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0. Introduction

In this paper, we introduce certain constructions for étale Z,-local systems (i.e. lisse
Z-sheaves) on proper algebraic curves defined a field of characteristic different from ¢.
In particular, using an ¢-adic regulator, we define a notion of f-adic volume. We also
give a symplectic form on the (formal) deformation space of a modular representation
of the geometric étale fundamental group of the curve. (In what follows, we will use the
essentially equivalent language of ¢-adic representations of the étale fundamental group.)

Our definitions can be viewed as giving analogues of constructions in the symplectic
theory of character varieties of a Riemann surface and of the volume and the Chern-
Simons invariants of representations of the fundamental group of a 3-manifold which
fibers over S!.

Let us recall some of these classical constructions, very briefly. We start with the
symplectic structure on the character varieties of the fundamental group I' = 71 (X) of a
(closed oriented) topological surface ¥. To fix ideas we consider the space

Xg(T) =Hom(T',G)/G

parametrizing equivalence classes of representations of I' with values in a connected
real reductive group G; there are versions for complex reductive groups. (Here, we are
being intentionally vague about the precise meaning of the quotient; what is clear is
that it is taken for the conjugation action on the target.) Suppose that p : ' — G is a
representation which gives a point [p] € Xg(I"). The tangent space Tj, of X¢(I') at [p]
can be identified with H'(I', Ad,), where Ad, is the Lie algebra of G with the adjoint
action. Consider the composition

H'(T, Ad,) x H'(T', Ad,) = H2(T, Ad, ®g Ad,) 2 H2(,R) = R,

where B is induced by the Killing form and the last isomorphism is given by Poincare
duality. This defines a non-degenerate alternating form

Tip) @r Tjp) — R,

ie wy € /\ZT[*p]. By varying p we obtain a 2-form w over X¢(I"). Goldman [25] shows
that this form is closed, i.e. dw = 0, and so it gives a symplectic structure (at least over
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the space of “good” p’s which is a manifold). Note here that the mapping class group of
the surface ¥ acts naturally on the character variety by symplectomorphisms, i.e. maps
that respect Goldman’s symplectic form. In turn, this action relates to many fascinating
mathematical structures.

Next, we discuss the notion of a volume of a representation. Here, again to fix ideas, we
start with a (closed oriented) smooth 3-manifold M and take I'o = w1 (M). Let X = G/H
be a contractible G-homogenous space of dimension 3 and choose a G-invariant volume
form wx on X. A representation p : I'o = m (M) — G gives a flat X-bundle space
7 : M — M with G-action. The volume form wy naturally induces a 3-form w4 on M.
Take s : M — M to be a differentiable section of  and set

Vol(p) = /s*wg( eR
M

which can be seen to be independent of the choice of section s ([24]). The map p — Vol(p)
gives an interesting real-valued function on the space X (T'o).

An important special case is when M is hyperbolic, G = PSLy(C), X = H? = CxR~g
(hyperbolic 3-space), wx is the standard volume form on H?, and phy, : m (M) —
PSLy(C) = Isom™ (H?) is the representation associated to the hyperbolic structure of
M = H3/Tg. Then, Vol(pyyp) = Vol(M), the hyperbolic volume of M. The Chern-Simons
invariant CS(M) of M is also related. For this, compose the map

H3(M,Z) = Hy(my (M), Z) 2% Hs(PSL,(C), Z)
with the “regulator”
M : H3(PSLy(C),Z) — C/7?Z.

The product of —i with the image of the fundamental class [M] under this composition
is the “complex volume”

Vol (pnyp) = Volc (M) = Vol(M) + i27?CS(M)

([45]); this can also be given by an integral over M.

A straightforward generalization of this construction leads to the definition of a com-
plex volume Volc(p) for representations p : w1 (M) — SL,(C) (see, for example, [23]).
This uses the regulator maps (universal Cheeger-Chern-Simons classes)

R, : H3(SL,(C),Z) — C/(2mi)*Z.
(See also [16] and [26].)

We now return to the arithmetic set-up of local systems over algebraic curves. Recall
that we are considering formal deformations of a modular (modulo £) representation. We
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show that when the modular representation is the restriction of a representation of the
arithmetic étale fundamental group, the absolute Galois group acts on the deformation
space by “conformal symplectomorphisms” (i.e. scaling the symplectic form) which ex-
tend to an f-adic analytic flow. This gives an analogue of the action of the mapping class
group on the character variety by symplectomorphisms we mentioned above. We show
that if the curve is defined over a field k, the action of a Galois automorphism that fixes
the field extension k() generated by all -power roots of unity, is “Hamiltonian”. We
use this to express the set of deformed representations that extend to a representation
of a larger fundamental group over k({y) as the intersection of the critical loci for a set
of rigid analytic functions V,, where o ranges over Gal(kP/k((s=)). The Milnor fibers
and vanishing cycles of V, provide interesting constructions.

Let us now explain this in more detail. Let £ be a prime which we assume is odd, for
simplicity. Suppose that X is a smooth geometrically connected proper curve over a field
k of characteristic prime to £. The properness of the curve is quite important for most of
the constructions. We fix an algebraic closure k. Denote by Gy, = Gal(k*? /k) the Galois
group where k*°P is the separable closure of k in k, by k(Cp) = Upk({en) the subfield
of k5P generated over k by all the £"-th roots of unity and by Xcya : Gr — Zj the
cyclotomic character. Fix a k-point Z of X, and consider the étale fundamental groups
which fit in the canonical exact sequence

1= m(X x4 k,7) = 1 (X, 2) = G, — 1.

For simplicity, we set X = X x; k and omit the base point Z. Let .# be an étale Z,-
local system of rank d > 1 over X. The local system .# corresponds to a continuous
representation p : w1 (X) — GLg(Z,).

The ¢-adic volume Vol(.%) of F# is, by definition, a continuous cohomology class

Vol(.7) € H' (k, Qq(—1)).
Here, as usual, Q¢(n) = Q¢ ®z, X¢yq I8 the n-th Tate twist.

Note that if £ is a finite field or a finite extension of Q, with p # ¢, then we have
H!(k,Q¢(—1)) = (0). If k is a finite extension of Q,, then

H' (k, Qe(—1)) = Q"%

If k£ is a number field with r; real and r complex places, then assuming a conjecture of
Schneider [53], we have

H' (k, Qo(~1)) = Q}+.

In fact, using the restriction-inflation exact sequence, we can give Vol(#) as a continuous
homomorphism
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Vol(F) : Gal(k*P /k(Coe ) — Qp(—1)

which is equivariant for the action of Gal(k((e)/k).
To define Vol(.#) we use a continuous 3-cocycle

vz, : Z¢[GLa(Z0)?] — Qo

that corresponds to the ¢-adic Borel regulator [31]. The quickest way is probably as
follows (but see also §4.4): Using the Leray-Serre spectral sequence we obtain a homo-
morphism

H?(m1(X), Qe/Ze) — HE(X, Qe/Zg) — H' (k, H (X, Q¢/Z¢)) = H' (k, Qe/Ze(~1)).
Taking Pontryagin duals gives
H(k, Q¢/Z¢(—1))* = Hy (G, Ze(1)) — Ha(m1(X), Zy).
Now compose this with the map given by p and the ¢-adic regulator to obtain

Hi(Gr, Z(1)) — Ha(m1(X), Zo) Hsle), H3(GLa(Zy), Z¢) —% Q.

This, by the universal coefficient theorem, gives Vol(.#) € H!(k,Qy(—1)), up to sign. In
fact, we give an “explicit” continuous 1-cocycle that represents Vol(.#) by a construction
inspired by classical Chern-Simons theory [20].

Let ¢ be a fundamental 2-cycle in Z,[r(X)?]. Lift ¢ € G}, to & € m1(X) and consider
the (unique up to boundaries) 3-chain §(&,c) € Z,[r1(X)?] with boundary

et

Qe

8(3(5,0)) = ~ Xeyalo) -
Also, let F,5)(p(c)) be the (continuous) 3-chain for GL4(Z,) which gives the “canonical”
boundary for the 2-cycle p(G) - p(c) - p()~t — p(c). We set

B(o) :=rz,[p(8(5,¢)) = Fyz)(p(c))] € Q-

The map Gj, — Q(—1) given by o — Xcya1(0) "*B(0) is a continuous 1-cocycle which is
independent of choices up to coboundaries and whose class is Vol(.%).

This explicit construction is more flexible and can be applied to continuous repre-
sentations p : 71(X) — GLg(A), where A is a more general f-adic ring. In fact, we do
not need that p extends to 71(X) but only that it has the following property: There is
continuous homomorphism ¢ : G — Aut(A) such that, for every o € Gy, there is a lift
& € m(X), and a matrix hy € GLg4(A), with

p(G 67 = hs (o) (p(7)) - hz', ¥y € mi(X).

i)
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(In the above case, A = Z,, p(o) =id, and hs = p(5).) We again obtain a (continuous)
class

Vol,, , € H'(k, 0(D)(-1))

which is independent of choices. In this, &(D) is the ring of analytic functions on the
rigid generic fiber D = Spf(A4)[1/¢] of A, with G-action given by .

In particular, with some more work (see §5.1, and especially Proposition 5.1.2), we
find that this construction applies to the case that A is the universal formal deformation
ring of an absolutely irreducible representation po : m(X) — GLg(F,) which is the
restriction of a continuous pg : m1(X) = GL4(F¢). Then the Galois group Gy acts on A
and the action, by its definition, satisfies the condition above. In this case, the ring A
is (non-canonically) a formal power series ring A ~ W (Fy)[z1,...,z.] and &(D) is the
ring of rigid analytic functions on the open unit /-adic polydisk.

Suppose now that ¢ is prime to d. We show that, in the above case of a universal
formal deformation with determinant fixed to be a given character € : 71 (X) — Z}, the
ring A carries a canonical “symplectic structure”. This is reminiscent of the canonical
symplectic structure on the character varieties of the fundamental groups of surfaces [25].
Here, it is given by a continuous non-degenerate 2-form w € A2Q< W which is closed,
ie. dw=0.

Let us explain our construction of w. By definition,

Q% = 1m, Q4 ymnjw,
where m is the maximal ideal of A. Consider the map
dlog : KS'(A) = lim Ka(A/m") = A2Q% 1 = lim Q4 /me vy
obtained as the limit of
dlog ) : Ka(A/m™) = Q4 jmn jw-
We first define a (finer) invariant

k = lim K,
qm
n

of the universal formal deformation ps : 71 (X) — GLg(A) with values in the limit
K§'(A) =lim Kz(A/m"). For n > 1, k, is the image of 1 under the composition

Zo(1) 5 Hy(m1(X), Z¢) — Ho(SLasr (A/m™), Zg) = Ko(A/m™).

Here the second map is induced by p @ ¢!, and the third is the isomorphism given by
stability and the Steinberg sequence
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1 = Ky(A/m™) — St(A/m™) — SL(A/m") — 1.
Then the 2-form w € A2Q Jw s, by definition, the image
w = dlog(k).

The closedness of w follows immediately since all the 2-forms in the image of dlog are
closed. We show that the form w is also given via cup product and Poincare duality,
just as in the construction of Goldman’s form above (see Theorem 5.5.2), and that is
non-degenerate. This is done by examining the tangent space of the Steinberg extension
using some classical work of van der Kallen.

In fact, this also provides an alternate argument for the closedness of Goldman’s 2-form
[25] on character varieties. Showing that this form (which is defined using cup product
and duality) is closed, and thus gives a symplectic structure, has a long and interesting
history. The first proof, by Goldman, used a gauge theoretic argument that goes back
to Atiyah and Bott. A more direct proof using group cohomology was later given by
Karshon [34]. Other authors gave different arguments that also extend to parabolic
character varieties for surfaces with boundary, see for example [28]. The approach here
differs substantially: We first define a 2-form which is easily seen to be closed using
Ky, and then we show that it agrees with the more standard form constructed using
cup product and duality. Let us mention here that Pantev-Toen-Vaquié-Vezzosi have
given in [47] a general approach for constructing symplectic structures on similar spaces
(stacks) which uses derived algebraic geometry. In fact, following this, the existence
of the canonical symplectic structure on Spf(A)[1/¢] was also shown, and in a greater
generality, by Antonio [3], by extending the results of [47] to a rigid-analytic set-up. This
uses, among other ingredients, the theory of derived rigid-analytic stacks developed in
work of Porta-Yu [49] (see also [50]). Our argument is a lot more straightforward and,
in addition, gives the symplectic form over the formal scheme Spf(A). (However, the
derived approach would be important for handling the cases in which the representation
is not irreducible.)

It is not hard to see (cf. [15]), that the automorphisms ¢(o) of A given by o € Gy,
respect the form w up to Tate twist:

P(0) (W) = Xoya (@)w.

(So they are “conformal symplectomorphisms” of a restricted type.) In particular, if &
is a finite field of order ¢ = p/, prime to ¢, and ¢ is the geometric Frobenius Frobg, the
corresponding automorphism ¢ = ¢(Frob,) satisfies p(w) = ¢ - w.

The automorphism (o) can be extended to give a “flow”: Using an argument of
Poonen on interpolation of iterates, we show that we can write D as an increasing union
of affinoids

P= UCEN @c



8 G. Pappas / Advances in Mathematics 387 (2021) 107836

(each D, isomorphic to a closed ball of radius £~'/¢) such that the following is true:

There is N > 1, and for each ¢, there is a rational number £(c) > 0, such that, for
o € Gy, the action of 6™V on A interpolates to an f-adic analytic flow 1t := ¢ on D,
defined for |t|; < e(c), i.e. to a rigid analytic map

{t ]It <e(0)} x De = De, (%) = ¥ (x),

with ot = ot -t As ¢ — +o0, e(¢) — 0, and so we can think of this as a flow on
D which, as we approach the boundary, only exists for smaller and smaller times. (A
similar construction is given by Litt in [38] and, in the abelian case, by Esnault-Kerz
[17].) We show that if xcye1(o) = 1, this flow is symplectic and in fact Hamiltonian, i.e.
it preserves the level sets of an ¢-adic analytic function V,, € &(A). More precisely, the
flow otV gives a vector field X, on D whose contraction with w is the exact 1-form dV.
It follows that the critical points of the function V, are fixed by the flow. We use this
to deduce that the intersection of the critical loci of V, corresponds to representations
of m1(X) that extend to 71 (X xj k') for some finite extension k' of k(Cs~). The flow
1t is an interesting feature of the rigid deformation space D that we think deserves
closer study. Versions of this flow construction have already been used in [38], [17], [18],
to obtain results about the set of representations which extend to the arithmetic étale
fundamental group. It remains to see if its symplectic nature, explained here, can provide
additional information.

The inspiration for these constructions comes from a wonderful idea of M. Kim [36] (see
also [13]) who, guided by the folkore analogy between 3-manifolds and rings of integers
in number fields and between knots and primes, gave a construction of an arithmetic
Chern-Simons invariant for finite gauge group. He also suggested ([37]) to look for more
general Chern-Simons type theories in number theory that resemble the corresponding
theories in topology and mathematical physics. An important ingredient of classical
Chern-Simons theory is the symplectic structure on the character variety of a closed
orientable surface: When the surface is the boundary of a 3-manifold, the Chern-Simons
construction gives a section of a line bundle over the character variety. The line bundle
has a connection with curvature given by Goldman’s symplectic form. One can try to
imitate this construction in number theory by regarding the 3-manifold with boundary
as analogous to a ring of integers with a prime inverted.

In this paper, we have a different, simpler, analogy: Our topological model is a closed
3-manifold M fibering over the circle S! with fiber a closed orientable surface Y of genus
> 1 with fundamental group I' = 71(X). The monodromy gives an element o of the
mapping class group Out(T"), so we can take M to be the “mapping torus” ¥ x [0, 1]/~,
where (a,0) ~ (6(a),1) with § : ¥ — 3 representing o. There is an exact sequence

1T >m(M)—=Z=m(5S")—1

and conjugation by a lift of 1 € Z = 71(S') to (M) induces o € Out(T'). A smooth
projective curve X over the finite field k = I, is the analogue of M; in the analogy, X
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corresponds to ¥ and the outer action of Frobenius on 7 (X) to o. The formalism extends
to general fields k with the Galois group Gy, replacing 71 (S*). The f-adic volume Vol(.%)
of a local system .# on X corresponds to the (complex) volume of a representation of
m1(M); this invariant includes the Chern-Simons invariant of the representation. Note
that a representation of I' gives a bundle with flat connection over . This extends to
a bundle with connection on M which corresponds to a representation of 71 (M) if the
connection is flat. Flatness occurs at critical points of the Chern-Simons functional. So,
in our picture, V, is an analogue of this functional. In fact, it is reasonable to speculate
that the value V,(x) at a point x which corresponds to a representation p of 71 (X)
relates to the ¢-adic volume Vol(p); we have not been able to show such a statement.

