
ANCF Multiplicative-Decomposition Thermoelastic
Approach for Arbitrary Geometry

Ahmed A. Shabana1 and Dayu Zhang2

Abstract: The classical approach for the thermal analysis of solids and fluids uses the strain additive decomposition to account for the effect
of the temperature. This strain-based approach does not properly capture the effect of complex stress-free reference-configuration geometry,
is applicable only to small deformation problems, and leads to simplified expression for the Green–Lagrange strain tensor. In view of the
geometric description of the absolute nodal coordinate formulation (ANCF), a new ANCF gradient-based approach is proposed. This ap-
proach employs a multiplicative decomposition of the matrix of position-gradient vectors in the stress-free reference configuration into two
position-gradient matrices. One matrix is associated with the reference-configuration geometry before the application of the thermal load, and
the other accounts for the volumetric change due to the change in temperature. A numerical study demonstrated the implementation of the
proposed gradient-based approach. DOI: 10.1061/(ASCE)ST.1943-541X.0003001. © 2021 American Society of Civil Engineers.

Author keywords: Thermal analysis; Reference-configuration geometry; Position gradients; Absolute nodal coordinate formulation
(ANCF); Poisson effect.

Introduction

The analysis of the effect of thermal loads has been the subject of
many investigations in solid and fluid mechanics applications
(Chang et al. 1999; Cui et al. 2019; API 2004; Errara and Chemin
2013; Perelman 1961; Dorfman and Renner 2009; Roe et al. 2008,
2007; Henshaw and Chand 2009; Helselhaus et al. 1992; Ojas and
Leyland 2014). If the change in the material properties due to the
change in temperature is not considered, thermal expansion is a
stress-free process that has no effect on the formulation of the elas-
tic forces of a continuum. The elastic strains used in the constitutive
relationships are not function of the volumetric change produced by
the thermal load. The classical approach for the thermal analysis of
solids and fluids uses the strain additive decomposition to account
for the effect of the environment temperature (Cook 1981). This
strain-based approach does not properly capture the effect of com-
plex stress-free reference-configuration geometry, is applicable only
to small deformation problems, and leads to simplified strain expres-
sions. Furthermore, conventional finite-element (FE) formulations
employ low-order interpolations or rotation-based elements that
cannot be used to describe accurately complex geometric shapes.
The displacement fields of these elements are not related by a linear
mapping to computational geometry methods such as B-splines and
non uniform rational B-spline (NURBS) (Piegl and Tiller 1997;
Farin 1999; Rogers 2001; Gallier 2011; Goetz 1970; Kreyszig
1991). Because of these limitations, there is no approach in the lit-
erature that can be used to properly integrate thermal analysis and
complex stress-free reference-configuration geometries. Such an

integration cannot be achieved using a linear theory based on
the principle of superposition or the additive strain decomposition.

The displacement field of the absolute nodal coordinate formu-
lation (ANCF), on the other hand, allows for accurate description of
the reference-configuration geometry. This is attributed to the fact
that position gradients are used as nodal coordinates (Chen et al.
2019; Tian et al. 2009; Dmitrochenko and Pogorelov 2003;
Mikkola and Shabana 2003; Shen et al. 2013; Pan and Cao 2020;
Orzechowski 2012; Orzechowski and Frączek 2012; Khan and
Anderson 2013; Kłodowski et al. 2011; Nachbagauer et al.
2011; Nachbagauer 2013; Olshevskiy et al. 2014; Nachbagauer
2014; Laflin et al. 2014; Orzechowski and Frączek 2015; Yoo
et al. 2004; Takahashi et al. 2005; Lee and Park 2012; Shabana
2018; Fotland et al. 2019; Li et al. 2019; Yu et al. 2010;
Yamano et al. 2020; Hewlett 2019; Hewlett et al. 2020; Shen et al.
2020; Htun et al. 2020; Obrezkov et al. 2021). By changing the
length and orientation of the nodal position-gradient vectors, which
can be used conveniently for local shape manipulations, complex
geometries can be described accurately. Furthermore, the ANCF
displacement fields are related by a linear mapping to B-splines
and NURBS. Therefore, these elements can be used to develop
a new procedure for the thermal analysis that accounts for the
reference-configuration geometry.

This paper proposes a new computational ANCF gradient-
based approach that employs a multiplicative decomposition of the
matrix of position-gradient vectors for the solution of the thermos-
elasticity problem (Lubarda 2004; Vujosevic and Lubarda 2002;
Darijani and Naghdabadi 2013). The proposed multiplicative de-
composition uses two gradient matrices; one matrix is associated
with the reference-configuration geometry before the application
of the thermal load, and the other matrix accounts for the volumetric
change due to the temperature variation. Four configurations are
used to develop the kinematics of the approach used in this paper;
the straight configuration, the stress-free reference configuration,
the stress-free thermally expanded configuration, and the current
configuration. The approach proposed in this study can account
for geometric nonlinearities, is not based on additive decomposition
or the principle of superposition, does not use any form of lineari-
zation, and can account for arbitrary variation of the temperature.
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Numerical results demonstrate the implementation of the gradient-
based approach in the thermal analysis and shed light on some of the
limitations of existing beam formulations.

Thermal Expansion and Geometry Description

The geometry and kinematics of a continuum in the thermal analy-
sis can be described using four different configurations (Fig. 1): the
straight configuration, reference configuration, thermally expanded
configuration, and current configurations. Both reference and ther-
mally expanded configurations are assumed to be stress-free. The
reference configuration is the continuum configuration before the
application of the thermal load, whereas the thermally expanded
configuration is the configuration after the application of the ther-
mal load. If the temperature varies, the thermally expanded con-
figuration can change with time.

