ Z×. 
(This number only depends on σ through ψ(σ) ∈ Out(Γ).) Set

Aσ̃(c) = ρ(d(σ̃, c)) − a−1
σ Fhσ̃

(σ(ρ(c))) ∈ D(A).

Here, d(σ̃, c) is the (unique) element in D(Γ) = C̄3(Γ)/Im(∂4) with

∂3(d(σ̃, c)) = a−1
σ σ̃(c) − c.

In what follows, we will often omit the inclusion ∂3 : D(Γ) ↪→ Z2(Γ) and write a−1
σ σ̃(c) −c

instead of d(σ̃, c) to ease the notation.
Assume that r : D(A) = C̄3(GLd(A))/Im(∂4) → B(A) satisfies condition (V).
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Lemma 3.2.4. The element rAσ̃(c) of B(A) does not depend on the choices of σ̃ and hσ̃.

Proof. First we check that rAσ̃(c) is independent of the choice of hσ̃. If h′
σ̃ is another 

choice, then h′
σ̃ = hσ̃ · z with z ∈ ZA(ρ). Notice that for u = σ(ρ(c)) ∈ Z2(Im(ρ)) we 

have

Fh′
σ̃
(u) = Fhσ̃·z(u) = Fz(u) + Fhσ̃

(Innz(u)) = Fz(u) + Fhσ̃
(u).

Hence, by condition (V), rFh′
σ̃
(u) = rFhσ̃

(u) and the result follows. Next, we show that 
Aσ̃(c) is actually independent of the choice of the automorphism σ̃ lifting ψ(σ). Suppose 
we replace σ̃ by another choice σ̃′ = Innδ · σ̃ lifting ψ(σ) and we take

hInnδ·σ̃ = ρ(δ)hσ̃.

Then we have

aσAσ̃′(c) =ρ(δσ̃(c)δ−1 − aσc) − Fρ(δ)hσ̃
(σρ(c))

=ρ([δσ̃(c)δ−1 − σ̃(c)] + [σ̃(c) − aσc]) − Fhσ̃
(σ(ρ(c)) − Fρ(δ)(hσ̃σρ(c)h−1

σ̃ )

=aσAσ̃(c) + ρ([δσ̃(c)δ−1 − σ̃(c)]) − Fρ(δ)(hσ̃σρ(c)h−1
σ̃ ).

But

ρ([δσ̃(c)δ−1 − σ̃(c)]) =ρ(Fδ(σ̃(c))

=Fρ(δ)(ρ(σ̃(c)))

=Fρ(δ)(hσ̃σρ(c)h−1
σ̃ ).

So

aσAσ̃′(c) = aσAσ̃(c).

We used hσ̃′ = ρ(δ)hσ̃ for this but now by applying the independence of that choice that 
we shown before, we see that rAσ̃ does not depend on the choice of the lift σ̃ ∈ Aut(Γ)
or of hσ̃. �

In view of Lemma 3.2.4 it makes sense to set

Volσ(c) = rAσ̃(c) ∈ B(A).

We denote B(A)(−1) the G-module B(A) with twisted action: σ ∈ G acts by a−1
σ · σ.

Proposition 3.2.5. Assume r : D(A) → B(A) satisfies condition (V). The map G →
B(A)(−1) given by σ �→ Volσ(c) = rAσ̃(c) is a 1-cocycle. Its cohomology class
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Volρ,ψ,ϕ ∈ H1(G, B(A)(−1))

is independent of the choice of c ∈ Z2(Γ) with [c] = 1. The class Volρ,ψ,ϕ depends only 
on ψ, ϕ, and the equivalence class of the representation ρ.

Proof. In the proof below some of the identities are true in D(A) before applying r. 
However, eventually, the argument uses the independence given by Lemma 3.2.4 which 
needs r to be applied.

1) Suppose c′ = c + ∂(d). Then

Aσ̃(c′) = a−1
σ (ρ(σ̃c − aσc + σ̃d − aσd)) − a−1

σ Fhσ̃
(σ(ρ(c) + ∂ρ(d))

= Aσ̃(c) + a−1
σ ρ(σ̃d) − (ρd) − a−1

σ Fhσ̃
(∂σρd)

= Aσ̃(c) + a−1
σ [hσ̃σρ(d)h−1

σ̃ − Fhσ̃
(∂σρd)] − (ρd)

= Aσ̃(c) + (a−1
σ σ − 1)(ρd).

The last equality follows from

hσ̃σρ(d)h−1
σ̃ − σρ(d) = Fhσ̃

(∂σρ(d)).

This implies the independence after we show that σ �→ rAσ(c) is a 1-cocycle.
2) We will now check the (twisted) cocycle condition

rAστ = rAσ + a−1
σ σ(rAτ ).

(We omit c from the notation). In view of Lemma 3.2.4 we are free to calculate using the 
lift σ̃τ̃ of the outer automorphism ψ(στ) and taking hσ̃τ̃ to be equal to hσ̃σ(hτ̃ ). Indeed, 
we have

ρ((σ̃τ̃)(γ)) =ρ(σ̃(τ̃(γ))

=hσ̃σ(ρ(τ̃(γ)))h−1
σ

=hσ̃σ(hτ̃ )(στ)(ρ(γ))(hσ̃σ(hτ̃ ))−1.

It is notationally simpler to work with Bσ̃ = aσAσ̃. Write

Bσ̃τ̃ = ρ(σ̃τ̃(c) − aστ c) − Fhσ̃τ̃
(στρ(c)).

Now

σ̃τ̃(c) − aστ c = [σ̃τ̃(c) − aτ σ̃(c)] + [aτ σ̃(c) − aσaτ c]

in D(Γ). Hence,
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ρ(σ̃τ̃(c) − aστ c) =ρ(σ̃(τ̃(c) − aτ c)) + aτ ρ(σ̃(c) − aσc)

=ρ(σ̃(τ̃(c) − aτ c)) + aτ Bσ̃(c) + aτ Fhσ̃
(σρ(c))

Now

ρ(σ̃(τ̃(c) − aτ c)) = hσ̃ · σρ(τ̃(c) − aτ c) · h−1
σ̃

= σρ(τ̃ c − aτ c) + Fhσ̃
(σρ(τ̃ c − aτ c)).

So,

ρ(σ̃(τ̃(c) − aτ c)) = σBτ̃ (c) + σFhτ̃
(τρ(c)) + Fhσ̃

(σρ(τ̃ c − aτ c)).

All together, we get

Bσ̃τ̃ = σBτ̃ (c) + σFhτ̃
(τρ(c)) + Fhσ̃

(σρ(τ̃ c − aτ c))+

+ aτ Bσ̃(c) + aτ Fhσ̃
(σρ(c)) − Fhσ̃τ̃

(στρ(c)).

Now

Fhσ̃
(σρ(τ̃ c − aτ c)) = Fhσ̃

(σρ(τ̃ c)) − aτ Fhσ̃
(σρc),

which gives

Bσ̃τ̃ = σBτ̃ (c) + aτ Bσ̃(c) + σFhτ̃
(τρ(c)) + Fhσ̃

(σρ(τ̃ c)) − Fhσ̃τ̃
(στρ(c))

So it is enough to show the identity

Fhσ̃τ̃
(στρ(c)) = σFhτ̃

(τρ(c)) + Fhσ̃
(σρ(τ̃ c)).

We have

σFhτ̃
(τρ(c)) = Fσ(hτ̃ )(στρ(c)).

Fhσ̃
(σρ(τ̃ c)) = Fhσ̃

(σ(hτ̃ )(στ)(ρ(c))σ(hτ̃ )−1)

=Fhσ̃
(innσ(hτ̃ )(στρ(c))).

Now apply

Fhσ̃τ̃
= Fhσ̃σ(hτ̃ ) = Fσ̃(hτ̃ ) + Fhσ̃

· innσ(hτ̃ )

to conclude Bσ̃τ̃ (c) = σBτ̃ (c) + aτ Bσ̃(c). Since Aσ̃ := a−1
σ Bσ̃, this gives

Aσ̃τ̃ = a−1
στ Bσ̃τ̃ = a−1

σ σ(a−1
τ Bτ̃ ) + a−1

σ Bσ̃ = a−1
σ σ(Aτ̃ ) + Aσ̃
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as desired.
3) It remains to show the independence up to equivalence of representations. Suppose 

we change ρ to ρ′ = inng · ρ, with g ∈ GLd(A), but leave ϕ and ψ the same. Then,

ρ′(σ̃γ) = gρ(σ̃γ)g−1 = h′
σ̃σ(gρ(σ̃γ)g−1))h′−1

σ̃ ,

so we can take

h′
σ̃ = ghσ̃σ(g)−1.

Then

B′
σ̃ = gρ(σ̃(c) − aσc)g−1 − Fghσ̃σ(g)−1(σ(gρg−1)(c))

= ρ(σ̃(c) − aσc) + Fg(ρ(σ̃(c) − aσc)) − Fghσ̃σ(g)−1(σ(gρg−1)(c))

= Bσ̃ + Fhσ̃
(σ(ρc)) + Fg(ρ(σ̃(c) − aσc)) − Fghσ̃σ(g)−1(σ(gρg−1)(c)).

Now

Fg(ρ(σ̃(c) − aσc)) = Fg(hσ̃σρ(c)h−1
σ̃ ) − aσFg(ρ(c)),

Fghσ̃σ(g)−1(σ(gρg−1)(c)) = Fghσ̃
(σρ(c)) + Fσ(g)−1(σ(gρg−1)(c)) =

= Fg(hσ̃σρ(c)h−1
σ̃ ) + Fhσ̃

(σρ(c)) − Fσ(g)(σρ(c)),

(The last equality is true since Fh · innh−1 + Fh−1 = Fh·h−1 = F1 = 0 gives

Fσ(g)−1(σ(gρg−1)(c)) = −Fσ(g)(σρ(c)).)

Combining, we obtain

B′
σ̃ = Bσ̃ − aσFg(ρ(c)) + σFg(ρ(c)), or,

A′
σ̃ = Aσ̃ + (a−1

σ σ − 1)Fg(ρ(c))

which shows that the cohomology class depends on ρ only up to equivalence. �
3.2.6. Suppose there is an exact sequence of groups

1 → Γ → Γ0 → G → 1 (3.2.7)

and we are given a representation ρ : Γ → GLd(A). We take ψ : G → Out(Γ) to be the 
natural homomorphism given by the sequence and ϕ = id, i.e. G to act trivially on A.

Assume that ρ extends to a representation ρ0 : Γ0 → GLd(A). The condition (E) is 
then satisfied: For σ ∈ G let σ̃ be the automorphism of Γ given by
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γ �→ s(σ)γs(σ)−1

where s(σ) ∈ Γ0 is any lift of σ. We have

ρ(σ̃ · γ) = hσ̃ρ(γ)h−1
σ̃

for hσ̃ = ρ0(s(σ)). Then

rAσ̃(c) = rρ0(a−1
σ · s(σ) · c · s(σ)−1 − c) − a−1

σ rFρ0(s(σ))(ρ(c)) ∈ B(A)

and the class Volρ = [rAσ(c)] ∈ H1(G, B(A)(−1)) is independent of choices.

3.3. Volume and Chern-Simons; profinite case

We now assume that Γ is a profinite group. Suppose that Γ is topologically finitely 
generated. Then there is system

· · · ⊂ Γn′ ⊂ Γn ⊂ · · · ⊂ Γ1 = Γ,

for n|n′, of characteristic subgroups of finite index which give a basis of open neighbor-
hoods of the identity. Indeed, (cf. [2]), we can take

Γn =
⋂

Δ⊂Γ|[Γ:Δ]|n
Δ

to be the intersection of the finite set of open normal subgroups of Γ of index dividing 
n. We then have

Aut(Γ) = lim←−−n
Aut(Γ/Γn), Out(Γ) = lim←−−n

Out(Γ/Γn).

As before, let A be a complete local Noetherian algebra with maximal ideal mA and 
finite residue field. Suppose ρ : Γ → GLd(A) is a continuous representation, d ≥ 2. There 
is an embedding

ι : GLd(A)/ZA(ρ) ↪→
r∏

i=1
GLd(A), g �→ (gρ(γi)g−1)

where (γi)i are topological generators of Γ. The induced topology on GLd(A)/ZA(ρ) is 
independent of the choice of γi and is equivalent to the quotient topology.

Suppose we are given another profinite group G and continuous homomorphisms ψ :
G → Out(Γ) and ϕ : G → AutO−alg(A). Here, AutO−alg(A) is equipped with the profinite 
topology for which the subgroups Kn = {f | f ≡ id modmn

A}, n ≥ 1, give a system of 
open neighborhoods of the identity. Similarly, we equip Out(Γ) = Aut(Γ)/Inn(Γ) with 
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the quotient topology, obtained from the topology of Aut(Γ) for which the subgroups of 
automorphisms trivial on Γn give a system of open neighborhoods of the identity. We 
assume that ψ is represented by a continuous set-theoretic map

ψ̃ : G → Aut(Γ), i.e. ψ(σ) = ψ̃(σ)Inn(Γ), ∀σ.

