
DESERTS: DElay-tolerant SEmi-autonomous Robot Teleoperation for
Surgery

Glebys Gonzalez1, Mridul Agarwal2, Mythra V. Balakuntala3, Md Masudur Rahman4, Upinder Kaur3,
Richard M. Voyles3, Vaneet Aggarwal1,2, Yexiang Xue4, Juan Wachs1

Abstract— Telesurgery can be hindered by high-latency and
low-bandwidth communication networks, often found in austere
settings. Even delays of less than one second are known to
negatively impact surgeries. To tackle the effects of connectivity
associated with telerobotic surgeries, we propose the DESERTS
framework. DESERTS provides a novel simulator interface
where the surgeon can operate directly on a virtualized reality
simulation and the activities are mirrored in a remote robot, al-
most simultaneously. Thus, the surgeon can perform the surgery
uninterrupted, while high-level commands are extracted from
his motions and are sent to a remote robotic agent. The simu-
lated setup mirrors the remote environment, including an alpha-
blended view of the remote scene. The framework abstracts the
actions into atomic surgical maneuvers (surgemes) which elim-
inate the need to transmit compressed video information. This
system uses a deep learning based architecture to perform live
recognition of the surgemes executed by the operator. The robot
then executes the received surgemes, thereby achieving semi-
autonomy. The framework’s performance was tested on a peg
transfer task. We evaluated the accuracy of the recognition and
execution module independently as well as during live execution.
Furthermore, we assessed the framework’s performance in the
presence of increasing delays. Notably, the system maintained a
task success rate of 87% from no-delays to 5 seconds of delay.

I. INTRODUCTION

The use of medical teleoperation in austere environments,
where the resources are limited, medical facilities lacking,
and communication bandwidth is poor or nonexistent, is
a top priority in military medicine. Critical injuries on a
battlefield can get real-time remote medical assistance from
robotic agents, reducing the risk of exposing medics to direct
fire. Likewise, robotic assistants are reliable and expendable
agents, easily reconfigurable for a variety of surgical and
medical procedures. However, such austere environments
are often limited by bandwidth, network connectivity, and
latency issues, posing a challenge to teleoperation. This is
critical where effective surgical intervention requires contin-
uous high-resolution information relay, with minimal delay.

Previous research shows the fatal effect that delays have
in teleoperated robotic surgery [1], [2], [3], [4], [5]. It
has been shown that delays as short as 200 milliseconds
can cause a significant effect on surgical performance [5].
The degradation of task performance can lead to increased

1School of Industrial Engineering, Purdue University, West Lafayette, IN,
47907, USA gonza337, jpwachs@purdue.edu

2School of Electrical and Computer Engineering, Purdue University, West
Lafayette, IN, 47907, USA agarw180, vaneet@purdue.edu

3School of Engineering Technology, Purdue University, West Lafayette,
IN, 47907, USA mbalakun, kauru, rvoyles@purdue.edu

4Department of Computer Science, Purdue University, West Lafayette,
IN, 47907, USA rahman64, yexiang@purdue.edu

mortality risks. Even with the fastest networks, delays are
often unavoidable for long-distance communication [6], [7].
The problem is exacerbated due to jitters and interruptions
introduced by low-quality connections in austere areas. These
issues severely limit the practical applicability of telerobotic
surgery. Hence, we leverage machine learning to overcome
the challenges of real-time operation.

In this paper, we present a novel framework, referred
to as - DESERTS - which uses a learning-enabled closed-
loop system to overcome the challenges associated with
telesurgery in austere conditions. The goal is to deploy a
robotic agent on a forward operating basis, with a surgeon
operating it from a safe location. The surgeon’s movements
are encoded into unit instructions (surgemes), which are
then sent to a robot, thereby limiting the dependence on the
quality and reliability of the network.

The proposed framework aims to tackle the problem of
delays in teleoperated robotic surgery by using a virtual rep-
resentation of the robot as a bridge between the surgeon and
the physical robot. The surgeon operates using a simulator,
instead of the live video stream. The simulated system at the
server’s side recognizes and delivers the surgical instructions
to the remote robot, while the robot sends back pose infor-
mation of objects and tools, thereby eliminating the need to
encode video frames. This exchange of high-level commands
is efficient and allows to semi-autonomously execute surgical
maneuvers in a safe manner. The feedback module displays
the location of the remote robot and relevant elements in
the surgical environment. This information is shown alpha-
blended in the simulator side to enable situational awareness.
The complete pipeline is shown in Figure 1.