In topology, such constructions are often a first step in the development of various
“Floer-type” theories. It seems that the most relevant for our analogy are theories for
non-compact complex groups like SLa(C), for which there is a more algebraic treatment.
A modern viewpoint for a particular version of these is, roughly, as follows: Since the
character variety of I" has a (complex, or even algebraic) symplectic structure and o
acts by a symplectomorphism, the fixed point locus of o (which are points extending
to representations of m1(M)) is an intersection of two complex Lagrangians. Hence, it
acquires a (—1)-shifted symplectic structure in the sense of [47]; this is the same as the
shifted symplectic structure on the derived moduli stack of SL(2, C)-local systems over
M constructed in [47]. By [9], the fixed point locus with its shifted symplectic structure
is locally the (derived) critical locus of a function and one can define Floer homology
invariants of M by using the vanishing cycles of this function, see [1]. There are similar
constructions in Donaldson-Thomas theory (see, for example, [4]). Such a construction
can also be given in our set-up by using the potentials V,, see §6.4. Passing to the realm
of wild speculation, one might ponder the possibility of similar, Floer-type, constructions
on spaces of representations of the Galois group of a number field or of a local p-adic
field. We say nothing more about this here. We will, however, mention that the idea
of viewing certain spaces of Galois representations as Lagrangian intersections was first
explained by M. Kim in [37, Sect. 10].

Classically, the Chern-Simons invariant and the volume are hard to calculate directly
for closed manifolds. They can also be defined for manifolds with boundary; combined
with various “surgery formulas” this greatly facilitates calculations. We currently lack
examples of such calculations in our arithmetic set-up. We hope that extending the theory
to non-proper curves will lead to some explicit calculations and a better understanding
of the invariants. Indeed, there should be such an extension, under some assumptions.
For example, we expect that there is a symplectic structure on the space of formal
deformations of a representation of the fundamental group of a non-proper curve when
the monodromy at the punctures is fixed up to conjugacy. We also expect that, in the
case that k is an f-adic field, the invariants Vol(.#) and V, can be calculated using
methods of ¢-adic Hodge theory. We hope to return to some of these topics in another

paper.
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Notations: Throughout the paper N denotes the non-negative integers and £ is a prime.
We denote by F, the finite field of £ elements and by Z,, resp. Qy, the f-adic integers, resp.
(-adic numbers. We fix an algebraic closure Q; of Q; and we denote by | |¢ (or simply
| ), resp. g, the f-adic absolute value, resp. f-adic valuation on Qy, normalized so that
[l]g = €71, vo(¢) = 1. We will denote by F a field of characteristic £ which is algebraic over
the prime field Fy and by W(IF), or simply W, the ring of Witt vectors with coefficients
in F. If k is a field of characteristic # ¢ we fix an algebraic closure k. We denote by k5P
the separable closure of k in &, by k(Cr) = Up>1k(Cen) the subfield of kP generated
over k by the (primitive) £"-th roots of unity (s and by Xcya : Gal(k*P/k) — Z; the
cyclotomic character defined by

o) = G

for all n > 1. We set G, = Gal(k*P/k). Finally, we will denote by ( )* the Pontryagin
dual, by ( )V the linear dual, and by ( )* the units.

1. Preliminaries

We start by giving some elementary facts about ¢-adic convergence of power series
and then recall constructions in the homology theory of (pro)-finite groups.

1.1. Factorials

For a € N we can write its unique ¢-adic expansion a = ag+ail+- - -+aqf?, 0 < a; < £.
Write s¢(a) = ag + - - - + aq, resp. de(a) = d + 1, for the sum, resp. the number of digits.
We obviously have |a~1|, < ¢%(®)=1 and the following identity is well-known:

> ra a— se(a)
! = — = —
ve(al) ;:1 [6’] 1 (1.1.1)
It follows that
lallp > ¢~/ =1 = (p=1/(E=Dya, (1.1.2)

For a = (ag,...,a,) € N we write |a] = ap + -+ + a,.
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Lemma 1.1.3. For all a = (ay,...,a,) € N"T1

(Tl g,

(la] +n)!
Proof. By (1.1.1),
aola!---an! . —n+s(lal +n) =31 s(a)
U@(( (()Iall +n)| )) - /1 0 .

For a, b > 1, we have

(s(a) +5(b)) — (£ —1)de(a+b) < s(a+0b) < s(a) + s(b).

This gives
s(lal +n) és —(n+1)(¢~ Dde(]a] +n).
Hence,
W((G?;(:;l;;?!)) > _”gtsl(”) +(n+ Dde(Ja] +n) = —ve(n!) — (n+ D)de(a] +n)

which gives the result. O
Fix ¢, f € Qs0. We have lim,_, o (cdy(z) — fz) = —00. Set

N, f) = supxeN21(cdg(x) — fx).
The proof of the following is left to the reader.
Lemma 1.1.4. For each ¢, we have lims_, 1o N(c, f) = —oc0. O
1.2. L-adic convergence
Let E C Qg be a finite extension of Q, with ring of integers @ = O and residue field

F. Then O is a finite W (IF)-algebra with ramification index e. Let [ be a uniformizer of
O; then [l = (1/0)"/¢. Let R = O[x1,..., ] be the local ring of formal power series

with coefficients in O and maximal ideal m = ([, 1, ..., z,,). We will allow m = 0 which
gives R = 0.

For x = (x1,...,2m) € QZ , set ||x]| = supl|xl|; For a multindex i = (i1,...,9m), we
use the notations | |=i1+  +ipandxi =2 ..zl Forr e (R, 0<r < 1 denote
by

Dy(m) = {x [ |lx|][ <r}, Dp(m)={x|[}x||<r},
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the rigid analytic open polydisk, resp. closed polydisk, of radius r over E. (We omit F
from the notation). We let

0(D,(m)) = {ZieNm ax' | a; € E, Iilligloo |ag|or V1 = 0},

(D, (m)) = () €(Dy(m),

r'<r

for the E-algebra of rigid analytic functions on the open, resp. closed, polydisk. For
f=>,ax' € 6(D,(m)), set

/1l = sup lai]erth = sup [ f(x)]]
i x€D,(m)

for the Gauss norm. The E-algebra &(D,(m)) is complete for || ||, and &(D,.(m)) is a
Fréchet space for the family of norms {|| ||+ }+ <. For simplicity, we will write D = Dj(m)
when m is understood, and often write &'(D) or simply & instead of &(D1(m)).

The following will be used in §3.4 and §7.

Proposition 1.2.1. a) Consider the formal power series in E[[x1,...,Zm]]
F= %" & Ga
aeNk

with €4 € E, |€ale < cyexdcdal) q, e mBlal | where Cy, Cy, B are positive constants.
Then F converges to a function in O(D1(m)), and for every a € Q N (0,1/¢]

1F||1je)e < C1N(C20B), (1.2.2)

b) Suppose that (F,) is a sequence in O(D1(m)) whose terms are power series given as
in part (a), i.e.

Fn = Z ga,n : Ga,n

acNk

with {an € E, Gapn € mB@Ilal | Assume that l€anle < C£C22(0al) - yhere Cy, Cy
are constants and B(n) a function of n with limy,, . B(n) = 4+00. Then the series
F=3%",50Fn converges in 0 = 0(D1(m)).

Proof. Observe that G € m"* implies that [|G||(1/¢s < ((1/6)*)F = ¢7°F, for all a €
Qn(0,1/e]. We obtain that

1€a - Gall(1/0)a < Cy¢C2(lal)—aBlal
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Since limaj—oo Cade(]al) — aBla] = —oo, F converges. The inequality (1.2.2) fol-
lows from the definition of N(c, f). This shows (a). Part (b) now follows by using (a),
Lemma 1.1.4, and the Fréchet property of &(D1(m)). O

1.8. Homology of groups

Let H be a (discrete) group and suppose that Co(H) — Z — 0 is the bar resolution
of Z by free (left) Z[H]-modules. Set Co(H) = Z @z Co(H) = (C;(H),d;) for the
corresponding complex which calculates the homology groups He(H,Z). Then, C,(H)
is the free abelian group generated by elements [hq|hz|- - |h,] and the boundary map

On : Cp(H) — Cp_1(H)
is given by the usual formula

6n([hll T |hn]) = [h2| T |hn] +
+ > (=1 R gyl ] 4 (1) [l [ 1],

0<j<n

Set
Cs2(H) = 73 _2Ce(H)[-2]
for the complex in degrees —1 and 0 obtained by shifting the truncation
Co(H) /Tm(01) 2 ker(dy)
of C’.(H ). Its homology groups are
H™'(Cs2(H)) =H3(H,Z), H°(Cs2(H)) =Hy(H,Z).

For h € H, denote by inn;, = "( ) : H — H the inner automorphism given by z + "z =
hxh~!. It induces chain homomorphisms

inny, : Co(H) — Co(H), inny : Co(H) — Co(H).
Note
inng, ([g1] - - gn]) = [hgrh™ '] - - [hgnh™1].

It is well-known that innj, induces the identity on homology groups. In fact, the formula

Eu(lgr]--+1gal) = Y (=1)[ga] -+ | hgryah ™ -+ [hgnh 1],

0<r<n
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defines a graded chain map

Fp, : Co(H) = Co1(H)
such that, for all ¢ € Cy(H),
inny,(c) — ¢ = Fr(9(c)) + 0(Fr(c)),

i.e. giving a homotopy between inn; and the identity. (cf. [36] Appendix B by Noohi,
Prop. 7.1.) By [36], Cor. 7.3, we have

th/ = Fh . innh' —|— Fh/ (131)

in Coy1(H)/Im(9). (In [36], Noohi gives an explicit FJ, 5/ : Co(H) — Coro(H) such that
th/ — Fh/ - Fh ~innh/ = th,h’~)

1.3.2. Suppose that H' C H is a subgroup and h € H is in the centralizer 35 (H’) of H’
in H. Then, for h{,...,h), € H',

Fr(lh] - 1h])y = D0 (=07 [RA] - B By |- - B (1.3.3)

0<r<n

Furthermore, if z € Z3(H') C Z2(H) is a 2-cycle, then homotopy identity gives 93 F(2) =
0. Hence, F}, induces [F},] : Hy(H') — H3(H). The identity (1.3.1) gives

[Fhinal = [Fiy] + [Fho]
for hy, ho centralizing H’'. Therefore, we obtain a homomorphism
Hi(35(H')) @z Ho(H') — Hz(H); (K, 2) = [Fi(2)]. (1.3.4)
We can now see that this homomorphism agrees up to sign with the composition
H,(35(H')) ®z Ho(H') 5 H3(3(H') x H') % Hy(H)
where the first map is obtained by the x-product in group homology and the second is the
natural map given by the group homomorphism 35 (H')x H — H, (h,h') — hh/ = h'h.
Indeed, the x-product is given by the shuffle product and so the class of
(- V)([h] @[] -+ |hy])
is (up to sign) the same as in formula (1.3.3). In view of this fact, we will set
Vg = [Fu] : Hy(H') — H3(H),

for h € 3 (H') and denote the map (1.3.4) by V3, (g a1
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1.4. Homology of profinite groups
Let now H be a profinite group. Set
Ze[H] = \imy, Ze[H/U]

for the complete Z,-group ring of H, where the limit is over finite index open normal
subgroups U C H.

We can consider homology H;(H, —) with coefficients in compact Z,[H]-modules
(see [10], [59], [44]). Recall that a Z,[H]-module is called compact if it is given by
the inverse limit of finite discrete f-power torsion discrete H-modules. The category of
compact Z¢[H]-modules has enough projectives. In fact, there is a standard profinite
bar resolution ([52]) Ce(H)¢ — Z¢ — 0 with terms

Co(H)e = Zo[H"'] = lim,, , Z/CZ[(H/U)"*]

and the standard differential.
We can now give the complexes

Co(H)p = Co(H) @z, 1111 Ze, Ca2(H)p = (1-3,-2)C(H))[-2]
similarly to before. We have
H™Y(C32(H)) = H3(H, Z¢), H°(Cs2(H)) = Ha(H, Zy).

Similarly to the above, we have chain morphisms

inny, :C’.(I‘.’)g—)C’.([’I)g7 inny, :C’.(I’I)z—)C.(.H)Z7

and a homotopy F}, : Co(H)s — Cey1(H)¢ between inny, and the identity which satisfies
(1.3.1) in Coy1(H)/Im(d),. The rest of the identities in the previous paragraph are also
true.

2. K5 invariants and 2-forms

In this section, we recall the construction of “universal” invariants of representations
with trivial determinant. These take values in the second cohomology of the group with
coefficients either in Milnor’s Ko-group or in (closed) Kéahler 2-forms of the ground ring.
Using some old work of van der Kallen, we reinterpret the evaluation of these invariants
on the tangent space via a cup product in cohomology. This allows us to show that
a representation of a Poincare duality group in dimension 2 with trivial determinant
gives a natural closed 2-Kéahler form over the ground ring. This construction provides
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an algebraic argument for the existence of Goldman’s symplectic form on the character
variety of the fundamental group of a closed Riemann surface ([25]).

Let A be a (commutative) local ring so that K;(A) = A* and SL(A) is generated by
elementary matrices. We have the canonical Steinberg central extension ([43])

1 — K3(A4) = St(A) — SL(A) — 1.
The group GL(A) acts on St(A) by conjugation in a way that lifts the standard conju-

gation action on SL(A) and the action fixes every element of Ko(A) ([62], Exerc. 1.13,
Ch. III).

2.1. A Ky invariant

Suppose that T is a discrete group and p : T' — SL(A) is a group homomorphism. For
each v € T, choose a lift s(p(7)) € St(A) of p(v). Then

kp: T x T = Ky(A)
given by
Kp(71,72) = s(p(1172))5(p(12)) " s(p(11)) T € Ka(A)
is a 2-cocycle. The corresponding class
K, € H3(I',K2(A))

is independent of the choice of lifts and depends only on the equivalence class of p
up to GL(A)-conjugation. The class x, is the pull-back via p of a universal class in
H?(SL(A),K2(A)) defined by the Steinberg extension.

Remark 2.1.1. A very similar construction is described in [19, §15].

2.1.2. Recall that there is a group homomorphism
dlog : Ko(A) — Q3 = QZ/Z? {f, g} — dlog(f) A dlog(g)

where {f, g} is the Steinberg symbol of f, g € A*. Here, under our assumption that A is
local, K3 (A) is generated by such symbols ([58]). Since d(f~1df) = 0, the image of dlog
lies in the subgroup of closed 2-forms. We denote by

w, € HY(', Q%)

the image of x, under the map induced by dlog.
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2.1.3. If Hy(T',Z) ~ Z and [a] € Hy(T',Z) is a generator, we set

Kla],p := [a] Nk, € Ka(A).
Alternatively, we can obtain this class by evaluating the homomorphism

Hy (D, Z) 2125 H,(SL(A), Z) = Ko(A)

at [a]. We can now set

Wia],p = dlog(n[a]w) S Qi
This construction applies, in particular, when I' is the fundamental group of a closed
surface. Note that by its construction, the 2-form wi,) , is closed. When the choice of [a]
is understood, we will omit it from the notation.