Now suppose that γ �→ σ−1(ρ(σ̃γ)) is equivalent to ρ, for all σ ∈ G. Here, σ̃ = ψ̃(σ) and 
so σ �→ σ̃ is continuous. We have

ρ(σ̃ · γ) = hσ̃σ(ρ(γ))h−1
σ̃

for all γ ∈ Γ, where [hσ̃] ∈ GLd(A)/ZA(ρ) is determined by ρ and by σ through ψ̃(σ)
and ϕ(σ).

Lemma 3.3.1. The map G → GLd(A)/ZA(ρ), given by σ �→ [hσ̃], is continuous.

Proof. By the above, it is enough to show that the inverse image under ι of each open 
neighborhood 

∏
i Vi ⊂

∏
i GLd(A) of (ρ(γi))i contains an open neighborhood of 1 ·ZA(ρ). 

It is enough to consider Vi = ρ(γi)(1 + Md(mn
A)). Pick m such that ρ(Γm) ≡ I modmn

A

and then choose an open normal subgroup of finite index U ⊂ G such that σ ∈ Kn and 
σ̃ is trivial on Γ/Γm. Then we have σ̃γ = γ · γ′, with γ′ ∈ Γm and so

ρ(σ̃γ) = ρ(γγ′) = ρ(γ) modmn
A

while σ(ρ(γ)) ≡ ρ(γ) modmn
A. We deduce that, for all σ ∈ U , we have

σ−1ρ(σ̃γ) ≡ ρ(γ) modmn
A

for all γ ∈ Γ. Hence, for σ ∈ U , [hσ̃] ∈ GLd(A)/ZA(ρ) belongs to 
∏

i Vi. �
3.3.2. Suppose we have a short exact sequence of continuous homomorphisms of profinite 
groups

1 → Γ → Γ′ → G → 1

in which Γ is topologically finitely generated. By [55, I, §1, Prop. 1] Γ′ → G affords a 
continuous set-theoretic section s : G → Γ′. Then the natural ψ : G → Out(Γ) can be 
represented by the continuous map (not always a homomorphism) G → Aut(Γ) given by 
σ �→ (γ �→ s(σ)γs(σ)−1).

3.3.3. The constructions in the previous paragraph can now be reproduced for continuous 
Z�-homology. Let us collect the various parts of the set-up. Suppose that we are given:

• A topologically finitely generated profinite group Γ which is such that H2(Γ, Z�) 

Z�, H3(Γ, Z�) = 0.
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• A continuous representation ρ : Γ → GLd(A) with d ≥ 2 and A a complete local 
Noetherian O-algebra with finite residue field of characteristic �.

• A profinite group G, a continuous homomorphism ϕ : G → AutO−alg(A) and a 
continuous map ψ̃ : G → Aut(Γ) which induces a (continuous) homomorphism ψ :
G → Out(Γ). Denote by a : G → Z×

� the character which gives the action of G on 
H2(Γ, Z�) 
 Z�, which is induced by ψ(σ).

• A topological Z�-module B(A)� with a continuous Z�-homomorphism

r : C̄3(GLd(A))/Im(∂4)� → B(A)�,

such that:
– G acts continuously on B(A)� and r is G-equivariant,
– r : H3(GLd(A), Z�) → B(A)� vanishes on Hdec

3 (GLd(A), Z�), which is defined sim-
ilarly to the discrete case before, but with C running over closed subgroups of 
GLd(A).

Denote by B(A)�(−1) the Z�-module B(A)� with the twisted G-action

σ · b = a−1
σ ϕ(σ)(b).

Proposition 3.3.4. Under the assumptions above, suppose in addition that for each σ ∈ G, 
the representation

γ �→ ρσ(γ) := ϕ(σ)−1(ρ(ψ̃(σ)(γ))

is equivalent to ρ. Choose a Z�-generator [c] of H2(Γ, Z�) and c ∈ Z2(Γ)� that represents 
it. Then the map

σ �→ rρ(a−1
σ ψ̃(σ)(c) − c) − a−1

σ rFhψ̃(σ)
(ϕ(σ)(ρ(c)))

gives a continuous 1-cocycle G → B(A)�(−1) whose class

Volρ,ψ,ϕ ∈ H1
cts(G, B(A)�(−1))

depends only on [c], ψ, ϕ, and the equivalence class of ρ.

Proof. It is similar to the proof in the discrete case. The additional claim of continuity 
of the cocycle map follows from Lemma 3.3.1. �
3.3.5. Let Γ → Γ′ be a quotient profinite group with characteristic kernel and such that 
H2(Γ′, Z�) 
 Z�, H3(Γ′, Z�) = 0. Assume that H2(Γ, Z�) 
 Z� → H2(Γ′, Z�) 
 Z� is 
the identity and take [c′] = [c]. Since the kernel of Γ → Γ′ is a characteristic subgroup, 
ψ : G → Out(Γ) factors to give ψ′ : G → Out(Γ′). Finally, assume that ρ : Γ → GLd(A)
factors
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Γ → Γ′ ρ′

−→ GLd(A).

Then we have

Volρ,ψ,ϕ = Volρ′,ψ′,ϕ.

3.3.6. Let Γ′ ⊂ Γ be an open subgroup. Suppose we also have H2(Γ′, Z�) 
 Z�, 
H3(Γ′, Z�) = 0, and that the natural map H2(Γ′, Z�) → H2(Γ, Z�) is multiplication 
by the index [Γ : Γ′]. Choose generators [c], [c′], such that [c] = [Γ : Γ′]−1 · [c′].

Suppose that (ρ, ψ, ϕ) is as above. Suppose that there is a continuous homomorphism 
ψ′ : G → Out(Γ′) which is compatible with ψ in the following sense: For each σ ∈ G, there 

is ψ̃(σ) ∈ Aut(Γ) representing ψ(σ) ∈ Out(Γ) such that the restriction ψ̃(σ)|Γ′ ∈ Aut(Γ′)
represents ψ′(σ) ∈ Out(Γ′).

Proposition 3.3.7. Under the above assumptions, we have

Volρ|Γ′ ,ψ′,ϕ = [Γ : Γ′] · Volρ,ψ,ϕ

in H1
cts(G, B(A)�(−1)).

Proof. The map C3,2(Γ′)� → C3,2(GLd(A))� given by the restriction ρ|Γ′ : Γ′ → GLd(A)
is the composition

C3,2(Γ′)� → C3,2(Γ)�
ρ−→ C3,2(GLd(A))�.

The class Volρ|Γ′ ,ψ′,ϕ is given by the 1-cocycle

σ �→ rρ(a−1
σ ψ̃′(σ)(c′) − c′) − a−1

σ rFhψ̃′(σ)
(ϕ(σ)(ρ(c′)))

where c′ ∈ Z2(Γ′) is a fundamental cycle, i.e. a 2-cycle with [c′] = 1 in H2(Γ′, Z�). Here, 
we can take hψ̃′(σ) to be given as hψ̃(σ); note that hψ̃(σ) is well-defined in GLd(A)/ZA(ρ)
which maps to GLd(A)/ZA(ρ|Γ′). Since H2(Γ′, Z�) → H2(Γ, Z�) is multiplication by 
[Γ : Γ′], if c ∈ Z2(Γ′) is a fundamental 2-cycle for Γ′, then the image of c′ in Z2(Γ) is 
c′ = [Γ : Γ′] · c + ∂3(d) and the result follows from the definitions. �
3.4. An �-adic regulator

Let A = O�x1, . . . , xm� with O = OE , the ring of integers of a totally ramified 
extension of W (F)[1/�] of ramification index e. We will allow m = 0 which corresponds 
to A = O. The main example of B(A)� and

rA : C̄3(GLd(A))/Im(∂4)� → B(A)�
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which we use in the above is obtained by taking B(A)� = O(D1(m)) and rA given by 
an �-adic regulator. We will now explain this construction. Recall we set O = O(D) =
O(D1(m)).

3.4.1. Fix an odd positive integer s ≥ 3. For our example, we actually take s = 3. 
Consider the A-algebra

Â = Matd×d(A)�z0, . . . , zn� ⊗A ∧•
A(Adz0 + · · · + Adzn).

Set A for the quotient of Â by the ideal generated by (z0 + · · · + zs) − 1, dz0 + · · · + dzs. 
We can write elements T ∈ A in the form

T =
∑

a

s∑
u=0

Ta,uza0
0 · · · zas

s dz0 ∧ · · · ∧ d̂zu ∧ · · · ∧ dzs

with a = (a0, . . . , as) ∈ Ns+1, Ta,u ∈ Matd×d(A).
Take X = (X0, . . . , Xs), Xi ∈ Matd×d(mb), i = 0, . . . , s, b ≥ 1. Let

ν(X) = 1 + (X0z0 + · · · + Xszs) ∈ A

which is invertible with

ν(X)−1 = 1 +
∑

i≥1
(−1)i(X0z0 + · · · + Xszs)i.

Set dν(X) = X0dz0 + · · · + Xsdzs so then ν(X)−1dν(X) is in A. Finally set

T (X) = (ν(X)−1dν(X))s =
∑

a

s∑
u=0

Ta,uza0
0 · · · zas

s dz0 ∧ · · · ∧ d̂zu ∧ · · · ∧ dzs

where, as we can see, Ta,u ∈ Matd×d(mb( a +s)).
Following Choo and Snaith [12] we set:

Φs(T (X)) =
∑

a

a0!a1! · · · as!
( a + s)! (

s∑
u=0

(−1)uTrace(Ta,u)).

By the above, Trace(Ta,u) ∈ mb( a +s). Using Lemma 1.1.3 we see

|a0!a1! · · · as!
( a + s)! |� ≤ |s!|−1

� �(s+1)d�( a +s) ≤ C1�C2d�( a ).

By Proposition 1.2.1 (a), Φs(T (X)) ∈ O(D1(m)) and we have

||Φs(T (X))||(1/�)a ≤ C1�N(C2,ab) (3.4.2)

for a ∈ Q ∩ (0, 1/e].
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Lemma 3.4.3. Fix r = (1/�)a/e. For each ε > 0, there is b0 such that for all b ≥ b0, 
X ∈ Matd×d(mb)s+1 implies ||Φs(T (X))||r < ε.

Proof. It follows from (3.4.2), Lemma 1.1.4, and the above. �
Hence, the map Matd×d(m)s+1 → O(D) given by X �→ Φs(T (X)) is continuous for 

the m-adic and Fréchet topologies of the source and target.

3.4.4. Now set Kb = ker(GLd(A) → GL(A/mb)). For (g0, . . . , gs) ∈ K1, we set

Φ̃s(g0, . . . , gs) = Φs(T (g0 − 1, . . . , gs − 1)).

Theorem 3.4.5. (1) For h ∈ K1, (g0, . . . , gs) ∈ Ks+1
1 , we have

Φ̃s(hg0, . . . , hgs) = Φ̃s(g0, . . . , gs) = Φ̃s(g0h, . . . , gsh).

(2) For g ∈ GLd(A), (g0, . . . , gs) ∈ Ks+1
1 , we have

Φ̃s(gg0g−1, . . . , ggsg−1) = Φ̃s(g0, . . . , gs).

(3) Φ̃s is alternating, i.e. for each permutation p,

Φ̃s(gp(0), . . . , gp(s)) = (−1)sign(p)Φ̃s(g0, . . . , gs).

(4) The map Φ̃s : Ks+1
1 → O(D) extends linearly to Φ̃s : Z��K

s+1
1 � → O(D) which 

gives a continuous s-cocycle.

Proof. The identities in (1) and (2) and the cocycle identity in (4) are stated in Theorem 
3.2 [12] for the evaluations at all classical points A → OF . For these evaluations, they 
follow from the expression for Φs(T (X)) as a constant multiple of∫

Δs

Trace((ν(X)−1dν(X))s)

(see [29]); here the integration is over Δs given by z0 + · · · + zs = 1. The identities in 
O(D) follow.

The continuous extension of Φ̃s to Z��K
s+1
1 � → O(D) follows from Lemma 3.4.3 since

Z��K
s+1
1 � = lim←−−b

Z�[(K1/Kb)s+1];

see also Proposition 1.2.1 (b). The alternating property (3) follows quickly from the 
definition of T (X0, . . . , Xs) and Φs(T (X0, . . . , Xs)) by noting that it involves the exterior 
product. �
3.4.6. We now define a transfer of the cocycle Φ̃s from K1 to GLd(A) as follows: Denote 
reduction modulo m by a �→ ā and apply the Teichmüller representative on the entries to 
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give a set-theoretic lift GLd(A)/K1 = GLd(F) → GLd(A) which we denote by h �→ [h]. 
Note that for every g ∈ GLd(A), h ∈ GLd(F), [h]g[hḡ]−1 ∈ K1. We let the transfer of Φ̃s

be

Ψs(g0, . . . , gs) := 1
#GLd(F)

∑
h∈GLd(F)

Φ̃s([h]g0[hḡ0]−1, . . . , [h]gs[hḡs]−1).