We tested the performance of this framework by executing
a fundamental procedure of laparoscopic surgery: a peg
transfer task, which represents a challenge for dual-arm
coordination and robotic grasps involving obstacle avoid-
ance. The peg transfer setup is colored red and submerged
partially in artificial blood to simulate a realistic surgical
scene. Using artificial blood poses additional challenges to
computer vision algorithms and motor control.

We evaluated the accuracy of the recognition and ex-
ecution modules, first independently, then we tested the
performance of recognition, execution, and feedback mod-
ules, in-tandem. In particular, we assessed the framework’s
performance in the presence of delays. To test the response
of the system under various delay setups, we first analyzed
the performance under no delay, followed by delays of 1s
and 5s to simulate extreme adversarial settings.



Fig. 1. An overview of the DESERTS framework.

The contributions of this paper are:
• A closed-loop telesurgery framework that is robust to

delays and bandwidth limitations.
• A deep-learning architecture for frame-wise real-time

recognition of atomic surgical maneuvers (surgemes).
• A detailed analysis of the systems’ performance as well

as the sub-modules under various adversarial settings.
The paper is organized as follows: The paper is organized

as follows: II discusses the previous work in this area,
followed by the methods used in the DESERTS framework
in Section III. Section IV presents the experiments performed
for validating the effectiveness of this framework, along
with the results. Section V discusses the conclusion of this
work, along with the future scope for the extension of these
methods.

II. BACKGROUND AND RELATED WORK

Teleoperation can be employed to control a robot from
a distance, where the operator performs a task using the
live feedback coming from the remote robot. Teleoperation
includes factors such as task performance, context, and
autonomy [8], [9], [10]. Teleoperated settings can range
from direct teleoperation, where the robot mimics the sur-
geon’s movement, to complete-autonomy, where a robot
entirely replaces the surgeon’s role [11], [12], [13], [14],
[15], [16]. and operate alone. To introduce autonomy during
teleoperation, one approach focuses on sending high level
commands to the robot, instead of low-level kinematic data
[17], [18], [19]. We propose a system were these high-
level commands are not only automatically executed, but
automatically recognized, in a simulated environment that
does not rely on uninterrupted feedback. In particular, the
framework facilitates the feedback to the surgeon by sending
information of the tools and objects from the remote site
and showing this environment information in alpha-blended
displays [20], [21].

In surgery, a well-established concept for high-level com-
mands can be found in Surgemes. Surgemes are a fundamen-
tal unit of surgical activity [22], [23], [24], which can help
quantifying clinical skills among surgeons and even surgical
proficiency [23]. Additionally, by decomposing a surgical
procedure into parameterized surgemes, one can recognize

patterns to create semi- autonomous robotic systems [25],
[26], [27], [28], [29].

The DESERTS framework uses automatic surgeme recog-
nition and execution in a closed-loop feedback setting, where
an operator controls a robot using continuous feedback
received from the remote site [30], [31]. The feedback
information can be in the form of a video or kinematic data
[32], [33], [34], [35], [36], [37]. Communication delays and
intermittent connectivity [1], [2], [3], [4], [38], [39] severely
real-time task performance. The following section describes
in detail the implementation of the framework.

III. METHODOLOGY - DESERTS FRAMEWORK

Our framework uses a simulator-based interface instead
of live-streamed video to reduce the amount of information
exchange. While the user operates the simulated robot, they
can also see the pose of the actual robot and other objects
related to the task, presented as an alpha-blended view in the
simulator. At the remote site, an object detector identifies
the objects of interest in the robot’s field of view and
sends them to the simulator for reconstruction. The simulator
works on atomic units of surgical maneuvers referred to as
surgemes. Using surgemes we obtain a high-level abstraction
of the surgical procedure, hence reducing the size of the
content to be exchanged. Our framework consists of four
primary components: vision, recognition, communication,
and execution modules, which are described in detail, as
follows.

A. Vision Module

The vision module first identifies the objects and estimates
their position in the real world (using semantic segmenta-
tion). The simulator then uses this information to update the
scene. We first describe the object recognition unit running
at the robot. Then we describe the simulator’s display unit,
which reproduces the remote robot scene in the simulator.

Object Recognition Unit. A 3D camera (Intel Realsense)
is assembled on top of a remote ABB YuMi teleoperated
robot. The camera streams color (RGB) and Depth image
frames. This image stream is used to understand the en-
vironment state. This module extracts the 3D object poses



and robot tool-tip poses using two neural network-based
architectures, Darknet (YoloV3) [40], and Mask-RCNN [41].