2.2. The tangent of the Steinberg extension

Suppose now that R is a local ring in which 2 is invertible. Let V be a finite free
R-module of rank n. Let us consider the (local) R-algebra

A=RxV =SymK(V)/Mm?
with multiplication (r,v) - (',v") = (rv/,rv" + 'v). Set
(r,v)o =
Notice that
0% r =NV
by d(0,v) Ad(0,v") = v Av" and so we have a group homomorphism
v Ko(A) = Ko(R) x A*Vi - {f.g} = ({fo, 90}, dlog({f. g})).
We can write
SL(A) = SL(R) x M°(V),

where M?(V) = lim MO,.....(V). Here, MO ., denotes the m x m matrices with trace

zero. In the above, g = v(1+m) € SL(A) maps to (v, m) and the semi-direct product is
for the action of SL(R) on M°(V) by conjugation.
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Define

Traye : MO(V) x MY(V) = A%V

Tra(X,Y) = %(Tr(X ®Y)-Tr(Y ® X)) € AV.
Here, X ® Y denotes the square matrix with entries in V' ® V' which is obtained from X
and Y (which have entries in V') by replacing in the formula for the product of matrices
the multiplication by the symbol ®.
Proposition 2.2.1. Consider the Cartesian product
S(A) = St(R) x MY (V) x A%V,
on which we define the operation
(v, m,w) - (7, m/ ') = (7,7 Timy + ml s w + W'+ Tran(y T imy,m)).
a) This operation makes S(A) into a group and there is a surjective group homomorphism
S(A) = SL(4);  (v,m,w) = (v, m),

whose kernel is the central subgroup Ko(R) x A2V of S(A).
b) There is a unique group homomorphism

7:St(A) = S(A)

which extends v and which lifts the identity on SL(A).
¢) Assume in addition Q%%/Z =0. Then ¢ and I are isomorphisms

1 Ka(A) == Ko (R) x A2V, 7:St(A) == S(A).

Proof. Part (a) is obtained by a straightforward calculation. Part (b) follows from (a)
and the universal property of the Steinberg extension. Using the same universal property
of the Steinberg extension, we see that to show (c) is enough to show that ¢ : K3(4) —
K3(R) x A?V is an isomorphism, assuming Q7 sz = 0. By [63] there is a functorial
isomomorphism

0 : Ka(RJe]) =5 Ko(R) x Ok,
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where R[] = R[z]/(2?) is the ring of dual numbers and ¢ = zmod (z)?. Since R is
local, we can represent elements of Ko(R) and Ko (R[e]) by Steinberg symbols. Then, the
isomorphism is given using

dlog : Ky(R[e]) = Qpypy = OF & €Q & de A Q.
Indeed, we have (see [27, 2.3], or [8])

o({f,9}) = ({fo, 90}, (dlog)2{f, 9})

where de A (dlog)2{f, g} is the projection of dlog({f,g}) on the last component above.
In particular,

de A (dlog)2{1 + sre,r} = de A sdr, O({1+ sre,r}) = (0, sdr).
Suppose that n = rkgV = 1, so A ~ R][e]. Since Q}%/Z = (0), A2V = (0) and, by the
above, ¢ is an isomorphism (both sides are Ks(R)). We now argue by induction on n.
Set A’ = R x V', with rkgV’ = n — 1 and basis v{,...,v,,_1, so that A is a quotient of
A'[€] by €-v] = 0. We have A2V = A2(R-e® V') = A2V’ @ (e AV') and by the induction
hypothesis

Ko (A") ~ Ko(R) x AV, so,
Ko (A'[e]) = Ka(A") x de Ay, jz ~ Ka(R) x A’V x de NV ~ Kp(R) x A*V.

Since A’[e]* — A* is surjective and Kq(A) is generated by Steinberg symbols, the group
K2(A) is a quotient of Ky(A'[€]) and the composition

Ko (A'e]) = Ka(A) = Ka(R) x AV
is the isomorphism above. The claim that ¢ is an isomorphism follows. O
2.3. Tangent space and pairings
Suppose now that A = R x V is as in the previous paragraph and that
p:T — SL(A) = SL(R) x M°(V)
is a representation that lifts pg : I' — SL(R). Then we can write

p(y) = po(7)(1 +¢(7))

where ¢ : I' — M%(V) is a 1-cocycle with M°(V) carrying the adjoint action v - M =
p0(7) "M po(7). We can consider the cup product
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cUce HX(T,M°(V) @g M°(V)).
This is given by the 2-cocycle
(cUe)(71,72) = po(72) " e(m)po(r2) @ e(2).
Applying the map H?(T', Tr,y;) induced by Tray : MO(V) x MO(V) — A2V gives
Trai(cUc) € HA(T, A*V).

The following Proposition, in conjuction with §2.4 below, shows that the form w, agrees,
under some conditions, with a more standard construction which uses cup product and
duality.

Proposition 2.3.1. We have
wp = Tra(cUc)
in H3(T, Q%) = H3(T, A%V).

Proof. Since 7 : St(4) = S(A), we can calculate w, using the extension S(A). We can
first calculate

K, (71,72) = s(p(1172))s(p(12)) " s(p(m))

by using the lifts:
s(p(7)) = (s(po()), ¢(7),0) € St(R) x M°(V) x A*V = S(A).
A straightforward calculation using the group operation on S(A) gives

Ky (11,72) = (K (Y1,72), 0, Trate (po (v2) " (1) po(r2), (72))-

The cohomology class of k, maps to the one of £/, in H%(T, K2(R) x A2V) under the map
given by ¢. Hence,

wo(71,72) = Traie (po(12) " e(11)po(12), €(72)) = Tra((c U €)(71,72)),
in cohomology. O

2.4. The 2-form and duality

Suppose that I' satisfies Poincare duality in dimension 2 “over R” in the following
sense:
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i) There is an isomorphism tr : H*(T, R) ~ R.
ii) For any I-module W which is a finite free R-module, H (I, W) is a finite free R-
module which is trivial unless ¢ = 0,1, 2.
iii) The cup product pairing

H/(I, W) x H>~/(0,W") — H3(T,W @x W) - H3(I,R) = R
is a perfect R-bilinear pairing. (Here, W = Hompg (W, R).)

Consider pg : I' = SL,,(R) and apply the above to W = Adg =M? . (R). The trace
form (X,Y) — Tr(XY) gives an R-lincar map

W — WV,

(This is an isomorphism when n is invertible in R. We then use this to identify W with
WV.) Combining with the above we obtain

(,):HYT, W) x HY(T,W) — R.

(If n is invertible in R this is a perfect pairing.)

Suppose that ¢; and ¢y are two 1-cocycles of I in W that correspond to lifts of pg to
representations p; and ps with values in R[e]. Recall that there is a natural isomorphism
between the tangent space of the functor of deformations of py to Artin local R-algebras
and the cohomology group H (I, W) (cf. [41] §21). Set V¥ = H' (I, W) which is a finite
free R-module and denote by p : I' — SL,(A), with A = R x V the universal first-
order deformation of pg. Then, p;, ¢ = 1,2, correspond to v; € V¥ and p; is given by
specializing A = R x V — R[e] = R x Re with V — Re given by v; € V'V.

We can consider vy A vy € A2VY = (A2V)V. From the above description, it follows
that

(c1,¢2) = (v1 Avg)(Tra(cUc)).
Therefore, by Proposition 2.3.1,
(c1,¢2) = (v1 Awa)(w,).
This translates to

{c1,c2) = wp(e1, c2), (2.4.1)

in which we think of (¢1,¢2) as a pair of tangent vectors.
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Remark 2.4.2. The equality (2.4.1) implies that the form w, can be used to recover the
symplectic form on the SL,-character varieties of fundamental groups of closed surfaces
constructed by Goldman [25]. Since w), is visibly closed, this gives a direct and completely
algebraic argument for the closedness of Goldman’s form. This approach is also suggested
in [19]. There an identity like (2.4.1) for I" the fundamental group of a surface is explained
by topological means.

2.5. Ks invariants and 2-forms; profinite groups

Let I be a profinite group and A a complete local Noetherian ring with finite residue
field F of characteristic £ and maximal ideal m. We will view A as a W = W (IF)-algebra
where W(IF) is the ring of Witt vectors. The ring A carries the natural profinite m-adic

topology which induces a profinite topology on GL4(A), SLg(A). There are “continuous
variants” of the constructions of the previous paragraphs for continuous representations

p:T — SLy(A) C SL(A).

For n > 1, set A, = A/m".

2.5.1. Our constructions give classes
Rp = (“p,n)n € lﬂln HQ(F7K2(An>)a Wp = (wp,n)n € @n HQ(Fv Q?%/W)'
Now let
K5'(A) i= lim, K2(An), Q= lim, Q)
There is a continuous map
dlog : K§'(A) = O
obtained as the inverse limit of dlog : Ko(A4,) — Qin/W.
3. Chern-Simons and volume

In this section we give the main algebraic construction. We first assume that I" is
a discrete group. This case is less technical but still contains the main idea. The con-
struction depends on the suitable choice of a 3-cocycle. The profinite case (for ¢-adic
coefficients) is explained later; in this case, we show that such a 3-cocycle can be given
using the ¢-adic Borel regulator.
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3.1. The Chern-Simons torsor

Until further notice, I" is a discrete group and p : I' — GL4(A) is a homomorphism,
d > 2. Also, in what follows, we always assume

(H) Hy(T',Z) ~ Z and Hy(T,Z) = 0.

Let Co(T"), Co(GLg(A)), be the bar resolutions. We may regard C;(GLq(A)) as Z[I']-
modules using p and obtain a morphism of complexes

p: Co(T) = Co(GL4(A)).
This gives
p: Cs2() = C32(GLq(A))

where C_’3’2 is as defined in §1.3.
For simplicity, set

D(T') := C3(I")/Im(04), and D(A) := C3(GL4(A))/Im(dy).
Note that D(I') acts on Z»(T') x D(A) by
d+ (c,v) = (c+ 03(d),v+ p(d)).
Now define the D(A)-torsor 7, of “global sections” (cf. [20], [21]):

Definition 3.1.1. We set 7, to be the set of group homomorphisms 7' : Z3(I') — D(A)
which are D(I')-equivariant, i.e. satisfy

T(c+ 05(d)) = T(c) + p(d).
Alternatively, since
03 : D(T') = C3(T")/Im(84) — Z»(T),

is injective, the set 7, can be described as the set of homomorphic extensions of p :
D(T) = D(A) to Z5(T') — D(A), or as the set of splittings of the extension

0—D(A) - FE—->HyI,Z)—0

obtained by pushing out 0 — D(I") — Z3(I') — Ho(I',Z) — 0 by p : D(I') — D(A).
This set is non-empty and hence a D(A)-torsor, since Hy(T',Z) ~ Z.
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3.1.2. Suppose in the above construction, we replace p : I' — GL(A) by inny, - p, for some
h € GL(A). We obtain a new torsor Tinn,., defined using the D(I')-action on D(A) by

v+'d=v+ hp(d)h".
Observe that, for ¢ — ¢ = 95(d), we have
hp(d)h™" = p(d) + Fu(p(c' — c)) = p(d) + Fu(p(c')) = Fiu(p(c)),
SO
B~ + v = Fu(p(e')) = p(d) + v — Fu(p(c)).
The last identity shows that
T—T =T+ Fy - p,

gives a D(A)-equivariant bijection T, = Tinn,, p-

Even though it would be possible to formulate the constructions that follow in terms
of the torsor 7,, we choose a more concrete treatment that uses group co/cycles.

3.2. Cocycles and cohomology classes
Suppose we are given a representation p : I' — GLg4(A), d > 2, and a group G
together with two homomorphisms ¢ : G — Out(I'), ¢ : G — Autp_aig(A). We assume

the following condition:

E) For each o € GG, the representation p° given b
P P8 Y

is equivalent to p. Here, we denote by (o) some automorphism of T that lifts ¢ (o).
In what follows, we omit the notation of ¢ and ¢ for simplicity. We write o(a) instead
of p(o)(a) and also write & for an automorphism of T" that lifts ¢ (o). Then, equivalently,
the condition (E) amounts to:
(E’) For each o € G, there is hs € GL4(A) such that

p(G-7) =hs-o(p(7)) - hs" (3.2.1)

for all v € T
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Let 34(p) be the centralizer of the image Im(p) C GL4(A). The image of hs in
GLg(A)/34(p) is uniquely determined by the automorphisms &, o and by p.

3.2.2. Suppose that B(A) is a G-module which supports a G-equivariant homomorphism
t=1t4: D(A) = C3(GLy4(A))/Im(04) — B(A)
such that
t(Fh(u)) =0,

for all h € 34(p), u € Za(Im(p)).
As explained in §1.3.1, for u € Zs(Im(p)), h € 34(p), the homotopy property gives
05 Fp(u) = 0 and so Fy, gives

Viim(p) = [Fr] : Ho(Im(p)) — H(GLa(A)).
The condition v(F}(u)) = 0 is equivalent to:
(V) For v: H3(GL4(A)) — B(A), we have v -V}, 1m(p) = 0, for all h € 34(p).
Let H$*¢(GL4(A)) be the subgroup of H3(GL4(A)) generated by the images of
Vi, : Hi((h)) ®z H2(C) — Hs(GLa(A)),

where C' runs over all subgroups of GL4(A) and h all elements centralizing C. For (V)
to be satisfied for all p, it is enough to have

(V') t:H3(GL4(A)) — B(A) vanishes on H$¢(GLg(A)).

3.2.3. Choose, once and for all, a generator of Hy(T", Z). Pick ¢ € Z5(T") with [c] = 1 in
Ho(T',Z) ~ Z. Suppose that & acts on Ho(I',Z) ~ Z via multiplication by a, € Z*.
(This number only depends on ¢ through (o) € Out(T").) Set

As(c) = p(d(5,¢)) — ag ' Fi, (o(p(c))) € D(A).
Here, d(5,¢) is the (unique) element in D(T') = C3(T")/Im(04) with

05(d(7,¢)) = a;'5(c) —c.
In what follows, we will often omit the inclusion 93 : D(T') < Z5(T') and write a, 15 (c)—c
instead of d(G,c) to ease the notation.
Assume that v: D(A) = C3(GLg(A))/Im(d,) — B(A) satisfies condition (V).
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Lemma 3.2.4. The element tAs(c) of B(A) does not depend on the choices of & and hs.

Proof. First we check that tAs(c) is independent of the choice of hs. If A} is another
choice, then hf = hs - z with z € 34(p). Notice that for v = o(p(c)) € Zz(Im(p)) we
have

Fy, (u) = Fp,..(u) = F.(u) + F}, (Inn, (u)) = F,(u) + Fj, (u).

Hence, by condition (V), tF}, (u) = tF}, (u) and the result follows. Next, we show that
Az (c) is actually independent of the choice of the automorphism & lifting ¢ (c). Suppose
we replace & by another choice ' = Inng - & lifting (o) and we take

hInn(g'& = 0(5)h&

Then we have

a5 As(¢) =p(35(c)0™" — agc) — Fyspn, (ap(c))
=p([66(c)0~" = &(0)] + [6(c) — agc]) — Fi, (0(p(c)) — Fps) (haop(c)hz ")
=a,Az(c) + p([55(c)6*1 —a(0)]) — Fp(g)(h;,(fp(c)hgl).

But
p([06(c)5~" = &(c)]) =p(F5(5(c))
=F,5)(p(5(c)))
=Fy5)(hsop(c)h; ')
So

asAz (¢) = ay Az (c).

We used hs = p(d)hs for this but now by applying the independence of that choice that
we shown before, we see that tAs does not depend on the choice of the lift & € Aut(I")
orof hs. O

In view of Lemma 3.2.4 it makes sense to set

Vol, (¢) = tAsz(c) € B(A).
We denote B(A)(—1) the G-module B(A) with twisted action: o € G acts by a ' - 0.

Proposition 3.2.5. Assume v : D(A) — B(A) satisfies condition (V). The map G —
B(A)(-1) given by o — Vol,(c) = tAs(c) is a 1-cocycle. Its cohomology class
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Vol, 4., € H(G, B(A)(~1))

is independent of the choice of ¢ € Zy(I') with [c] = 1. The class Vol,  , depends only
on ¥, ¢, and the equivalence class of the representation p.

Proof. In the proof below some of the identities are true in D(A) before applying t.
However, eventually, the argument uses the independence given by Lemma 3.2.4 which
needs t to be applied.

1) Suppose ¢ = ¢+ 9(d). Then

Az () =a 1(p(&c —apc+6d — ayd)) —a; ' Fi,, (0(p(c) + dp(d))
= As(c) + a; ' p(6d) — (pd) — ag ' Fy, (9o pd)
=As(c) + [h ap(d)hz" = Fy, (dopd)] — (pd)
=As(c) + (ag "0 = 1)(pd).

The last equality follows from

hoop(d)hz" — op(d) = Fy, (90p(d)).

This implies the independence after we show that o — tA,(c) is a 1-cocycle.

2) We will now check the (twisted) cocycle condition
tAy,r =tA, + a;lg(tAT).

(We omit ¢ from the notation). In view of Lemma 3.2.4 we are free to calculate using the
lift 57 of the outer automorphism 1(o7) and taking hs7 to be equal to hzo(hz). Indeed,
we have

p((67) (7)) =p((7(7))
=hso(p(F(v)hs"
=hso(h#)(o7)(p(7)) (hso(h) ™.