(cf. [NSW], p. 48, Ch. I, §5). This gives a continuous homogeneous s-cocycle

Ψs : Z��GLd(A)s+1� → O(D),

where GLd(A) acts trivially on O(D). If (gi) ∈ Ks+1
1 , then [h]gi[hḡi]−1 = [h]gi[h]−1, and 

so Ψs(gi) = Φ̃s(gi), by Theorem 3.4.5 (2).
For s = 3 we get a continuous

Ψ3,A : C̄3(GLd(A))/Im(∂4)� → O(D).

3.4.7. As we shall see below, the restriction of Ψ3,A to homology agrees, up to non-zero 
constant, with the �-adic (Borel) regulator. This follows from work of Huber-Kings and 
Tamme. Also, as we will explain, this comparison allows us to also deduce that Ψ3,A

vanishes on the subgroup Hdec
3 (GLd(A)), when d ≥ 3. Hence, we can set

rA = Ψ3,A : C̄3(GLd(A))/Im(∂4)� → O(D)

and use this in the constructions of the previous section.
We now explain this in more detail.
Consider A = O = OE , i.e. m = 0 and d ≥ s. By [31] (see also [60] Theorem 2.1) the 

Lazard isomorphism

Hs
la(GLd(O), E) 
 Hs(gld, E)

(the subscript here stands for “locally analytic”) is induced on the level of cochains by 
the map

Δ : Ola(GLd(O)×k) → ∧kgl
∨
d ,

which is given on topological generators by f1 ⊗ · · · ⊗ fk �→ df1(1) ∧ · · · ∧ dfk(1). Here, 
df(1) is the differential of the function f evaluated at the identity. Now by [60, Theorem 
2.5], the restriction of Ψs,O to the homology

Ψs,O : Hs(GLd(O),Z�) → E
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relates to the �-adic (Borel) regulator: By [60, Theorem 2.5], (see also [31]), Ψs,O, up to 
non-zero constant, is obtained from the element fs ∈ Hs

la(GLd(O), E) which under the 
Lazard isomorphism

Hs
cts(GLd(O), E) 
 Hs

la(GLd(O), E) 
 Hs(gld, E)

is the class of the cocycle ∧s
Egld → E given by

X1 ∧ · · · ∧ Xs �→ ps(X1, · · · , Xs) =
∑

σ∈Ss

(−1)sign(σ)Trace(Xσ(1) · · · Xσ(s)).

We can easily see, using the cyclic invariance of the trace, that if in (X1, . . . , Xs) there 
is a matrix which commutes with all the others, then ps(X1, . . . , Xs) = 0.

Now suppose s = 3. Let C ⊂ GLd(O) be a closed (therefore �-analytic, see [54]) 
subgroup of GLd(O) with E-Lie algebra c. For h in the centralizer of C, we denote by 
h the 1-dimensional E-Lie algebra of the �-analytic subgroup hZ� of GLd(O) (i.e. the 
closure of the powers of h). Lazard’s isomorphism applies to C and gives

H2
cts(C, E) 
 H2(c, E)C .

These isomorphisms fit in a commutative diagram

H3
la(GLd(O), E) → Hom(H3(GLd(O)), E)

∇∨
h,C−−−→ Hom(H2(C), E) 
 H2

ct(C, E)
↓ ↓ ↓

H3(gld, E) → HomE(H3(gld), E)
∇∨

h,c−−−→ HomE(H2(c), E) 
 H2(c, E)

with the last vertical map an injection. Here,

∇h,c : E ⊗E H2(c) → H3(gld)

is given by sending x ⊗ (
∑

j aj(yj1 ∧ yj2)) to∑
j

aj(x ∧ yj1 ∧ yj2 − yj1 ∧ x ∧ yj2 + yj1 ∧ yj2 ∧ x) = 3
∑

j

aj(x ∧ yj1 ∧ yj2).

In this, [x, y1] = [x, y2] = 0, and 
∑

j aj [yj1, yj2] = 0. It then follows that f3 ∈
H3

la(GLd(O), E) maps to 0 in Hom(H2(C), E). This implies the desired result for the 
evaluation of rA at each point A → O and therefore also for rA.

4. Representations of étale fundamental groups

We will now apply the constructions of the previous section to the case in which the 
profinite group Γ is the geometric étale fundamental group of a smooth projective curve 
defined over a field k of characteristic 	= �.
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4.1. Étale fundamental groups of curves

Let X be a smooth curve over k. Set X̄ = X ⊗k k̄ and choose a k̄-valued point x̄ of 
X. We have the standard exact sequence of étale fundamental (profinite) groups

1 → π1(X̄, x̄) → π1(X, x̄) → Gk → 1.

(cf. [56], Exp. IX, §6.) We will assume that X is projective and, for simplicity, that X̄ is 
irreducible.

We set Γ = π1(X̄, ̄x), Γ0 = π1(X, ̄x), considered as profinite groups. Note that Γ =
π1(X̄, ̄x) is topologically finitely generated ([56], Exp. X, Theorem 2.6). By [55, I, §1, 
Prop. 1], there is a continuous set theoretic section s : G = Gk → Γ0. In this case, such a 
section can be constructed as follows: Choose a point of X defined over a finite separable 
extension k ⊂ k′ ⊂ ksep. We can assume that k′/k is Galois and so it corresponds 
to a finite index normal open subgroup U ⊂ G. As usual, pull-back by the morphism 
Spec (k′) → X gives a continuous homomorphic section sU : U → Γ0. We can now extend 
sU to the desired s by choosing a representative gi of each coset G/U and arbitrarily 
assigning s(gi) = si ∈ Γ0; then s(giu) = sisU (u) works.

We have ([44], Ch. II, Thm (2.2.9))

Hi(Γ,Z�) 
 Hi
cts(Γ,Q�/Zl)∗

where ( )∗ = Hom( , Q�/Z�) is the Pontryagin dual. Now, since X̄ is a K(π1(X̄), 1)-space 
for �-torsion étale sheaves (cf. [22, Theorem 11]),

Hi
cts(Γ,Q�/Z�) = lim−−→

n

Hi(Γ, �−nZ/Z) = lim−−→
n

Hi
ét(X̄, �−nZ/Z).

Since H3
ét(X̄, �−nZ/Z) = 0, H2

ét(X̄, �−nZ/Z) = (Z/�nZ)(−1), we get

H3(Γ,Z�) = 0, H2(Γ,Z�) 
 Z�(1).

In fact, the isomorphism H2(Γ, Z�) 
 Z�(1) is canonical, given by Poincare duality.

4.2. The �-adic volume

Suppose A = O�x1, . . . , xm�, where O = OE is the ring of integers in a finite extension 
E of Q� with residue field F ; this includes the case A = O (for m = 0). Recall O is the 
ring of analytic functions on the polydisk D = D1(m) (when m = 0, O = E).

Let ρ0 : π1(X, ̄x) → GLd(A) be a continuous representation. Apply the construction 
of Proposition 3.3.4 to Γ = π1(X̄, ̄x), Γ0 = π1(X, ̄x), G = Gk, with G acting trivially on 
A, ψ̃ : G → Aut(Γ) given via s, ρ = ρ0|π1(X̄,x̄) and

rA : C̄3(GLd(A))/Im(∂4)� → O



G. Pappas / Advances in Mathematics 387 (2021) 107836 39

=

given by the �-adic regulator. This gives a continuous 1-cocycle Gk → O(−1):

Definition 4.2.1. The cohomology class

Vol(ρ) = Volρ ∈ H1
cts(Gk, O(−1)) = H1

cts(k, O(−1)),

given by the construction of Proposition 3.3.4, is the �-adic volume of ρ0. (It depends 
only on the restriction ρ = ρ0|π1(X̄,x̄).)

The restriction of the cocycle to Gk(ζ�∞ ) = Gal(ksep/k(ζ�∞)) gives a well-defined 
continuous homomorphism

Volρ,k(ζ�∞ ) : Gk(ζ�∞ ) → O.

We set

G∞ := Gal(k(ζ�∞)/k)

which, via χcycl, identifies with a subgroup of Z×
� = Z/(� − 1) × Z�.

Consider the restriction-inflation exact sequence

1 → H1
cts(G∞, O(−1)) → H1

cts(k, O(−1)) →

→ H1
cts(k(ζ�∞), O(−1))G∞ → H2

cts(G∞, O(−1)).

Using that O is a Q�-vector space we can see that H1
cts(G∞, O(−1)) = 0, H2

cts(G∞, O(−1)) 
0. Hence, restriction gives

H1
cts(k, O(−1)) �−→ H1

cts(k(ζ�∞), O(−1))G∞ ,

and Vol(ρ) is determined by the continuous homomorphism

Volρ,k(ζ�∞ ) : Gk(ζ�∞ ) → O(−1)

which is G∞-equivariant. In what follows, we will also simply write Vol(ρ) for this ho-
momorphism and omit the subscript k(ζ�∞). Actually, using the continuity, we see that 
Vol(ρ) factors through the maximal abelian pro-�-quotient

Gab
k(ζ�∞ ),� = Galab(ksep/k(ζ�∞))�.

4.3. In the following paragraphs we elaborate on some properties of Vol(ρ). We start 
with an alternative definition.
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4.3.1. We can also use the Leray-Serre spectral sequence

Ep,q
2 : Hp(k, Hq

ét(X̄,Q�/Z�)) ⇒ Hp+q
ét (X,Q�/Z�)

to give a construction of a class Vols(ρ) as follows:
Set Hq(X̄) := Hq

ét(X̄, Q�/Z�), Hq(X) := Hq
ét(X, Q�/Z�). We are interested in H3(X). 

The spectral sequence gives a filtration

(0) = F 4H3(X) ⊂ F 3H3(X) ⊂ F 2H3(X) ⊂ F 1H3(X) ⊂ F 0H3(X) = H3(X)

with graded pieces grpH3(X) 
 Ep,3−p
∞ . Using that Hq(X̄, Q�/Z�) = (0) unless q = 0, 1, 

2, we see that gr0H3(X) = (0) and that

E1,2
∞ = E1,2

4 ⊂ E1,2
3 ⊂ H1(k, H2(X̄)) = H1(k,Q�/Z�(−1))

with

E1,2
3 = ker(d1,2

2 : H1(k,Q�/Z�(−1)) → H3(k, H1(X̄)))

E1,2
∞ = E1,2

4 = ker(d1,2
3 : E1,2

3 → H4(k,Q�/Z�)).

We obtain

η : H3(X,Q�/Z�) = F 1H3(X) � gr1H3(X) = E1,2
∞ ↪→ H1(k,Q�/Z�(−1)).

In what follows, for simplicity, we omit denoting the base point and simply write 
π1(X) and π1(X̄). Let us now compose η with the natural

H3(π1(X),Q�/Z�) 
 H3(X,Q�/Z�)

(X is a K(π1, 1)-space for �-torsion étale sheaves) and then take Pontryagin duals to 
obtain

η′ : H1(k,Z�(1)) ∼= H1(k,Q�/Z�(−1))∗ → H3(π1(X),Q�/Z�)∗ ∼= H3(π1(X),Z�).

By further composing η′ with H3(ρ0) : H3(π1(X), Z�) → H3(GLd(A), Z�) and the �-adic 
regulator rA : H3(GLd(A), Z�) → O we obtain a continuous homomorphism

H1(k,Z�(1)) → O.

By the universal coefficient theorem, this uniquely corresponds to a class

Vols(ρ) ∈ H1
cts(k, O(−1)).
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Remark 4.3.2. a) By tracing through all the maps in the construction, one can check

Vols(ρ) = ±Vol(ρ),

where the sign depends on the normalization of the differentials in the spectral sequence. 
Since we are not going to use this, we omit the tedious details.

b) We can also see that the homomorphism

η : H3(X,Q�/Z�) → H1(k,Q�/Z�(−1))

above is, up to a sign, given by the push-down

Rifét,∗ : Hi(X,Q�/Z�(m)) → Hi−2(k,Q�/Z�(m − 1))

for i = 3, m = 0, and the structure morphism f : X → Spec (k).

4.3.3. Suppose that the �-cohomological dimension cd�(k) of k is ≤ 2. Then E1,2
∞ =

H1(k, Q�/Z�(−1)) and E3,1
2 = (0) in the above. Then the spectral sequence gives a 

natural exact sequence

(Q�/Z�(−1))Gk → H2(k, H1
ét(X̄,Q�/Z�)) →

→ H3
ét(X,Q�/Z�)

η−→ H1(k,Q�/Z�(−1)) → 0. (4.3.4)

Often, the situation simplifies even more:

Theorem 4.3.5. (Jannsen) Assume � 	= 2. Suppose that k is a number field, a global 
function field of characteristic 	= �, or a finite extension of Qp (p = � is allowed). Then

η : H3
ét(X,Q�/Z�)

∼−→ H1(k,Q�/Z�(−1))

is an isomorphism.

Proof. Note that since we assume � 	= 2, the �-cohomological dimension cd�(k) of k is 
≤ 2, for all the fields considered in the statement. The exact sequence (4.3.4) implies 
that it is enough to show

H2(k, H1
ét(X̄,Q�/Z�)) = (0).