The YoloV3 (Darknet) network detects the 2D object
bounding boxes in the RGB image frame. Since the YoloV3
network can only identify objects as regions of interest, an
object tracker is added to track objects of the same class (for
example, three triangular objects). We extend the tracking
algorithm, SORT [42], which can additionally address noise,
occlusion, and failed detection.

The tracker uses a filter to smooth the objects’ motion per
frame. It uses the object’s velocity and a Kalman filter to
estimate objects’ position. The estimates are used to keep
track of objects’ position. The tracking system accumulates
the object detection information of the last ten frames and
estimates the confidence of the objects’ presence, which
reduces false positives.

Display Unit. This unit allows the operator to see what
is occurring at the remote site by reconstructing the scene
from the objects recognized by the semantics identification
unit. The simulator shows the remote robot environment in
an alpha-blended layout (objects, remote robot), as shown in
Figure 4. The simulator updates the alpha-blended objects at
regular time steps.

As the simulated robot may run independently, the position
of the simulated robot and the alpha-blended real robot may
diverge. To control this discrepancy, the operator can reset
the simulated robot to synchronize with the alpha-blended
version. This allows the operator to perform error recovery
when the remote robot fails. This offers a safety measure
in case the remote robot performs fails during surgeme
execution.

B. Recognition Module

The operator works with a simulation that corresponds
to the remote robot’s environment. A recognition module
automatically identifies high-level surgical actions from the
trajectories and video scenes. The recognized high-level
surgical actions are sent to the remote robot through a
communication network continuously.

To leverage the history of activity data, the recognition
module predicts surgemes using an LSTM arquitecture [43].
A notation for the LSTM is defined as follows. Let each
surgeme instance be a sequence of kinematic and video
frames of length T , with true labels {yt}Tt=1 where yt ∈ ∆K

and ∆K is a probability simplex in K dimensions for K
classes. The LSTM predicts class probability ŷt ∈ ∆K at
time t. As our framework consists of 7 surgeme classes, we
have K = 7. We use a cross entropy loss defined defined in
Equation (1) to train the LSTM network.

L(y, ŷ) =

T∑
t=1

7∑
k=1

yt,i log(ŷt,i) (1)

As compared to the earlier methods that use a transfer
learning framework [27], or use fixed-length sequences [26],
using an LSTM to predict the surgeme at every time step
allows identifying the surgeme class accurately before the

operator completes the action. Further, this early surgeme
prediction allows DESERTS to mitigate the impact of delays
in the system.

C. Communication Module

The communication module is responsible for the data
transfer between the operator and the robot side by fa-
cilitating message passing, including high-level surgeme
commands and feedback information. The communication
module has two components: (1) Operator to Robot: The
identified surgeme in simulator is sent to the remote robot. In
case of any disruption (delay or interruption), the robot needs
to gets the missing surgeme information from the operator,
without data loss, when the connection re-establishes. To en-
sure this, surgemes are communicated using a TCP protocol.
(2) Robot to Operator: The operator has to be updated with
the latest feedback as early as possible. In case of disruption
(delay or interruption), the most recent feedback has to be
sent to the operator when the connection re-establishes. The
proirity here is to send the latest data rather than to avoid
packet drop. Thus, a UDP protocol is adopted for this path to
alleviate the costly handshakes and to update the simulator
with the latest feedback messages [44].

D. Execution Module

After receiving the surgeme from the simulator via the
communication module, the robot executes it in the real en-
vironment. The robot receives the surgeme label, prediction
confidence and the surgeme parameters from the recognition
module. The robot executes the surgemes only if there
is sufficient confidence in the classification. The threshold
for surgeme execution is set empirically. The recognition
module can classify the surgeme with high confidence at
an early stage of the execution, then the remote robot starts
performing the surgeme before the operator finishes thereby
reducing the lag between the operator and robot execution.
Surgeme Execution Unit. This unit performs a model-based
execution of the surgemes to complete the peg transfer task.
It requires two inputs from the recognition module; surgeme
label and parameter; to execute a surgeme. Additionally, the
model-based execution unit needs to identify the surgeme pa-
rameters, for example, the object grasp points. To recognize
the surgeme parameters we perform instance segmentation
and object shape detection using a Mask-RCNN network
[45]. The surgeme parameters such as grasp points can be
obtained from the object masks.

The execution of the surgemes on the peg transfer task
is particularly challenging in a blood-occluded setting [46].
Because the foreground and background in the environment
are uniform, and the liquid surface produces reflections, the
depth image may be incorrect. To mitigate this issue, the
object mask is dilated to fill any holes in the depth image.