It is notationally simpler to work with B; = a,As. Write
Bsz = p(67(c) — agrc) — Fp,, (o7p(c)).

Now

in D(T"). Hence,
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p(67(¢) = agrc) =p(G(7(c) — arc)) + arp(5(c) — aqc)
=p(6(7(c) = arc)) + ar B (c) + ar Fu, (op(c))

Now
p(G(7(c) — are)) =hs - ap(F(c) — aze) - h"
— op(Fc — are) + Fy, (op(Fc — asc)).
So,
p(6(7(c) — arc)) = 0Bz (c) + 0 Fy. (1p(c)) + Fr, (op(Fc — arc)).

All together, we get

Bsz = 0Bz(c) + 0 Fp. (tp(c)) + Fr, (op(Fc — arc))+
T4, B3 (¢) + ar Fi, (0()) — Fa., (070(0)).

Now
Fuy (0p(7c = a70)) = Fh, (0p(7¢)) — ar Fu, (7pc),
which gives
Bsz = 0B:(¢) + ; Bs (c) + 0, (7p(€)) + Fhy (0p(7¢)) = iy (7p(c))
So it is enough to show the identity

Fis (07p(c)) = 0 Fn.(7p(¢)) + Fn, (0p(7¢)).

We have
oFh. (7p(c)) = Fo(ns)(oTp(c)).
Fy, (0p(7¢)) = Fn, (o(hz)(o7)(p(c))o (hz) ")
=Fp, (inng(n,)(07p(c))).
Now apply

Frs: = Frohs) = Fona) + Frs - i)
to conclude Bjz(c) = 0Bz (c) + a,Bs(c). Since A; := a;!Bs, this gives

Azz = a;TlB&; = a_la(aT_lB;) + a;lB& = a;la(A;) + As

(e
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as desired.

3) It remains to show the independence up to equivalence of representations. Suppose
we change p to p’ = inng - p, with g € GL4(A), but leave ¢ and v the same. Then,

~ ~ _ ~ _ —1
p'(67) = gp(67)g~" = hso(gp(a7)g )R 5,
so we can take

hi = ghso(g)~".

Then
Bl =gp(6(c) — avc)g™" = Fyn,o(g)-1(c(gpg™")(c))
=p(5(c) — agc) + Fy(p((c) — avc)) = Fyn,o(g)-2(a(gpg~")(c))
=Bs + Fp, (0(pc)) + Fy(p(6(c) — a5€)) = Fyn,o(9)-1(a(gpg™")(c)).
Now

Fy(p(6(c) — age)) = Fy(hsop(c)h; ') — agFy(p(c)),
Fynso(e)-1(0(g9p9™")(€)) = Fyn, (0p(c)) + Foig-1(a(gpg~")(c)) =
=Fy(hsop(c)h;') + Fi, (op(c)) = Fyg)(op(c)),

(The last equality is true since Fj, - inng-1 + Fp—1 = Fj -1 = F; = 0 gives
Fo(q)-1(0(gpg™")(c)) = —Foq)(op(c)).)
Combining, we obtain
BL =Bs — a,Fy(p(c)) + oF,(p(c)), or,

Ay = A5 + (ag' 0 — 1) Fy(p(c))

which shows that the cohomology class depends on p only up to equivalence. O

3.2.6. Suppose there is an exact sequence of groups
1T —>Tg—-G—1 (3.2.7)

and we are given a representation p : I' = GL4(A). We take ¢ : G — Out(I') to be the
natural homomorphism given by the sequence and ¢ = id, i.e. G to act trivially on A.

Assume that p extends to a representation pg : I'g — GL4(A). The condition (E) is
then satisfied: For ¢ € G let 6 be the automorphism of I' given by
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7 s(o)ys(o)

where s(o) € I'g is any lift of 0. We have

for hs = po(s(o)). Then

tAs(c) = tpo(ag’ - s(0) ¢ s(0) 7! =€) = ag tFy (5o (p(0)) € B(A)

and the class Vol, = [tA,(c)] € H'(G, B(A)(—1)) is independent of choices.
3.3. Volume and Chern-Simons; profinite case

We now assume that I' is a profinite group. Suppose that I' is topologically finitely
generated. Then there is system

-clycr,c---cI'ht =T,

for n|n/, of characteristic subgroups of finite index which give a basis of open neighbor-
hoods of the identity. Indeed, (cf. [2]), we can take

FnzﬂA

ACT|[I:Alln

to be the intersection of the finite set of open normal subgroups of I' of index dividing
n. We then have

Aut(l') = lim Aut(I'/T), Out(I') =lim Out(I'/I,).

As before, let A be a complete local Noetherian algebra with maximal ideal m 4 and
finite residue field. Suppose p : I' — GL4(A) is a continuous representation, d > 2. There
is an embedding

v: GL4(A)/34(p %HGLd .9+ (9p(r)g ™)

where (;); are topological generators of I'. The induced topology on GL4(A)/34(p) is
independent of the choice of 7; and is equivalent to the quotient topology.

Suppose we are given another profinite group G and continuous homomorphisms ) :
G — Out(I") and ¢ : G — Autp_aig(A). Here, Autp_aig(A) is equipped with the profinite
topology for which the subgroups K, = {f | f = idmodm’;}, n > 1, give a system of
open neighborhoods of the identity. Similarly, we equip Out(I') = Aut(I")/Inn(T") with
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the quotient topology, obtained from the topology of Aut(I") for which the subgroups of
automorphisms trivial on I';, give a system of open neighborhoods of the identity. We
assume that 1 is represented by a continuous set-theoretic map

Y : G — Aut(D), ie. ¥(o) = (o) Inn(T), Yo.

Now suppose that v+ o~ (p(67)) is equivalent to p, for all o € G. Here, 5 = @(0) and
so o+ & is continuous. We have

P& 7) = hao(p(y)h5"
for all v € ', where [hs] € GL4(A)/34(p) is determined by p and by o through (o)
and (o).
Lemma 3.3.1. The map G — GL4(A)/34(p), given by o+ [hs], is continuous.

Proof. By the above, it is enough to show that the inverse image under ¢ of each open
neighborhood [, Vi C I, GLa(A) of (p(7i)): contains an open neighborhood of 1-34(p).
It is enough to consider V; = p(;)(1 + Mgy(m%)). Pick m such that p(T',,) = Imod m’
and then choose an open normal subgroup of finite index U C G such that o € K,, and
g is trivial on I'/T,;,. Then we have 6y = v - v/, with 4/ € ', and so

p(67) = p(vy) = p(v) mod m}

while o(p(7)) = p(y) mod m”. We deduce that, for all ¢ € U, we have

o~ p(d7) = p(y) mod m’y
for all v € T'. Hence, for o € U, [hs] € GLq(A)/34(p) belongs to [[,Vi. O
3.3.2. Suppose we have a short exact sequence of continuous homomorphisms of profinite
groups

1T —-I"'>G—1

in which T is topologically finitely generated. By [55, I, §1, Prop. 1] IV — G affords a
continuous set-theoretic section s : G — I'. Then the natural ¢ : G — Out(T") can be
represented by the continuous map (not always a homomorphism) G — Aut(I") given by

o= (v s(o)ys(o) ™).

3.3.3. The constructions in the previous paragraph can now be reproduced for continuous
Zy-homology. Let us collect the various parts of the set-up. Suppose that we are given:

o A topologically finitely generated profinite group I' which is such that Hy(T', Zy) ~
Z¢, H3 (T, Zy) = 0.



32 G. Pappas / Advances in Mathematics 387 (2021) 107836

o A continuous representation p : I' = GL4(A) with d > 2 and A a complete local
Noetherian O-algebra with finite residue field of characteristic £.

o A profinite group G, a continuous homomorphism ¢ : G — Autp_ag(A4) and a
continuous map v : G — Aut(T") which induces a (continuous) homomorphism 1 :
G — Out(T'). Denote by a : G — Z, the character which gives the action of G on
Ho (T, Z¢) ~ Z;, which is induced by (o).

¢ A topological Z¢-module B(A), with a continuous Z,-homomorphism

T Cg(GLd(A))/Im(64)z — B(A)Za

such that:

— G acts continuously on B(A), and v is G-equivariant,

— v: H3(GL4(A),Z¢) — B(A), vanishes on H3*(GL4(A), Z¢), which is defined sim-
ilarly to the discrete case before, but with C' running over closed subgroups of
GL4(A).

Denote by B(A)¢(—1) the Zy-module B(A), with the twisted G-action
o-b=a;'o(o)D).

Proposition 3.3.4. Under the assumptions above, suppose in addition that for each o € G,
the representation

v =07 () == (o) p(¥(0) (7))

is equivalent to p. Choose a Zg-generator [c] of Ha(T', Zy) and ¢ € Z5(T), that represents
it. Then the map

o = p(ag (o) (c) — ¢) —ag ' tFy  (0(a)(p(c)))
gives a continuous 1-cocycle G — B(A);(—1) whose class
Vol € Hey (G, B(A)e(—1))
depends only on [c], ¥, ¢, and the equivalence class of p.

Proof. It is similar to the proof in the discrete case. The additional claim of continuity
of the cocycle map follows from Lemma 3.3.1. O

3.3.5. Let I' — IV be a quotient profinite group with characteristic kernel and such that
Ho(TV,Zy) =~ Zy¢, H3(T",Zy) = 0. Assume that Ho(T,Zy) ~ Zy — Ho(TV,Zy) ~ Zy is
the identity and take [¢/] = [c]. Since the kernel of I' — I' is a characteristic subgroup,
¥ G — Ouwt(T) factors to give ¢’ : G — Out(I”). Finally, assume that p : T' — GLg(A)
factors
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T =T 25 GLy(A).
Then we have

Vol p,p = Vol yr e

3.3.6. Let I C T be an open subgroup. Suppose we also have Ho(I",Z;) =~ Zy,
H3(I",Z¢) = 0, and that the natural map Hy(IV,Z,) — Ha(T',Z,) is multiplication
by the index [T : I']. Choose generators [c], ['], such that [¢] = [[: T/]7! - [¢/].

Suppose that (p, 1, ¢) is as above. Suppose that there is a continuous homomorphism
" : G — Out(T") which is compatible with 1 in the following sense: For each o € G, there
is ;bza/) € Aut(T") representing 1(c) € Out(T") such that the restriction IZ_(\O_'/)‘F, € Aut(T”)
represents ¢’ (o) € Out(I).

Proposition 3.3.7. Under the above assumptions, we have
Vol e = I I'] - Volp,p.p

: 1
m Hcts

(G, B(A)e(=1)).

Proof. The map C32(I"); — C32(GL4(A)), given by the restriction pir : I — GLg(A)
is the composition

0372(1—‘/)@ — 0372(1—‘)@ i) 0372(GL,1(A))5.
The class Vol, ., 4, is given by the 1-cocycle
o = vp(ag ' (0)(¢) = ) — az ek, (9(0)(p(c))

where ¢ € Z3(I") is a fundamental cycle, i.e. a 2-cycle with [¢/] =1 in Ha(I", Z¢). Here,
we can take hy, ) to be given as hy,; note that hy,) is well-defined in GLq(A)/34(p)
which maps to GL4(A)/3(pr/). Since Hao(I",Zg) — Ha(T',Z,) is multiplication by
[[:IV], if ¢ € Z5(I") is a fundamental 2-cycle for I, then the image of ¢ in Z»(T') is
d =[I':T']-c+ 05(d) and the result follows from the definitions. O

3.4. An L-adic requlator
Let A = O[xy,...,2,] with O = Og, the ring of integers of a totally ramified
extension of W (F)[1/¢] of ramification index e. We will allow m = 0 which corresponds

to A = O. The main example of B(A), and

Ta ég(GLd(A))/Im(a4)g — B(A)g
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which we use in the above is obtained by taking B(A), = &(Dy(m)) and t4 given by
an (-adic regulator. We will now explain this construction. Recall we set & = &(D) =

O(D1(m)).

3.4.1. Fix an odd positive integer s > 3. For our example, we actually take s = 3.
Consider the A-algebra

A = Matgyxa(A)[z0, . .-, 20] @4 A% (Adzg + - - + Adzy,).
Set A for the quotient of A by the ideal generated by (294 - - - + 25) — 1, dzg + - - - + dzs.

We can write elements T' € A in the form

S
T:ZZT&“Z{;U~-z‘;5d20/\~-/\dzu/\-~-/\dzs

a u=0

with a = (ag, .. .,as) € N1 T, ,, € Matgxa(A).
Take X = (Xo, ..., Xs), X; € Matgyq(m?),i=0,...,5 b>1. Let

V(X) :1+(XUZO+"'+XSZS) c A
which is invertible with
v(X) T =14 (1) (Xozo + - Koz

Set dv(X) = Xodzg + -+ - + Xsdzs so then v(X) Ldv(X) is in A. Finally set

T(X) = (X) (X)) =Y Y Tauzl® - 28deg Av- Adzy A+ Adzg

a u=0

where, as we can see, T ,, € Mat gy g(mbUal+s)),
Following Choo and Snaith [12] we set:

(T(X) =3 %(Z(—wﬂaw@a,u»

a u=0
By the above, Trace(Ty ) € m*{al+9) Using Lemma 1.1.3 we see

a0!a1! c ~as!
e

ZOTL RS < gl el de(lal+s) « o, pCade(lal)
(O ER =G

|
By Proposition 1.2.1 (a), ®5(T(X)) € €(D1(m)) and we have
1@ (T(X))| 10y < CEN (20 (3.4.2)

fora e QN (0,1/e].
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Lemma 3.4.3. Fiz r = (1/£)%/°. For each ¢ > 0, there is by such that for all b > by,
X € Matgxa(m®)**1 implies ||®5(T(X))]|» < e.

Proof. It follows from (3.4.2), Lemma 1.1.4, and the above. O
Hence, the map Matgyxq(m)**t!t — €(D) given by X — ®,(T(X)) is continuous for
the m-adic and Fréchet topologies of the source and target.

3.4.4. Now set Kj = ker(GLg(A) — GL(A/m®)). For (go,...,9s) € K1, we set

(I)S(QO» v ,gs) = (I’S(T(go - 13 sy 9s — 1))

Theorem 3.4.5. (1) For h € Ky, (go,---,gs) € K, we have

és(hgo, ooy hgs) = Ps(g0,- -, 9s) = <I>S(g0h, ..y gsh).
(2) For g € GL4(A4), (g90,---,9s) € K‘f“, we have

®,(9909 ", 99597") = ®5(g0, - -, s)-

(3) ®, is alternating, i.e. for each permutation p,

(i)s(gp(O% v agp(s)) = (_1)Sign(p)és(907 cee 7gs)~

(4) The map ®, : Ki™' — O(D) estends linearly to ®, : Z,[K;T'] — O(D) which
gives a continuous s-cocycle.

Proof. The identities in (1) and (2) and the cocycle identity in (4) are stated in Theorem
3.2 [12] for the evaluations at all classical points A — Op. For these evaluations, they
follow from the expression for ®4(7(X)) as a constant multiple of

/ Trace((v(X)'dv(X))*)
As

(see [29]); here the integration is over A® given by zg + - -+ 4+ z; = 1. The identities in
0 (D) follow.
The continuous extension of & to Z,[K{™'] — &(D) follows from Lemma 3.4.3 since

Zo[ K] = limy, Z[ (K1 /Kp)™;

see also Proposition 1.2.1 (b). The alternating property (3) follows quickly from the
definition of T'(Xo, ..., Xs) and ®4(T'(Xo, ..., Xs)) by noting that it involves the exterior
product. O

3.4.6. We now define a transfer of the cocycle ®, from K to GL4(A) as follows: Denote
reduction modulo m by a — a and apply the Teichmiiller representative on the entries to
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give a set-theoretic lift GL4(A)/K1 = GL4(F) — GL4(A) which we denote by h +— [h].
Note that for every g € GLq(A), h € GL4(F), [hlg[hg)~' € K. We let the transfer of ®,
be

1

‘115(907 cee 795) = #Td(ﬁ)

S eu((hlgolhgol - (Wgalhgs] ).
heGLy(F)

(cf. [NSW], p. 48, Ch. I, §5). This gives a continuous homogeneous s-cocycle
U, : Zo[GL4(A)* ] — (D),
where GLg(A) acts trivially on @(D). If (g;) € K{', then [h]g;[hgs] ™ = [h]gi[h] ", and

so Uy(g;) = ®,(g:), by Theorem 3.4.5 (2).
For s = 3 we get a continuous

W34 : C3(GLa(A))/Im(0s)¢ — O(D).