This vanishing follows from the results of [33]. In the number field case, this is [33] §7, 
Cor. 7 (a). In the global function field case, Jannsen shows a more general result ([33],
Theorem 1). Finally, the local case is shown in the course of the proof of the number 
field case in [33] §7. �
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Remark 4.3.6. Jannsen conjectures a vanishing statement which is a lot more general. 
See [33] Conjecture 1 and §3, Lemma 5.

Corollary 4.3.7. Under the assumptions of Theorem 4.3.5, we have

H1
cts(k, O(−1)) 
 HomZ�

(H3(π1(X),Z�), O)

and, under this isomorphism, the �-adic volume Vols(ρ) is given by the Z�-homomorphism

H3(π1(X),Z�) → O

which is the composition of H3(ρ) with the �-adic regulator. �
We now continue our discussion of the group

H1
cts(k, O(−1)) �−→ H1

cts(k(ζ�∞), O(−1))G∞ .

4.3.8. Assume that k is a finite field of order q, gcd(�, q) = 1. Then Gab
k(ζ�∞ ),� = (1) and 

so H1
cts(k, O(−1)) = (0). Hence, Vol(ρ) = 0 for all X and ρ.

4.3.9. Let k be a local field which is a finite extension of Qp. Write G∞ = Δ × Γ, where 
Δ = Gal(k(ζ�)/k) is a finite cyclic group of order that divides � − 1 and Γ 
 Z�. By a 
classical result of Iwasawa

Gab
k(ζ�∞ ),�

∼=
{
Z�(1), if � 	= p,

Z��G∞�[k:Q�] ⊕ Z�(1), if � = p,

as Z��G∞�-modules. (See for example, [44, Theorem (11.2.4)]). It follows that Vol(ρ)
takes values in

H1
cts(k, O(−1)) 
 H1

cts(k(ζ�∞), O(−1))G∞ ∼=
{

(0), if � 	= p

O [k:Q�], if � = p.

4.3.10. Let k be a number field with r1 real and r2 complex places. For a place v of k, fix 
k̄ ↪→ k̄v which gives Gv = Gal(k̄v/kv) ↪→ Gk. Using the local case above, we see that for 
all finite places v away from �, the restriction of Vol(ρ) to Gv ∩ Gal(k̄/k(ζ�∞)) is trivial. 
It follows that Vol(ρ) factors through the Galois group X∞ of the maximal abelian pro-�
extension of k(ζ�∞) which is unramified outside �. We have

Vol(ρ) ∈ Homcts(X∞, O(−1))G∞ = Homcts(X∞(1)G∞ , O).

The Galois group X∞ is a classical object of Iwasawa theory.
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Set K = k(ζ�), denote by k∞ the cyclotomic Z�-extension of k, and denote by K∞ =
Kk∞ the cyclotomic Z�-extension of K. Then

G∞ = Gal(k(ζ�∞)/k) = Gal(K∞/k).

As above, G∞ = Δ × Γ, Γ 
 Z�. Denote as usual

Λ = Z��T � 
 Z��Γ�

with the topological generator 1 of Z� 
 Γ mapping to 1 + T . Then Z��G∞� 
 Λ[Δ]. By 
results of Iwasawa ([32], see slso [44] Theorems (11.3.11), (11.3.18)):

1) X∞ is a finitely generated Λ[Δ]-module,
2) X∞ has no non-trivial finite Λ-submodule,
3) There is an exact sequence of Λ[Δ]-modules

0 → tΛ(X∞) → X∞ → Λ[Δ]r2 ⊕
⊕

v∈Sreal(k)

Ind〈cv〉
Δ Λ− → T2(X∞) → 0.

Here, tΛ(X∞) is the Λ-torsion submodule of X∞ and T2(X∞) is a finite Λ-module. 
Also, cv ∈ Δ is the complex conjugation at v and Λ−

� is the cv-module with cv acting as 
multiplication by −1.

We now see that

Homcts(Λ[Δ], O(−1))Δ×Γ 
 O,

Homcts(Ind〈cv〉
Δ Λ−, O(−1))Δ×Γ 
 O.

Therefore, we obtain

0 → Or1+r2 → Homcts(X∞, O(−1))G∞ → Homcts(tΛ(X∞), O(−1))G∞ → 0.

To continue, consider the following generalization of Leopoldt’s conjecture due to Schnei-
der [53], for an integer m 	= 1:

Conjecture (Cm): H2
ét(Ok[1/�], Q�/Z�(m)) = (0).

Remark 4.3.11. This is also a very special case, for X = Spec (k), of the conjectures of 
[33] mentioned above. (C0) is equivalent to Leopoldt’s conjecture for k and �. For m ≥ 2, 
conjecture (Cm) was shown by Soulé [57] by relating the Galois cohomology group to 
the group K2m−2(Ok) which is finite by work of Borel. If k is totally real, then (Cm)
implies (C1−m) for m even. Hence, if k is totally real, (Cm), for m odd and negative, is 
true.
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By [35] Lemma 2.2, Theorem 2.3, assuming (C−1), we have

(t(X∞)(1))G∞ = 0,

and so the last term in the short exact sequence above is trivial

Homcts(tΛ(X∞), O(−1))G∞ = (0).

This gives that, assuming (C−1), we have

Homcts(X∞, O(−1))G∞ = HomZ�
(X∞(1)G∞ , O) 
 Or1+r2

and so Vol(ρ) can be thought of as taking values in Or1+r2 .
In fact, assuming (C−1), [35] Theorem 2.3 gives a canonical isomorphism

H1
ét(Ok[1/�],Q�(−1)) ∼= HomZ�

(X∞,Q�(−1))G∞ .

Consider now the semilocal pairing

(
⊕
v|�

H1(kv,Q�(−1))) × (
⊕
v|�

H1(kv,Q�(2))) → Q�

obtained by adding the local duality pairings (see [35]). Assuming (C−1), Theorem 1.3 
of [35], states that the image of

r�
−1 : H1

ét(Ok[1/�],Q�(−1)) →
⊕
v|�

H1(kv,Q�(−1))

is the exact orthogonal of the image of

K3(Ok) ⊗Z�
Q�

c2,1−−→ H1
ét(Ok[1/�],Q�(2)) r�

2−→
⊕
v|�

H1(kv,Q�(2)),

under this pairing. Here, c2,1 is Soule’s Chern class map [57] which is an isomor-
phism by the Quillen-Lichtenbaum conjecture. Both r�

−1 and r�
2 are injective. Note 

that, as Q�-vectors spaces, K3(Ok) ⊗Z�
Q� 
 Qr2

� , while 
⊕

v|� H1(kv, Q�(2)) 
⊕
v|� H1(kv, Q�(−1)) 
 Qr1+2r2

� .
We have shown:

Proposition 4.3.12. Suppose that k is a number field and assume conjecture (C−1) for 
k and �. Then, Vol(ρ) ∈ H1(k, O(−1)) is determined by its restrictions Vol(ρ)kv

∈
H1(kv, O(−1)), for v|�, and

(Vol(ρ)kv
)v ∈

⊕
H1(kv,Q�(−1)) ⊗Q�

O

v|�
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lies in orthogonal complement of K3(Ok) ⊗Z�
O under the semi-local duality pairing 

above. Hence, in this case we can view Vol(ρ) as a linear functional

Vol(ρ) :
⊕

v|� H1(kv,Q�(2))
K3(Ok) ⊗Z�

Q�
→ O.

�
Remark 4.3.13. At this point, we have no explicit calculations and no proof that the 
volume is not identically zero. For k a number field, we can obtain examples by taking 
X to be a Shimura curve and ρ the �-adic local system of the Tate module of a universal 
abelian scheme over X. It is an interesting problem to calculate Vol(ρ) for these examples.

4.4. Variant: finite groups and higher dimension

Here, we let G be a finite group and give a construction of classes in H1(k, Q�/Z�(−1))
which is more in the spirit of the construction in [36]. If π : Y → X is an étale G-cover 
(corresponding to ρ : π1(X) → G), we obtain a homomorphism

K(π) : H3(G,Q�/Z�) → H3(X,Q�/Z�)

by pulling back from the classifying space. For α ∈ H3(G, Q�/Z�) we can now set

CS(Y/X, α) := η(K(π)(α)) ∈ H1(k,Q�/Z�(−1))

where η : H3(X, Q�/Z�) → H1(k, Q�/Z�(−1)) is obtained from the Leray-Serre spectral 
sequence. This can also be given an explicit cocycle description: Let us choose

α̃ : C̄3(G)/Im(∂4) → Q�/Z�

giving α ∈ H3(G, Q�/Z�) = Hom(H3(G, Z), Q�/Z�). Then, for c, σ̃ as before, and 
δ(σ̃, c) ∈ C̄3(π1(X̄))/Im(∂4)�, with

∂3(δ(σ̃, c)) = σ̃ · c · σ̃−1 − χcycl(σ) · c,

we can take

σ �→ χcycl(σ)−1α̃[ρ(δ(σ̃, c)) − Fρ(σ̃)(ρ(c))] ∈ Q�/Z�.

4.4.1. Consider now a continuous ρ : π1(X) → GLd(A) with An = A/mn finite, for each 
n ≥ 1. We can apply the construction above to ρn : π1(X) → GLd(An). We obtain

η · K(ρn) : H3(GLd(An),Q�/Z�) → H1(k,Q�/Z�(−1)).
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For each n ≥ 1, the diagram

H3(GLd(An),Q�/Z�)
η·K(ρn)−−−−−→ H1(k,Q�/Z�(−1))

Infl ↓ ↓ id
H3(GLd(An+1),Q�/Z�)

η·K(ρn+1)−−−−−−→ H1(k,Q�/Z�(−1))

is commutative and we obtain

η · K(ρ) : H3
cts(GLd(A),Q�/Z�) ∼= lim−−→n

H3(GLd(An),Q�/Z�) −→ H1(k,Q�/Z�(−1)).

When d ≥ 2, we can recover the previous construction after taking Pontryagin duals and 
composing with the �-adic regulator.

4.4.2. More generally, suppose that f : X → Spec (k) is a smooth proper variety of 
dimension n over the field k and � a prime different from the characteristic of k. We can 
then consider the push-down homomorphism

η = R2nfét,∗ : H2n+1(X,Q�/Z�) → H1(k,Q�/Z�(−n)).

Similarly, we have

ηQ�
= R2nfét,∗ : H2n+1(X,Q�) → H1(k,Q�(−n)).

Suppose G is a finite group. If π : Y → X is an étale G-cover we obtain a homomor-
phism

K(π) : H2n+1(G,Q�/Z�) → H2n+1(X,Q�/Z�)

by pulling back from the classifying space. For α ∈ H2n+1(G, Q�/Z�) we set

CS(Y/X, α) := ηn(K(π)(α)) ∈ H1(k,Q�/Z�(−n)).

Recall that we have (cf. [61])

H2n+1
cts (GLd(Z�),Q�) = (lim←−−

n

(lim−−→
s

H2n+1(GLd(Z/�sZ),Z/�nZ))) ⊗Z�
Q�.

If F is an étale Z�-local system on X of rank d ≥ 2 we obtain

K(F )Q�
: H2n+1

cts (GLd(Z�),Q�) → H2n+1(X,Q�)

from the corresponding system of GLd(Z/�sZ)-covers as before. For each d′ > d, the local 
system F gives the local system F ′ = F ⊕Zd′−d

� of rank d′. For d′ >> 0, the 2n + 1-th 
�-adic regulator rn,� is a non-trivial element of the Q�-vector space H2n+1

cts (GLd′(Z�), Q�)
(by stability and [61, Prop. 1]). We can now define
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Vol(F ) ∈ H1
cts(k,Q�(−n))

to be given by value of the composition ηQ�
· K(F ′)Q�

at rn,�.

5. Deformations and lifts

Here, we apply our constructions to universal (formal) deformations of a modular 
representation of the étale fundamental group of a curve. In particular, we explain how 
the work in Section 2 can be using to provide a symplectic structure on the formal de-
formation space of a modular representation, provided the deformation is unobstructed.

Again, we omit denoting our choice of base point and simply write π1(X) and π1(X̄).

5.1. Lifts

Fix a continuous representation ρ0 : π1(X) → GLd(F) with F a finite field of char-
acteristic � 	= 2. Suppose ε : π1(X) → O× is a character so that ε modm = det(ρ0). We 
will denote by ρ̄0, resp. ε̄, the restrictions of ρ0, resp. ε, to the geometric fundamental 
group π1(X̄) ⊂ π1(X).

Denote by CO the category of complete Noetherian local O-algebras A together with 
an isomorphism α : A/mA

∼−→ F .

Lemma 5.1.1. (Schur’s Lemma, [41] Ch. II, §4, Cor.) Let ρ̄ : π1(X̄) → GLd(A) be a 
continuous representation with A ∈ CO. If the associated residual representation ρ̄0 is 
absolutely irreducible, any matrix in Md(A) which commutes with all the elements in the 
image of ρ̄ is a scalar. �

In what follows, we always assume that

ρ̄0 : π1(X̄) → GLd(F)

is absolutely irreducible, i.e. it is irreducible as an F̄ -representation.
Let ρ̄ : π1(X̄) → GLd(A) be a continuous representation with A ∈ CO which lifts ρ̄0

and with det(ρ̄) = ε̄. Suppose that for all g ∈ π1(X), there is hg ∈ GLd(A) with

ρ̄(gγg−1) = hgρ̄(γ)h−1
g , ∀γ ∈ π1(X̄).