Following is the description of the model-based surgeme
execution,
S1. Approach. Parameter- Target object triangle. It recog-
nizes the object of interest and extracts a region of interest



(ROI) from the object recognition unit. Based on the orienta-
tion of the object a approach point is estimated. The tooltip
is then moved to the approach point.
S2. Align and grasp. Parameter- Target object triangle. The
Point of Interest module estimates the feasible grasp points
from the masked image. First the object mask centroid is
computed. Next, the closest points to the center that lie on
the mask contour are selected as possible grasp points (see
Figure 2). Finally, the grasp point that is closest to the gripper
is used to pick up the object .

Fig. 2. Object masks obtained from the image segmentation. The proposed
method first obtains the contour of the mask (in blue). It then finds the
closest point from the centroid on each edge of the contour (in red). The
grasp point is the contact point with minimum distance (in green).

S3. Lift. Parameter- None. The dominant arm moves upward
while holding the target object.
S4. Transfer - get together. Parameter - None. It brings
together both arms in the middle of the robot’s workplace.
S5. Transfer-exchange. Parameter - None. The initial hand
releases the object, and the non-dominant hand grasps it.
S6. Approach target. Parameter - Target pole. It detects the
center point of the pole and horizontally moves the arm
with the objects close to the point. It ensures the robot hand
remains above the top of the pole.
S7. Align and place. Parameter - Target pole. It moves down
toward the top of the pole and finally releases the object on
the target pole.

The complete pipeline is also provided in Figure 3 for a
quick overview.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

We set up a peg transfer task and modified the environment
to uniformly red to simulate a real surgical scene which is
similar to [46]. The pegs and poles were partially submerged
on artificial blood to reproduce the challenges during surgery.
In particular, the artificial blood adds scattering, and reflec-
tions to the vision system.

On the remote robot side, the recognition system relies on
two different networks to continuously identify and segment
the objects in the environment. The first network detects the
object’s bounding boxes from the RGB image. Then, the
second network segments the object in the bounding box.
The vision networks were trained using image frames from
the peg transfer environment.

The training data was further augmented by flipping, and
adding variation in illumination by adding gaussian noise
and changing the image gamma and saturation. These mod-
ifications increased the reflection variations in the artificial
blood setup, helping mitigate object detection errors. The

Fig. 3. The network architecture of DESERTS. At time t, the operator
moves the simulated robot generating the kinematics {xτ}tτ=1 of the
simulated robot in the simulator (1). From {xτ}tτ the LSTM (2) predicts
the surgeme. It is then sent to the robot (3). The robot obtains execution
parameters from the YoloV3 (4) and the Mask RCNN (5). The feedback ft
from the YoloV3 is also sent back to simulator from the YoloV3.

scattering and reflections due to blood also affected the depth
perception of the camera. Thus, we performed a depth value
outlier rejection and median filtering to stabilize the image.

B. Live system control

We implemented an interface using the Razer Hydra sens-
ing controller. In the simulator, the position and orientation
of the controller were matched to the robot’s end-effector.
In addition, we used a pedal system to activate the robot’s
motion. The robot followed the controllers’ motion only
when the pedal remained pressed, allowing the user to
reconfigure the hand to a comfortable place when the pedal
is released (see Figure 4).

C. Results

The goal of the proposed framework is to mitigate the
effect of delays over remote teleoperation. First, this section
describes how each module on the framework was accessed.
Then it outlines the task performance using different types
of delays.

Vision Accuracy.
The vision system described in Section III-A has two

components: a detection-tracker and an in- stance segmen-
tation network. The detection-tracker network was trained
weights using 100 images, which were manually annotated.
Then, this model was tested using frames from a video
sample of the robot interacting with the artificial blood setup.
A total of 50,000 images were collected for testing. The
object labels were generated through a semi-autonomous
system that tracked the initial human annotations through
entire image sequences. These annotations for the test images
were manually verified at a later stage. The object detector
produced an accuracy of 97.5% with a false positive rate of
0.01%, making it a reliable source of object locations during
the live simulation feedback.



Fig. 4. Live simulator interface. Simulator screen showing the simulated
robot in grey, the simulated pegs (triangles) in red, and the real pegs and
the real robot as alpha blended in yellow. Real robot performing the task
being completed in the simulator.

Surgeme Recognition. To access the surgeme recognition
network, we obtained the recognition accuracy of the LSTM
network while the user executed the peg transfers in the
simulated environment. During data collection, the simulator
received live feedback from the remote system and used the
communication network to send the surgeme recognized at
each frame. This setup had a natural delay that was similar
to the testing environment.