3.4.7. As we shall see below, the restriction of ¥3 4 to homology agrees, up to non-zero
constant, with the ¢-adic (Borel) regulator. This follows from work of Huber-Kings and
Tamme. Also, as we will explain, this comparison allows us to also deduce that W3 4
vanishes on the subgroup H3*(GL4(A)), when d > 3. Hence, we can set

T = \I’37A : ég(GLd(A))/Im(a4)g — ﬁ(D)
and use this in the constructions of the previous section.
We now explain this in more detail.

Consider A = O = Op, i.e. m = 0 and d > s. By [31] (see also [60] Theorem 2.1) the
Lazard isomorphism

Hisa(GLd(O)a E) = Hs(g[d7 E)

(the subscript here stands for “locally analytic”) is induced on the level of cochains by
the map

A O (GLg(0)*F) — Akgly,
which is given on topological generators by f1 ® -+ ® fr — df1(1) A--- Adfi(1). Here,

df (1) is the differential of the function f evaluated at the identity. Now by [60, Theorem
2.5], the restriction of ¥ ¢ to the homology

\I/S,o : HS(GLd(O),Zg) — F
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relates to the f-adic (Borel) regulator: By [60, Theorem 2.5], (see also [31]), ¥s o, up to
non-zero constant, is obtained from the element f, € Hf (GL4(O), E) which under the
Lazard isomorphism

HZs(GLa(0), E) ~ H}, (GL4(0), E) ~ H*(gly, E)
is the class of the cocycle A%gl; — E given by

XA AXg o po(Xe, -, X)) = Z (—1)%&™( ) Trace(X, 1) - - Xo(s))-

og€S;
We can easily see, using the cyclic invariance of the trace, that if in (X73,..., Xy) there
is a matrix which commutes with all the others, then ps(Xy,...,Xs) =0.

Now suppose s = 3. Let C C GL4(O) be a closed (therefore f-analytic, see [54])
subgroup of GL4(Q) with E-Lie algebra ¢. For h in the centralizer of C, we denote by
h the 1-dimensional E-Lie algebra of the f-analytic subgroup h%¢ of GL4(O) (i.e. the
closure of the powers of h). Lazard’s isomorphism applies to C' and gives

H2%_(C,E) ~ H?(¢, E)©.

These isomorphisms fit in a commutative diagram

) vy
H} (GL4(0),E) — Hom(H3(GL4(0)), E) RELEN Hom(Hy(C), E) ~ H2,(C, E)
\ \
. VY.
H3(gl,, F) — Hompg(Hs(gl,), E) —2%  Hompg(Hsy(c), E) ~ H%(c, E)
with the last vertical map an injection. Here,

Vi, E®p Ha(c) — Hs(gly)

is given by sending = ® (3, a;(yj1 A yj2)) to

Zaj(ac ANyt NYjo —yjzs AT NYji2 + Y1 N Y2 /\:c) = SZaj(x AN Yj1 /\ng).
J J
In this, [z,y1] = [z,y2] = 0, and Zj a;[yj1,y;2] = 0. It then follows that f3 €
H} (GL4(0), E) maps to 0 in Hom(Hz(C), E). This implies the desired result for the
evaluation of t4 at each point A — O and therefore also for t 4.

4. Representations of étale fundamental groups
We will now apply the constructions of the previous section to the case in which the

profinite group I is the geometric étale fundamental group of a smooth projective curve
defined over a field k of characteristic # /.
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4.1. Etale fundamental groups of curves

Let X be a smooth curve over k. Set X = X ®; k and choose a k-valued point Z of
X. We have the standard exact sequence of étale fundamental (profinite) groups

1= m(X,z) = 1(X,Z) = G — 1.

(cf. [56], Exp. IX, §6.) We will assume that X is projective and, for simplicity, that X is
irreducible.

We set T' = 71(X,z), Iy = m(X,z), considered as profinite groups. Note that I' =
71(X, ) is topologically finitely generated ([56], Exp. X, Theorem 2.6). By [55, I, §1,
Prop. 1], there is a continuous set theoretic section s : G = Gy, — T'g. In this case, such a
section can be constructed as follows: Choose a point of X defined over a finite separable
extension k C kK’ C k%P. We can assume that k'/k is Galois and so it corresponds
to a finite index normal open subgroup U C G. As usual, pull-back by the morphism
Spec (k') — X gives a continuous homomorphic section sy : U — I'g. We can now extend
sy to the desired s by choosing a representative g; of each coset G/U and arbitrarily
assigning s(g;) = s; € I'g; then s(g;u) = s;svy (u) works.

We have ([44], Ch. II, Thm (2.2.9))

Hi(F7 Zf) =~ Hits(r’ QZ/Zl)*

where ()* = Hom( ,Q/Z,) is the Pontryagin dual. Now, since X is a K(71(X), 1)-space
for {-torsion étale sheaves (cf. [22, Theorem 11]),

-
n

H (T, Q¢/Z¢) = lim H (T, ¢ "Z/Z) = lim H, (X, 0" Z /7).
Since H2, (X, 07"Z/Z) = 0, H2(X,0~"ZZ) = (Z/{"Z)(—1), we get
H3(F7Z€) = Oa HQ(Fa Zg) = Z[(l)
In fact, the isomorphism Hy(T', Zy) ~ Z(1) is canonical, given by Poincare duality.

4.2. The l-adic volume

Suppose A = O[z1,...,Zn], where O = O is the ring of integers in a finite extension
E of Qg with residue field IF; this includes the case A = O (for m = 0). Recall & is the
ring of analytic functions on the polydisk D = Dy(m) (when m =0, & = E).

Let po : m1(X,Z) — GL4(A) be a continuous representation. Apply the construction
of Proposition 3.3.4 to T' = 71 (X, z), Ty = 71 (X, Z), G = Gy, with G acting trivially on
A, 1 : G — Aut(T) given via s, p = PO|ry (%,7) and

ta : C3(GLg(A))/Im(dy) — 6
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given by the f-adic regulator. This gives a continuous 1-cocycle Gy — 0(—1):

Definition 4.2.1. The cohomology class
VOl(p) = VOIP € H(lzts(Gk7 ﬁ(_l)) cts(k ﬁ( ))

given by the construction of Proposition 3.3.4, is the ¢-adic volume of py. (It depends
only on the restriction p = po|, (% 7))

The restriction of the cocycle to G,y = Gal(k*P/k((e~)) gives a well-defined
continuous homomorphism

Voly k(¢oe) * Gh(gee) = O
We set
Goo = Gal(k((o<)/k)

which, via Xcyel, identifies with a subgroup of Z; = Z /(¢ — 1) X Zj.
Consider the restriction-inflation exact sequence

1> H!

cts

(Goo, O(—1)) — HL

cts

(k, O(=1)) =
Hep (k(Ge ), 0(=1)) > — HZ(Goc, O(~1)).

Using that € is a Q-vector space we can see that H., (Goo, O(—1)) = 0, H3 (G, O(—1)) =

0. Hence, restriction gives

~

cts(k ﬁ( )) — cts( (CZM) (_ ))Gooa

and Vol(p) is determined by the continuous homomorphism
Vol k(cee) * Gr(cee) = O(=1)

which is Gee-equivariant. In what follows, we will also simply write Vol(p) for this ho-
momorphism and omit the subscript k(). Actually, using the continuity, we see that
Vol(p) factors through the maximal abelian pro-f-quotient

Gab

k(Ceo0),

= Gal™® (k> /k(Ce=)s-

4.3.  In the following paragraphs we elaborate on some properties of Vol(p). We start
with an alternative definition.



40 G. Pappas / Advances in Mathematics 387 (2021) 107836

4.3.1. We can also use the Leray-Serre spectral sequence
E5 : HP (k, HE (X, Qe/Z0)) = HET(X, Qe/Zy)
to give a construction of a class Vol®(p) as follows:
Set HY(X) := H{ (X, Q¢/Zy¢), HY(X) := HL (X, Q¢/Zy). We are interested in H?(X).
The spectral sequence gives a filtration

(0) = FYH3(X) c FPH3(X) ¢ F?H3(X) c F'H3(X) c F'H3(X) = H3(X)

with graded pieces gr,H?(X) ~ EZ3P. Using that HY(X,Q¢/Z¢) = (0) unless ¢ = 0, 1,
2, we see that groH3(X) = (0) and that

EL?2 = E}® c By € HY(k, H3 (X)) = H (k, Q¢ /Z¢(—1))

with
E3? = ker(dy” : H'(k, Qe/Ze(~1)) — H*(k, H'(X)))
EL? = B} = ker(d}? : E}? — HA(k,Qu/Z)).

We obtain

n:H3(X,Qu/Z¢) = FIH*(X) — gr,H*(X) = EL2 — H'(k,Q¢/Z(—1)).

In what follows, for simplicity, we omit denoting the base point and simply write

7m1(X) and 71 (X). Let us now compose 7 with the natural

H?(71(X),Q¢/Z¢) ~ H*(X,Q¢/Zy¢)

(X is a K(m,1)-space for {-torsion étale sheaves) and then take Pontryagin duals to
obtain

0 Hy(k, Ze(1)) 2 H (k, Qp/Zg(—1))* — H*(m1(X),Q¢/Z¢)* = Ha(m1(X), Zy).

By further composing 1" with Hs(po) : Ha(m1(X), Z¢) — H3(GL4(A), Z¢) and the ¢-adic
regulator t4 : H3(GL4(A),Zy) — € we obtain a continuous homomorphism

Hi(k,Z(1)) — O.
By the universal coefficient theorem, this uniquely corresponds to a class

Vol®(p) € HL

cts

(kv ﬁ(_l))'
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Remark 4.3.2. a) By tracing through all the maps in the construction, one can check
Vol*(p) = £Vol(p),

where the sign depends on the normalization of the differentials in the spectral sequence.
Since we are not going to use this, we omit the tedious details.
b) We can also see that the homomorphism

n:H(X,Qe/Zs) — H' (k,Q/Z(—1))
above is, up to a sign, given by the push-down
R fer : H(X, Qo /Ze(m)) — H' 2 (k,Q¢/Ze(m — 1))
for i = 3, m = 0, and the structure morphism f : X — Spec (k).
4.3.3. Suppose that the f-cohomological dimension cdy(k) of k is < 2. Then EL2? =

H'(k,Q/Zs(—1)) and E3' = (0) in the above. Then the spectral sequence gives a
natural exact sequence

(Qe/Ze(=1)“* — B2(k, He (X, Qe/Ze)) —
— HE (X, Q¢/Z¢) & H' (k, Qe /Zo(—1)) = 0. (4.3.4)
Often, the situation simplifies even more:

Theorem 4.3.5. (Jannsen) Assume € # 2. Suppose that k is a number field, a global
function field of characteristic # {, or a finite extension of Q, (p ={ is allowed). Then

1 Hg (X, Qe/Ze) = HY (k, Qe/Ze(-1))
is an isomorphism.

Proof. Note that since we assume ¢ # 2, the f-cohomological dimension cdg(k) of k is
< 2, for all the fields considered in the statement. The exact sequence (4.3.4) implies
that it is enough to show

H?(k, HY (X, Qe/Zy)) = (0).

This vanishing follows from the results of [33]. In the number field case, this is [33] §7,
Cor. 7 (a). In the global function field case, Jannsen shows a more general result ([33],
Theorem 1). Finally, the local case is shown in the course of the proof of the number
field case in [33] §7. O
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Remark 4.3.6. Jannsen conjectures a vanishing statement which is a lot more general.
See [33] Conjecture 1 and §3, Lemma 5.

Corollary 4.3.7. Under the assumptions of Theorem /.53.5, we have
H}(k, 0(—1)) ~ Homg, (H3(m1 (X), Z¢), 0)
and, under this isomorphism, the £-adic volume Vol®(p) is given by the Z,-homomorphism
H3(m(X),Zy) = O
which is the composition of Hz(p) with the £-adic requlator. O
We now continue our discussion of the group

Hes(k, 0(=1)) = Heyo (k(Cew), 0(1) .

4.3.8. Assume that k is a finite field of order ¢, ged(4,q) = 1. Then GZ?QOO)’Z = (1) and
so HL (k, 0(—1)) = (0). Hence, Vol(p) = 0 for all X and p.

cts

4.3.9. Let k be a local field which is a finite extension of Q,. Write Goc = A x I', where
A = Gal(k(¢)/k) is a finite cyclic group of order that divides £ — 1 and I" ~ Z,. By a
classical result of Iwasawa

ab i~ Ze(1), I
k(Ceoo) Z({[[Goo]][k@d D Ze(1), if £=p,

as Z¢[Goo]-modules. (See for example, [44, Theorem (11.2.4)]). It follows that Vol(p)
takes values in

1 ~ 71 Goo ~v (0), it l#p
Hcts(k’ ﬁ(_l)) — Hcts(k(Cex’)? ﬁ(_l)) - {ﬁ[k:Qé]’ - p.

4.3.10. Let k be a number field with r; real and r complex places. For a place v of k, fix
k < k, which gives G, = Gal(l;v/kv) — (§). Using the local case above, we see that for
all finite places v away from £, the restriction of Vol(p) to G\, N Gal(k/k(Cs~)) is trivial.
It follows that Vol(p) factors through the Galois group £ of the maximal abelian pro-£
extension of k(s ) which is unramified outside ¢. We have

Vol(p) € Homeys( 2o, O(—1))> = Homeis( 2o (1) g, O).

oo )

The Galois group 2 is a classical object of Iwasawa theory.
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Set K = k((;), denote by ko the cyclotomic Zg-extension of k, and denote by K., =
Kk the cyclotomic Zg-extension of K. Then

Goo = Gal(k((r=)/k) = Gal(K o /k).
As above, Goo = A x I, I ~ Z,. Denote as usual
A= Zg[[T]] ~ Z@[[F]]

with the topological generator 1 of Zy ~ I mapping to 1+ 7. Then Z,[Go] =~ A[A]. By
results of Twasawa ([32], see slso [44] Theorems (11.3.11), (11.3.18)):

1) Z is a finitely generated A[A]-module,

2) Z% has no non-trivial finite A-submodule,

3) There is an exact sequence of A[A]-modules

0= tA(Z) = Zoo = A[A]? @ @ Indf’)A_ = T2(Z) — 0.
Uesreal(k)

Here, tp(Z) is the A-torsion submodule of 2%, and T»(Z) is a finite A-module.
Also, ¢, € A is the complex conjugation at v and A, is the ¢,-module with ¢, acting as
multiplication by —1.

We now see that

Hom,s (A[A], 0(—1))2*T ~ 0,

Homegs(Ind &A=, 6(=1))2%T ~ 6.
Therefore, we obtain
0 — O™ — Homes (Lo, O(—1))9= — Homeis(ta( 2o ), O(—1))5> — 0.

To continue, consider the following generalization of Leopoldt’s conjecture due to Schnei-
der [53], for an integer m # 1:

Conjecture (Cy,): H2, (Ok[1/0],Q¢/Ze(m)) = (0).

Remark 4.3.11. This is also a very special case, for X = Spec (k), of the conjectures of
[33] mentioned above. (Cp) is equivalent to Leopoldt’s conjecture for k and ¢. For m > 2,
conjecture (Cy,) was shown by Soulé [57] by relating the Galois cohomology group to
the group Kao;n—2(Oy) which is finite by work of Borel. If k is totally real, then (C,,)
implies (C1_,,) for m even. Hence, if k is totally real, (C,,), for m odd and negative, is
true.
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By [35] Lemma 2.2, Theorem 2.3, assuming (C_1), we have

and so the last term in the short exact sequence above is trivial
Homcts(tA(%oo)a ﬁ(*l))Gw = (O)
This gives that, assuming (C_1), we have

Hom, s (2o, O(—1))%= = Homg, (2w(1)g.., O) ~ 0"

oo !

and so Vol(p) can be thought of as taking values in 0™ 772,
In fact, assuming (C_1), [35] Theorem 2.3 gives a canonical isomorphism

HZ (Ox[1/4],Qe(~1)) 2 Homg, (2o, Qe(—1)) .