By Schur’s lemma above, hg is uniquely determined up to a scalar in A× and

hgg′ = z(g, g′)hghg′ , z(g, g′) ∈ A×.

Mapping g to π(hg) = hg mod A× gives a homomorphism

ρPGL : π1(X) → PGLd(A)
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which extends π1(X̄) ρ̄−→ GLd(A) π−→ PGLd(A). We can see that ρPGL is continuous for 
the profinite topologies on π1(X) and PGLd(A).

The following will be used in the last section.

Proposition 5.1.2. Suppose � does not divide d. Under the above assumptions, there is a 
lift of ρPGL to a continuous representation

ρ : π1(X) → GLd(A)

such that det(ρ) = ε and ρ|π1(X̄) = ρ̄.

Proof. A version of this is well-known but we still provide the details for completeness. 
To give such a lift we need to choose, for each g ∈ π1(X), hg ∈ GLd(A) such that:

a) ρ̄(gγg−1) = hgρ̄(γ)h−1
g , ∀γ ∈ π1(X̄), ∀g ∈ π1(X),

b) det(hg) = ε(g), ∀g ∈ π1(X),
c) ρ(γ) = ρ̄(γ), ∀γ ∈ π1(X̄) ⊂ π1(X),
d) hgg′ = hghg′ , i.e. z(g, g′) = 1, ∀g, g′ ∈ π1(X),
e) g �→ hg is continuous.

For each g ∈ π1(X), consider the set

Yg(A) = {h ∈ GLd(A) | π(h) = π(hg), det(h) = ε(g)}.

There is a simply transitive action of μd(A) = {a ∈ A× | ad = 1} on Yg(A). The existence 
of ρ0 : π1(X) → GLd(F) implies that Yg(F) is not empty since it contains ρ0(g). Then 
Yg(F) 
 μd(F).

Recall we assume gcd(d, �) = 1. Hensel’s lemma implies that μd(A) → μd(F) given by 
reduction modulo mA is an isomorphism. Now consider the map

Yg(A) → Yg(F)

given by reduction modulo mA. Pick h′ ∈ GLd(A) with π(h′) = [hg] ∈ PGLd(A) and 
h′ → ρ0(g) ∈ Yg(F), and write h = ah′, a ∈ 1 + mA ⊂ A×. We want to choose a so that 
det(h) = ε(g), i.e. ad det(h′) = ε(g). We have det(h̄′) = ε̄(g) ∈ F×, so det(h′)ε(g)−1 ∈
1 +mA and ad = det(h′)ε(g)−1 has a solution since gcd(d, �) = 1. This shows that Yg(A)
is also non-empty. Hence reduction modulo mA gives a bijection

Yg(A) 
 Yg(F) 
 μd(F).

We can now choose hg ∈ Yg(A) to be the unique element whose reduction is ρ0(g). Then 
g �→ hg satisfies properties (a), (b) and by comparing with the reduction, properties (c), 
(d) and (e). In fact, we see that the lift ρ given by ρ(g) = hg reduces to ρ0 modulo 
mA. �
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Remark 5.1.3. We keep the assumptions of the proposition above.
a) The map z : π1(X) × π1(X) → A× given by (g, g′) �→ z(g, g′) is a 2-cocycle. A 

classical argument (see for example [39] Thm 8.2) applies to show that z is the inflation 
of a continuous 2-cocycle

ν : Gk × Gk → μd(A) = μd(F).

We can see that the existence of ρ0 which lifts ρPGL modmA implies that the class 
[ν] ∈ H2(k, μd(F)) vanishes. This provides an alternative point of view of the proof.

b) The lift ρ given by the proof of the proposition reduces to ρ0 modulo mA.
c) The lift ρ is not unique. Consider a character χ : Gk → μd(A) = μd(F). The twist 

ρ ⊗A χ satisfies all the requirements of the proposition and we can easily see that all 
representations that satisfy these requirements are such twists of each other.

5.2. Universal deformation rings

Following [14] §3, we now consider the deformation functors

Def(π1(X), ρ0, ε), Def(π1(X̄), ρ̄0, ε̄).

By definition, Def(π1(X), ρ0, ε) is the functor from CO to Sets which maps (A, α) to the 
set of equivalence classes of continuous representations

ρA : π1(X) → GLd(A)

such that α(ρA modmA) = ρ0, det(ρA) = (O× → A×) · ε. Here, ρA is equivalent to ρ′
A

if and only if there exists an element g ∈ GLn(A) such that ρ′
A(γ) = g−1ρA(γ)g, for all 

γ ∈ π1(X). The functor Def(π1(X̄), ρ̄0, ̄ε) is defined similarly.
Under our condition that ρ̄0 is absolutely irreducible, Def(π1(X̄), ρ̄0, ̄ε) is representable 

in the category CO and there is a universal pair (Āun, ρ̄un). (This follows by applying 
Schlessinger’s criteria, see [14] 3.2 and [40], Sect. 1.2. We use here that π1(X̄) is topolog-
ically finitely generated). If π1(X) is also topologically finitely generated, as it happens 
when k is a finite field, then Def(π1(X), ρ0, ε) is also representable in the category CO
and there is also a universal pair (Aun, ρun).

As in [14] 3.10, we have Aun 
 O�t1, . . . , tm� for some m. The formal smoothness 
statement holds because the obstruction group

H2(π1(X̄), Ad0
ρ̄0

(F))

vanishes, see [14] for details.
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5.3. Galois action on the deformation rings

For every σ ∈ Gk, we give an automorphism ϕ(σ) : Āun → Āun as in [14] 3.11:
For simplicity, we drop the subscript un and write Ā = Āun etc. Choose an element 

σ̃ ∈ π1(X) which maps to σ ∈ Gk, and h ∈ GLd(Āun) such that h modmĀ = ρ0(σ̃). 
Consider the “twisted” representation

ρ̄σ̃ : π1(X̄) → GLd(Ā), γ �→ hρ̄(σ̃−1γσ̃)h−1.

We have ρ̄σ̃ modmĀ = ρ̄0, and det(ρ̄σ̃) = ε̄. Hence, (Ā, ρ̄σ̃) is a deformation of ρ̄0 with 
determinant ε̄. By the universal property of (Ā, ρ̄) we obtain a O-algebra homomorphism 
ϕ : Ā → Ā and h′ ∈ GLd(Ā) such that

ϕ(ρ̄(γ)) = h′ρ̄σ̃(γ)h′ −1, (5.3.1)

for all γ ∈ π1(X̄). The above combine to

ρ̄(σ̃−1γσ̃) = h1ϕ(ρ̄(γ))h−1
1 . (5.3.2)

The automorphism ϕ(σ) is independent of the choice of σ̃ lifting σ and of the element h
as above. Indeed, if σ̃′, h′ is another choice giving ϕ′, then σ̃′ = σ̃ · δ, for δ ∈ π1(X̄) and 
we can easily see that ρ̄σ̃′ is equivalent to ρ̄σ̃ and ϕ(ρ̄) is equivalent to ϕ′(ρ̄). Hence, the 
two maps ϕ′, ϕ : Ā → Ā agree by the universal property of (Ā, ρ̄). It now easily follows 
also that

ϕ(σσ′) = ϕ(σ)ϕ(σ′)

for all σ, σ′ ∈ Gk.

Proposition 5.3.3. The homomorphism ϕ : Gk → AutO(Ā) is continuous where 
AutO(Ā) has the profinite topology given by the finite index normal subgroups Kn =
ker(AutO(Ā) → AutO(Ā/mn)).

Proof. It is enough to show that given n ≥ 1, there is a finite Galois extension k′/k such 
that if σ ∈ U = Gk′ , then ϕ(σ) ∈ Kn. Since ρ : π1(X̄) → GLd(Ā) is continuous, there is 
m such that if γ ∈ Γm, then ρ(γ) ∈ 1 + Md(mn

A). Here Γm ⊂ Γ is the characteristic finite 
index subgroup of π1(X̄) as before. Let Ym → X̄ be the corresponding Γ/Γm-cover which 
is the base change of a Γ/Γm-cover Y ′

m → X ⊗k ksep. We can write k(Y ′
m) = ksep(X)(α), 

for the extension of function fields, where ksep(X) = k(X) ⊗k ksep. Then, we have 
Γ/Γm 
 Gal(ksep(X)(α)/ksep(X)). Choose a finite Galois extension k ⊂ k′ ⊂ ksep

which contains all the coefficients of the minimal polynomial of α over ksep(X) and with 
X(k′) 	= ∅. Then, there is a continuous section s : Gk → π1(X) such that, if σ ∈ Gk′ , 
then conjugation by s(σ) is trivial on Γ/Γm 
 Gal(ksep(X)(α)/ksep(X)). We now have
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ρ(s(σ)γs(γ)−1) = ρ(γγm) ≡ ρ(γ) mod(mn
A).

By the definition of ϕ(σ) and the universal property of (Ā, ρ̄), this gives that ϕ(σ) ≡
Id mod (mn

A), so ϕ(σ) ∈ Kn. �
Proposition 5.3.4. Suppose that A ∈ CO and let ρ̄ : π1(X̄) → GLd(A) be a deformation 
of ρ̄0 with determinant ε which corresponds to f : Āun → A.

a) If ρ̄ extends to a representation ρ : π1(X) → GLd(A) with determinant ε, then 
f · ϕ(σ) = f , for all σ ∈ Gk.

b) Conversely suppose f · ϕ(σ) = f , for all σ ∈ Gk, and gcd(�, d) = 1. Then ρ̄ :
π1(X̄) → GLd(A) extends to a representation ρ : π1(X) → GLd(A) which deforms ρ0
and has determinant ε.

Proof. (a) Suppose ρ̄ extends to ρ. Then, we have

ρ̄σ̃(γ) = hρ̄(σ̃γσ̃−1)h−1 = hρ(σ̃)ρ̄(γ)ρ(σ̃)−1h−1.

This gives that ρ̄σ̃ is equivalent to ρ̄. The representability of the deformation problem 
now implies f · ϕ(σ) = f .

(b) Conversely, suppose that f · ϕ(σ) = f , for all σ ∈ Gk. Then, for g ∈ π1(X) which 
maps to σ ∈ Gk, we have

ρ̄(gγg−1) = hgϕ(σ)(ρ̄(γ))h−1
g = hgρ̄(γ)h−1

g ,

for some hg ∈ GLd(A). The result now follows from Proposition 5.1.2. �
5.4. Volume for the universal deformation

Start with ρ0 : π1(X) → GLd(F) such that ρ̄0 : π1(X̄) → GLd(F) is absolutely 
irreducible and consider

ρ̄ := ρ̄un : π1(X̄) → GLd(Āun)

the universal deformation. Set

D = Spf(Āun)[1/�]

for the rigid analytic fiber of the formal scheme Āun over O. This is a rigid analytic space 
over E which is non-canonically isomorphic to the open unit polydisk D1(m).

Apply the construction with Γ = π1(X̄), A = Āun, and G = Gk mapping to Out(Γ)
via the exact sequence and acting on Āun via ϕ as above. Take rA to be given by the �-
adic regulator which now takes values in O(D) 
 O. We obtain a continuous cohomology 
class
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Vol(ρ̄) ∈ H1
cts(k, O(D)(−1))

where the action of Gk on O(D)(−1) is via χ−1
cycl · ϕ.

5.5. The symplectic structure on the deformation space

We continue with the above assumptions and notations. Set Ā = Āun, Ān = Āun/mn
Ā

.
Consider the d + 1-dimensional representation ρ̄+ := ρ̄ ⊕ ε−1 of π1(X̄) which has 

trivial determinant. The constructions of §2 apply to ρ̄+ and Γ = π1(X̄). We obtain 
cohomology classes

κn ∈ H2(π1(X̄), K2(Ān)), ωn ∈ H2(π1(X̄), Ω2
Ān

).

Recall that, for all n ≥ 1, K2(Ān) and Ω2
Ān

are finite groups. They are both �-groups: 
This is visibly true for Ω2

Ān
. To show the same statement for K2(Ān) observe that the 

kernel of K2(Ān) → K2(F) is generated by Steinberg symbols of the form {1 + �x, s}; 
these are �-power torsion since (1 + �x)�N = 1 in Ān for N > n, while K2(F) = (0) ([51]).

Assume now that X is, in addition, projective. Since X̄ is K(π1(X̄), 1) (cf. [22, The-
orem 11]) we have a canonical isomorphism

H : H2(π1(X̄), Ω2
Ān

) �−→ H2
ét(X̄, Ω2

Ān
), (5.5.1)

By Poincare duality,

Tr : H2
ét(X̄, Ω2

Ān
) �−→ Ω2

Ān
(−1),

and similarly for K2(Ān). Set

κa,n := (Tr ◦ H)(κn) ∈ K2(Ān)(−1), ωa,n := (Tr ◦ H)(ωn) ∈ Ω2
Ān

(−1).

