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Abstract

Many decision-making problems under uncertainty
can be formulated as convex stochastic optimiza-
tion, which minimizes a convex objective in ex-
pectation across exponentially many probabilistic
scenarios. Despite its convexity, evaluating the ob-
jective function is #P-hard. Previous approaches
use samples from MCMC and its variants to ap-
proximate the objective function but have a slow
mixing rate. We present XOR-SGD, a stochastic
gradient descent (SGD) approach guaranteed to
converge to solutions that are at most a constant
away from the true optimum in linear number of
iterations. XOR-SGD harnesses XOR-sampling,
which reduces the sample approximation of the
expectation into queries of NP oracles via hash-
ing and projection. We evaluate XOR-SGD on two
real-world applications. The first stochastic inven-
tory management problem searches for a robust
inventory management plan in preparation for the
virus pandemics, natural disasters, etc. The second
network design problem decides an optimal land
conservation plan which promotes the free move-
ment of wild-life animals. We show that our ap-
proach finds better solutions with drastically fewer
samples needed compared to a couple of state-of-
the-art solvers.

1 INTRODUCTION

Decision-making in an uncertain world requires solving
stochastic optimization problems which optimizes the ex-
pectation of a stochastic outcome across multiple probabilis-
tic scenarios. Indeed, stochastic optimization problems have
attracted much research attention given its wide applicability
in finance, control, robotics, management science, opera-
tions research, and conservation (Sodomka et al. [2007],

Ziukov [2016], Gomes et al. [2019]). Advancements made
to address this problem will have ramifications in many
domains. In mathematical form, a stochastic optimization
problem is:

min
x

Eθ∼Pr(θ) f (x,θ),

s.t. ∀i, hi(x) = 0 and ∀ j, g j(x)≤ 0.
(1)

In this paper, we focus on convex stochastic optimization
problems. More precisely, we require the function f (x,θ)
to be convex with respect to x. g j(x) are convex functions
and hi(x) are linear. Variable θ is sampled from distribu-
tion Pr(θ), which is represented as a Markov random field
(MRF) in this paper. Despite our limited scope, problems in
equation 1 are still highly intractable (#P-hard). The main
source of intractability comes from the computation of the
expectation over a general probability distribution, a com-
mon operator in probabilistic inference. Computing such
an expectation is #P-complete, where #P denotes the com-
plexity class that counts the number of accepting paths of a
polynomial-time non-deterministic Turing machine.

Theorem 1. The convex stochastic optimization problem in
Equation 1 is #P-hard.

Many problems can be formulated as convex stochastic
optimizations. In this paper, we focus on attacking two
real-world problems. The first is the inventory management
problem in operations research. In this problem, managers
have to decide the amount of each material to buy at the
beginning of the season to meet the production demand. He
should buy neither too much because of the limited inven-
tory space, nor too little since a back order later would cost
more. The manager, therefore, has to place a purchase order
x, which minimizes the expected cost Eθ [ f (x,θ)], taking
into account of various stochastic events θ , such as materials
price fluctuations, supply chain complications, virus pan-
demic, etc. Our second problem is a network design problem,
where we need to decide an optimal investment plan under
a fixed budget to increase the landscape connectivity. In
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biodiversity conservation, increasing landscape connectivity
facilitates the free movement of wildlife animals, hence ac-
celerating their gene flows. In disaster preparation, increased
connectivity allows rescue teams to reach their sites faster.
Interestingly, a commonly used connectivity measure, the
commuting time of a random walk model, is convex (Ghosh
et al. [2008]). Therefore, the network design problem can
also be cast as a convex stochastic optimization problem.

We present XOR-SGD, a simple stochastic gradient descent
(SGD) algorithm, which is guaranteed to converge to a so-
lution that is within a vanishing constant away from the
true optimum in linear number of SGD iterations. The
linear convergence rate towards the optimum is rather sur-
prising, considering the #P-hardness of the problem and the
simpleness of the SGD. The key of XOR-SGD is to draw
a representative set of samples from Pr(θ) which yield an
accurate estimation of the gradient direction. Common sam-
pling approaches, such as MCMC, cannot serve our purpose,
because of the exponentially many steps to mix. Belief Prop-
agation (BP) has difficulties in dealing with multi-modal
distributions. Recently proposed BPChain (Fan and Xue
[2020]) uses an inference chain to draw samples sequen-
tially. Nevertheless, the errors tend to propagate.