We collected and annotated 24 peg-transfer trials from two
subjects (12 each). Then, the LSTM surgeme recognition net-
work was trained and tested using a 80-20 data distribution
model. The LSTM model was implemented in PyTorch [47]
using a hidden layer size of 32. The input data consisted of
kinematic information (similar to [25], [26], [27]) from the
simulated robot. The model output was the surgeme labels
(from seven surgemes). The recognition model achieved a
testing accuracy of 85% when using the entire surgeme
history.

Live surgeme recognition. In this section we discuss
the surgeme recognition performance during the live peg
transfer trials. As described in Section III-D, the execution
module deter- mines when to execute a surgeme based on
the recognition confidence, which is sent by the recognition
module, along each label. The thresholds for each surgeme
were empirically determined during a tuning phase. Once
the remote robot receives a surgeme label with a high
confidence (i.e. 90% confidence), the robot starts executing
the corresponding surgeme. Since the surgemes can be
recognized with a high confidence using partial history from
the operator’s performance, the robot can start the current
action even before the operator finishes the surgeme in the

Fig. 5. Surgeme detection accuracy and task completion rate under delays.
Since surgemes are recognized from the operators simulated robot state, the
recognition accuracy does not suffer degradation.

simulator.

TABLE I
RECOGNITION PERFORMANCE AT THRESHOLDS (%)

Item S1 S2 S3 S4 S5 S6 S7 Avg

Confidence Threshold 90 40 40 80 80 70 70 -
Fraction of surgeme 54 71 23 24 53 68 51 49

Accuracy 88 25 63 81 100 50 81 70

Table I shows the partial surgeme recognition results for
peg transfer. It can be seen that the model achieves the
thresholds on average using only half (i.e., 49%) of the
surgeme historical data. Early surgeme detection reduces
the robot’s waiting time after completing a surgeme, thus
decreasing the overall task completion time.

DESERTS Framework performace. Performace. To as-
sess the effi- cacy of the developed framework, we evaluated
the system under three delay configurations: 1) No delay,
2) One second of delay, and 3) Five seconds of delay.
Previous research has shown that the chosen delays severely
hinder surgical tele- operation, making it effectively unusable
for the surgeon [4], [5]. Thus, we measured the surgeme
classification accuracy, the completion time, and task success
rate to evaluate the effects of delays on the DESERTS
system.

First, we measured the recognition accuracy for the
surgemes performed by the remote robot during execution.
In a successful trial with no mistakes, the robot should rec-
ognize the seven peg-transfer surgemes for a successful trial.
The results for remote recognition accuracy using different
delays are shown in Figure 5. These results indicate that
the recognition performance was not affected by delays. In
particular, the no-delay setup obtained the same recognition
accuracy as the 5 second-delay setup at 96%.

We also evaluated the performance of DESERTS to com-
plete the peg transfer task. The task completion rate is
defined as the number of successfully completed trials by
the number of trials. The completion rate at different delays
is presented in Figure 5.

In addition, we compared the task completion time in the
presence of delays. We defined the user completion time as



Fig. 6. Completion time under delays. Because the framework uses a
simulator based interface, the operator can continue completing the task
without increasing the completion time.

the duration of a user trial in simulation. The trial starts when
the user moves the robot for the first time and ends when
the last peg transfer is completed. Then, we measured the
task completion time. The robot completion time is defined
as the elapsed duration between the robot finishing execution
of the last surgeme and the robot beginning the execution of
the next surgeme. The task duration results are presented in
Figure 6. We also obtained the completion time for direct
teleoperation using the same robot under no delays (shown
as a red line baseline in Figure 6).

Fig. 7. Packet drop rate for different camera frame rates.

We analyzed the natural transmission delay while sending
surgical instructions in absence of artificial delays. For the
surgeme transfer from the simulator to the robot, the average
delay was 0.057 seconds and a jitter of 0.048 seconds. Addi-
tionally, we observed that the simulator takes approximately
200 ms to update every frame and the surgeme messages are
generated at a frequency of 5 Hz. The resulting bandwidth
requirement for sending surgemes is only 1 KBps.