(compare §2.1.1). Also set

κ := lim←−−n
κa,n ∈ lim←−−n

K2(Ān)(−1), ω := lim←−−n
ωa,n ∈ Ω̂2

Āun/O(−1).

Set

TĀun/O = HomĀun
(Ω̂Āun/O, Āun), TĀn

= TĀun/O ⊗Āun
Ān = HomĀn

(Ω̂Āun/O, Ān).

By [41, §17, §21 Prop. 1, §24], there are natural Ān-isomorphisms

TĀn

∼= H1(π1(X̄), Ad0
ρ̄(Ān)).

For simplicity, set Wn = Ad0
ρ̄(Ān); this is a finite free Ān-module given by trace zero 

matrices. The profinite group Γ = π1(X̄) satisfies Poincare duality in dimension 2 over 
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the �-power torsion Ān as in §2.4. Then, cup product followed by Wn ⊗Ān
Wn → Ān, 

(X, Y ) �→ Tr(XY ), and combined with Poincare duality gives the pairing

〈 , 〉n : TĀn
× TĀn

= H1(π1(X̄), Wn) × H1(π1(X̄), Wn) → Ān.

Suppose � does not divide d. Then, this is a non-degenerate Ān-linear pairing. Taking 
an inverse limit over n gives

〈 , 〉 : TĀun/O × TĀun/O → Āun

which is a non-degenerate (perfect) Āun-linear pairing.

Theorem 5.5.2. 1) The 2-form ω ∈ Ω̂2
Āun/O(−1) is closed.

2) Suppose � does not divide d. For all v1, v2 ∈ TĀun/O, we have

〈v1, v2〉 = ω(v1, v2)

and ω is non-degenerate.

Proof. For simplicity, set Ā = Āun. By construction ω = d log(κ) and so dω = 0, i.e. ω is 
closed which shows (1). Let us show (2). For every n ≥ 1, vi ∈ TĀun/O give deformations 
ρ̄i of ρ̄0 over Ān[ε], with determinant ε. These give representations

ρ̄+,i : π1(X̄) → SLd+1(Ān[ε]), ρ̄+,i := ρ̄i ⊕ ε−1.

Set W +
n = Ad0

ρ̄+
(Ān) = M0

(d+1)×(d+1)(Ān) which contains Wn = Ad0
ρ̄(Ān). By our 

construction of ωa,n and (2.4.1), ωa,n(v1, v2) is the value of the pairing

H1(π1(X̄), W +
n ) × H1(π1(X̄), W +

n ) → H2(π1(X̄), Ān) ∼= Ān

given by cup product followed by W +
n ⊗Ān

W +
n → Ān, (X, Y ) �→ Tr(XY ), at (v1, v2). 

The cocycles of π1(X̄) on W +
n corresponding to ρ̄+,i factor through Wn ⊂ W +

n . It follows 
that ωa,n(v1, v2) is also the value of the pairing

H1(π1(X̄), Wn) × H1(π1(X̄), Wn) → H2(π1(X̄), Ān) ∼= Ān

at (v1, v2). Part (2) now follows. �
In what follows, we assume without further mention, that � does not divide d.
The form ω gives, by definition, the canonical symplectic structure on the formal 

deformation space Spf(Āun).

5.5.3. Recall D = Spf(Āun)[1/�]. The form ω gives a Poisson structure on O(D) 
 O as 
follows. For f ∈ O(D) set Xf for the analytic vector field on D defined by
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Xf
¬ω = df.

(Here and in what follows we denote by iX(ω) or X¬ω for the contraction, or “interior 
product”, of the vector field X with the form ω.). The analyticity of Xf can be seen as 
follows: Choose an isomorphism Āun 
 O�x1, . . . , xm� and write ω =

∑
i<j gijdxi ∧ dxj . 

Then, in the basis ∂/∂xi, Xf is (formally) the image of the vector −(f1, . . . , fm) under 
the map given by the matrix (gij). Since gij ∈ O�x1, . . . , xm�, we see that if f ∈ O(D)
all the components of Xf converge on ||x|| < 1, i.e. they belong to O.

We now set

{f, g} = ω(Xf , Xg). (5.5.4)

We can easily see that {f, g} takes values in O(D). Also

{ , } : O(D) × O(D) → O(D)

is a Lie bracket, i.e. satisfies {f, g} = −{g, f} and

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0.

It also satisfies the Leibniz rule {fg, h} = f{g, h} + g{f, h}. Indeed, it is enough to show 
these identities in the ring of formal power series. There they are true by the standard 
arguments. (The Jacobi identity follows from the closedness of the form ω.)

6. The symplectic nature of the Galois action

We now return to the Galois action on the formal deformation space of a modular 
representation of the arithmetic étale fundamental group of a curve. We construct the 
�-adic Galois group flow and explain its interaction with the canonical symplectic form. 
Finally we show that the set of deformed representations that extend to a representation 
of the fundamental group of the curve over a finite extension of k(ζ�∞) is the intersection 
of the critical loci for a set of rigid analytic functions.

6.1. Galois action and the symplectic form

We continue with the assumptions and notations of §5.2, §5.3.

Proposition 6.1.1. We have

ϕ(σ)(ω) = χ−1
cycl(σ) · ω,

where ϕ(σ) : Āun → Āun is the automorphism induced by σ ∈ Gk as in §5.3.
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Proof. This also follows from Theorem 5.5.2 which gives a description of ω using cup 
product and Poincare duality. Here is a more direct argument that also applies to the 
K2 invariant. Consider the endomorphism [σ̃] of H2(π1(X̄), Ω2

Ān
) induced by γ �→ σ̃γσ̃−1

on π1(X̄). By the construction of ωn and the definition of ϕ, we have

[σ̃](ωn) = ϕ(σ)(ωn) (6.1.2)

in H2(π1(X̄), Ω2
Ān

), where on the right hand side ϕ(σ) is applied to the coefficients Ω2
Ān

. 
Next observe that, by functoriality of H (5.5.1), the endomorphism [σ̃] of H2(π1(X̄), Ω2

Ān
)

corresponds to the endomorphism (σ̃)∗ on H2
ét(X̄, Ω2

Ān
), i.e.

H ◦ [σ̃] = (σ̃)∗ ◦ H. (6.1.3)

By Poincare duality for étale cohomology, Tr ◦ (σ̃)∗ is multiplication by χ−1
cycl(σ). Com-

bining the above gives

ϕ(σ)(ωc,n) = χ−1
cycl(σ) · ωc,n.

This then implies ϕ(σ)(ω) = χ−1
cycl(σ) · ω, as desired. �

Remark 6.1.4. a) The stronger statement ϕ(σ)(κ) = χ−1
cycl(σ) · κ is also true. This can be 

seen by repeating the argument in the proof but with the coefficient group Ω2
Ān

replaced 
by K2(An).

b) (suggested by D. Litt) Consider the ring Z��λ� (with λ a formal variable), on which 
the group Gk acts by σ(λ) = χcycl(σ) · λ. Set Q�{λ} := (lim←−−n

Z�( (λ) )/�n)[1/�] for the 
�-adic completion of the Laurent power series Q�( (λ) ). Then λω is a non-degenerate 2-
form on the rigid Q�{λ}-analytic space D̄Q�{λ} := D̄⊗̂Q�

Q�{λ} which is isomorphic to a 
unit polydisk over Q�{λ}. The form λω is closed relative to the base field Q�{λ}, hence 
it gives a symplectic structure on D̄Q�{λ}, and is invariant under the diagonal action of 
Gk on D̄Q�{λ} = D̄⊗̂Q�

Q�{λ}. Note however, that this action is not Q�{λ}-linear.

6.2. The Galois flow

Since Ā/m2
Ā

is a finite ring, there is an integer N ≥ 1 such that the N -th iteration 
ψ = ϕ(σ)N : Ā → Ā satisfies ψ ≡ Id modm2

Ā
. Assume also that (� − 1)|N . Recall 

D = Spf(Ā)[1/�] 
 D1(m).
Since Ā 
 O�x1, . . . , xm�, the results of the Appendix, especially Proposition 7.2.5, 

apply to ψ. We obtain:

Theorem 6.2.1. We can write D = ∪c∈ND̄c as an increasing open union of affinoids (each 
D̄c isomorphic to a closed ball D̄r(c)(m) of radius r(c) increasing to 1) such that:

For each c ≥ 1, there is ε(c) ∈ Q>0 with the property that, for each σ ∈ Gk, there is 
a rigid analytic map (the “flow”)
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{t | |t|� ≤ ε(c)} × D̄c → D̄c, (t, x) �→ ψt(x) := σtN (x),

which satisfies

• ψt+t′ = ψt · ψt′ , for all |t|�, |t′|� ≤ ε(c),
• ψn : D̄c → D̄c is given by the action of σnN , for all n ∈ Z with |n|� ≤ ε(c).

(In fact, the Appendix gives more precise information on the flow σtN .)
The flow ψt induces a rigid analytic vector field XσN = Xψ on D. The vector field

Xσ := N−1 · XσN

on D is well-defined and independent of the choice of N . The contraction of the 2-form 
ω with Xσ gives a rigid analytic 1-form

μσ := Xσ
¬ω

on D.
Denote by log� : Z∗

� → Q� the �-adic logarithm.

Proposition 6.2.2. dμσ = − log�(χcycl(σ))ω.

Proof. It is enough to show the identity in E�x1, . . . , xm�, i.e. to check that the germs 
at (0, . . . , 0) of both sides agree. We use a formal version of “Cartan’s magic formula”

LX = iX · d + d · iX .

For completeness, we give the argument for the proof of this formula in our set-up. Set 
E�x� = E�x1, . . . , xm�. Consider the graded commutative superalgebra

Ω :=
⊕

i∈Z
Ωi

where, for i ≥ 0, Ωi = ∧iΩ̂1
E�x�/E , while Ω−i = 0, with multiplication satisfying ab =

(−1)ijba, for a, b in degree i, j. A derivation D of degree δ of Ω is an E-linear graded 
map D : Ω → Ω satisfying D(ab) = (Da)b + (−1)iδaD(b), for a ∈ Ωi. For example, the 
standard d is a derivation. If X = Xψ is the vector field associated to the flow ψt(x), 
then the Lie derivative LX : Ω → Ω, which, by definition, is given by

LXτ := lim
t�→0

1
t
(ψt(x)∗(τ) − τ)

is a derivation of degree 0. The contraction iX = X¬− : Ω → Ω is a derivation of degree 
−1 and we can easily see that the “superbracket” [iX , d] = iX · d + d · iX is a derivation 
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of degree 0. Now notice that the two derivations LX and [iX , d] of degree 0 agree on 
Ω0 = E�x�. Indeed, if f ∈ E�x�, then

LX(f) = iX · df = X� df

while iX(f) = 0. Also, both derivations LX and [iX , d] commute with d. Indeed, since 
d · d = 0, we have

d · (iX · d + d · iX) = d · iX · d = (iX · d + d · iX) · d.

Also, d · LX = LX · d since pull-back by ψt(x) commutes with d. The proof of Cartan’s 
magic formula LX = [iX , d] follows by observing that any two derivations of degree 0 on 
Ω that commute with d and agree on Ω0 have to agree.

Now apply this to ψ = ϕ(σN ) = ϕ(σ)N with N as above. Since dω = 0, Xσ = N−1·Xψ, 
μσ = N−1 · iXψ

(ω), we have

LXψ
(ω) = iXψ

· dω + d · iXψ
(ω) = N · dμϕ,

and is enough to show that LXψ
(ω) = −N log�(χcycl(σ))ω.

We have

LXψ
(ω) := lim

t�→0

1
t
(ψt(x)∗(ω) − ω) = lim

n �→+∞
�−n(ψln

(x)∗(ω) − ω).

Now (ψln(x))∗(ω) = ψln(ω) = ϕ(σ)N�n(ω) = χcycl(σ)−N�n

ω, with the last identity given 
by Proposition 6.2.2. Therefore,

LXψ
(ω) = lim

n �→+∞
�−n(χcycl(σ)−N�n − 1)ω = −N log�(χcycl(σ))ω.

(Recall � −1 divides N .) This identity, combined with the above, completes the proof. �
Theorem 6.2.3. Assume � does not divide d. The critical set

Crit := {x ∈ D | Xσ(x) = 0, ∀σ ∈ Gk}

is equal to the set of points x of D for which there is a finite extension k′/k such that 
the representation ρ̄x : π1(X̄) → GLd(Q̄�) extends to ρx : π1(X ×k k′) → GLd(Q̄�) which 
deforms (ρ0)|π1(X×kk′).

Proof. Recall (see for example [40], Sect. 6, (1.3) d) that, for any finite extension 
F of E, the base change (Āun⊗̂OOF , ρ̄un⊗̂OOF ) represents the deformation functor 
Def(π1(X̄), ρ̄0 ⊗O OF , ̄ε ⊗O OF ). Suppose now x ∈ D is such that ρ̄x extends to 
ρx : π1(X) → GLd(Q̄�). There is a finite extension F of E such that the images ρx(π1(X̄))
and ρx(σ) both lie in a conjugate of GLd(OF ) in GLd(Q̄�). By Proposition 5.3.4 (a) and 
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its proof, we can see that the action of σ on D fixes the point x. (We consider here the 
point x as giving a value for the deformation problem Def(π1(X̄), ρ̄0 ⊗O OF , ̄ε ⊗O OF ).) 
Hence, the flow given by σ on D also fixes x; it follows that Xσ vanishes at x.

