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Analysis of Liquid Sloshing
The performance of the absolute nodal coordinate formulation (ANCF) tetrahedral ele-
ment in the analysis of liquid sloshing is evaluated in this paper using a total Lagrangian
nonincremental solution procedure. In this verification study, the results obtained using
the ANCF tetrahedral element are compared with the results of the ANCF solid element
which has been previously subjected to numerical verification and experimental valida-
tion. The tetrahedral-element model, which allows for arbitrarily large displacements
including rotations, can be systematically integrated with computational multibody sys-
tem (MBS) algorithms that allow for developing complex sloshing/vehicle models. The
new fluid formulation allows for systematically increasing the degree of continuity in
order to obtain higher degree of smoothness at the element interface, eliminate dependent
variables, and reduce the model dimensionality. The effect of the fluid/container interac-
tion is examined using a penalty contact approach. Simple benchmark problems and com-
plex railroad vehicle sloshing scenarios are used to examine the performance of the
ANCF tetrahedral element in solving liquid sloshing problems. The simulation results
show that, unlike the ANCF solid element, the ANCF tetrahedral element model exhibits
nonsmoothness of the free surface. This difference is attributed to the gradient disconti-
nuity at the tetrahedral-element interface, use of different meshing rules for the solid-
and tetrahedral-elements, and the interaction between elements. It is shown that applying
curvature-continuity conditions leads, in general, to higher degree of smoothness. None-
theless, a higher degree of continuity does not improve the solution accuracy when using
the ANCF tetrahedral elements. [DOI: 10.1115/1.4048464]

Keywords: tetrahedral element verification, liquid sloshing, absolute nodal coordinate
formulation, curvature continuity

1 Introduction

The main objective of this verification study is to evaluate the
performance of the absolute nodal coordinate formulation (ANCF)
tetrahedral element in the analysis of liquid sloshing. To this end,
the results obtained using the ANCF tetrahedral element are com-
pared with the results obtained using the ANCF solid element,
which has been previously subjected to numerical verification and
experimental validation in liquid sloshing applications. Liquid-
sloshing effect cannot be ignored in many engineering applica-
tions, including highway and rail transportation, marine, and aero-
space systems [1–3]. Accurate evaluation of the sloshing effect is
necessary in order to avoid deadly, environmentally damaging, and
costly accidents; and in order to be able to develop credible opera-
tion and safety guidelines for transportation systems. Virtual proto-
typing for the evaluation of sloshing scenarios must be based on
approaches that realistically represent the fluid dynamics. The
motion of the fluid is governed by the Navier–Stokes equations
which are expressed in terms of the time-rate of the position gra-
dients. Finite element (FE) models that do not ensure the continuity
or a certain degree of smoothness of the position gradients at the
FE interfaces can lead to jump discontinuities in the viscosity
forces even in the cases of laminar flow.

In the computer implementation, the viscosity forces are eval-
uated at the integration points, some of which are not nodal points
and are located at the interface surfaces. A cubic Bezier surface
can be defined in terms of three polynomials, each of which repre-
sents a coordinate along one of three orthogonal axes. Each of the
polynomials representing a Bezier surface has 16 coefficients,
making the total number of coefficients required to represent the

three-dimensional surface 48 coefficients. A surface of an ANCF
solid element has four nodes, each of which has 12 coordinates;
three position coordinates and three gradient vectors. Therefore,
imposing continuity on the position and position gradients at
the nodal points of two neighboring elements, ensures that the
interface surfaces between the two elements are identical, and
consequently, there are no gaps or gradient discontinuities at the
element interface surfaces. This is, however, not the case when
ANCF tetrahedral elements are used because interface surfaces
can have only three nodal points leading to 36 conditions which
are not sufficient to ensure that the two surfaces of the two
neighboring elements at the interface are identical. Because
tetrahedral elements can be used to capture geometric details
more conveniently, this paper addresses this fundamental
geometry problem in liquid sloshing and examines the use of
curvature continuity constraints in order to achieve a higher
degree of smoothness at the tetrahedral element interfaces.

2 Approaches and Scope of this Investigation

In liquid sloshing problems, the effect of the inertia forces can
be significant because of the large displacements of the containers,
particularly in the case of transportation systems. The effect of
turbulence, on the other hand, may be neglected because the focus
is on the effect of the nominal fluid motion on the vehicle dynam-
ics and stability. Therefore, in sloshing problems, regardless of
whether or not turbulence occurs, both the inertia and viscosity
forces must be taken into consideration. The development of ana-
lytical liquid-sloshing approaches is challenging because of the
high dimensionality of the problem and strong nonlinearity of the
fluid boundary conditions. Simple fluid models are often used to
describe the fluid dynamics. Previous contributions in this area
were focused on developing simple discrete inertia fluid models;
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in some of which the fluid is represented by rigid pendulums or
mass-spring-dashpot systems [4–9]. However, these models do
not capture the effect of the fluid distributed inertia and viscosity,
nor the shape of the free surface [10].