These four configurations are defined by the coordinates
x¼ ½x1 x2 x3 �T , X¼ ½X1 X2 X3 �T , XΘ ¼ ½XΘ1 XΘ2 XΘ3 �T ,
and r ¼ ½ r1 r2 r3 �T (Fig. 1). The volumes in the straight, refer-
ence, thermally expanded, and current configurations are denoted,
respectively, V, Vo, VΘ, and v. A line element dr in the current
configuration can be written

dr ¼ ∂r
∂X dX ¼ JdX ¼

�� ∂r
∂XΘ

��∂XΘ

∂X
���∂X

∂x
�
dx

¼ JrΘJΘXJodx ð1Þ

Alternatively, one can write

dr ¼ ∂r
∂XΘ

dXΘ ¼ JrΘdXΘ ¼ J

�∂XΘ

∂x
�
dx ¼ JJoþΘdx ð2Þ

where JrΘ ¼ ∂r=∂XΘ, JΘX ¼ ∂XΘ=∂X, JoþΘ ¼ ∂XΘ=∂x, and
Jo ¼ JXx ¼ ∂X=∂x. In this case, the matrix of position vector gra-
dients J that enters into the definition of the elastic Green–Lagrange
strain tensor is defined as

J ¼ ∂r=∂XΘ ¼ JrΘ ð3Þ
Using this description, one can have two different representations
of the vector r; one is based on the reference configuration X as
rðX; tÞ ¼ Xþ uðX; tÞ, where u is the displacement vector, and the
other is based on the thermally expanded configuration XΘ as
rðXΘ; tÞ ¼ XΘðX; tÞ þ uðXΘ; tÞ, this is with the understanding
that the displacement vector in this equation differs from the

displacement vector used when the reference configuration is used.
In the case of zero thermal load, the two configurations are iden-
tical, that is, XΘ ¼ X and JrΘ ¼ ∂r=∂X, JΘX ¼ ∂XΘ=∂X ¼ I,
where I is a 3 × 3 identity matrix. Contrary to the description
used in continuum mechanics in the definition of the position
vector r, the configuration defined by XΘ is not fixed, that
is XΘ ¼ XΘðX; tÞ.

In the case of constant environment temperature, one can con-
sider XΘ as the reference configuration and write

dr ¼ ∂r
∂XΘ

dXΘ ¼ JdX ¼
� ∂r
∂XΘ

���∂XΘ

∂X
��∂X

∂x
��

dx

¼ JJΘXJodx ¼ JJoþΘdx ð4Þ

where in this case matrix J is redefined, for simplicity, as

J ¼ ∂r=∂XΘ; JoþΘ ¼ JΘXJo ð5Þ

The use of these definitions allows considering the effect of con-
stant temperatures from the outset at a preprocessing stage to re-
duce the mathematical operations during the process of solving the
governing equations. In this case, one can write dv ¼ jJJoþΘjdV ¼
jJkJoþΘjdV.

If the thermal load is applied before the reference configuration
geometry is created, as in the case of heat treatment and manufac-
turing processes, one can write

dr¼ ∂r
∂XdX¼ JdX¼

� ∂r
∂X

�� ∂X
∂XΘ

��∂XΘ

∂x
�
dx¼ JJXΘJΘxdx

ð6Þ
where JXΘ ¼ ∂X=∂XΘ, and JΘx ¼ ∂XΘ=∂x. One also can
write

dr ¼ ∂r
∂X dX ¼ JeJ−1o dx ð7Þ

where

Jo ¼
∂X
∂x ¼ ∂X

∂XΘ

∂XΘ

∂x ¼ JXΘJΘx ð8Þ

The unique geometric meaning of the position gradients as tan-
gent to coordinate lines was used in this study to develop a general
procedure for accounting for the temperature effect (Spencer 1980;
Ogden 1984; Bonet and Wood 1997; Bower 2009; Shabana 2018).
Displacement gradients do not have the same geometric meaning
(Shabana 2015).

In many engineering applications, the reference configuration
can have complex geometry that makes it difficult performing
the integration and differentiation. Use of the finite-element straight
configuration facilitates performing the integration and differentia-
tion without the need for using curved coordinates. This can be
achieved, as described in this paper, by using the determinant of
the matrix of position gradients Jo which defines the reference con-
figuration geometry and allows using the x and y coordinates used
in the formulation of the finite-element displacement field. This
procedure has been adopted in the classical FE literature with iso-
parametric finite elements.

Conventional Strain-Based Thermal
Expansion Approach

In the classical FE literature, the strain additive decomposition often
is used in the small deformation analysis and to account for theFig. 1. Thermal expansion configurations.
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temperature effect (Zienkewiez 1977; Zienkiewicz and Taylor
2000). The strain additive decomposition, which is based on the
principle of super-position, can be used only with the small strain
assumptions. In this case, displacement gradients (not position gra-
dients) are used to represent the strains and directly account for the
thermal expansion, as is explained in this study. The strain additive
decomposition does not take into consideration the effect of the
reference-configuration geometry, which can be complex in solid
and fluid applications. When the small strain assumptions are used,
the normal strains are approximated as the displacement gradients
as εii ¼ ∂ui=∂xi ði ¼ 1; 2; 3Þ, where u¼ ½u1 u2 u3 �T is the dis-
placement vector. In this case, the strains are approximated as dis-
placement gradients, and the use of such a linearization does not
allow generalization of the approach to large displacement prob-
lems. Furthermore, this approach does not accurately capture the
reference-configuration geometry using the assumed FE displace-
ment field, particularly when using conventional elements that em-
ploy rotations as nodal coordinates.