Finally, we evaluated the packet drop rate of the feedback
module running on the UDP protocol (described in Section
III-C) for different frame rates in the camera (see Figure 7).
We noted that although the delays were 4 times lesser for a
frame rate of 20 fps compared to the frame rate of 5 fps, the
packet drop rate is 25 times higher. For a 30 fps camera video
rate, without the presence of any artificial network delays, the
natural delay of our system is bounded by 0.36 seconds with
99% probability. In contrast, the commercial live streaming
services provide the lowest delay guarantee of 8 seconds

[48]. We also compared the bandwidth requirement for the
feedback module of DESERTS. Since a color image from
a camera is a tensor of size 640 × 480 × 3 bytes for 8-bit
encoding, At 5 fps, the camera generates a stream of about
6 MBps. However, our proposed framework only generates
10 KBps, resulting in a total bandwidth requirement of 11
KBps (a reduction of 99.99% percent).

V. CONCLUSIONS

In dangerous austere environments, teleoperated robots
can provide medical assistance for critical injuries, without
risking the lives of medics in the field. However, network
constraints and connectivity issues have restricted the use
of remote teleoperation. We address the limited bandwidth
and latency problem and their impact in teleoperation by
introducing a novel closed-loop telesurgical framework,
DESERTS. DESERTS works by abstracting low-level image
data into high-level command data. First, the objects in
the scene are recognized, which are tracked, and in turn,
displayed at the simulator. At the operator side, only high
level instructions (surgemes) are recognized and sent to the
remote robot. Representing surgical maneuvers with high-
level abstraction, in the form of surgemes, not only reduce the
bandwidth requirements, but also allow the robot to operate
semi-autonomously for short segments during the procedure,
thereby making the whole system robust to delays. The
validation of this framework includes the execution of a
peg transfer task, a fundamental laparoscopic surgery skill,
within a realistic surgical environment. We evaluated the
overall and individual modules’ performance on this task for
a variety of delay settings. Notably, the framework achieves
a task success rate of 87% with delays up to 5 seconds.
These results show the effectiveness of the framework even
in extreme adversarial settings. In the future, this framework
can be extended to incorporate increasingly complex surgical
procedures such as debridement, suturing, and incisions to
be more useful to the field of telesurgery.

ACKNOWLEDGEMENTS

This work was supported by the following funding agen-
cies: The Office of the Assistant Secretary of Defense for
Health Affairs under Award No. W81XWH-18-1-0769, the
NSF Center for Robots and Sensors for the Human Well-
Being under Award No. CNS-1439717, the NSF FMitF
program under award No. CCF-1918327 and the CR-II
program under Award No. IIS-1850243. The Computational
infrastructure was partially supported by Microsoft AI for
Earth program. Opinions, interpretations, conclusions and
recommendations are those of the authors and are not nec-
essarily endorsed by these institutions.

REFERENCES

[1] T. Kim, P. Zimmerman, M. Wade, and C. Weiss, “The effect of delayed
visual feedback on telerobotic surgery,” Surgical Endoscopy and Other
Interventional Techniques, vol. 19, no. 5, pp. 683–686, 2005.

[2] M. D. FABRLZIO, B. R. Lee, D. Y. Chan, D. Stoianovici, T. W.
Jarrett, C. Yang, and L. R. Kavoussi, “Effect of time delay on
surgical performance during telesurgical manipulation,” Journal of
endourology, vol. 14, no. 2, pp. 133–138, 2000.



[3] M. Anvari, T. Broderick, H. Stein, T. Chapman, M. Ghodoussi, D. W.
Birch, C. Mckinley, P. Trudeau, S. Dutta, and C. H. Goldsmith,
“The impact of latency on surgical precision and task completion
during robotic-assisted remote telepresence surgery,” Computer Aided
Surgery, vol. 10, no. 2, pp. 93–99, 2005.

[4] S. Xu, M. Perez, K. Yang, C. Perrenot, J. Felblinger, and J. Hubert,
“Determination of the latency effects on surgical performance and
the acceptable latency levels in telesurgery using the dv-trainer®
simulator,” Surgical endoscopy, vol. 28, no. 9, pp. 2569–2576, 2014.

[5] A. Kumcu, L. Vermeulen, S. A. Elprama, P. Duysburgh, L. Platiša,
Y. Van Nieuwenhove, N. Van De Winkel, A. Jacobs, J. Van Looy, and
W. Philips, “Effect of video lag on laparoscopic surgery: correlation
between performance and usability at low latencies,” The International
Journal of Medical Robotics and Computer Assisted Surgery, vol. 13,
no. 2, p. e1758, 2017.