Most of the numerical methods developed to solve liquid slosh-
ing problems are based on two different approaches, Lagrangian
and Eulerian [11–15]. The Lagrangian approach traces the fluid
material points to define the location of the fluid free surface.
The main shortcoming of this approach is the loss in numerical
accuracy resulting from the large fluid displacements, and conse-
quently, use of automatic remeshing may be necessary. On the
other hand, the Eulerian approach, which focuses on the fluid
movement inside a control volume, requires additional efforts to
capture the fluid free surface. Furthermore, the Eulerian approach
does not allow for straight forward integration of sloshing models
with multibody system (MBS) algorithms which are based on a
Lagrangian description.

Several mesh-free methods were proposed for the study of fluid
dynamics problems using the Lagrangian approach, such as the
fully Lagrangian meshless smoothed particle hydrodynamics that
can describe complex fluid motion, including turbulent and multi-
phase flows [16–20]. However, the high computational cost and
the large number of degrees-of-freedom (DOF) required to obtain
accurate solutions makes mesh-free methods impractical and inef-
ficient for MBS implementations. In order to address this concern,
Wang et al. [21] proposed a lower order model based on the
floating frame of reference (FFR) formulation. While such a
continuum-based approach can capture the free surface of the fluid
and results in a significant computational cost reduction, it cannot
describe very large fluid displacements due to the use of linear
modes.

Arbitrary Lagrangian-Eulerian (ALE) methods have been pro-
posed in order to combine the advantages of the Lagrangian and
Eulerian schemes. In the ALE formulations, the motions of the
mesh and the material points are both described, therefore, the
convective term in the momentum and continuity equations is not
negligible. ALE methods are widely used in the solution of vis-
cous, free-surface fluid problems [22–27].

Co-simulations have also been used for the integration of fluid
and MBS algorithms. Using this approach, two or more software
run at the same time and exchange information at predefined time
steps. However, the main challenge of the cosimulation approach
is the difficulty of establishing efficient communications between
different algorithms and software that are based on fundamentally
different approaches. Furthermore, use of cosimulations can lead
to a high computational cost as the result of using large number of
degrees-of-freedom.

The total Lagrangian fluid approach allows for a systematic
integration with detailed vehicle models developed using MBS
algorithms. Wei et al. [28] developed a total Lagrangian nonincre-
mental liquid sloshing model based on the FE absolute nodal
coordinate formulation (ANCF). This solution procedure was
verified by Grossi and Shabana [29], and used to evaluate the
effect of breaking waves in liquid sloshing problems [30]. This
approach was integrated with a railroad vehicle model and a
tanker truck model, respectively, [31,32]. The ANCF approach
was used to study the effect of crude oil sloshing on railroad vehi-
cle systems [33]. In the previously published work, the liquid was
meshed using ANCF solid elements.

The main goal of this paper is to perform a numerical verifica-
tion study to evaluate the performance of the ANCF tetrahedral
finite element in solving liquid sloshing problems. The liquid con-
tainer can assume large displacements including rotations. Several
examples, including liquid/ground interaction, liquid sloshing in a
rectangular container, and a railroad tank are considered. This
paper makes the following specific contributions:

(1) To numerically verify the tetrahedral-element results, a
new total Lagrangian fluid model, developed using ANCF
tetrahedral elements, is integrated with computational MBS

algorithms to allow for developing detailed sloshing/vehi-
cle models.

(2) The paper presents an analytical and numerical compara-
tive study of the performance of the ANCF tetrahedral and
solid elements in the analysis of liquid sloshing problems.
The liquid-sloshing results of the ANCF solid elements
have been previously verified and validated.

(3) While tetrahedral elements are recommended in the case of
complex geometries, the paper identifies subtle tetrahedral-
geometry problems that have not been fully examined in
the literature, particularly when using ANCF elements.

(4) The discontinuity problem at the ANCF tetrahedral-element
interface is examined and general curvature-continuity con-
ditions are used to achieve a higher degree of smoothness.

(5) Based on the verification study conducted in this paper, the
limitations of the ANCF tetrahedral element in the analysis
of liquid sloshing are identified in order to define the range
of applicability of such elements in future investigations.

This paper is organized as follows. In Sec. 3, the fluid constitu-
tive model is described and the ANCF displacement field of the
tetrahedral element is defined. Section 4 introduces the curvature-
continuity conditions used in this investigation to obtain a higher
degree of smoothness. Sections 5 and 6 present, respectively, the
MBS governing equations of motion and the fluid contact model
used in this study. Section 7 presents the numerical results of two
sloshing benchmark problems and a complex railroad sloshing/
vehicle example. This section also discusses the limitations of the
ANCF tetrahedral elements as compared to the ANCF solid ele-
ment and explains the discontinuity problem at the tetrahedral ele-
ment interface. Section 8 presents summary and main conclusions
drawn from this investigation.

3 Basic Fluid, Geometry, and Finite Element

Equations

A summary of the equations governing the fluid motion and
ANCF fluid geometry used in this study is presented in this sec-
tion. The displacement field of the ANCF tetrahedral element
used in this investigation is also defined in this section.