Consider now the semilocal pairing

(EPH" (ky, Qu(—1))) x (@D H' (k, Qe(2))) — Q¢

vl vl

obtained by adding the local duality pairings (see [35]). Assuming (C_1), Theorem 1.3
of [35], states that the image of

rly  HE(OR[1/0,Qu(—1)) — EDH (ky, Qe(—1))

vl

is the exact orthogonal of the image of

K3(Ok) @z, Qe = Hi, (Ok[1/4], Qe(2 —>€BH (v, Qe(2)),
vt

under this pairing. Here, co1 is Soule’s Chern class map [57] which is an isomor-
phism by the Quillen-Lichtenbaum conjecture. Both 7¢, and r§ are injective. Note
that, as Qg-vectors spaces, K3(Oy) ®z, Q; ~ Q?, while @vwﬂl(kv,(@gﬂ)) ~
D, H (k, Qe(—1)) ~ Q272

We have shown:

Proposition 4.3.12. Suppose that k is a number field and assume conjecture (C_1) for
k and €. Then, Vol(p) € H(k,O(—1)) is determined by its restrictions Vol(p), €
H!(k,, 0(-1)), for v|t, and

(Vol(p)k, v € EDH (kv, Qe(—1)) ®g, €
vl



G. Pappas / Advances in Mathematics 387 (2021) 107836 45

lies in orthogonal complement of K3(Oy) ®z, O under the semi-local duality pairing
above. Hence, in this case we can view Vol(p) as a linear functional

@v\f Hl(kaE(z)) N

Vollp) s =g (00 @z, @

O

Remark 4.3.13. At this point, we have no explicit calculations and no proof that the
volume is not identically zero. For k a number field, we can obtain examples by taking
X to be a Shimura curve and p the f-adic local system of the Tate module of a universal
abelian scheme over X . It is an interesting problem to calculate Vol(p) for these examples.

4.4. Variant: finite groups and higher dimension

Here, we let G be a finite group and give a construction of classes in H (k, Q¢/Z¢(—1))
which is more in the spirit of the construction in [36]. If 7 : Y — X is an étale G-cover
(corresponding to p : m1(X) — G), we obtain a homomorphism

RA(m) : H¥(G,Qu/Z¢) — H*(X,Qu/Zy)
by pulling back from the classifying space. For a € H3(G,Q,/Z;) we can now set
CS(Y/X, ) := n(&(r)(a)) € H (k, Qe /Z(—1))

where 1 : H3(X,Q,/Z;) — H'(k,Q¢/Z¢(—1)) is obtained from the Leray-Serre spectral
sequence. This can also be given an explicit cocycle description: Let us choose

a: C3(G)/Tm(0y) — Qo/Zyg

giving a € H3*(G,Q(/Z;) = Hom(H3(G,Z),Qs/Zs). Then, for ¢, & as before, and
(5(5,0) S C‘d(wl()_())/lm(84)g, with

we can take

T = Xeyel(0) "1 @[p(8(5, ¢)) — Fy()(p(c))] € Qe/Zy.

4.4.1. Consider now a continuous p : 1 (X) — GL4(A) with 4,, = A/m™ finite, for each
n > 1. We can apply the construction above to p, : m1(X) — GL4(A,,). We obtain

- R(pn) : H*(GLa(An), Qe/Zg) — B (k, Q¢ /Ze(—1)).
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For each n > 1, the diagram

-R(pn
H3(GLa(An), Qe/Z) L8,
Infl |

H3(GLa(An11), Qe/Ze) L2000 H(k Q,/Z4(1))

H'(k,Q¢/Zs(-1))
Lid

is commutative and we obtain

- R(p) : Hy (GLa(A), Q¢/Z¢) = lim, H*(GLa(An), Q¢/Z¢) — H' (k, Q/Z(—1)).

When d > 2, we can recover the previous construction after taking Pontryagin duals and
composing with the f-adic regulator.

4.4.2. More generally, suppose that f : X — Spec(k) is a smooth proper variety of
dimension n over the field k and ¢ a prime different from the characteristic of k. We can
then consider the push-down homomorphism

n =R for. : H*""N(X,Qu/Z¢) = H' (K, Q¢/Zs(—n)).
Similarly, we have
e, = R*" fer : H"FHX, Q) — H' (K, Qe(—n)).

Suppose G is a finite group. If 7 : Y — X is an étale G-cover we obtain a homomor-
phism

R(m) : HYG, Qu/Ze) — H*"H(X, Qe /Zy)
by pulling back from the classifying space. For a € H2"*1(G,Q,/Z;) we set
CS(Y/X, a) := 1 (R(7)(a)) € H' (k, Q¢/Ze(—n)).
Recall that we have (cf. [61])

HZ N (GLa(Ze), Qr) = (lim(lim B> (GL4(Z/€°Z), Z./0" 7)) @z, Q.

If # is an étale Zy-local system on X of rank d > 2 we obtain
R(F)q, : His ™ (GLa(Ze), Q) — B (X, Q)

from the corresponding system of GL4(Z /¢*Z)-covers as before. For each d’ > d, the local
system % gives the local system .%' = . @ Z‘Zi/_d of rank d'. For d’ >> 0, the 2n + 1-th
(-adic regulator t, ¢ is a non-trivial element of the Qg-vector space H2" (GLy (Z¢), Qr)
(by stability and [61, Prop. 1]). We can now define
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VO](@) S Hits(kaf(_n))

to be given by value of the composition ng, - R(F)q, at t,.e.

5. Deformations and lifts

Here, we apply our constructions to universal (formal) deformations of a modular
representation of the étale fundamental group of a curve. In particular, we explain how
the work in Section 2 can be using to provide a symplectic structure on the formal de-
formation space of a modular representation, provided the deformation is unobstructed.

Again, we omit denoting our choice of base point and simply write 71(X) and 71 (X).
5.1. Lifts

Fix a continuous representation pg : m1(X) — GL4(F) with F a finite field of char-
acteristic £ # 2. Suppose € : m1(X) — O* is a character so that emodm = det(py). We
will denote by pg, resp. €, the restrictions of pg, resp. €, to the geometric fundamental

group 71 (X) C m(X).
Denote by Co the category of complete Noetherian local O-algebras A together with
an isomorphism o : A/ms — F.

Lemma 5.1.1. (Schur’s Lemma, [}1] Ch. II, §4, Cor.) Let p : m(X) — GLg(A) be a
continuous representation with A € Cop. If the associated residual representation py is
absolutely irreducible, any matriz in Mg(A) which commutes with all the elements in the
image of p is a scalar. O

In what follows, we always assume that
ﬁo : 7T1(X) — GLd(F)

is absolutely irreducible, i.e. it is irreducible as an F-representation.
Let p: m(X) — GLg4(A) be a continuous representation with A € Co which lifts g
and with det(p) = €. Suppose that for all g € m1(X), there is hy € GLg(A) with

plgvg™") = hgp(y)h, ", Vv € m(X).

By Schur’s lemma above, hq is uniquely determined up to a scalar in A* and
hgg = 2(9,9" Vhghg,  2(g,9") € A*.

Mapping g to m(hy) = hgmod A* gives a homomorphism

PPGL - 71 (X) — PGLd(A)
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which extends 7 (X) LA GL4(A) = PGL4(A). We can see that ppar, is continuous for
the profinite topologies on 71 (X ) and PGL4(A).
The following will be used in the last section.

Proposition 5.1.2. Suppose £ does not divide d. Under the above assumptions, there is a
lift of ppcL to a continuous representation

p:m(X) — GLg(A)
such that det(p) = € and Plmy(X) =P

Proof. A version of this is well-known but we still provide the details for completeness.
To give such a lift we need to choose, for each g € m1(X), hy € GL4(A) such that:

a
b

) p(gv9™") = hep(v)hy ', ¥y € m(X), Vg € m(X),
) det(hg) = €(g), Vg € m(X),

) p(7) = p(7), ¥y € m(X) C m(X),

) h

) g

[oFNe)

g9’ = hghg, ie. 2(g9,9') =1,Vg,¢" € m(X),

e — hg is continuous.

For each g € m1(X), consider the set

Yy(A) = {h € GLq(A) | m(h) = 7(hy), det(h) = e(g)}.

There is a simply transitive action of y1q(A4) = {a € A* | a® = 1} on Y, (A). The existence
of po : m(X) — GLg(F) implies that Y, (F) is not empty since it contains pg(g). Then
Y, (F) = pa(F).

Recall we assume ged(d, £) = 1. Hensel’s lemma implies that pug(A) — pa(F) given by
reduction modulo m4 is an isomorphism. Now consider the map

Yy(A) = Y, (F)

given by reduction modulo my. Pick b’ € GLg(A) with 7(h') = [hy] € PGL4(A) and
I — po(g) € Yy(F), and write h = ah’/, a € 1 + my C A*. We want to choose a so that
det(h) = €(g), i.e. a®det(h') = e(g). We have det(h’) = €(g) € F*, so det(h')e(g)~" €
1+my and a? = det(h')e(g) ! has a solution since ged(d, £) = 1. This shows that Y;(A)
is also non-empty. Hence reduction modulo m4 gives a bijection

Yy(A) = Y (F) = ua(F).

We can now choose h, € Y;(A) to be the unique element whose reduction is pg(g). Then
g — hg satisfies properties (a), (b) and by comparing with the reduction, properties (c),
(d) and (e). In fact, we see that the lift p given by p(g) = hy reduces to py modulo
my. 0O
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Remark 5.1.3. We keep the assumptions of the proposition above.

a) The map z : m(X) x 71 (X) — A* given by (g,9) — 2(g,¢') is a 2-cocycle. A
classical argument (see for example [39] Thm 8.2) applies to show that z is the inflation
of a continuous 2-cocycle

V. Gk X Gk, — /,Ld(A) = /.Ld(IF).

We can see that the existence of py which lifts ppgr, modmy implies that the class
[v] € H2(k, p1q(F)) vanishes. This provides an alternative point of view of the proof.

b) The lift p given by the proof of the proposition reduces to py modulo m4.

¢) The lift p is not unique. Consider a character x : Gp — pq(A) = pq(F). The twist
p ®a x satisfies all the requirements of the proposition and we can easily see that all
representations that satisfy these requirements are such twists of each other.

5.2. Unidversal deformation rings
Following [14] §3, we now consider the deformation functors

Def(ﬂ—l(X)apoag)’ Def(wl(X)vﬁ()vE)'

By definition, Def(m (X), po, €) is the functor from Cop to Sets which maps (A, «) to the
set of equivalence classes of continuous representations

pa:m(X) = GLg(A)

such that a(pamodmga) = po, det(ps) = (O — A*) - e. Here, pa is equivalent to p/y
if and only if there exists an element g € GL,,(A4) such that p’y(7) = g pa(7)g, for all
v € 71(X). The functor Def(r;(X), o, €) is defined similarly.

Under our condition that g is absolutely irreducible, Def (71 (X), po, €) is representable

in the category Co and there is a universal pair (Aupn, pun). (This follows by applying
Schlessinger’s criteria, see [14] 3.2 and [40], Sect. 1.2. We use here that 7; (X) is topolog-
ically finitely generated). If 1 (X) is also topologically finitely generated, as it happens
when k is a finite field, then Def(m1(X), po, €) is also representable in the category Co
and there is also a universal pair (Aun, Pun)-

As in [14] 3.10, we have Ay, ~ Oft1,...,t,] for some m. The formal smoothness

statement holds because the obstruction group
H? (1 (X), A, (F))

vanishes, see [14] for details.
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5.8. Galois action on the deformation rings

For every o € Gy, we give an automorphism (o) : Ay = Ayn as in [14] 3.11:
For simplicity, we drop the subscript un and write A = A, etc. Choose an element

¢ € m(X) which maps to 0 € Gy, and h € GLg(Ay,) such that hmodm g = po(5).
Consider the “twisted” representation

p7 i m(X) = GLg(A), ~+ hp(67tya)h™ .

We have 5° modm 4 = po, and det(p®) = €. Hence, (A, 5°) is a deformation of py with
determinant €. By the universal property of (A, p) we obtain a O-algebra homomorphism
0:A— Aand I/ € GLg(A) such that

e(p()) = h'p% (y)h' 1, (5.3.1)

for all v € m1(X). The above combine to

p(6714E) = hap(p(y))hy - (5.3.2)

The automorphism (o) is independent of the choice of & lifting o and of the element h
as above. Indeed, if &', h/ is another choice giving ¢’, then &' = & - 6, for § € m;(X) and
we can easily see that 57 is equivalent to 57 and ¢(p) is equivalent to ¢'(5). Hence, the
two maps ¢’, ¢ : A — A agree by the universal property of (4, p). It now easily follows

also that

for all o, 0’ € Gy.

Proposition 5.3.3. The homomorphism ¢ : Gp — Auto(A) is continuous where

Autp(A) has the profinite topology given by the finite index normal subgroups K, =
ker(Autp(A) — Autp(A/m™)).

Proof. It is enough to show that given n > 1, there is a finite Galois extension k’/k such
that if o € U = Gy, then ¢(o) € K,,. Since p : 71 (X) — GL4(A) is continuous, there is
m such that if v € T',,,, then p(y) € 1+Mg(m’). Here I',,, C I is the characteristic finite
index subgroup of 71 (X) as before. Let Y;,, — X be the corresponding I'/T',,-cover which
is the base change of a I'/T',,-cover Y,,, — X ®, k°P. We can write k(Y,),) = k5P (X)(«),
for the extension of function fields, where k°P(X) = k(X) ®; k*P. Then, we have
T/T,, ~ Gal(k*P(X)(a)/k*P(X)). Choose a finite Galois extension k C k' C k5P
which contains all the coefficients of the minimal polynomial of « over £*P(X) and with
X (k') # 0. Then, there is a continuous section s : Gy, — 71 (X) such that, if o € Gy,
then conjugation by s(o) is trivial on I'/T';, ~ Gal(k*P(X)(«)/k%P(X)). We now have
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p(s(0)ys(7) ") = p(7m) = p(7) mod(m%).

By the definition of (o) and the universal property of (A, p), this gives that p(o) =
Idmod (m%), so p(0) € K,,. O

Proposition 5.3.4. Suppose that A € Co and let p : m(X) — GLg(A) be a deformation
of po with determinant € which corresponds to f : Ay, — A.
a) If p extends to a representation p : m(X) — GL4(A) with determinant e, then

f-elo)=f, forall o € Gy.

b) Conversely suppose [ - p(o) = f, for all o € G, and ged(£,d) = 1. Then p :
71(X) = GL4(A) extends to a representation p : m(X) — GLg(A) which deforms po
and has determinant e.

Proof. (a) Suppose p extends to p. Then, we have

p7(v) = hp(76 = )h™t = hp(a)p(7)p(5) " AT

This gives that p? is equivalent to p. The representability of the deformation problem

now implies f - (o) = f.
(b) Conversely, suppose that f - (o) = f, for all 0 € Gg. Then, for g € 71(X) which
maps to o € G, we have

plgrg™") = hep(a)(p(7)hy = hep(y)hy ™,

for some hy € GLg(A). The result now follows from Proposition 5.1.2. O
5.4. Volume for the universal deformation

Start with pg : m(X) — GLg(F) such that py : m(X) — GLg(F) is absolutely
irreducible and consider

P = pun : T (X) = GLg(Aun)
the universal deformation. Set
D= Spf(;lun)[l/g]

for the rigid analytic fiber of the formal scheme A, over O. This is a rigid analytic space
over E which is non-canonically isomorphic to the open unit polydisk Dj(m).

Apply the construction with I' = 71(X), A = Ay, and G = G}, mapping to Out(T)
via the exact sequence and acting on Ay, via ¢ as above. Take t4 to be given by the (-
adic regulator which now takes values in (D) ~ €. We obtain a continuous cohomology
class
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Vol(p) € H.

cts

(k,0(D)(-1))
where the action of G on 0(D)(-1) is via X;yld - .
5.5. The symplectic structure on the deformation space

We continue with the above assumptions and notations. Set A= /_Lm, A, = Aun / m%.

Consider the d + 1-dimensional representation py := p @ e of 7;(X) which has
trivial determinant. The constructions of §2 apply to p, and I' = 71(X). We obtain
cohomology classes

in € H2(m1(X), Ka(An)),  wn € H2(my(X), 03 ).

Recall that, for all n > 1, Ky(4,,) and Q% are finite groups. They are both ¢-groups:
This is visibly true for Q% . To show the same statement for Ky(A,) observe that the

kernel of Ko(A,) — Ko(F) is generated by Steinberg symbols of the form {1 + ¢z, s};
these are (-power torsion since (1+¢z)¢" =11in A, for N > n, while Ko(F) = (0) ([51]).