Strain Additive Decomposition

The classical FE literature assumes that the constant environ-
ment temperature can directly influence the Green–Lagrange
normal strain components, which are defined using the tensor
ε ¼ ðJTJ − IÞ=2. The total strain is assumed to be equal to the sum
of the elastic strain εe and the stress-free thermal strain εΘ, that is,
ε ¼ εe þ εΘ. The total strain, which can be written in a Voigt vector
form using the normal strains (εii, i ¼ 1, 2, 3) and shear strains (εij,
i≠ j, i, j¼ 1, 2, 3) as ðεÞv ¼ ½ε11 ε22 ε33 ε12 ε13 ε23 �T , is as-
sumed to be known from the solution of the system equations of
motion. The strains due to the thermal expansion leads to volumetric
change and, in the strain-based approach, such thermal strains are
written in terms of the coefficients of thermal expansion and change
in temperature. The stress-free thermal strain can bewritten in vector
form as ðεΘÞv ¼ ½αΘ1ΔΘ αΘ2ΔΘ αΘ3ΔΘ 0 0 0 �T , where
αΘiði ¼ 1; 2; 3Þ are the coefficients of thermal expansion, and ΔΘ
is the constant temperature change (Cook 1981). Therefore, the elas-
tic strain vector can be written as

ðεeÞv ¼ ðεÞv − ðεΘÞv ¼ ½ ðε11 − αΘ1ΔΘÞ ðε22 − αΘ2ΔΘÞ ðε33 − αΘ3ΔΘÞ ε12 ε13 ε23 �T ð9Þ

It is clear that this approach is based on the strain additive decom-
position, which is not suited for complex geometry and nonlinear
problems.

Thermal Expansion and Gradients

Assuming that the element straight configuration is the reference-
configuration (X ¼ x), the matrix of position-gradient vectors J
can be written in terms of the matrix of displacement-gradient vec-
tors Jd ¼ ∂u=∂x as J ¼ Jd þ I. Because position gradients are not
used as element nodal coordinates in the conventional FE approach,
the element displacement field cannot be used to describe com-
plex reference-configuration geometries. Therefore, at the initial
configuration before displacements, the normal elastic strains are
ðεeÞkk ¼ ð∂uk=∂xkÞ − αΘkΔΘ ¼ 0, where k ¼ 1, 2, 3, and one
can write ðJdÞo ¼ αΘΔΘ, where αΘ is a diagonal matrix whose
diagonal elements are the coefficients of thermal expansion αΘk,
where k ¼ 1, 2, 3. Using this interpretation and the equation
J ¼ Jd þ I, the matrix of position-gradient vectors can be written
ðJÞo ¼ ðJdÞo þ I ¼ αΘΔΘþ I. This equation defines the stretch
in the position-gradient vectors in the initial configuration as the
result of the thermal expansion as

χsk ¼ jðrXk
Þoj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rTXk

rXk

�
o

q
¼ 1þ αΘkΔΘ; k ¼ 1; 2; 3 ð10Þ

Because the thermal expansion does not produce shear and
leads to only volumetric change, this equation can be used to de-
termine the elements of the matrix of position-gradient vectors
Jjo that completely define the stress-free reference-configuration
geometry when ANCF finite elements are used. Although the
effect of the thermal expansion in the classical FE literature is in-
troduced at the strain level, the preceding equation clearly shows
the stretch of the position-gradient vectors as the result of the
application of the thermal load, providing a more general inter-
pretation of αΘkΔΘðk ¼ 1; 2; 3Þ as a position-gradient stretch
coefficient.

Gradient-Based Thermal Analysis Approach

According to the definition of the gradient stretch χskðk ¼ 1; 2; 3Þ
of Eq. (10), the change in the length of the gradient vector due to the
thermal expansion is a function of the temperature change ΔΘ
as the result of assuming that the thermal expansion is related di-
rectly to the strains in the linear analysis. If the thermal expansions
αΘkΔΘðk ¼ 1; 2; 3Þ, are assumed to represent a dimensionless
elongation, one can relate such an expansion directly to the stretch
of the corresponding dimensionless nonunit position-gradient vec-
tor in the case of nonlinear geometry and analysis and write

ðrXk
ÞoþΘ ¼ dokðr̂Xk

Þo þ ðαΘkΔΘÞdokðr̂Xk
Þo

¼ dokð1þ αΘkΔΘÞðr̂Xk
Þo; k ¼ 1; 2; 3 ð11Þ

where r̂Xk
is a unit vector along position-gradient vector rXk

;
and dok is the length of gradient vector rXk

before application of
thermal load. Using the preceding equation, the stretch in the
position-gradient vectors, which account for both effects of the
reference-configuration geometry and thermal expansion, can be
written

χgk ¼ jðrXk
ÞoþΘj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rTXk

rXk

�
oþΘ

q
¼ dokð1þαΘkΔΘÞ; k¼ 1;2;3

ð12Þ
The motivation for using the preceding equation is explained
in the Appendix. The gradient-based approach discussed in this
section does not use linearization or superposition assumptions
in the definition of the Green–Lagrange strains. One can show that,
when this approach is used, the normal components of the Green–
Lagrange strains are defined before elastic strains develop as

εkk ¼ ½ðdokÞ2ð1þ αΘkΔΘÞ2 − 1�=2; k ¼ 1; 2; 3 ð13Þ
This nonlinear definition is different from the linear strain
definition used in the classical FE literature. The result of Eq. (12)
also can be obtained using the second equation of Eq. (5),

© ASCE 04021086-3 J. Struct. Eng.
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JoþΘ ¼ JΘXJo, by defining the nonsingular thermal-gradient matrix
JΘX as JΘX ¼ αΘΔΘþ I, where αΘ is a diagonal matrix that has
the coefficients of thermal expansion αΘkðk ¼ 1; 2; 3Þ, as its diago-
nal elements.