Conversely, suppose x ∈ Crit. There is a finite extension F of E in Q̄� such that 
F = E(x) and a conjugate of ρ̄x takes values in GLd(OF ). Set r = max(||x||, (1/�)1/e) =
(1/�)a, a ∈ Q ∩ (0, 1/e]. Pick N > 1/a(� − 1) + 1. Then by Proposition 7.2.1 and 
Proposition 7.2.7 and its proof, if ϕ(σ) ≡ id modmN , then ϕ(σ)(x) = ψ1(x) = x. Now 
by continuity, there is a finite index normal subgroup U ⊂ Gal(ksep/k), such that for 
σ ∈ U , ϕ(σ) ≡ id modmN . Hence, there is a finite index normal U ⊂ Gal(ksep/k) such 
that for all σ ∈ U , σ(x) = x. Apply Proposition 5.3.4 (b) to A = OF and ρ̄ = ρ̄x to 
the base field k′ = (ksep)U . We obtain that ρ̄x extends to a continuous representation of 
π1(X ×k k′) with determinant ε which deforms (ρ0)|π1(X×kk′). �
Corollary 6.2.4. Suppose k is a finite field of order q = pf , p 	= �, and assume � is prime 
to d. Let X be a smooth projective curve over k and let

ρ0 : π1(X, x̄) → GLd(F)

be a representation with determinant ε such that ρ̄0 = ρ0|π1(X̄) is geometrically ir-
reducible. Suppose x is an E-valued point of the rigid analytic deformation space 
Spf(Āun)[1/�], as before, where E is a finite extension of W (F)[1/�] with integers OE. 
The lift ρ̄x : π1(X̄) → GLd(OE) of ρ̄0 : π1(X̄) → GLd(F) that corresponds to x extends 
to a continuous representation

ρx : π1(X ×Fq
FqN ) → GLd(OE)

with determinant ε, for some N ≥ 1, if and only if the 1-form μFrobq
vanishes at x.

Proof. Follows from Theorem 6.2.3 by observing that Gk is topologically generated by 
Frobq and so the critical set Crit is the zero locus of μFrobq

. �
6.3. Hamiltonian Galois flow

Recall Gk(ζ�∞ ) = Gal(ksep/k(ζ�∞)) and set again Ā = Āun. Recall the group homo-
morphism

ϕ : Gk(ζ�∞ ) → AutO(Ā).

By Proposition 5.3.3, this is continuous when we equip AutO(Ā) with the profinite 
topology given by the normal subgroups Kn = ker(AutO(Ā) → AutO(Ā/mn)).

For σ ∈ Gk(ζ�∞ ), we have χcycl(σ) = 1 and by Proposition 6.2.2, dμσ = 0. The 
Poincare Lemma 7.4.1 implies that there is a rigid analytic function Vσ ∈ O(D) such 
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that μσ = dVσ; we can normalize Vσ by requiring Vσ(0, . . . , 0) = 0. We can think of Vσ

as a “Hamiltonian potential” for the flow σt.

Theorem 6.3.1. The map σ �→ Vσ extends to a Z�-linear map

V : Z��Gk(ζ�∞ )� → O(D);
∑

σ

zσσ �→
∑

σ

zσVσ

which is continuous for the Fréchet topology on O(D) and satisfies:

1) For γ ∈ Gk, σ ∈ Gk(ζ�∞ ), Vγσγ−1 = ϕ(γ)(Vσ),
2) For σ, τ ∈ Gk(ζ�∞ ), −d{Vσ, Vτ } = [Xσ, Xτ ]¬ω.

Define

J : D → Hom(Z��Gk(ζ�∞ )�, Q̄�),

by J(x) = (z �→ Vz(x)). We may think of J as describing a moment map for the 
symplectic (Hamiltonian) action of Gk(ζ�∞ ) on D.

Proof. We choose an isomorphism Ā 
 R = O�x1, . . . , xm� that will allow us to use the 
explicit constructions of the previous sections. We first show

Lemma 6.3.2. Fix r = (1/�)a, a ∈ Q ∩ (0, 1/e], and ε > 0. There exists a finite index 
open normal subgroup U ⊂ Gk(ζ�∞ ) such that for all σ ∈ U , we have

||Xσ||r = sup
x∈D̄r(m)

||Xσ(x)|| < ε.

Proof. We first observe that there exists n = n(ε) such that ϕ(σ) ≡ Id modmn
Ā

, implies 
that ||Xσ||r < ε. This follows from the argument in the proof of (7.2.2). The result now 
follows from the continuity of ϕ (Proposition 5.3.3). �
Remark 6.3.3. Consider the analytic vector field Xσ =

∑m
i=1 Xi(σ)∂/∂xi. The inequality 

||Xσ||r < ε is supi ||Xi(σ)||r < ε. Suppose we perform a coordinate base change xi =
ψi(y) by an O-automorphism given by ψ : R → R. Then, if ||y|| ≤ r, ||ψ(y)|| ≤ r and 
so ||Xi(σ)(ψ(y))||r < ε. Also, ∂yj/∂xi ∈ R. Since

Xσ =
∑

j

(
∑

i

Xi(σ)(ψ(y))∂yj

∂xi
) ∂

∂yj

it follows that the validity of ||Xσ||r < ε is independent of the choice of identification 
Āun 
 O�x1, . . . , xm�.
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Now write Xσ =
∑m

i=1 Xi(σ)∂/∂xi and ω =
∑

i<j gijdxi ∧ dxj with gij ∈ R; then

μσ = iXσ
(ω) =

∑
i,j

Xi(σ)gijdxj =
∑

j
hj(σ)dxj ,

where hj(σ) =
∑

i Xi(σ)gij . By the above lemma, there is a finite index normal open 
subgroup U ⊂ Gk(ζ�∞ ) such that supi ||Xi(σ)||r < ε, for all σ ∈ U . Since ||gij || ≤ 1, we 
also have supj ||hj(σ)||r < ε. Since the Tate algebra O(D̄r(m)) is complete for the Gauss 
norm || · ||r, we obtain that, for each r �→ 1−, the map σ �→ hj(σ) extends to

hj : Z��Gk(ζ�∞ )� → O(D̄r(m)).

These maps are compatible with the restrictions O(D̄r(m)) → O(D̄r′(m)), r′ < r. There-
fore, they give the extension hj : Z��Gk(ζ�∞ )� → O(D) which, in fact, continuous for the 
Fréchet topology on O(D) given by the family of Gauss norms {|| · ||r}r. For z =

∑
σ zσσ, 

now set

μz =
∑

j
hj(z)dxj

with hj(z) ∈ O(D). This 1-form is also closed and by Proposition 7.4.1 (a), there is 
(a unique) Vz ∈ O(D) with Vz(0, . . . , 0) = 0 and dVz = μz. The map z �→ Vz gives our 
extension. The continuity follows from the construction together with the fact that taking 
(partial) antiderivatives is continuous for the Fréchet topology on O(D). (In turn, this 
follows by some standard estimates using that limi→∞ �i(r/r′)�i → 0, for 0 < r < r′ < 1.)

Property (1) follows from the definitions using the identity of flows

(γσγ−1)t = ϕ(γ)σtϕ(γ−1),

(which follows from interpolating using the identities (γσγ−1)�n = γσ�n

γ−1 in Gk).
Property (2) is formal (see [11, Prop. 18.3]): We have

[Xσ, Xτ ]¬ω = LXσ
(Xτ

¬ω) − Xτ
¬(LXσ

ω).

(This comes from the standard formal identity [X, Y ]¬α = LX(Y ¬α) −X¬(LXα) which 
can be shown by arguing as in our proof of Cartan’s magic formula above.) By Cartan’s 
formula this is equal to

d(Xσ
¬(Xτ

¬ω)) + Xσ
¬d(Xτ

¬ω) − Xτ
¬d(Xσ

¬ω) − Xτ
¬(Xσ

¬dω).

In this expression, the last three terms are trivial since d(Xσ
¬ω) = d(Xτ

¬ω) = 0, 
dω = 0. By definition, Xσ

¬(Xτ
¬ω) = −ω(Xσ, Xτ ) = −{Vσ, Vτ } and this completes the 

proof. �



G. Pappas / Advances in Mathematics 387 (2021) 107836 61
Corollary 6.3.4. Assume � does not divide d. The critical locus set

J−1(0) = {x ∈ D | dVσ(x) = 0, ∀σ ∈ Gk(ζ�∞ )}

is equal to the set of points x of D for which there is a finite extension k′/k(ζ�∞) such 
that the representation ρ̄x : π1(X̄) → GLd(Q̄�) extends to ρx : π1(X ×k k′) → GLd(Q̄�)
which deforms (ρ0)|π1(X×kk′).

Proof. This follows from Theorem 6.2.3 by replacing k by k(ζ�∞) and noting that for 
σ ∈ Gk(ζ�∞ ), we have dVσ = μσ which vanishes at x if and only if Xσ vanishes at x. �
6.3.5. In the above, suppose ρ̄x extends to a representation ρx of π1(X). Then x is a 
critical point of Vσ, ∀σ ∈ Gk(ζ�∞ ). It is reasonable to ask the following question: Do we 
have

Vσ(x) = A(σ) · Vol(ρx)(σ) + B(σ),

for all σ ∈ Gk(ζ�∞ ), where A(σ), B(σ) are constants independent of x?

6.4. Milnor fiber and vanishing cycles

Suppose that F is a étale Z�-local system over X. Assume that the corresponding 
representation ρ0 is such that ρ̄0 : π1(X ×k k̄) → GLd(F�) is geometrically irreducible and 
that � does not divide d. Then the representation of π1(X ×k k̄) given by F corresponds 
to a point x of the deformation space D which is a critical point of Vσ, ∀σ ∈ Gk(ζ�∞ ).

Let us consider the germ V̂σ of Vσ in the completion ÔD,x̄ of the local ring OD,x̄ of the 
rigid analytic D at x. This completion is isomorphic (non-canonically) to Q��v1, . . . , vm�

(e.g. by taking vi = xi − xi) and the germ V̂σ defines a Q�-algebra homomorphism 
Q��u� → ÔD,x, by u �→ V̂σ − Vσ(x̄). Consider the corresponding morphism of formal 
schemes

fσ : Spf(ÔD,x) → Spf(Q��u�).

(Here we use the u-adic topology, the �-adic topology plays no role.) This makes 
Spf(ÔD,x) a special formal scheme over Spf(Q��u�) in the sense of [6, 1].

In this situation, we can consider various local invariants of the critical point x of Vσ:

6.4.1. The analytic Milnor fiber

M(x, σ) = Spf(ÔD,x⊗̂Q�
Q̄�)[1/u].

This is, by definition (cf. [46]), the generic fiber of fσ⊗̂Q�
Q̄� considered as a Q̄�( (u) )-

analytic space.
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6.4.2. The stacks of the nearby cycle sheaves ([6], [7])

RiΨfσ⊗̂Q�
Q̄�

(Qp)x := (lim←−−n
(RiΨfσ⊗̂Q�

Q̄�
(Z/pnZ))x) ⊗Zp

Qp

at x.
By [7, Theorem 3.1.1, Corollary 3.1.2], for each n ≥ 1, RiΨfσ⊗̂Q�

Q̄�
(Z/pnZ))x are 

finite Gal(Q�((u))/Q�( (u) )) 
 Ẑ-modules. By [7, Theorem 3.1.1, Corollary 3.1.2], these 
agree with the étale cohomology groups

Hi(x, σ,Z/pnZ) := Hi
ét(M(x, σ) ×Q̄�((u)) Q�((u))

∧
,Z/pnZ)

(again in the sense of Berkovich). In fact, the proof of the above results in [7] also gives 
that there is i0 such that for i > i0, Hi(x, σ, Z/pnZ) = (0), for all n. Hence, for each 
n ≥ 1, Hi(x, σ, Z/pnZ) are the cohomology groups of a perfect complex P •(x, σ, Z/pnZ)
of Z/pnZ-modules. A standard argument (e.g. [42, VI 8.16]) gives that there is a perfect 
complex of Zp-modules P •(x, σ) so that

P •(x, σ) ⊗Zp
Z/pnZ 
 P •(x, σ,Z/pnZ).

Then Hi(P •(x, σ)) 
 lim←−−n
Hi(x, σ, Z/pnZ) and we can conclude that for each i,

Hi(x, σ,Qp) = (lim←−−n
(Hi(x, σ,Z/pnZ)) ⊗Zp

Qp

is a finite dimensional Qp-vector space with an action of Gal(Q�((u))/Q�( (u) )) 
 Ẑ.

6.4.3. With notations as above, we can consider the (“perversely” shifted) Euler charac-
teristic of the vanishing cycles

λ(F , σ) = (−1)m(1 − χ(M(x, σ) ×Q̄�((u)) Q�((u))
∧

)) =

= (−1)m(1 −
∑

i
(−1)i dimQp

Hi
ét(M(x, σ) ×Q̄�((u)) Q�((u))

∧
,Qp)).