Assume now that X is, in addition, projective. Since X is K(71(X),1) (cf. [22, The-
orem 11]) we have a canonical isomorphism

M H (m (X), Q% ) = HE (X, 9% ), (5.5.1)
By Poincare duality,
Tr: HZ, (X, Q%n) = QZAW/(—I)7
and similarly for Ko(A,). Set
Kan = (TroH)(kn) € Ka(A,)(—1), Wan = (TroH)(wy,) € Q%n’(—l).
(compare §2.1.1). Also set
ko= 1lm, Kop € lim Ka(Ap)(=1), wi=lim wen € Q% (1)

Set

Ti,.0 =Homz (R4, /00 Am), Ti, =Ti, 0 ®4,, An =Homz (Qz,, /0, An)-
By [41, §17, §21 Prop. 1, §24], there are natural A,,-isomorphisms
Ty, = Hl(wl(X),Ad%(An)).

For simplicity, set W,, = Adg(;ln); this is a finite free A,-module given by trace zero

matrices. The profinite group I' = 71 (X)) satisfies Poincare duality in dimension 2 over
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the (-power torsion A, as in §2.4. Then, cup product followed by W, ®z Wn — A,
(X,Y) — Tr(XY), and combined with Poincare duality gives the pairing

(,n: Ty, x Ty =H(m(X),Wy,) x H(m1(X), W,) = A,.

Suppose £ does not divide d. Then, this is a non-degenerate A,-linear pairing. Taking
an inverse limit over n gives

() Ta 0 % Th,,/0 = Aum
which is a non-degenerate (perfect) A,,-linear pairing.

Theorem 5.5.2. 1) The 2-form w € Qz /o(_l) is closed.

2) Suppose £ does not divide d. For “all v, vz €T3, /0, we have

(v1,v2) = w(v1,v2)
and w is non-degenerate.

Proof. For simplicity, set A = A,,. By construction w = dlog(x) and so dw = 0, i.e. w is
closed which shows (1). Let us show (2). For every n > 1, v; € T3 /o give deformations
pi of po over A, [e], with determinant e. These give representations

Pt T(X) = SLat1(Anle]), prii=pide’

Set W,I = Adg+ (A,) = M?dﬂ)x(dﬂ)(ﬁn) which contains W,, = Ad%(;ln). By our
construction of w, , and (2.4.1), wg n(v1,v2) is the value of the pairing

HY (7 (X), W,5) x H (7 (X), W,}) = H*(m1(X), A,) = A,

given by cup product followed by Wi @4 W, — A, (X,Y) = Tr(XY), at (vq,v2).
The cocycles of 71 (X) on W, corresponding to py ; factor through W,, € W,I. It follows
that wg n(v1,v2) is also the value of the pairing

HY (1 (X), W,,) x HY (71 (X), W,,) — H3(m1(X), Ay)

1

4,

at (v1,v2). Part (2) now follows. O

In what follows, we assume without further mention, that ¢ does not divide d.

The form w gives, by definition, the canonical symplectic structure on the formal
deformation space Spf(Ayy).

5.5.3. Recall D = Spf(A,,)[1/4]. The form w gives a Poisson structure on € (D) ~ & as
follows. For f € (D) set X for the analytic vector field on D defined by
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Xf_:w = df.

(Here and in what follows we denote by ix(w) or X —w for the contraction, or “interior
product”, of the vector field X with the form w.). The analyticity of X; can be seen as
follows: Choose an isomorphism Ay, ~ O[z1,...,z,,] and write w = Zi<j gijda; AN dx;.
Then, in the basis 0/0z;, X is (formally) the image of the vector —(fi,..., f) under
the map given by the matrix (g;;). Since g;; € Ofx1,..., 2], we see that if f € O(D)
all the components of Xy converge on ||x|| < 1, i.e. they belong to &.

We now set

(.9} = (X7, X,). (5.54)
We can easily see that {f, g} takes values in (D). Also
{, }:0(D)x 0(D) — 0(D)
is a Lie bracket, i.e. satisfies {f, g} = —{g, f} and

{fv {g’h}} + {gv {h7.f}} + {h7 {f7g}} =0.

It also satisfies the Leibniz rule {fg,h} = f{g,h}+g{f, h}. Indeed, it is enough to show
these identities in the ring of formal power series. There they are true by the standard
arguments. (The Jacobi identity follows from the closedness of the form w.)

6. The symplectic nature of the Galois action

We now return to the Galois action on the formal deformation space of a modular
representation of the arithmetic étale fundamental group of a curve. We construct the
f-adic Galois group flow and explain its interaction with the canonical symplectic form.
Finally we show that the set of deformed representations that extend to a representation
of the fundamental group of the curve over a finite extension of k({y) is the intersection
of the critical loci for a set of rigid analytic functions.
6.1. Galois action and the symplectic form

We continue with the assumptions and notations of §5.2, §5.3.
Proposition 6.1.1. We have

-1
@(0)(0‘)) = chcl(a) "W,

where p(0) : Ayn — Aun is the automorphism induced by o € Gy, as in §5.3.
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Proof. This also follows from Theorem 5.5.2 which gives a description of w using cup
product and Poincare duality. Here is a more direct argument that also applies to the
Ky invariant. Consider the endomorphism [5] of H2(m; (X), Q% ) induced by v — 5y5 !

on 71 (X). By the construction of w,, and the definition of ¢, we have

[5’](0)”) = @(U)(wn) (612)

in H?(m;(X), Q% ), where on the right hand side ¢(0) is applied to the coefficients Q% .
Next observe that, by functoriality of H (5.5.1), the endomorphism [&] of H? (71 (X), 0% )

corresponds to the endomorphism (5)* on HZ (X, 0% ), ie.

Hols] = (5)" oH. (6.1.3)

*

By Poincare duality for étale cohomology, Tr o (5)* is multiplication by X;yld(o). Com-

bining the above gives

p(0)(we,n) = Xc_ylcl(a) " We,n -
This then implies ¢(0)(w) = x;},lcl(a) -w, as desired. O

Remark 6.1.4. a) The stronger statement p(o)(k) = X;yld(a) -k is also true. This can be
seen by repeating the argument in the proof but with the coefficient group Q%n replaced

b) (suggested by D. Litt) Consider the ring Z,[A] (with A a formal variable), on which
the group Gy, acts by o(A) = Xcyai(0) - A Set Qe{A} := (lim Z,((N))/¢")[1/4] for the
¢-adic completion of the Laurent power series Q¢((A)). Then Aw is a non-degenerate 2-
form on the rigid Q,{\}-analytic space Z_)Qz{)\} = D_®Qe(@g{)\} which is isomorphic to a
unit polydisk over Qg{A}. The form Aw is closed relative to the base field Qg{\}, hence
it gives a symplectic structure on ﬁ@e{ A}, and is invariant under the diagonal action of
Gi, on Dg,(»} = D&g,Qr{A}. Note however, that this action is not Q{A}-linear.

6.2. The Galois flow

Since A/mii is a finite ring, there is an integer N > 1 such that the N-th iteration
Y = @(o)N : A — A satisfies ¢ = Idmodmi;. Assume also that (¢ — 1)|N. Recall
D= Spf({l)[l/@] ~ Dy (m).

Since A ~ O[z1,...,xn,], the results of the Appendix, especially Proposition 7.2.5,
apply to ¢. We obtain:

Theorem 6.2.1. We can write D = U.cnD, as an increasing open union of affinoids (each
D, isomorphic to a closed ball D, (m) of radius r(c) increasing to 1) such that:

For each ¢ > 1, there is e(c) € Qsq with the property that, for each o € Gy, there is
a rigid analytic map (the “flow”)
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{t||tle <e(e)} X De = D, (t,%x) = p(x) := eV (x),
which satisfies
o W=ty for all |t |]e < e(c),
o Y7 :D.— D, is given by the action of o™V, for alln € Z with |n|, < &(c).

(In fact, the Appendix gives more precise information on the flow oVV.)

The flow ¢ induces a rigid analytic vector field X,~ = X, on D. The vector field
X, =N"1. X~

on D is well-defined and independent of the choice of N. The contraction of the 2-form
w with X, gives a rigid analytic 1-form

po = Xow

on D.
Denote by log, : Z; — Q, the f-adic logarithm.

Proposition 6.2.2. dy, = —log,(Xcycl(0))w.

Proof. It is enough to show the identity in Efx1,..., 2], i.e. to check that the germs
at (0,...,0) of both sides agree. We use a formal version of “Cartan’s magic formula”

Ly =ix-d+d-ix.

For completeness, we give the argument for the proof of this formula in our set-up. Set
E[x] = E[z1,...,%n]. Consider the graded commutative superalgebra

Q= @iez o

where, for i > 0, Q' = /\iQ}E[[x]]/E, while Q% = 0, with multiplication satisfying ab =
(=1)"ba, for a, b in degree i, j. A derivation D of degree ¢ of Q is an E-linear graded
map D : Q — Q satisfying D(ab) = (Da)b+ (—1)®aD(b), for a € Q'. For example, the
standard d is a derivation. If X = X, is the vector field associated to the flow 1*(x),
then the Lie derivative Lx :  — €2, which, by definition, is given by

. 1 t *
Lr 1= Jim (0 ()" (7) = 7)

is a derivation of degree 0. The contraction ix = X .— :  — € is a derivation of degree
—1 and we can easily see that the “superbracket” [ix,d] =ix -d+d-ix is a derivation
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of degree 0. Now notice that the two derivations Lx and [ix,d] of degree 0 agree on
Q0 = F[x]. Indeed, if f € E[x], then

Lx(f) = ix - df = X df

while ix (f) = 0. Also, both derivations Lx and [ix,d] commute with d. Indeed, since
d-d =0, we have

d-(ix -d4+d-ix)=d-ix-d=(ix -d+d-ix)-d.

Also, d- Lx = Ly - d since pull-back by 1(x) commutes with d. The proof of Cartan’s
magic formula Lx = [ix,d] follows by observing that any two derivations of degree 0 on
Q that commute with d and agree on 2° have to agree.

Now apply this to 1 = (o) = (o) with N as above. Since dw = 0, X, = N1 X,
po = N71ix, (w), we have

Lx,(w)=ix, -dv+d-ix,(w) =N -du,,

and is enough to show that Lx,(w) = —N log,(Xcyc1(0))w.
We have

s 1 t * o N T —n 1" * -
Ly, (@) = lim (0 ()7 () —w) = Tim 0" ()" (@) — ).
Now (¢! (x))*(w) = ¢! (w) = p(0)V*" (W) = Xeye () "V w, with the last identity given
by Proposition 6.2.2. Therefore,

Lx,(@) = lim 7" (xeya(o) " = 1w = —Nlogy(Xeyal () )w-

n+—-+oo

(Recall £—1 divides N.) This identity, combined with the above, completes the proof. O
Theorem 6.2.3. Assume £ does not divide d. The critical set
Crit :={x €D | X,(x) =0,Yo € G}

is equal to the set of points x of D for which there is a finite extension k'/k such that
the representation py : m1(X) — GL4(Qg) extends to py : 1 (X xp k') — GL4(Q¢) which

deforms (po)|my (X x k') -

Proof. Recall (see for example [40], Sect. 6, (1.3) d) that, for any finite extension
F of E, the base change (zzluné@@C’)F,ﬁun@@(’)F) represents the deformation functor

Def(m1(X), po ®o Op,€ ®» Op). Suppose now x € D is such that px extends to

px : m1(X) = GL4(Qp). There is a finite extension F of E such that the images px (71 (X))
and py (o) both lie in a conjugate of GL4(Or) in GL4(Q/). By Proposition 5.3.4 (a) and
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its proof, we can see that the action of o on D fixes the point x. (We consider here the
point x as giving a value for the deformation problem Def(m;(X), po ®0 Or,e®0 OF).)
Hence, the flow given by o on D also fixes x; it follows that X, vanishes at x.

Conversely, suppose x € Crit. There is a finite extension F' of E in Qg such that
F = E(x) and a conjugate of py takes values in GL4(OF). Set r = max(||x]], (1/£)}/¢) =
(1/0)*, a € QN (0,1/e]. Pick N > 1/a(¢ — 1) + 1. Then by Proposition 7.2.1 and
Proposition 7.2.7 and its proof, if ¢(c) = idmodm®, then p(0)(x) = 1! (x) = x. Now
by continuity, there is a finite index normal subgroup U C Gal(k¢P/k), such that for
o €U, (o) = idmodm?. Hence, there is a finite index normal U C Gal(k*®? /k) such
that for all ¢ € U, o(x) = x. Apply Proposition 5.3.4 (b) to A = Op and p = px to
the base field k¥’ = (k*°P)V. We obtain that px extends to a continuous representation of
71 (X xy k') with determinant ¢ which deforms (po)jx, (xx, k). O

Corollary 6.2.4. Suppose k is a finite field of order ¢ = pf, p # ¢, and assume ( is prime
to d. Let X be a smooth projective curve over k and let

po : 7T1(X,£Z') — GLd(F)

be a representation with determinant € such that po = pojr,(x) s geometrically ir-
reducible. Suppose x is an F-valued point of the rigid analytic deformation space

Spf(Aun)[1/4], as before, where E is a finite extension of W (F)[1/€] with integers Of.
The lift px : m1(X) = GLa(Og) of po : m1(X) — GL4(F) that corresponds to x extends
to a continuous representation

Px - 7T'1(X X]Fq FqN) — GLd(OE)
with determinant €, for some N > 1, if and only if the 1-form pgwob, vanishes at x.

Proof. Follows from Theorem 6.2.3 by observing that Gy is topologically generated by
Frob, and so the critical set Crit is the zero locus of HFrob,- O

6.3. Hamiltonian Galois flow

Recall G(¢,o0) = Gal(k*P /k((r)) and set again A = Ay,. Recall the group homo-
morphism

p: Gk((goo) — Auto(A).

By Proposition 5.3.3, this is continuous when we equip Auto(/_l) with the profinite
topology given by the normal subgroups K, = ker(Autp(A) — Autp(A/m™)).

For 0 € Gy¢,e), We have xeyei(0) = 1 and by Proposition 6.2.2, du, = 0. The
Poincare Lemma 7.4.1 implies that there is a rigid analytic function V, € &(D) such
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that p, = dV,; we can normalize V, by requiring V,(0,...,0) = 0. We can think of V,,
as a “Hamiltonian potential” for the flow o?.

Theorem 6.3.1. The map o — V,, extends to a Zy-linear map
V: Zo[Gr(cpe] = O(D); Zzaa — ZZ’O—VU

which is continuous for the Fréchet topology on (D) and satisfies:

1) For v e Gk; [OlS Gk(<goc)7 V’yo"y_l = 90(7)(‘/0'):
2) Foro, T € Gk(Ceoc)’ —d{Vg,VT} = [.X0-7X7-]—|(JJ.

Define
J : D = Hom(Z[Grc,or], Qo)

by J(x) = (z — V,(x)). We may think of J as describing a moment map for the
symplectic (Hamiltonian) action of G,y on D.