[6] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and A. Singla,
“Exploring the ”internet from space” with hypatia,” in Proceedings of
the ACM Internet Measurement Conference, ser. IMC ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 214–229.
[Online]. Available: https://doi.org/10.1145/3419394.3423635

[7] M. Handley, “Using ground relays for low-latency wide-area routing
in megaconstellations,” in Proceedings of the 18th ACM Workshop on
Hot Topics in Networks, 2019, pp. 125–132.

[8] G. Adamides, G. Christou, C. Katsanos, M. Xenos, and T. Hadzilacos,
“Usability guidelines for the design of robot teleoperation: A taxon-
omy,” IEEE Transactions on Human-Machine Systems, vol. 45, no. 2,
pp. 256–262, 2014.

[9] S. Lichiardopol, “A survey on teleoperation,” Technische Universitat
Eindhoven, DCT report, 2007.

[10] P. G. De Barros and R. W. Linderman, “A survey of user interfaces
for robot teleoperation,” 2009.

[11] M. Yip and N. Das, “Robot autonomy for surgery,” arXiv preprint
arXiv:1707.03080, p. 1, 2017.

[12] S. A. Pedram, P. Ferguson, J. Ma, E. Dutson, and J. Rosen, “Au-
tonomous suturing via surgical robot: An algorithm for optimal selec-
tion of needle diameter, shape, and path,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
2391–2398.

[13] B. Kehoe, G. Kahn, J. Mahler, J. Kim, A. Lee, A. Lee, K. Nakagawa,
S. Patil, W. D. Boyd, P. Abbeel, and K. Goldberg, “Autonomous
multilateral debridement with the Raven surgical robot,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), May
2014, pp. 1432–1439.

[14] J. Rosen, B. Hannaford, and R. M. Satava, Surgical robotics: systems
applications and visions. Springer Science & Business Media, 2011.

[15] G. S. Guthart and J. K. Salisbury, “The intuitive/sup tm/telesurgery
system: overview and application,” in Proceedings 2000 ICRA. Mil-
lennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1.
IEEE, 2000, pp. 618–621.

[16] R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar,
D. Stoianovici, P. Gupta, Z. Wang, E. Dejuan, and L. Kavoussi,
“A steady-hand robotic system for microsurgical augmentation,” The
International Journal of Robotics Research, vol. 18, no. 12, pp. 1201–
1210, 1999.

[17] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with ravenii surgical robot using
behavior tree,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 3868–3875.

[18] J. Kofman, Xianghai Wu, T. J. Luu, and S. Verma, “Teleoperation of a
robot manipulator using a vision-based human-robot interface,” IEEE
Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1206–1219,
2005.

[19] G. De Rossi, M. Minelli, A. Sozzi, N. Piccinelli, F. Ferraguti,
F. Setti, M. Bonfé, C. Secchi, and R. Muradore, “Cognitive robotic
architecture for semi-autonomous execution of manipulation tasks in a
surgical environment,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 7827–7833.

[20] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot
teleoperation with augmented reality,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction,
2018, pp. 78–86.

[21] J. Bohren, C. Paxton, R. Howarth, G. D. Hager, and L. L. Whitcomb,
“Semi-autonomous telerobotic assembly over high-latency networks,”

in 2016 11th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2016, pp. 149–156.

[22] H. C. Lin, I. Shafran, D. Yuh, and G. D. Hager, “Towards automatic
skill evaluation: Detection and segmentation of robot-assisted surgical
motions,” Computer Aided Surgery, vol. 11, no. 5, pp. 220–230, 2006.

[23] C. E. Reiley and G. D. Hager, “Task versus Subtask Surgical Skill
Evaluation of Robotic Minimally Invasive Surgery,” in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2009,
ser. Lecture Notes in Computer Science, G.-Z. Yang, D. Hawkes,
D. Rueckert, A. Noble, and C. Taylor, Eds. Springer Berlin
Heidelberg, 2009, pp. 435–442.

[24] ——, “Decomposition of robotic surgical tasks: an analysis of subtasks
and their correlation to skill,” in M2CAI workshop. MICCAI, London,
2009.

[25] M. M. Rahman, M. V. Balakuntala, M. Agarwal, U. Kaur, L. N. V.
Venkatesh, G. Gonzalez, N. Sanchez-Tamayo, Y. Xue, R. M. Voyles,
V. Aggarwal, and J. Wachs, “Sartres: A semi-autonomous robot
teleoperation environment for surgery,” in Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization
Journal - AECAI2020 Special Issue, 2020.