ANCF Implementation

In the absolute nodal coordinate formulation, the FE displacement
field is written rðx; tÞ ¼ SðxÞeðtÞ, where r is the global position
vector of an arbitrary point on the element, S is the element shape
function matrix, e is the vector of element coordinates, and t is time
(Shabana 2018). Because the vector of element nodal coordinates e
includes position and position-gradient coordinates, the ANCF dis-
placement field can describe arbitrarily large displacements without
the need for introducing finite rotations which are not commutative
and may lack physical interpretations (Shabana and Ling 2019).
In the case of fully parameterized ANCF finite elements, the vector
of coordinates at a given node k can be written in the spatial analy-
sis as ek ¼ ½ rkT rk

T

x1 rk
T

x2 rk
T

x3 �T , where k ¼ 1; 2; : : : ; nn, where

nn is the number of nodes of the element. The vectors rkx1 , r
k
x2 , and

rkx3 are position-gradient vectors that have unique geometric mean-
ing as tangent to the FE coordinate lines x1, x2, and x3. This geo-
metric meaning is not shared by the displacement-gradient vectors,
which are not tangent to the FE coordinate lines, as is discussed in
the literature (Shabana 2015). Therefore, at a given node, the com-
plete matrix of position-gradient vectors can be formulated to allow
for conveniently describing the reference-configuration geometry
as well as to account for the effect of thermal loads.

Background

In general, if the effect of the thermal load is not considered, the
matrix Jo of position-gradient vectors in the reference configura-
tion can be used to define the reference configuration geometry and
perform local shape manipulation by changing the length and ori-
entation of the position-gradient vectors at the nodes. This matrix of
position-gradient vector in the current configuration, defined by
differentiation with respect to the reference coordinates X, can be
written J¼ ∂r=∂X¼ JeJ−1o , where, Je ¼ ∂r=∂x and Jo ¼ ∂X=∂x.
Because the reference configuration is assumed to be stress-free, the
elastic Green–Lagrange strain tensor is zero before displacement
regardless of the shape of the body. The Green–Lagrange strain ten-
sor can bewritten ε¼ðJTJ−IÞ=2¼ðJ−1To ðJTe JeÞJ−1o −IÞ=2. Before
displacement, Je ¼ I, and therefore, ε is identically zero regardless
of the geometry of the body which is defined by the nonsingular
matrix Jo. The matrix Jo can be formulated conveniently because
the ANCF displacement field can always be written rðx; tÞ ¼
SðxÞðeo þ edÞ, where eo and ed are, respectively, the vector of
element coordinates in the reference configuration and the vector
of displacement coordinates. Using the equation, roðxÞ ¼ SðxÞeo,
the matrix Jo can be formulated at a preprocessing stage before the
start of the dynamic simulation. When the elastic forces are com-
puted at the integration points, Jo is used in the definition of the
Green–Lagrange strain tensor to ensure that the initial reference-
configuration geometry has no effect on the computations of the
elastic strains and stress forces. This procedure does not employ
additive strain decompositions and is based mainly on the multipli-
cative decomposition of the matrix of position-gradient vector J as
J ¼ ∂r=∂X ¼ JeJ−1o .

Generalization to Thermal Analysis

A similar procedure can be used in the case of thermal load. In this
procedure, the additive strain decomposition is not used in order to
ensure accurate description of the reference-configuration geom-
etry and properly account for the effect of the thermal load. The
procedure can be demonstrated using Eqs. (4) and (5) in the case
of constant temperature. It was shown that in the case of constant
temperature, one can write dr¼ð∂r=∂XΘÞdXΘ¼JJoþΘdx, where
J ¼ ∂r=XΘ and JoþΘ ¼ JΘXJo. Because dr also can be written
dr ¼ ð∂r=∂xÞdx ¼ Jedx ¼ JJoþΘdx, one can write J ¼ JeJ−1oþΘ.
Substituting J in the Green–Lagrange strain tensor ε obtains

ε ¼ ðJTJ − IÞ=2 ¼ ðJ−1ToþΘðJTe JeÞJ−1oþΘ − IÞ=2 ð14Þ

It is clear from this equation that, before displacement, if
Je ¼ I, the Green–Lagrange strain tensor is identically zero. The
matrix JoþΘ which accounts for both the reference-configuration
geometry and the volumetric change due to the thermal load can
be formulated conveniently using the ANCF equation roþΘðxÞ ¼
SðxÞeoþΘ, where the vector eoþΘ has the position-gradient vectors
that properly account for the reference-configuration geometry as
well as the effect of the thermal load. This can be accomplished us-
ing the stretch coefficients given by Eq. (12) as χgk ¼ jðrXk

ÞoþΘj ¼
dokð1þαΘkΔΘÞ, where k ¼ 1, 2, 3, which ensure that the orien-
tations of the gradient vectors are not affected by the application of
the thermal load, which produces only fiber stretch and no shear.

Varying Temperature

In the case of varying temperatures, a similar procedure can be used
using the definitions given by Eqs. (1)–(3). In this case, J ¼ JrΘ
and dr ¼ Jedx ¼ JJodx ¼ J½JΘXJo�dx ¼ JJoþΘdx, where JrΘ ¼
∂r=∂XΘ, JΘX ¼ ∂XΘ=∂X, Jo ¼ JXx ¼ ∂X=∂x, and JoþΘ ¼
JΘXJo. As previously discussed, JΘX ¼ αΘΔΘþ I. In the case
of varying temperature, ΔΘ ¼ ΔΘðx; tÞ. By accounting for the
change in the temperature profile and following the same procedure
previously outlined in this section, one can show that the thermal
load produces zero stresses. In this case, the matrix JΘX must be
updated properly at the integration points during the dynamic
simulation.