Proof. We choose an isomorphism A ~ R = O[zy, ..., ,,] that will allow us to use the
explicit constructions of the previous sections. We first show

Lemma 6.3.2. Fiz r = (1/0)%, a € QN (0,1/¢e], and € > 0. There exists a finite index
open normal subgroup U C Giy¢,) such that for all o € U, we have

[ Xollr- = sup [[Xo(x)|| <e
x€Dy(m)

Proof. We first observe that there exists n = n(e) such that ¢(o) = Id mod m’;, implies
that || X4||» < e. This follows from the argument in the proof of (7.2.2). The result now

follows from the continuity of ¢ (Proposition 5.3.3). O

Remark 6.3.3. Consider the analytic vector field X, = Y " | X;(0)d/0z;. The inequality
[|Xs||r < € is sup; || X;(0)||» < €. Suppose we perform a coordinate base change x; =
¥;(y) by an O-automorphism given by ¢ : R — R. Then, if ||y|| < r, ||#(y)|| < r and
so || X; (o) (¥(y))||- < e. Also, dy;/dz; € R. Since

%=X X)) 5205

it follows that the validity of ||X,||. < € is independent of the choice of identification

Aun = Ofz1, ..., Zm].
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Now write X, =Y 1", X;(0)0/0z; and w = ZK]- gijdx; A dxj with g;; € R; then

Mo = iXU(W) = Z i gl]dx] Z h dl‘],
where hj(o) = >, X;(0)gi;- By the above lemma, there is a finite index normal open
subgroup U C Gy (¢,) such that sup; |[X;(0)||, <, for all o € U. Since ||g;;|| < 1, we
also have sup; || (o). < e. Since the Tate algebra O(D,(m)) is complete for the Gauss
norm || - ||, we obtain that, for each r + 17, the map ¢ — h;(0) extends to

hj : ZZ[[Gk(Qoo)H — ﬁ(Dr(m))

These maps are compatible with the restrictions &(D,.(m)) — &(D,,(m)), r’" < r. There-
fore, they give the extension h; : Z¢[Gy(¢,~)] — O(D) which, in fact, continuous for the
Fréchet topology on &'(D) given by the family of Gauss norms {||-||,},. For z = }__ 2,0,
now set

Hz = Zj hj(z)dx;

with h;(z) € O(D). This 1-form is also closed and by Proposition 7.4.1 (a), there is

(a unique) V, € (D) with V,(0,...,0) = 0 and dV, = p,. The map z — V, gives our

extension. The continuity follows from the construction together with the fact that taking

(partial) antiderivatives is continuous for the Fréchet topology on & (D). (In turn, this

follows by some standard estimates using that lim;_, o, £* (T/T’)éi —=0,for0<r <7 <1.)
Property (1) follows from the definitions using the identity of flows

—l)t

(vor N = p(v)ote(v ),

(which follows from interpolating using the identities (yoy=1)¢" = yo 7~ in Gy).
Property (2) is formal (see [11, Prop. 18.3]): We have

(X5, X;]ow = Lx_ (X;ow) — X, o(Lx,w).
(This comes from the standard formal identity [X,Y]oa = Lx (Y o) — X (L x«) which

can be shown by arguing as in our proof of Cartan’s magic formula above.) By Cartan’s
formula this is equal to

A X (X7 ow)) + Xpod(Xrow) — X od(Xpow) — X (X podw).
In this expression, the last three terms are trivial since d(X, w) = d(X,;-w) = 0,

dw = 0. By definition, X, (X, w) = —w(X,, X;) = —{V,, V;} and this completes the
proof. O
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Corollary 6.3.4. Assume £ does not divide d. The critical locus set
JH0)={x€D|dV,(x) =0,Y0 € Gg(c,e)}

is equal to the set of points x of D for which there is a finite extension k'/k((po) such
that the representation py : w1 (X) — GLg(Qy) extends to px : m (X xi k') — GL4(Qy)
which deforms (po) |, (xx,k')-

Proof. This follows from Theorem 6.2.3 by replacing k by k((s~) and noting that for
0 € Gi(¢yo)» We have dV, = s which vanishes at x if and only if X, vanishes at x. O

6.3.5. In the above, suppose px extends to a representation px of 71(X). Then x is a
critical point of Vi, Vo € Gy(¢,)- It is reasonable to ask the following question: Do we
have

Vo(x) = A(0) - Vol(px)(0) + B(0),
for all o € Gy (¢,o0), Where A(c), B(o) are constants independent of x?
6.4. Milnor fiber and vanishing cycles

Suppose that % is a étale Z,-local system over X. Assume that the corresponding
representation po is such that pg : 71 (X x k) — GLg(Fy) is geometrically irreducible and
that £ does not divide d. Then the representation of 71 (X xj k) given by .# corresponds
to a point x of the deformation space D which is a critical point of Vi, Vo € G (¢,00)-

Let us consider the germ VU of V,, in the completion (’A)D’f of the local ring Op z of the
rigid analytic D at x. This completion is isomorphic (non-canonically) to Qgfv1, ..., vn]
(e.g. by taking v; = x; — x;) and the germ V, defines a Qg-algebra homomorphism
Q[u] = Opx, by u — V, — V,(Z). Consider the corresponding morphism of formal
schemes

fo : SPE(Op ) — SpE(Qe[u]).

(Here we use the wu-adic topology, the ¢-adic topology plays no role.) This makes
Spf(Op x) a special formal scheme over Spf(Qg[u]) in the sense of [6, 1].
In this situation, we can consider various local invariants of the critical point x of V;:

6.4.1. The analytic Milnor fiber
M(x,0) = Spf(Op xB,Qu)[1/u].

This is, by definition (cf. [46]), the generic fiber of f,&q,Q, considered as a Qg((u))-
analytic space.
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6.4.2. The stacks of the nearby cycle sheaves ([6], [7])

Ri\llfa@)@;(@e (Qp)x = Q_lgln(R \ij ®@ Q, (Z/p Z))X) ®Zp Qp

at x.
By [7, Theorem 3.1.1, Corollary 3.1.2], for each n > 1, Ri\llf %a, Q[(Z/p Z))x are

finite Gal(Q¢(w))/Qe((w)) ~ Z-modules. By [7, Theorem 3.1.1, Corollary 3.1.2], these
agree with the étale cohomology groups

Hi(x,0,Z/p"Z) = Hy (M(x,0) Xq, () Qel(®) ,Z/p"Z)

(again in the sense of Berkovich). In fact, the proof of the above results in [7] also gives
that there is ig such that for i > ig, H'(x,0,Z/p"Z) = (0), for all n. Hence, for each
n > 1, Hi(x,0,Z/p"Z) are the cohomology groups of a perfect complex P*(x, o, Z/p"7Z)
of Z /p"Z-modules. A standard argument (e.g. [42, VI 8.16]) gives that there is a perfect
complex of Z,-modules P*(x,0) so that

P*(x.0) 8z, Z/p"L ~ P*(x.0.L/p"L).
Then H'(P*(x,0)) ~lim H'(x,0,Z/p"Z) and we can conclude that for each i,
H'(x,0,Qp) = (lim, (H'(x,0,Z/p"Z)) ®z, Q,
is a finite dimensional Q,-vector space with an action of Gal(Qg((u))/Q¢((u)) =~ Z.

6.4.3. With notations as above, we can consider the (“perversely” shifted) Euler charac-
teristic of the vanishing cycles

N

MF,0) = (1)™(1 = x(M(x,0) Xg, (uy Qel@) ) =
(~1)™(1 = 3" (~1)" dimg, Hiy (M(x,0) Xg, () Qel(w) " Qp)).

Note that the integer A(Z,0) is analogous to (a local version of) the Casson-type in-
variant given in [1] or the Behrend invariant of [4]. Calculating this number appears to
be a hard problem.

7. Appendix: interpolation of iterates and flows

In this appendix, we elaborate on an idea of Poonen [48] (inspired by [5]) about ¢-adic
interpolation of iterates. A similar construction using this ¢-adic interpolation argument
was also used by Litt [38]. We need a little more information than what is given in these
references. The proofs of Theorems 6.2.1, 6.2.3, and 6.3.1 use some of the bounds and
estimates of rates of convergence shown below.
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We assume that ¢ is an odd prime and O a totally ramified extension of W(F) of
degree e. For a € Q N (0,1/e], set r = (1/£)*, so that (1/0)Y/¢ = |llp < r < 1. We
set R = Ofzy,...,2m], m = (,z1,...,2m,). Consider a O-algebra homomorphism 1) :
R — R such that 1 = idmodm?” for some N > 2. This is determined by ¥(x) =

(Y(@1), ..., ¥(zm)) € R™. Set ¢; = ¢(x;) € R. We also set [[¢)(x)][, = sup; |[¢;||,. For
[|x]| < 7 we also have [[¢)(x)||, < 7. Therefore, (x) gives a rigid analytic D,.(m) —
D,.(m), for any such r; these maps agree and they are the restriction of a rigid analytic
map ¢ : Di(m) — Di(m). Since 1) : D1(m) — D1(m) is given by

a= (ala- c. 7am) = (1#1(@17 c ~7am)a s ,"/}m(al,- c. 7am)) = ¢(a)
we will often also denote this map by ¥(x). Our goal is to f-adically interpolate the
iterates 1 o--- 09 of 1) and obtain various related estimates. For simplicity, we will often
write
7.1. Difference operators
As in [48], set Ay for the operator that sends h: R — R to Ay(h) : R — R given by

Ay (h)(x) = h(¥(x)) — h(x). Similarly, if f € R, we can consider Ay(f) € R given by

the power series Ay (f)(x) = f(¥(x)) — f(x).
For simplicity, set A = A, and suppose g, h € R. We have

Hence,

Agh)(x) = g(x)A(h)(x) + h(x)A(g)(x) + A(g)(x) A(h)(x). (7.1.1)

1 1
Xy = Log() = log(1+ ) = A= JA 4 24— ...

For g, h € R, we can see using (7.1.1) that X, satisfies, at least formally, the identity
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Xy(gh) = gXy(h) + hXy(g). (7.1.2)

Formally, we have

t2
¢t=1+tx¢+5Xi+-~- :
If ¢ : R — R is another such map, then

Pt = (T X ) (T Xy ) (L= X o) (L= s Xy o) =
=T+ ts(X, Xy — Xy X,) + (degree > 3 in s, t).

7.2. Interpolation

We continue with an O-algebra automorphism ¢ : R — R inducing the identity on
R/mN N >2.

Apply the operators of the previous paragraph to the identity map id : x — x, so
A(x) = 9P(x) — x € (mM)Pm AZ(x) = ?(x) — 21(x) + x. By induction, we have

I+ A)(x) = " (x),

for all £ > 1.
Recall (1/4)¢ <7 = (1/£)* < 1. We have ||A(x)||, < r". By induction:

AF(x) = 0mod mFV =D+ AR (x) |, < pFV-DHL

Since |k!|¢ > (1/£)%/“~1) we obtain, for k > 1,
() A1 < e 411/ - 11D,

Proposition 7.2.1. Suppose 1) = idmodm”, N > 2, and a € QN (0,1/e].
a) The power series giving '(x) converge when |t|, < 1, ||x|| < r = (1/6)* and

a>1/({—1)(N —=1). Then || (x)||- < r, so these give an analytic map
Y'(x) : D1(1) x D.(m) = D,(m).
b) The power series giving X (x) converge on ||x|| < 1. We have
X ()] (100 < (N RaN=D)p=(14a),

Proof. Part (a) follows from the above estimates. For part (b) notice that we have

HAﬁ;(X)/k”(l/é)a < ‘k|l—1<1/£)ka(N—l)+a < gdg(k)—a(N—l)ké—(1+a).
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The result follows as in the proof of Proposition 1.2.1 (a). O

Fix a € QN(0,1/e], r = (1/£)*. From Proposition 7.2.1 (b) and Lemma 1.1.4 it follows
(as in Proposition 1.2.1 (b)) that if (¢,), is a sequence of maps with v,, = id mod m™
and n — 400, then

1 Xy, ()| = 0. (7.2.2)

In fact, by estimating N(1,a(n — 1)), we can see that || Xy, (x)||, < r™ if n is large

enough so that a > 1/(£ — 1)(n — 1). On the other hand, in general, for a fixed ¥,
[| Xy (x)||r — +o0as r—1".

Corollary 7.2.3. The map Xy : R — O(D) which sends f to

LA
Xy () =) (- = =

2X — X X
) — o0 - LD AN 4169

is an O-linear continuous derivation. It extends naturally to a continuous O-linear
derivation Xy, : 0(D) — 0(D).

Proof. Follows from the above convergence and (7.1.2). O
Note that the component Xy (x); of Xy(x) = (Xy(x)1,...,Xy(X)m) is equal to
Xy (z;)(x) and so we can write

X0 = Y0 Xy

Lemma 7.2.4. If ) = idmodm? then ¢*" = idmod m"*2, for all n > 0.
Proof. Set
A, = ker(Auto(R/m" 1) = Autp(R/m"))
for the kernel of reduction. Any x € A, for n > 2, is given by
x(x1) =21+ A1, -, X(@m) = Tm + A ms
where A(x) = (A(X)1, .-, A(X)m) € (m"/m™*1)™ Using induction, we see that the N-
iteration yV is given by the row A(x"V) = N-A(x) and therefore y* = Id. By assumption,

1 gives an element of Ay. By the above, ¢ = Idmodm® and by induction ¢¢" = Id
modulo m"t2. O
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For a €e QN (0,1/e], r = (1/£)%, let us set e(r) = (1/¢) 2@ and

Doy (1) x Di(m) = {(t,%) | [tle < (1/0)=0, ||x]| < (1/0)} € D1(1) x Dy(m),

Proposition 7.2.5. Suppose ¢ = id mod m?.
a) The series giving ¢'(x) converges for (t,x) € D.(,y(1) x D,(m) and defines a rigid
analytic map

Pt (x) : DE(T.)(I) x D,.(m) — D,(m).

b) For (t,x), (t',x) € De(ry(1) x Dy.(m) we have

o (x) = ! (¥ ().

Proof. We have formally 4" (x) = (1*")*(x) and Lemma 7.2.4 implies that we can
apply Proposition 7.2.1 to ¥*" with N = n + 2. We obtain that 1" (x) converges for
[1x]] < (1/6)*, n > 1/a(f —1) — 1 and |t| < 1 and part (a) follows. Part (b) follows since
it interpolates the identity 1™ (¢™ (x)) = "™ (x), which is true for infinite number of
pairs n,n’ € Z. O

Now formally as power series in x, we have

dy' (x)
dt |t=0

=log(1+ Ay)(x) = Xy (x). (7.2.6)

(Hence, X, (x) can be thought of as the vector field associated to the flow ¢*.)

Proposition 7.2.7. a) For all ||x]| < 1, we have

b) If Xy(a) = 0 for some a € Q) with ||a]| < 1, then ¥*(a) = a, for all |t| sufficiently
small, in particular ¥*" (a) = a, for all n >> 0.

Proof. Using Proposition 7.2.5 and (7.2.6) gives that for all ||x|| < 1,

W) ) ) 0 0) — ')

dt h—0 h h—0 h

= Xy (4" (x)).

Part (b) now follows: If Xy (a) = 0 then (dy/dt)(a) = 0, so ¥'(a) = a, for all [t|,
sufficiently small, so ‘" (a) = a, for all n. >> 0. O
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7.3. Vector fields and flows
Here we recall how an analytic vector field X gives a flow. Suppose that

Z anx tha"'7Xt,m)
neN™

is given by power series in Efxz1,..., 2] that converge on ||x|| < 1.
Proposition 7.3.1. Suppose that for all ||x|| < r = (1/£)* < 1, we have || X (x)|], < r. Set
e = (1/0)Y/“=1) Then, there is a unique rigid analytic map

h¢ : Di(€) x D,(m) — D,.(m)

such that
dh
;ix) = X(hy(x)), ho=id, he0,...,0)=(0,...,0).
Proof. We can reduce to the case r = 1 by rescaling: Consider the (inverse) maps

¢* : D(m) — D,(m), £=% : D,.(m) — D(m) given by scaling by ¢, resp. £~*. Then,
{~%0 X of® gives a vector field on D, (m) and £~%oh;of® is a solution of the ODE above
for £7% o X o ¢ if and only if h; is a solution for X. In what follows, we assume r = 1.
Now set,

C
lars. oz = Y S

s>0

where ¢s € E[z1,...,2,]™. As in the proof of [54], Thm, p. 158 (see also [30, §5.1, Prop.
8]), we can solve (uniquely) formally for ¢; from ¢y = x and

PO SLO - |

s>0 s>1

We see that ¢, are given by polynomials (with integral coefficients) in the coefficients
as' n Of the power series giving X with s’ < s and |n| < s. Since || X (x)|| < 1, we have
llas' n|| < 1. We obtain ||cs|| < 1. Since [sl|¢ > €®, when ||, < ¢, ||cst®/s!|| — O for
s + +o00 and convergence follows. O

7.4. Poincare lemma
The Poincare lemma holds for the rigid analytic polydisk D;(m). Here, we are only

going to use that closed 1-forms are exact. For completeness, we give a simple proof of
this fact.
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Proposition 7.4.1. Let =), fidz; be a closed 1-form with f; € €(Dy(m)), for alli.
Then there is F € 0(D1(m)) such that dF = p.

Proof. We follow a standard proof of the “formal” Poincare lemma. First find F,, €
O(D1(m)) with OF,,/0xm = fm by formally integrating the variable x,,. (The power
series F,, converges on ||x|| < 1.) Consider u — dF,, = g1dxy + -+ - + gm—1dz;,—1 which
is also closed. Closedness implies 9g;/0x,, = 0, for all 1 < i < m —1, so the g; are power
series in x1,...,ZT,—1 only and we can argue inductively. O
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