3.1 Continuum Mechanics and Geometry. The fluid conti-
nuity equation can be written in the form @qðr; tÞ=@t
þr � ðqvÞ ¼ 0, where q is the mass density, t is time, r and v are
the position and velocity vectors, respectively. For incompressible
fluids, the continuity equation reduces to r � v ¼ 0. The fluid
partial differential equation of equilibrium can be written as
ðr � rÞT þ fb � qa ¼ 0, where r is the Cauchy stress tensor, fb is
the vector of body forces, and a is the acceleration vector, defined
as a ¼ @vðr; tÞ=@tþ v � rv [34]. The constitutive equation for a
Newtonian isotropic fluid is

r ¼ ½�pþ ktrðDÞ�Iþ 2lD (1)

where p is the hydrostatic pressure, l is the coefficient of dynamic
viscosity, kþ ð2l=3Þ is the coefficient of bulk viscosity, tr is the
trace of the matrix, and D is the rate of deformation tensor. If
kþ ð2l=3Þ ¼ 0, one has Stokes’ relation. Substituting Eq. (1) into
the equilibrium equation, the incompressible Navier–Stokes for-
mulation is obtained as

fb þ f�r � ðpIÞ þ kr � ðtrðDÞIÞ þ 2lr � DgT ¼ qa

r � v ¼ 0

)
(2)

In the most general case, the fluid geometry and kinematics can
be described using three different configurations, namely, the
straight, reference, and current configurations. Let V, Vo and v be
the volumes in the straight, curved-reference, and current
deformed configurations, respectively, and x, X, and r be the
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associated position vectors in these three configurations, as shown
in Fig. 1. For an ANCF element, the relation between the volumes
in the reference and current configuration can be defined as
dv ¼ JdVo, where J ¼ jJj is the determinant of the matrix of
position-vector gradients J ¼ @r=@X. Because the reference con-
figuration can be curved, integration can be more conveniently
performed by introducing the straight configuration. The relation
between the volumes in the straight and reference configurations
is dVo ¼ JodV, where Jo ¼ jJoj and Jo ¼ @X=@x; while the rela-
tion between the volumes in the current and straight configura-
tions is dv ¼ JedV, where Je ¼ jJej and Je ¼ @r=@x. One can

show that J ¼ @r=@X ¼ ð@r=@xÞð@x=@XÞ ¼ JeJ
�1
o . It follows

that dv ¼ JdVo ¼ jJeJ�1
o jJodV ¼ JedV [35,36].

3.2 Absolute Nodal Coordinate Formulation Tetrahedral
Element. In this section, the three-dimensional ANCF four-node
(FN) tetrahedral element based on an incomplete polynomial repre-
sentation, proposed by Pappalardo et al. [37] and shown in Fig. 2, is
described. For this element, the nodal coordinate vector is e ¼
½ ðe1ÞT ðe2ÞT ðe3ÞT ðe4ÞT �T , defined in terms of the volume

nodal gradients. For the node 1, 2, 3 and 4, the nodal coordinate vec-

tors are defined as e1¼½ðr1ÞT ðr1gÞ
T ðr1fÞ

T ðr1vÞ
T �T , e2¼

½ðr2ÞT ðr2fÞ
T ðr2vÞ

T ðr2nÞ
T �T , e3¼½ðr3ÞT ðr3vÞ

T ðr3nÞ
T ðr3gÞ

T �T , and
e4¼½ðr4ÞT ðr4nÞ

T ðr4gÞ
T ðr3fÞ

T �T , where superscript k refers to the

node number, k¼1;2;3;4, r is the global position vector of the node,
rn¼@r=@n, rg¼@r=@g, rf¼@r=@f, and rv¼@r=@v are the
position-gradient vectors obtained by differentiation with respect to
the volume coordinates n; g; f, and v, respectively. The nodal coordi-
nate vectors can also be defined in terms of the Cartesian nodal gra-

dients as pk¼ ½ðrkÞT ðrkX1
ÞT ðrkX2

ÞT ðrkX3
ÞT �T , k¼1;2;3;4, where

X1; X2, and X3 are the Cartesian coordinates. Cartesian and volume

coordinates are related by the linear transformation ek¼Tkpk, where

matrix Tk defines the relationship between the volume and Cartesian
parametrizations. The vector of element nodal coordinates expressed
in terms of volume nodal gradients can be written as e¼
½ðe1ÞT ðe2ÞT ðe3ÞT ðe4ÞT �T , while in terms of Cartesian gradients as

p¼½ðp1ÞT ðp2ÞT ðp3ÞT ðp4ÞT �T . One can therefore write the linear
transformation e¼Tp, where T is a 48�48 constant transformation
matrix.