ANCF Beam Element

This section uses a planar ANCF shear-deformable beam as an ex-
ample to demonstrate the implementation and use of the approach
discussed in this paper. The procedure described in this paper, how-
ever, is applicable to all ANCF fully parameterized elements.

Element Displacement Field

A two-dimensional ANCF shear deformable beam element has
two nodes. Each node k of element j has six degrees of freedom:
two translational coordinates rjk and four gradient coordinates
defined by the two vectors rjkx1 and rjkx2 , where k ¼ 1, 2. The
vector of nodal coordinates at each node is defined as ejk ¼
½ ðrjkÞT ðrjkx1ÞT ðrjkx2ÞT �T , and therefore, the element has 12 coor-
dinates. The position vector of a point on the element can be written
rj ¼ Sjej, where Sj and ej are, respectively, the element shape
function matrix and the vector of nodal coordinates, which can
be written

© ASCE 04021086-4 J. Struct. Eng.
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Sj ¼ ½ s1I s2I s3I s4I s5I s6I �
ej ¼ ½ ðej1ÞT ðej2ÞT �T ð15Þ

where I is a 2 × 2 identity matrix and the shape functions siði ¼
1; 2; : : : ; 6Þ are

s1 ¼ 1 − 3ξ2 þ 2ξ3; s2 ¼ lðξ − 2ξ2 þ ξ3Þ; s3 ¼ lðη − ξηÞ
s4 ¼ 3ξ2 − 2ξ3; s5 ¼ lð−ξ2 þ ξ3Þ; s6 ¼ lξη ð16Þ

where ξ ¼ xj1=l; η ¼ xj2=l, and l is the element length. The vectors
of position gradients of an element j are

rjx1 ¼
∂rj
∂x1 ¼ s1;1rj1 þ s2;1r

j1
x1 þ s3;1r

j1
x2 þ s4;1rj2 þ s5;1r

j2
x1 þ s6;1r

j2
x2

rjx2 ¼
∂rj
∂x2 ¼ s3;2r

j1
x2 þ s6;2r

j2
x2 ð17Þ

where sm;n ¼ ∂sm=∂xn, where m ¼ 1; 2; : : : ; 6, and n ¼ 1; 2; and

s1;1 ¼ 6ð−ξ þ ξ2Þ=l; s2;1 ¼ ð1 − 4ξ þ 3ξ2Þ;
s3;1 ¼ −η; s4;1 ¼ 6ðξ − ξ2Þ=l s5;1 ¼ ð−2ξ þ 3ξ2Þ;
s6;1 ¼ η; s3;2 ¼ ð1 − ξÞ; s6;2 ¼ ξ ð18Þ

Thermal Expansion

Thermal expansion has an effect on the total strains as well as on
the position gradients which are used as ANCF nodal coordinates.
The position vector of an arbitrary point on the ANCF element can
be written before the load application as rjoþΘ ¼ Sjðejo þ ejΘÞ ¼
SjejoþΘ, where the vector e

j
Θ accounts for the change in the element

nodal coordinates due to the thermal expansion. For example, if the
reference configuration before the application of the thermal load is
assumed to be the straight configuration (X ¼ x), the vector of nodal
coordinates ej before displacement and application of the thermal
load can be written ejo ¼ ½0 0 1 0 0 1 l 0 1 0 0 1 �T . In
this case, the change in the longitudinal nodal gradient vector
Δrjkx1 in ejΘ due to the thermal expansion is Δrjkx1 ¼ ½αΘΔΘ 0 �T ,
where k ¼ 1, 2, αΘ is the coefficient of thermal expansion, andΔΘ
is the temperature change. Integrating Δrjkx1 ¼ ½αΘΔΘ 0 �T ðk ¼
1; 2Þ obtains the change in the nodal position due to the thermal ex-
pansion as ∫ l

0αΘΔΘdx1 ¼ αΘlΔΘ. Using a similar procedure for

the lateral gradient vector rjkx2, k ¼ 1; 2, one can write ejoþΘ ¼
½ ðej1oþΘÞT ðej2oþΘÞT �T , where

ej1oþΘ ¼ ½ 0 0 1þ αΘΔΘ 0 0 1þ αΘΔΘ �T

ej2oþΘ ¼ ½ lð1þ αΘΔΘÞ 0 1þ αΘΔΘ 0 0 1þ αΘΔΘ �T
ð19Þ

Using the vector ejoþΘ in the element displacement field

rj ¼ SjejoþΘ, one can show that the position vector of an arbitrary
point on the beam can be written as rj ¼ ½ r1 r2 �T , where
r1 ¼ lξð1þ αΘΔΘÞ and r2 ¼ lηð1þ αΘΔΘÞ, and XΘ ¼
½XΘ1 XΘ2 �T , where XΘ1 ¼ ðlξÞαΘΔΘ and XΘ2 ¼ ðlηÞαΘΔΘ. The
position-vector gradients can be written rjx1 ¼ ½ 1þ αΘΔΘ 0 �T
and rjx2 ¼ ½ 0 1þ αΘΔΘ �T . The matrix of position-vector gra-
dients due to the temperature effect in the straight-element configu-
ration can be defined as

JjΘx ¼
�
1þ αΘΔΘ 0

0 1þ αΘΔΘ

�
ð20Þ

This equation shows a homogeneous displacement that repre-
sents a uniform gradient thermal expansion distribution within
the ANCF element. This matrix of position-gradient vectors has the
determinant JjΘx ¼ ð1þαΘΔΘÞ2. The relationship between the
volumes in the thermally expanded element and straight-element
configurations at an arbitrary material point can be written dVj