[26] M. M. Rahman, N. Sanchez-Tamayo, G. Gonzalez, M. Agarwal,
V. Aggarwal, R. M. Voyles, Y. Xue, and J. Wachs, “Transferring dex-
terous surgical skill knowledge between robots for semi-autonomous
teleoperation,” in 28th IEEE International Conference on Robot and
Human Interactive Communication (Ro-Man-2019), 2019.

[27] N. Madapana, M. M. Rahman, N. Sanchez-Tamayo, M. V. Balakuntala,
G. Gonzalez, J. P. Bindu, L. N. V. Venkatesh, X. Zhang, J. B. Noguera,
T. Low, R. Voyles, Y. Xue, and J. Wachs, “Desk: A robotic activity
dataset for dexterous surgical skills transfer to medical robots,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS-2019), 2019.

[28] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg,
“Automating multi-throw multilateral surgical suturing with a mechan-
ical needle guide and sequential convex optimization,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 4178–4185.

[29] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and
K. Goldberg, “Unsupervised surgical task segmentation with milestone
learning,” in Proc. Intl Symp. on Robotics Research (ISRR), 2015.

[30] T. Haidegger, J. Sándor, and Z. Benyó, “Surgery in space: the future of
robotic telesurgery,” Surgical endoscopy, vol. 25, no. 3, pp. 681–690,
2011.

[31] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a
robot manipulator using a vision-based human-robot interface,” IEEE
transactions on industrial electronics, vol. 52, no. 5, pp. 1206–1219,
2005.

[32] A. J. Hung, J. Chen, A. Shah, and I. S. Gill, “Telementoring and
telesurgery for minimally invasive procedures,” The Journal of urol-
ogy, vol. 199, no. 2, pp. 355–369, 2018.

[33] S. Treter, N. Perrier, J. A. Sosa, and S. Roman, “Telementoring: a
multi-institutional experience with the introduction of a novel surgical
approach for adrenalectomy,” Annals of surgical oncology, vol. 20,
no. 8, pp. 2754–2758, 2013.

[34] D. H. Shin, L. Dalag, R. A. Azhar, M. Santomauro, R. Satkunasivam,
C. Metcalfe, M. Dunn, A. Berger, H. Djaladat, M. Nguyen, et al.,
“A novel interface for the telementoring of robotic surgery,” BJU
international, vol. 116, no. 2, pp. 302–308, 2015.

[35] F. Ferland, F. Pomerleau, C. T. Le Dinh, and F. Michaud, “Egocentric
and exocentric teleoperation interface using real-time, 3d video
projection,” in Proceedings of the 4th ACM/IEEE International
Conference on Human Robot Interaction, ser. HRI ’09. New
York, NY, USA: ACM, 2009, pp. 37–44. [Online]. Available:
http://doi.acm.org/10.1145/1514095.1514105

[36] P. Gambadauro and A. Magos, “Nest (network enhanced surgical train-
ing): a pc-based system for telementoring in gynaecological surgery,”
European Journal of Obstetrics & Gynecology and Reproductive
Biology, vol. 139, no. 2, pp. 222–225, 2008.

[37] H. Sebajang, P. Trudeau, A. Dougall, S. Hegge, C. McKinley, and
M. Anvari, “Telementoring: an important enabling tool for the com-
munity surgeon,” Surgical innovation, vol. 12, no. 4, pp. 327–331,
2005.

[38] J. S. Kay and C. E. Thorpe, “Operator interface design issues in a
low-bandwidth and high-latency vehicle teleoperation system,” SAE
transactions, pp. 487–493, 1995.



[39] L. H. Frank, J. G. Casali, and W. W. Wierwille, “Effects of visual
display and motion system delays on operator performance and
uneasiness in a driving simulator,” Human Factors, vol. 30, no. 2,
pp. 201–217, 1988.

[40] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[41] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[42] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE International Conference on
Image Processing (ICIP), 2016, pp. 3464–3468.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] M. Schwartz, Telecommunication networks: protocols, modeling and
analysis. Addison-Wesley Reading, MA, 1987, vol. 7.

[45] W. Abdulla, “Mask r-cnn for object detection and instance segmenta-
tion on keras and tensorflow,” 2017.

[46] M. Hwang, D. Seita, B. Thananjeyan, J. Ichnowski, S. Paradis, D. Fer,
T. Low, and K. Goldberg, “Applying Depth-Sensing to Automated Sur-
gical Manipulation with a da Vinci Robot,” in International Symposium
on Medical Robotics (ISMR), 2020.

[47] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[48] “Live event low latency settings,” https://docs.microsoft.com/en-
us/azure/media-services/latest/live-event-latency, accessed: 2020-10-
30.