The position vector of an arbitrary material point on the ANCF
tetrahedral element is written as r ¼ Se, where e is the vector
of the nodal coordinates and S is the shape function matrix,
defined as

S ¼ ½ s1I s2I s3I s4I s5I s6I s7I s8I

s9I s10I s11I s12I s13I s14I s15I s16I � (3)

where I is the 3� 3 identity matrix. The ANCF tetrahedral-
element assumed displacement field is defined using a cubic

Bezier tetrahedral patch with 20 basis polynomials and 4 linear
vector constraint equations used to eliminate the face-center
nodes. The twenty Bezier basis functions are

g1 ¼ n3; g2 ¼ g3; g3 ¼ f3; g4 ¼ v3; g5 ¼ 3n2g;

g6 ¼ 3ng2; g7 ¼ 3g2f; g8 ¼ 3gf2; g9 ¼ 3n2f;

g10 ¼ 3nf2; g11 ¼ 3n2v; g12 ¼ 3nv2; g13 ¼ 3g2v;

g14 ¼ 3gv2; g15 ¼ 3f2v; g16 ¼ 3fv2; g17 ¼ 6ngf;

g18 ¼ 6ngv; g19 ¼ 6gfv; g20 ¼ 6nfv

9>>>>>>>>>=
>>>>>>>>>;

(4)

By imposing a set of linear constraint equations between the
center nodes on the tetrahedral faces and material points on the
tetrahedral sides, the displacement field of the ANCF tetrahedral
element can be defined using 16 polynomials. In this case,
the shape functions of the ANCF tetrahedral element can be
defined as

s1 ¼ n n2 þ 3n gþ fþ vð Þ þ 2 gfþ v gþ fð Þð Þ
� �

;

s2 ¼
1

3
ng 3n� f� vð Þ; s3 ¼

1

3
nf 3n� v� gð Þ;

s4 ¼
1

3
nv 3n� g� fð Þ;

s5 ¼ g g2 þ 3g fþ vþ nð Þ þ 2 fvþ n fþ vð Þð Þ
� �

;

s6 ¼
1

3
gf 3g� v� nð Þ; s7 ¼

1

3
gv 3g� n� fð Þ;

s8 ¼
1

3
gn 3g� f� vð Þ;

s9 ¼ f f2 þ 3f vþ nþ gð Þ þ 2 vnþ g vþ nð Þð Þ
� �

;

s10 ¼
1

3
fv 3f� n� gð Þ; s11 ¼

1

3
fn 3f� g� vð Þ;

s12 ¼
1

3
fg 3f� v� nð Þ;

s13 ¼ v v2 þ 3v nþ gþ fð Þ þ 2 ngþ f nþ gð Þð Þ
� �

;

s14 ¼
1

3
vn 3v� g� fð Þ; s15 ¼

1

3
vg 3v� f� nð Þ;

s16 ¼
1

3
vf 3v� n� gð Þ

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(5)

Fig. 1 The three general fluid configurations

Fig. 2 ANCF tetrahedral element
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The detailed steps of the formulation of this ANCF element can
be found in the literature [37].

4 Curvature Continuity Conditions

When two cubic ANCF solid elements are connected, the inter-
face surfaces of the two elements are identical as previously dis-
cussed in this paper. This is not the case with the ANCF tetrahedral
elements because the number of nodal connectivity conditions is not
enough to ensure conformal interface surfaces. The curvature conti-
nuity conditions can be applied at the nodal points of the ANCF tet-
rahedral elements in order to achieve a higher degree of smoothness
desirable for fluid applications. The ANCF tetrahedral element
ensures only the continuity of the displacement gradients at the
nodal points. In the work of Wei et al. [28] and Ma et al. [38], a
higher degree of continuity across the element interface is achieved
by applying curvature constraint equations expressed in terms of the
solid element coordinates. In this section, general curvature-
continuity conditions are defined using the structure coordinates,
instead of the element coordinates. The use of the structure coordi-
nates allows developing general conditions applicable to both
reference-configuration straight and curved geometries and to
meshes with elements that have different orientations [39].

In order to define the general curvature-continuity equations in
terms of the structure coordinates, the straight-element and structure

coordinates are defined as x¼ ½x1 x2 x3 �T , and X¼ ½X1 X2 X3 �T ,
respectively. The structure coordinates can be selected, without any
loss of generality, to coincide with the curved-reference coordinates
in the stress-free configuration. The matrices of position-vector gra-
dients defined with respect to the element and structure coordinates
are defined as Je ¼ ½rx1 rx2 rx3 �, J¼ ½rX1

rX2
rX3

�, respectively. It
follows that J¼ JeJ

�1
o , where Jo ¼ Seo is the matrix of the position-

vector gradients that accounts for the stress-free reference configura-
tion. Consequently, one can write curvature-continuity conditions

defined using the structure coordinates as ðJÞXj
¼ ðJeJ�1

o ÞXj
¼

½rX1Xj
rX2Xj

rX3Xj �, j¼ 1;2;3. The general expression for the curva-
tures using the structure coordinates is defined as [39]