Note that the integer λ(F , σ) is analogous to (a local version of) the Casson-type in-
variant given in [1] or the Behrend invariant of [4]. Calculating this number appears to 
be a hard problem.

7. Appendix: interpolation of iterates and flows

In this appendix, we elaborate on an idea of Poonen [48] (inspired by [5]) about �-adic 
interpolation of iterates. A similar construction using this �-adic interpolation argument 
was also used by Litt [38]. We need a little more information than what is given in these 
references. The proofs of Theorems 6.2.1, 6.2.3, and 6.3.1 use some of the bounds and 
estimates of rates of convergence shown below.
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We assume that � is an odd prime and O a totally ramified extension of W (F) of 
degree e. For a ∈ Q ∩ (0, 1/e], set r = (1/�)a, so that (1/�)1/e = |l|� ≤ r < 1. We 
set R = O�x1, . . . , xm�, m = (l, x1, . . . , xm). Consider a O-algebra homomorphism ψ :
R → R such that ψ ≡ id modmN for some N ≥ 2. This is determined by ψ(x) =
(ψ(x1), . . . , ψ(xm)) ∈ Rm. Set ψj = ψ(xj) ∈ R. We also set ||ψ(x)||r = supi ||ψi||r. For 
||x|| ≤ r we also have ||ψ(x)||r ≤ r. Therefore, ψ(x) gives a rigid analytic D̄r(m) →
D̄r(m), for any such r; these maps agree and they are the restriction of a rigid analytic 
map ψ : D1(m) → D1(m). Since ψ : D1(m) → D1(m) is given by

a = (a1, . . . , am) �→ (ψ1(a1, . . . , am), . . . , ψm(a1, . . . , am)) = ψ(a)

we will often also denote this map by ψ(x). Our goal is to �-adically interpolate the 
iterates ψ ◦ · · · ◦ ψ of ψ and obtain various related estimates. For simplicity, we will often 
write

D = D1(m).

7.1. Difference operators

As in [48], set Δψ for the operator that sends h : R → R to Δψ(h) : R → R given by 
Δψ(h)(x) = h(ψ(x)) − h(x). Similarly, if f ∈ R, we can consider Δψ(f) ∈ R given by 
the power series Δψ(f)(x) = f(ψ(x)) − f(x).

For simplicity, set Δ = Δψ and suppose g, h ∈ R. We have

Δ(gh)(x) = (gh)(ψ(x)) − (gh)(x)

= g(ψ(x))h(ψ(x)) − g(x)h(x)

= h(ψ(x))Δ(g)(x) + g(x)Δ(h)(x)

= g(ψ(x))Δ(h)(x) + h(x)Δ(g)(x)

= g(x)Δ(h)(x) + h(x)Δ(g)(x) + Δ(g)(x)Δ(h)(x).

Hence,

Δ(gh)(x) = g(x)Δ(h)(x) + h(x)Δ(g)(x) + Δ(g)(x)Δ(h)(x). (7.1.1)

Consider the formal series

ψt := (I + Δ)t =
∑
k≥0

(
t

k

)
Δk = I + tΔ + t(t − 1)

2! Δ2 + · · ·

Xψ := Log(ψ) = log(I + Δ) = Δ − 1
2Δ2 + 1

3Δ3 − · · · .

For g, h ∈ R, we can see using (7.1.1) that Xψ satisfies, at least formally, the identity
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Xψ(gh) = gXψ(h) + hXψ(g). (7.1.2)

Formally, we have

ψt = I + tXψ + t2

2 X2
ψ + · · · .

If ϕ : R → R is another such map, then

ϕtψsϕ−tψ−s = (I + tXϕ + · · · )(I + sXψ + · · · )(I − tXϕ + · · · )(I − sXψ + · · · ) =

= I + ts(XϕXψ − XψXϕ) + (degree ≥ 3 in s, t).

7.2. Interpolation

We continue with an O-algebra automorphism ψ : R → R inducing the identity on 
R/mN , N ≥ 2.

Apply the operators of the previous paragraph to the identity map id : x �→ x, so 
Δ(x) = ψ(x) − x ∈ (mN )⊕m, Δ2(x) = ψ2(x) − 2ψ(x) + x. By induction, we have

(I + Δ)k(x) = ψk(x),

for all k ≥ 1.
Recall (1/�)e ≤ r = (1/�)a < 1. We have ||Δ(x)||r ≤ rN . By induction:

Δk(x) ≡ 0 modmk(N−1)+1, ||Δk(x)||r ≤ rk(N−1)+1.

Since |k!|� ≥ (1/�)k/(�−1), we obtain, for k ≥ 1,

||
(

t

k

)
Δk(x)||r ≤ |t|� · rk(N−1)+1(1/�)−k/(�−1) = |t|� · (1/�)k[a(N−1)−1/(�−1)]+a.

Proposition 7.2.1. Suppose ψ ≡ id modmN , N ≥ 2, and a ∈ Q ∩ (0, 1/e].
a) The power series giving ψt(x) converge when |t|� ≤ 1, ||x|| ≤ r = (1/�)a and 

a > 1/(� − 1)(N − 1). Then ||ψt(x)||r ≤ r, so these give an analytic map

ψt(x) : D̄1(1) × D̄r(m) → D̄r(m).

b) The power series giving Xψ(x) converge on ||x|| < 1. We have

||Xψ(x)||(1/�)a ≤ �N(1,a(N−1))�−(1+a).

Proof. Part (a) follows from the above estimates. For part (b) notice that we have

||Δk
ψ(x)/k||(1/�)a ≤ |k|−1

� (1/�)ka(N−1)+a ≤ �d�(k)−a(N−1)k�−(1+a).
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The result follows as in the proof of Proposition 1.2.1 (a). �
Fix a ∈ Q ∩(0, 1/e], r = (1/�)a. From Proposition 7.2.1 (b) and Lemma 1.1.4 it follows 

(as in Proposition 1.2.1 (b)) that if (ψn)n is a sequence of maps with ψn ≡ id modmn

and n �→ +∞, then

||Xψn
(x)||r �→ 0. (7.2.2)

In fact, by estimating N(1, a(n − 1)), we can see that ||Xψn
(x)||r ≤ rn if n is large 

enough so that a > 1/(� − 1)(n − 1). On the other hand, in general, for a fixed ψ, 
||Xψ(x)||r �→ +∞ as r �→ 1−.

Corollary 7.2.3. The map Xψ : R → O(D) which sends f to

Xψ(f)(x) =
∑
k=1

(−1)k−1 Δk
ψ(f)(x)

k
=

=f(ψ(x)) − f(x) − f(ψ2(x)) − 2f(ψ(x)) + f(x)
2 + · · ·

is an O-linear continuous derivation. It extends naturally to a continuous O-linear 
derivation Xψ : O(D) → O(D).

Proof. Follows from the above convergence and (7.1.2). �
Note that the component Xψ(x)i of Xψ(x) = (Xψ(x)1, . . . , Xψ(x)m) is equal to 

Xψ(xi)(x) and so we can write

Xψ(x) =
m∑

i=1
Xψ(x)i

∂

∂xi
.

Lemma 7.2.4. If ψ ≡ id modm2 then ψ�n ≡ id modmn+2, for all n ≥ 0.

Proof. Set

An = ker(AutO(R/mn+1) → AutO(R/mn))

for the kernel of reduction. Any χ ∈ An, for n ≥ 2, is given by

χ(x1) = x1 + A(χ)1, . . . , χ(xm) = xm + A(χ)m,

where A(χ) = (A(χ)1, . . . , A(χ)m) ∈ (mn/mn+1)m. Using induction, we see that the N -
iteration χN is given by the row A(χN ) = N ·A(χ) and therefore χ� = Id. By assumption, 
ψ gives an element of A2. By the above, ψ� ≡ Id modm3 and by induction ψ�n ≡ Id
modulo mn+2. �
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For a ∈ Q ∩ (0, 1/e], r = (1/�)a, let us set ε(r) = (1/�)
1

a(�−1) and

D̄ε(r)(1) × D̄r(m) = {(t, x) | |t|� ≤ (1/�)
1

a(�−1) , ||x|| ≤ (1/�)a} ⊂ D̄1(1) × D̄r(m).

Proposition 7.2.5. Suppose ψ ≡ id modm2.
a) The series giving ψt(x) converges for (t, x) ∈ D̄ε(r)(1) × D̄r(m) and defines a rigid 

analytic map

ψt(x) : D̄ε(r)(1) × D̄r(m) → D̄r(m).

b) For (t, x), (t′, x) ∈ D̄ε(r)(1) × D̄r(m) we have

ψt+t′
(x) = ψt(ψt′

(x)).

Proof. We have formally ψt�n(x) = (ψ�n)t(x) and Lemma 7.2.4 implies that we can 
apply Proposition 7.2.1 to ψ�n with N = n + 2. We obtain that ψt�n(x) converges for 
||x|| ≤ (1/�)a, n > 1/a(� − 1) − 1 and |t| ≤ 1 and part (a) follows. Part (b) follows since 
it interpolates the identity ψn(ψn′(x)) = ψn+n′(x), which is true for infinite number of 
pairs n, n′ ∈ Z. �

Now formally as power series in x, we have

dψt(x)
dt |t=0

= log(1 + Δψ)(x) = Xψ(x). (7.2.6)

(Hence, Xψ(x) can be thought of as the vector field associated to the flow ψt.)

Proposition 7.2.7. a) For all ||x|| < 1, we have

dψt(x)
dt

= Xψ(ψt(x)).

b) If Xψ(a) = 0 for some a ∈ Q̄m
� with ||a|| < 1, then ψt(a) = a, for all |t| sufficiently 

small, in particular ψ�n(a) = a, for all n >> 0.

Proof. Using Proposition 7.2.5 and (7.2.6) gives that for all ||x|| < 1,

dψt(x)
dt

= lim
h→0

ψt+h(x) − ψt(x)
h

= lim
h→0

ψh(ψt(x)) − ψt(x)
h

= Xψ(ψt(x)).

Part (b) now follows: If Xψ(a) = 0 then (dψt/dt)(a) = 0, so ψt(a) = a, for all |t|�
sufficiently small, so ψ�n(a) = a, for all n >> 0. �
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7.3. Vector fields and flows

Here we recall how an analytic vector field X gives a flow. Suppose that

X =
∑

n∈Nm

anxn = (Xt,1, . . . , Xt,m)

is given by power series in E�x1, . . . , xm� that converge on ||x|| < 1.

Proposition 7.3.1. Suppose that for all ||x|| ≤ r = (1/�)a ≤ 1, we have ||X(x)||r ≤ r. Set 
ε = (1/�)1/(�−1). Then, there is a unique rigid analytic map

ht : D1(ε) × D̄r(m) → D̄r(m)

such that

dht(x)
dt

= X(ht(x)), h0 = id, ht(0, . . . , 0) = (0, . . . , 0).

Proof. We can reduce to the case r = 1 by rescaling: Consider the (inverse) maps 
�a : D̄(m) → D̄r(m), �−a : D̄r(m) → D̄(m) given by scaling by �a, resp. �−a. Then, 
�−a ◦X ◦ �a gives a vector field on D̄1(m) and �−a ◦ht ◦ �a is a solution of the ODE above 
for �−a ◦ X ◦ �a if and only if ht is a solution for X. In what follows, we assume r = 1. 
Now set

ht(x1, . . . , xm) =
∑
s≥0

cs

s! ts

where cs ∈ E�x1, . . . , xm�m. As in the proof of [54], Thm, p. 158 (see also [30, §5.1, Prop. 
8]), we can solve (uniquely) formally for cs from c0 = x and∑

s≥0

cs+1

s! ts =
∑

n
an(

∑
s≥1

cs

s! ts)n.

We see that cs are given by polynomials (with integral coefficients) in the coefficients 
as′,n of the power series giving X with s′ < s and |n| ≤ s. Since ||X(x)|| ≤ 1, we have 
||as′,n|| ≤ 1. We obtain ||cs|| ≤ 1. Since |s!|� ≥ εs, when |t|� < ε, ||csts/s!|| �→ 0 for 
s �→ +∞ and convergence follows. �
7.4. Poincare lemma

The Poincare lemma holds for the rigid analytic polydisk D1(m). Here, we are only 
going to use that closed 1-forms are exact. For completeness, we give a simple proof of 
this fact.
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Proposition 7.4.1. Let μ =
∑

i=1 fidxi be a closed 1-form with fi ∈ O(D1(m)), for all i. 
Then there is F ∈ O(D1(m)) such that dF = μ.

Proof. We follow a standard proof of the “formal” Poincare lemma. First find Fm ∈
O(D1(m)) with ∂Fm/∂xm = fm by formally integrating the variable xm. (The power 
series Fm converges on ||x|| < 1.) Consider μ − dFm = g1dx1 + · · · + gm−1dxm−1 which 
is also closed. Closedness implies ∂gi/∂xm = 0, for all 1 ≤ i ≤ m − 1, so the gi are power 
series in x1, . . . , xm−1 only and we can argue inductively. �
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