Θ ¼
JjΘxdV

j, where Vj and Vj
Θ are the volumes of element in the straight

and thermally expanded configurations, respectively. If Xj
Θ is

considered as the reference configuration, one can define the volume
in the current configuration as dvj ¼ JjdVj

Θ ¼ JjJjΘXdV
j
o ¼

JjJjΘXJ
j
XxdV

j, where Jj ¼ jJjj is the determinant of the matrix

of position-vector gradients Jj ¼ ∂rj=∂Xj
Θ, JjΘX ¼ j∂Xj

Θ=∂Xjj,
and JjXx ¼ j∂Xj=∂xjj. The four configurations used in this descrip-
tion are shown in Fig. 1, where thatV, Vo, VΘ, and v are the volumes
in the straight, intermediate reference with no thermal expansion,
thermally expanded reference, and current deformed configurations,
respectively, and x,X,XΘ, and r are the associated position vectors
in these four configurations, as previously mentioned. In the problem
considered in this investigation, the integration with respect to the
thermally expanded reference domain XΘ can be conveted to inte-
gration with respect to the straight element domain x. When per-
forming the integration with respect to the straight configuration
x, the dimensions of the straight element should be used. The ex-
pansion effect on the integration is accounted for using the determi-
nant jJjΘXJ

j
Xxj ¼ jJjΘxj.

Numerical Results

This section presents numerical results to demonstrate the use and
implementation of the approach described in this paper. A thermal
load was applied to the two-dimensional ANCF shear-deformable
beam element at a preprocessing stage to obtain the coordinates
in the thermally expanded configuration XΘ. The beam length
was assumed to be l ¼ 1 m, and the cross-section dimension is
A ¼ 0.3 × 0.3 m2. The beam was subjected to a constant thermal
load, and the coefficient of thermal expansion and temperature
change were assumed to be αΘ ¼ 0.002ð1=°CÞ and ΔΘ ¼ 200°C,
respectively.

Fig. 2 compares the original shape and thermally expanded
shape of a two-dimensional ANCF straight beam. It was assumed
that the beam was fully clamped at its first end. The figure shows
the stretch of the cross-section and the change in the nodal positions
as the result of the thermal expansion. Fig. 3 shows the change of
the norm of the gradient vector rx1 with respect to the beam length.
Because of the symmetry, similar behavior was observed with the
norm of the gradient vector rx2.The results obtained demonstrate

Fig. 2. Effect of thermal expansion on the straight beam.

© ASCE 04021086-5 J. Struct. Eng.

 J. Struct. Eng., 2021, 147(7): 04021086 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

A
hm

ed
 S

ha
ba

na
 o

n 
04

/3
0/

21
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



the uniform gradient thermal expansion distribution obtained within
the ANCF element.

Fig. 4 compares the original shape and thermally expanded shape
of a two-dimensional ANCF tapered beam, in which the initial vec-
tor of nodal coordinates ejo before the application of the thermal load
was defined as ejo ¼ ½0 0 1 0 0 1 l 0 1 0 0 2 �T . Using
Eq. (12), the lateral gradients at the nodal point considering the ther-
mal expansion can be calculated as rj1x2 ¼ ½ 0 1.4 �T and rj2x2 ¼
½ 0 2.8 �T . The figure shows the cross-section stretch as well as
the displacements within the tapered beam as the result of the ther-
mal expansion. The results obtained showed that the norm of rjx1 is
the same as that reported in Fig. 3. The norm of rjx2 has a linear
distribution in the case of the tapered beam (Fig. 5).

A third example is the curved beam in Fig. 6. The beam had the
geometry of a half circle. The circular beam reference-configuration
geometry was obtained from a straight beam with length l ¼ 1 m
and cross-section area A ¼ 0.05 × 0.05 m2. The radius of the circle
in the reference configuration before the application of the ther-
mal load was r ¼ l=π m. The beam was divided into 30 ANCF

two-dimensional fully parameterized ANCF beam elements. The
material properties were assumed to be the same as used in the pre-
ceding example. The beam was subjected to a temperature increase
of ΔΘ ¼ 200°C, and the coefficient of thermal expansion was
αΘ ¼ 0.002ð1=°CÞ. Fig. 6 shows the response of the beam to the
thermal load.

Numerical Solutions

To show the effect of the thermal expansion on the solution, a
simple cantilever beam example was considered. The beam was
subjected to an axial constant load force P ¼ 1.0 × 103 N in the
positive x1-direction, and the gravity effect was neglected. The di-
mensions of the beam were the same as the those of the straight
beam previously considered in this section. The beam was assumed
to be made of a soft material governed by a linear elastic model.
The modulus of elasticity and Poisson’s ratio were assumed to be
E ¼ 1.2 × 106 N=m2 and μ ¼ 0.3, respectively. The density of the
beam was ρ ¼ 1,500 kg=m3 (Trivedi et al. 2008). For the soft ma-
terials, such as polyethylene or paraffin, the general coefficient

Fig. 3. Norm of the gradient vector rjx1.

Fig. 4. Effect of thermal expansion on the tapered beam.

Fig. 5. Norm of the gradient vector rjx2.