Jð ÞXj
¼ rX1Xj

rX2Xj
rX3Xj

� �
¼

X3
k¼1

JeJ
�1
o

� �
xk

@xk
@Xj

¼
X3
k¼1

Jeð ÞxkJ
�1
o þ Je J�1

o

� �
xk

� �
akj (6)

where, ðJeÞxk ¼ ½ rx1xk rx2xk rx3xk �, ðJ�1
o Þxk ¼ �J�1

o ðJoÞxkJ
�1
o ,

k ¼ 1; 2; 3, and akj ¼ @xk=@Xj; j; k ¼ 1; 2; 3. For simplicity, the

curvature vectors rXiXj
¼ @2r=@Xi@Xj; i; j ¼ 1; 2; 3 is written as

rXiXj
¼

X3
k¼1

Jeð ÞxkJ
�1
o þ Je J�1

o

� �
xk

� � @xk
@Xj

¼
X3
k¼1

Jeð ÞxkCJi þ JeCJxi

� �
akj

¼
X3
k¼1

a1irx1xk þ a2irx2xk þ a3irx3xkð Þakj

þ
X3
k¼1

axk1irx1 þ axk2irx2 þ axk3irx3ð Þakj (7)

where, CJi is the ith column of J�1
o , and the matrix J�1

o can be
written as

J�1
o ¼

@x1=@X1 @x1=@X2 @x1=@X3

@x2=@X1 @x2=@X2 @x2=@X3

@x3=@X1 @x3=@X2 @x3=@X3

2
4

3
5 ¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5
(8)

akl ¼ @xk=@Xl; k; l ¼ 1; 2; 3, and axklm; l;m ¼ 1; 2; 3 is the lm-th
element of matrix ðJ�1

o Þxk , which takes the form

ðJ�1
o Þxk ¼

axk11 axk12 axk13
axk21 axk22 axk23
axk31 axk32 axk33

2
64

3
75 (9)

Using the general curvature expressions of Eq. (6), different cur-
vature vectors can be equated at two arbitrary points on two dif-
ferent elements of the ANCF mesh. For example, in the case of
imposing curvature constraints at two points on two different ele-
ments i and j, one can write the curvature vector constraint equa-

tions as riXkXl
¼ r

j
XmXn

, k; l;m; n ¼ 1; 2; 3.

5 Absolute Nodal Coordinate Formulation Fluid

Dynamics Model

In this section, the ANCF fluid dynamic formulation used in
this investigation is described. The formulations of the viscous
forces and the incompressibility conditions as well as the equa-
tions of motion of the ANCF fluid model are introduced. A simple
constitutive model is used for the fluid since the focus of this
investigation is on the tetrahedral element geometry and the dis-
continuities at the element interface.

5.1 Viscous Forces. The fluid constitutive model can be
written in terms of Cauchy stress tensor r as r ¼
f�pþ ktrðDÞgIþ 2lD. In case of an incompressible fluid, the
constitutive equation reduces to r ¼ 2lD [40] In general, when
using the Lagrangian approach, the virtual work of the fluid stress
forces is written in terms of the second Piola-Kirchkoff stress ten-
sor rP2 and the Green-Lagrangian strain tensor e as

dWv ¼ �
ð
v

r :ðdJÞðJÞ�1dv ¼ �
ð
Vo

rP2:dedVo (10)

where rP2 ¼ JJ�1rðJ�1ÞT , e ¼ ðJTJ�IÞ=2, and J is the matrix of
position-vector gradients. The virtual work of the fluid viscous
forces can be written as

dWv ¼ �
ð
Vo

rP2:dedVo ¼ �
ð
Vo

2lJðC�1
r _eC�1

r Þ:dedVo ¼ QT
v de

(11)

where Cr ¼ JTJ is the right Cauchy-Green deformation tensor,
and Qv is the vector of generalized viscous forces, which can be
written, in terms of the ANCF nodal coordinates as

Qv ¼ �
ð
Vo

2lJ C�1
r _eC�1

r

� �
:
@e
@e

dVo (12)

where the domain of integration in this equation is defined in the
stress-free curved-reference configuration Vo. The volume rela-
tionship defined by the equation dVo ¼ JodV can be used to
change the domain of integration to the straight configuration
which can be more convenient, particularly in case of complex
reference-configuration geometry.

5.2 Incompressibility Condition. For an incompressible
material, dv ¼ JdVo ¼ dV, and as a consequence, the determinant
of the matrix of position vector gradients jJj is equal to one. It

follows that _J ¼ 0. Using a penalty method, the penalty energy

function Uic ¼ kicðJ � 1Þ2=2 and dissipation energy function

Utd ¼ ctdð _JÞ2=2 can be formulated and used to define the general-
ized penalty forces associated with the ANCF nodal coordinates
as
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Qic ¼ @Uic=@e ¼ kicðJ � 1Þð@J=@eÞ
Qtd ¼ @Utd=@e ¼ ctd _Jð@ _J=@ _eÞ

)
(13)

where _J ¼ trðDÞJ, @ _J=@ _e ¼ @J=@e, and kic and ctd are, respec-
tively, the penalty damping and stiffness coefficients. In the three-
dimensional analysis, the determinant of the Jacobian matrix of
the position vector gradients can be written as [40,41]:

J ¼ rX1
� ðrX2

� rX3
Þ ¼ rX2

� ðrX3
� rX1

Þ ¼ rX3
� ðrX1

� rX2
Þ (14)

Therefore, @J=@e, which is equal to @ _J=@ _e, can be written explic-
itly by differentiating any of the three expressions of J given in
the preceding equation with respect to e as [21]

@ _J=@ _e ¼ @J=@e

¼ STX1
ðrX2

� rX3
Þ þ STX2

ðrX3
� rX1

Þ þ STX3
ðrX1

� rX2
Þ
(15)

Using Eq. (13), the total vector of generalized penalty forces of
the ANCF fluid element can be written as Qp ¼ Qtd þQic.

5.3 Equations of Motion. The principle of virtual work and
the ANCF displacement field are used in this paper to obtain the
equations of motion of the fluid as

M€e ¼ Qb þQt þQc �Qp þQv (16)

where Qb and Qt are the vectors of generalized body and surface
traction forces, respectively, Qc is the vectors of generalized con-
tact forces developed in the following section, and M is the con-
stant symmetric mass matrix. The preceding equation is used to
solve for the acceleration vector €e, which can be integrated to
determine the coordinates and velocities.

6 Boundray Conditions

In the simulation models presented in this study, contact with
the ground and contact with containers are considered. In both
cases, the fluid is subjected to boundary forces that prevent the
fluid from penetrating the ground or container walls. The contact
forces, which can be developed using a penalty method, depend
on the fluid displacement and velocity as well as the container
motion. Therefore, the region of the contact boundary surface of
the fluid must be determined as the fluid moves. The resulting
problem is referred to as boundary nonlinearity.

6.1 Fluid/Ground Contact. For the problem of liquid/ground
interaction, the position of a potential contact point P on an
ANCF fluid element can be written as rP ¼ SPe, where SP is the
element shape function matrix evaluated at the contact point P.
The global position of the ground reference point can simply be

written as Rg ¼ ½ xg1 xg2 xg3 �
T ¼ 0. The relative position and

velocity vectors of the contact point with respect to the ground
reference point can be written, respectively, as uP ¼ SPe� Rg

and _uP ¼ SP _e � _R
g
, where _e is the vector of nodal velocities of

the fluid element. Using these simple equations, the penetration dg
can be defined as dg ¼ uP � ng � xg3, where uP is projected along
the unit vector ng which defines the direction normal to the con-
tact surface. The time-rate of the penetration is approximated as
_dg ¼ _uP � ng. Using the penetration and its time-rate, the magni-
tude of the normal and tangential contact forces can be written as

fn ¼ kpdþ Cpjdj _d and ft ¼ lf fn, respectively, where kp, Cp are

penalty stiffness and damping coefficients, and lf is the friction

coefficient between the fluid and the ground. The vector of the
penalty force is written as Fp ¼ fnn

g � ftt
g, where tg ¼ vp=jvpj is

a unit vector in the direction of the tangential relative-velocity

vector of the contact point vp ¼ _uP � ð _uP � ngÞng. In general, the
expression for the vector of generalized contact forces associated
with the ANCF coordinates can be obtained by using the virtual

work of the contact forces and is given by Qc ¼ STpFp, which can

be introduced to the right-hand side of Eq. (16).

6.2 Fluid/Container Contact. In this investigation, the fluid
container is assumed to have arbitrarily large displacements
including finite rotations. For the problem of sloshing in moving
containers, the position of a potential contact point P on an ANCF
fluid element can still be written as rP ¼ SPe. If the container is
assumed to be rigid, the global position vector of the contact point
on the container surface can be written as rcP ¼ Rc þ Ac�uc

P, where
superscript c refers to the container, Rc and Ac are, respectively,
the global position of the container reference point and the orien-
tation of the container coordinate system with respect to the global
coordinate system, and �uc

P is the position vector of the potential
contact point with respect to the origin of the container coordinate

system. It follows that _rcP ¼ _R
c þ xc � ucP, where x

c is the angu-
lar velocity vector of the container, and ucP ¼ Ac�uc

P. Given the
container geometry, the unit vector ncP normal to the container sur-
face at point P can be determined and used to evaluate the pene-
tration as dc ¼ ðrP � rcPÞ � ncP. The time-rate of penetration can be

written as _dc ¼ ð _rP � _rcPÞ � ncP þ ðrP � rcPÞ � _n
c
P. Because _nc

P is
orthogonal to ncP and because of the assumption of the smoothness
of the container surface, only the component of the time-rate of
penetration along the unit normal to the surface is used in the defi-

nition of the normal contact force, that is, _dc � ð _rP � _rcPÞ � ncP.
Using the penetration and its time-rate and the virtual work of the
contact forces, the generalized contact forces associated with the
fluid and the container coordinates Qc can be defined using a pro-
cedure similar to the one used for the ground contact.

7 Numerical Examples

In this section, a verification numerical study is conducted in
order to evaluate the performance of ANCF tetrahedral element
by comparing its results with the ANCF solid element in the solu-
tion of liquid sloshing problems. Both elements have 12 nodal
coordinates per node, three position and nine gradient coordinates.
The shape functions of the solid element are provided in the litera-
ture [28,42]. Three numerical examples are considered in this sec-
tion. In the first example, the deformation of a liquid column
falling on a flat rigid surface under the effect of gravity is consid-
ered. In the second benchmark example, the effect of the liquid
sloshing in a rectangular container is investigated. A third exam-
ple is used to demonstrate using the ANCF tetrahedral element in
the analysis of liquid sloshing in a railroad vehicle model negoti-
ating a curve. In order to be able to develop such a model, the
ANCF liquid sloshing formulation is systematically integrated
with an MBS railroad vehicle algorithm. The results presented in
this section are obtained using the general-purpose MBS software
SIGMA/SAMS (Systematic Integration of Geometric Modeling
and Analysis for the Simulation of Articulated Mechanical
Systems).