Fig. 6. Effect of thermal expansion on the initially curved beam.
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of thermal expansion was assumed to be αΘ ¼ 0.0001ð1=°CÞ
(Engineering ToolBox 2003). The temperature change was assumed
to be ΔΘ ¼ 200°C. The general continuum mechanics approach,
based on the plane-strain assumption, was used to formulate the
elastic forces, and the total simulation time was assumed to be
t ¼ 3 s. The cantilever beam was modeled using 10 ANCF beam
elements, and the effect of damping is neglected. Figs. 7 and 8 show
the change in the normal elastic strains with respect to the initial
normal strains in the axial and transverse directions at the midpoint
of the beam. The change of the normal strains was found to increase
as the result of the application of the thermal load, which was
accounted for by changing the strains at the nodal points (Logan
2017). Fig. 9 shows the converged solution of the deformation of
the beam free end along the axial direction.

The ANCF beam results obtained in this example were verified
by comparison with the commercial software LS-DYNA version
4.5.23. The cantilever beam was modeled by a two-node Be-
lytschko–Schwer beam element with full cross-section integration.
The number of Gaussian integration points on the cross section was
3 × 3. Furthermore, an explicit integration method was used in both
the ANCF and the LS-DYNA solutions to avoid the numerical

damping in implicit solvers. In the LS-DYNA solution, the verifi-
cation procedure involved two steps. The first step was to perform
the preload initialization analysis with the thermal load. The
thermal load was implemented using the function MAT_ADD_
THERMAL_EXPANSION to set the linear thermal expansion
coefficients, and the function LOAD_THERMAL_CURVE to set
the constant temperature change. In this step, only thermal load was
imposed in order to reach the thermally expanded equilibrium con-
figuration. LS-DYNA produced an output dynain file that con-
tained the nodal stress information of the thermally expanded
beam using the selection SPRINGBACK_LSDYNA of the INTER-
FACE menu. The second step was to perform a dynamic analysis
with the mechanical load. The thermally expanded cantilever con-
figuration was used an input by selecting INCLUDE from the dy-
nain file created in the first step. The load in the model contained
only the mechanical load (LS-DYNA 2008). Fig. 10 shows the con-
verged deformation results with the thermal load using 30 elements
obtained from LS-DYNA, and the converged deformation result
obtained using ANCF solution. The frequency of the deformation
was similar in both cases, but the LS-DYNA results had higher

Fig. 7. Axial normal-strain change at the midpoint.

Fig. 8. Transverse normal-strain change at the midpoint.

Fig. 9. Free-end deformation of soft material.

Fig. 10. Free-end deformation of soft material in the case of thermal
expansion.
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amplitudes than the ANCF results. The two solutions had better
agreement in the case of zero Poisson’s ratio (Fig. 11). This result
was expected because the ANCF beam element is a higher-order
element that has more deformation modes, and consequently, geo-
metric stiffening is an issue. Furthermore, there were significant
differences between the assumed displacement fields of ANCF el-
ements and LS-DYNA elements. Fig. 12 shows the variation of the
average amplitudes of the free-end deformation as function of Pois-
son’s ratio. The results in Fig. 12 demonstrate that the LS-DYNA
beam element is not sensitive to the change in Poisson’s ratio be-
cause of the assumption of a constant cross section. Fig. 13 presents
the deformations predicted using the ANCF linear Hookean and
nonlinear compressible neo-Hookean models when the thermal
load was applied for different values of the Poisson’s ratio μ.
The results in Fig. 13 show that the nonlinear material model
can have a larger amplitude.

In the case of the soft materials, the literature reports that tem-
perature can have a softening effect, and the material stiffness can
be controlled by embedding thermally softened structures, such as

wax (Karbhari 2007; Rus and Tolley 2015). For fluid, the literature
reports that thermal softening can have a significant effect on the
viscosity of a fluid whose motion is governed by shear forces
(Bair 2019).

Discussion

The results in Fig. 10 show differences between the LS-DYNA and
ANCF solutions. These differences in general are attributed to the
use of fundamentally different displacement fields. The ANCF dis-
placement field leads to coupled deformation modes which lead to
a slight increase in the stiffness, the effect of which becomes more
significant as the Poisson’s ratio increases, as discussed in the lit-
erature. Furthermore, the two different types of elements use differ-
ent coordinates, and the boundary conditions at the fixed end are
different. In the ANCF model, fully clamped end conditions are
used to eliminate the translations, rotation, and the three strain
modes. The ANCF element also is allowed to stretch in the trans-
verse direction and such mode of deformation absorbs energy that
otherwise would contribute to a larger axial displacement. There-
fore, the energy distribution among different deformation modes
is different in the case of the ANCF elements. In the case of the
LS-DYNA element, the cross section does not deform, and conse-
quently, no energy is consumed in the stretch of the cross section.
It is clear, however, that these differences decrease as the Poisson’s
ratio decreases (Fig. 11). It also is clear that the phase shift at the
beginning of the simulation is insignificant (Figs. 10 and 11). In
addition to the fact that the two elements have different displace-
ment fields, the solution procedures used for the two models are
different. The ANCF model uses a nonincremental solution pro-
cedure. Furthermore, the numerical integration methods used for
the two models are different, and as the simulation time increases,
differences between the two solutions are expected. The relatively
stiffer behavior observed when using ANCF finite elements should
not be attributed to locking; it was found that this stiffer behavior is
the result of using the plane-strain assumption. Fig. 14 compares the
ANCF solutions using plane-strain and plane-stress assumptions. It
is clear that the ANCF solution with the plane-stress assumption is
closer to the LS-DYNA solution. The results in Fig. 14 shed light on
the importance of considering the constitutive models when per-
forming comparative and verification studies.

Fig. 11. Free-end deformation with μ ¼ 0 Poisson’s ratio in the case of
thermal expansion.

Fig. 12. Average free-end deformation in the case of thermal
expansion.