7.1 Liquid/Ground Interaction. In this section, the deforma-
tion of a liquid column on a flat rigid surface under the effect of
gravity is examined. The initial dimensions of the liquid column
are a ¼ b ¼ c ¼ 1m, as shown in Fig. 3. The liquid considered is
water, with mass density q ¼ 1000kg=m3, and dynamic viscosity
coefficient l ¼ 0:001 Pa � s. The simulation time is assumed to be
0:5 s. Figures 4 and 5 show the fluid deformed shape obtained
using a mesh of 2� 2� 2 ANCF solid and 5� ð2� 2� 2Þ
ANCF tetrahedral elements, respectively. It is observed that,
unlike the solid element mesh, the tetrahedral element mesh does
not properly capture the fluid large deformation. The ANCF tetra-
hedral element results obtained in this example are verified using
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the four-node Lagrangian tetrahedral element implemented in the
commercial software Ls-Dyna. The Ls-Dyna model is assumed to
consist of 5� ð10� 10� 10Þ elements. The liquid constitutive
model is defined using the option “Null material” with Gr€uneisen
equation of state [43]. The algorithm used to define the contact
between the liquid and the container boundary is “Boundary SPC”
[44]). Figures 6–8 compares the tip displacement at the nodal
point ½ 1 1 1 �T obtained with the Ls-Dyna and ANCF solu-
tions. The results presented in this figure show that both the verti-
cal and lateral displacements are in relatively good agreement.
The deviation shown in the lateral fluid deformation results can be
explained by the significant differences in the assumed displace-
ment fields of the two tetrahedral elements. The difference in the
results can also be attributed to the discontinuity and jump in the

Fig. 3 Fluid/ground surface interaction: (a) ANCF solid-element mesh and (b) ANCF tetrahedral-element mesh

Fig. 4 Liquid/ground interaction simulation (23232 solid
elements)

Fig. 5 Liquid/ground interaction simulation (53(23232) tetra-
hedral elements)

Fig. 6 r(1) tip displacement in the case of liquid/ground

interaction ( ANCF tetrahedral element, Ls-

Dyna tetrahedral element)

Fig. 7 r(2) tip displacement in the case of liquid/ground inter-

action ( ANCF tetrahedral element, Ls-Dyna

tetrahedral element)
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viscosity forces at the element interface, which lead to nonsmooth
behavior.

7.2 Sloshing in Moving Container. In this example, a rigid
container partially filled with water and subjected to a prescribed
harmonic motion is considered. The system initial configuration is
shown in Fig. 9. The dimensions of the rigid container are
a ¼ b ¼ 1m, and the liquid depth is c ¼ 1m. The container har-
monic motion is assumed to be xc1 ¼ 0:3 sinð3tÞ, and the simula-
tion time is 1:0 s. The fluid model is discretized using ANCF solid
and tetrahedral elements. Figures 10 and 11 show the fluid defor-
mation obtained using one ANCF solid element and five ANCF
tetrahedral elements. It is observed that the ANCF tetrahedral ele-
ment mesh leads to a stiffer response as compared to the ANCF
solid element mesh. The effect of the gradient vector continuity at
the element interface is also studied in this example. Figure 12
shows the time history of the gradient vector coordinates at the
central point B on the top surface of the fluid in the case of the
five tetrahedral elements mesh. Curvature-continuity conditions
are imposed in order to eliminate the gradient discontinuity at the
element interface. In the five tetrahedral elements mesh shown
in Fig. 9(b), the elements at the four corners are i ¼ E1 (blue),
j ¼ E2 (red), m ¼ E3 (green), and n ¼ E4 (purple). The goal is to
enforce the continuity conditions on the top nodes 5 and 7 of

elements m and n. The resulting curvature constraints are

rm5X1X2
¼ rn5X1X2

, rm5X1X3
¼ rn5X1X3

, rm5X2X3
¼ rn5X2X3

for node 5 and

rm7X1X1
¼ rn7X1X1

, rm7X2X2
¼ rn7X2X2

, rm7X3X3
¼ rn7X3X3

for node 7. These con-

ditions require the formulation of 18 linear algebraic equations,
and consequently, the number of degrees-of-freedom of the tetra-
hedral element mesh is reduced to 78. Figure 13 shows the result-
ing gradient coordinates at the central point B when the curvature-
continuity conditions are applied. While the magnitudes of the
position vector gradients are slightly changed, the higher degree
of smoothness does not contribute to improving the accuracy of
the results when using ANCF tetrahedral elements for this model.