Fig. 13. Linear and nonlinear material models.
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Some commercial FE software provides an option to use an ad
hoc approach to account for the stretch of the cross section. For the
LS-DYNA beam element used in this paper, the cross section was
assumed to be rigid and could not be stretched. If an ad hoc ap-
proach is used to allow for the cross-section stretch, the LS-DYNA
free-end deformation in Fig. 15 decreases, and the solution con-
verges to the ANCF solution. This demonstrates the limitations
of the LS-DYNA Belytschko element, and also demonstrates that
the stiff behavior of the ANCF element should not be interpreted as
locking.

The material used in this paper was assumed to be polyethylene,
which has a yield stress in the range 26–33 MPa (Beer et al. 2009).
For the temperature change of 200°C considered in this investiga-
tion, the maximum values of the axial and transverse strains were
approximately 0.02 and 0.008, respectively. Therefore, the maxi-
mum axial and transverse stresses were in the range of 0.024
and 0.0096 MPa, respectively. These stress values were far below
the yield stress of polyethylene material, and therefore the
assumption of elastic behavior used in this study was justified.

Summary and Conclusions

This investigation proposes a new computational procedure that
accounts for the reference-configuration geometry for the solution
of the thermoelasticity problem (Lubarda 2004; Vujosevic and
Lubarda 2002; Darijani and Naghdabadi 2013). This approach
alleviates the limitations of the classical thermal-analysis ap-
proaches that are based on the strain additive decomposition.
Existing thermal-analysis formulations do not properly capture the
effect of complex stress-free reference-configuration geometries,
restrict the algorithms to small-deformation problems, and lead
to simplified linearized expression for the Green–Lagrange strain
tensor. Using ANCF displacement fields which employ position-
gradient vectors as nodal coordinates, a new ANCF gradient-based
approach is proposed. This approach employs a multiplicative
decomposition of the matrix of position-gradient vectors into
two position-gradient matrices; one matrix is associated with the
reference-configuration geometry before the application of the ther-
mal load, and the other matrix accounts for the volumetric change
due to the change in temperature. A numerical study demonstrated
the use of the gradient-based approach in the thermal analysis.

In engineering systems, the reference-geometry of components is
not always simple. For such systems, the change in temperature
leads to stress-free thermal expansion of this reference-configuration
geometry which must be accounted for accurately to properly cap-
ture the thermal effect. The additive strain decomposition in the
thermal analysis involves approximation based on neglecting geo-
metric nonlinearities. The approach presented in this study relaxes
these assumptions by developing a new ANCF multiplicative-
decomposition procedure that properly accounts for geometric
nonlinearities. Furthermore, this approach allows for the use of non-
linear constitutive models and nonlinear strain-displacement rela-
tionships, as demonstrated in this paper. The approach presented
in this paper also is fundamentally different from the thermal-
expansion approach for the small deformation analysis based on the
floating frame of reference (FFR) formulation (Ukani et al. 1988;
Shabana 1986).

Appendix. Interpretation of Coefficient of
Thermal Expansion

This Appendix explains the motivation for using the gradient-
based thermal-expansion approach employed in this investigation.
In practice, the coefficients of thermal expansion can be measured
along directions. These directions can be defined conveniently us-
ing the position-gradient vectors which are tangents to the material
fibers. This study defined the thermal expansion using the norm of
the position-gradient vectors χgk ¼ jðrXk

ÞoþΘj by the equation

χgk ¼ jðrXk
ÞoþΘj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rTXk

rXk

�
oþΘ

q
¼ dokð1þαΘkΔΘÞ; k¼ 1;2;3

ð21Þ

For example, in planar problems, the thermal expansion in the lon-
gitudinal and transverse directions can be conveniently measured
along the position-gradient vectors rXk

ðk ¼ 1; 2Þ. It is important,
however, to distinguish between this interpretation and an interpre-
tation based on a definition of an arbitrary line element.

To explain the differences between the two interpretations,
for simplicity, it is assumed that the straight configuration x is
the same as the reference configuration X. The length of the line
element in the thermally expanded configuration XΘ is defined as

lΘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXT

ΘdXΘ

q
, whereas the length in the straight configuration

Fig. 14. Free-end deformation of soft material in the case of thermal
expansion.

Fig. 15. Free-end deformation of soft material in the case of thermal
expansion.
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can be written lo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXTdX

p
. The change in the length of the line

element due to the temperature change can be written dlΘ ¼
lΘ − lo ¼ ðαΘΔΘÞlo. Using this interpretation, one can write

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXT

ΘdXΘ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXTdX

p
¼ αΘΔΘ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXTdX

p
ð22Þ

The relationship dXΘ ¼ JΘXdX, where JΘX ¼ ∂XΘ=∂X, can be
used to write the preceding equation as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXTJTΘXJΘXdX

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXTdX

p
¼ αΘΔΘ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXTdX

p
ð23Þ

If the principal directions are assumed, the matrix JTΘXJΘX is diago-
nal and can be written

JTΘXJΘX ¼

2
664
rTXΘ1

rXΘ1
0 0

0 rTXΘ2
rXΘ2

0

0 0 rTXΘ3
rXΘ3

3
775 ð24Þ

Using the definition of the unit vector n ¼ ½ n1 n2 n3 �T ¼
dX=lo and Eq. (23)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
k¼1

�
rTXΘk

rXΘk

�
n2k

vuut ¼ ð1þ αΘΔΘÞ ð25Þ

This equation demonstrates the difficulty of using the general for-
mulation of the arbitrary line element as the basis for defining the
coefficient of thermal expansion; this is true even if the principal
directions can be identified and used as the measurement directions.
This explains the motivation for using the norm of the position-
gradient vectors as the basis for the definition of the thermal expan-
sion. This gradient-based definition also is more consistent with the
measurements made to define the coefficient of thermal expansion.
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