7.3 Sloshing in Railroad Tank. In order to evaluate the tetra-
hedral element performance in more general motion scenarios, the
liquid sloshing formulation based on the ANCF tetrahedral ele-
ment is systematically integrated with a complex MBS railroad

Fig. 8 r(3) tip displacement in the case of liquid/ground inter-

action ( ANCF tetrahedral element, Ls-Dyna

tetrahedral element)

Fig. 9 Liquid sloshing example: (a) ANCF solid-element mesh and (b) ANCF tetrahedral-element mesh

Fig. 10 Liquid sloshing simulation (One solid element)

Fig. 11 Liquid sloshing simulation (Five tetrahedral elements)
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vehicle model. The detailed MBS railroad vehicle model was pre-
viously used by Shi et al. [31] and Grossi and Shabana [33]. This
model is a one-car railroad vehicle equipped with a cylindrical
tank with half-ellipsoid ends, as shown in Fig. 14. The rail car
consists of two bogies, two stub sills, and one tank; each bogie
includes two wheelsets, two equalizers, one frame, and one bol-
ster. The one-tank rigid railroad vehicle model has 73 degrees-of-
freedom. The dimensions and inertia properties of each car are the
same as those presented in the literature [45]. The wheel/rail con-
tact formulation and algorithm used in this paper can be found in
the literature [46,47].

The liquid sloshing motion resulting from the railroad vehicle
negotiating a curved track is studied in order to investigate the
effect on the vehicle dynamics and centrifugal forces. The tank is
assumed partially filled with water in order to produce significant
sloshing. The balance vehicle speed is defined in case of rigid

body dynamics as V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRh=G

p
[47], where g is gravity constant,

R is the radius of curvature of the curve, h is the super-elevation,
and G is the track gauge. The track has a radius of curvature
R ¼ 582m, a track gauge G ¼ 1:44m; and therefore, the vehicle
balance speed is close to 60km=h. The geometry of the curved
track is defined in Table 1. The railroad vehicle forward velocity,
assumed 60km=h, is defined using a trajectory coordinate con-
straint along the track centerline.

When the ANCF liquid sloshing approach is used, the fluid cen-
trifugal force can be calculated as Fc ¼

Ð
Vo
q€r � ndVo, where €r is

the absolute acceleration vector of an arbitrary fluid point, and n
is the outward unit normal to the curve [32]. In this study, the cen-
trifugal force is approximated as Fc ¼ ðmf €rcÞ � n, where mf is the
total mass of the ANCF fluid mesh, €rc is the absolute acceleration
vector of the body center of mass. The position of the fluid center
of mass can be calculated using the equation rc ¼ ð

Ð
Vo
qrdVoÞ=mf .

The tetrahedral and solid element meshes used in this example
consist of 160 and 32 elements, respectively. Figure 15 shows
comparison of the centrifugal force calculated using solid and
tetrahedral element meshes. Figure 16 compares the mass-center
X2-displacement results predicted using the solid and tetrahedral
element meshes. Figures 17 and 18 show the free surface defor-
mation at time t ¼ 15 s obtained using solid and tetrahedral ele-
ments. It is shown that a nonsmooth deformation can be found at
the fluid free surface when the ANCF tetrahedral elements are
used. The nonsmooth behavior is attributed to the gradient discon-
tinuity problem at the tetrahedral element interface.

8 Conclusions

In this numerical verification study, the performance of the
ANCF tetrahedral element is evaluated when used in the analysis
of liquid motion problems. Because the Navier–Stokes viscosity
forces are written in terms of the time-rate of the position gra-
dients, continuity of such gradients in the case of laminar flow is
necessary in order to obtain accurate solutions. In the FE numeri-
cal solution of fluid dynamics problems, the viscosity forces are
evaluated at the integration points; some of which are not nodal
points. The continuity of the position vector gradients at the nodal
points does not ensure the continuity of these gradients at the ele-
ment interface. For a cubic Bezier surface, 48 connectivity condi-
tions are required in order to ensure that two surfaces on two
different elements are identical. While this is the case when using
the ANCF solid elements which have four nodes for each of the
element six surfaces, it is not case with the ANCF tetrahedral ele-
ment which has three nodes for each surface. In this paper the per-
formance of the ANCF tetrahedral element in solving sloshing
problem was investigated and compared with the performance of
the ANCF solid element. The results obtained in this study show
that, in general, the free surface of the fluid model can be accu-
rately captured using ANCF solid elements, while the tetrahedral
element mesh leads to a stiffer response. This conclusion is also
confirmed by the sloshing results obtained using a railroad vehicle
negotiating a curved track. The stiff liquid sloshing response

Fig. 12 Gradient coordinates at point B predicted using ANCF
tetrahedral element in the case of liquid sloshing without curva-

ture constraints ( rx1 (1), rx2 (2), rx3 (3)),

( element 3, element 4)

Fig. 13 Gradient coordinates at point B predicted using
ANCF tetrahedral element in the case of liquid sloshing with

curvature constraints ( rx1 (1), rx2 (2),

rx3 (3)), ( element 3, element 4)

Fig. 14 Railroad vehicle model
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predicted using ANCF tetrahedral elements can be attributed to
the discontinuity at the element interface which lead to nonsmooth
behavior and jump in the viscosity forces at the element interface.
The results also show that a higher degree of smoothness at the
element interface can be achieved by applying curvature-continu-
ity conditions. Nonetheless, such smoothness does not contribute

to improving the accuracy of the results when using ANCF tetra-
hedral elements.
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