Our XOR-SGD leverages XOR-Sampling, a recently pro-
posed sampling scheme with a constant approximation guar-
antee, which reduces the sampling problem into queries of
NP oracles via hashing and projection. Indeed, XOR-SGD
requires accessing NP-oracle queries at each iteration. Nev-
ertheless, our contribution is built on the recent success of
solving NP-complete problems, where several industrial
sized problems are successfully solved by latest constraint
reasoning solvers. In another view, our contribution extends
the success of solving NP-complete problems to problems
with even higher complexity, namely, #P-hard problems.
Our key contribution is the extension of classical conver-
gence analysis of SGD on convex problems, where we show
that a constant multiplicative bound on the expectation of
the gradient direction is sufficient to bound the final result
against the true optimum (Theorem 3). Our theoretic contri-
bution does not depend on the unbiasness of the gradients,
which was a necessary condition in previous analysis.

XOR-SGD was motivated by Sample Average Approxima-
tion (SAA) (Kleywegt et al. [2002], Verweij et al. [2003]),
which is widely used to solve stochastic optimization prob-
lems. On learning probabilistic graphical models, stochas-
tic optimization is related to the Marginal Maximum-a-
posterior (MMAP) problem (Xue et al. [2016], Liu and
Ihler [2013], Marinescu et al. [2014], Mauá and de Campos
[2012], Marinescu et al. [2015], Domke [2013]). These prob-
lems can be formulated as (albeit non-convex) stochastic
optimization problems. Convergence analysis of gradient de-
scent has been studied for both convex and non-convex func-
tions (Wang et al. [2013], Dubey et al. [2016], Agarwal et al.
[2017], Lee et al. [2015], Ruder [2016], Jin et al. [2017],

Ge et al. [2015]). Recently several algorithms (Duchi et al.
[2011], Hinton et al. [2012], Kingma and Ba [2014], Duchi
et al. [2018], Allen-Zhu [2017, 2018]) were proposed to
accelerate the convergence rate of SGD. They require an
unbiased estimation of either the gradient or the momentum.
Our XOR-SGD was derived without this assumption. Proba-
bilistic inference via hashing and randomization is proposed
for both sampling (Ermon et al. [2013b], Ivrii et al. [2015]),
counting (Gomes et al. [2007a], Ding et al. [2019]), and
marginal inference problems (Ermon et al. [2013a], Kuck
et al. [2019], Chakraborty et al. [2014, 2015], Belle et al.
[2015]) with constant approximation guarantees. Inventory
management is a classic problem for supply chain manage-
ment in operations research (Ziukov [2016]) where SAA is
often used (Shapiro and Philpott [2007]), nonetheless has no
formal guarantees. Previously a few approaches have been
proposed for network design (Sheldon et al. [2012], Wu
et al. [2017]). We consider optimizing the commuting time,
which is a more challenging objective and to our knowledge,
no prior work derives algorithms with guarantees.

Experimental results reveal that XOR-SGD is effective in
optimizing constrained convex stochastic functions. XOR-
SGD outperforms competing solvers which run SGD with
either MCMC, BP or BPChain samplers on both the in-
ventory management and the network design problems
on real-world data under various conditions. In particu-
lar, XOR-SGD accessing merely 60 XOR samples finds
better solutions than SGD accessing 20,000 MCMC sam-
ples for the inventory management problem. XOR-SGD
accessing 40 XOR samples outperforms SGD accessing
20,000 MCMC samples for the network design problem.
Meanwhile, XOR-SGD runs faster than SGD with MCMC
Sampling. XOR-SGD with 40 samples takes 1 minute 40
seconds per SGD iteration, while SGD with 20,000 MCMC
samples needs 2.5 minutes for the network design problem.
See the experiments section for more details.

2 PRELIMINARIES

2.1 PROBABILISTIC MODELS

In this paper, we mainly use Markov Random Field as the
probability distribution Pr(θ). MRF is a general model for
the joint distribution of multiple correlated random variables.
In a MRF, the probability Pr(θ) is defined as:

Pr(θ) =
1
Z ∏

α∈I
φα({θ}α). (2)

where {θ}α is a subset of variables in θ that the function φ

depends on. φα : {θ}α →R+ is a potential function, or com-
monly referred to as a clique. φα maps every assignment of
variables in {θ}α to a non-negative real value. I is an index
set and Z is a normalization constant, which ensures that the
probability adds up to one: Z = ∑θ∈{0,1}m ∏α∈I φα({θ}α).



A potential function φα({θ}α) defines the correlation be-
tween all variables in the subset {θ}α . The structure of the
MRF or the set I can be built from domain knowledge and
potential functions can be learned from real-world data. The
focus of this paper is not on how to construct the MRF but is
how we solve problem in Equation 1 in general when Pr(θ)
is given in the form shown in Equation 2.

2.2 XOR-SAMPLING

In our method, we approximate the otherwise intractable
objective in Equation 1 with the empirical mean of a finite
number of samples from Pr(θ) and use SGD to minimize it.
Although widely used, MCMC based samplers are known
to have a notoriously slow mixing rate. Their variance can-
not be controlled effectively and therefore does not lead to
algorithms with provable guarantees.

Our XOR-SGD leverages recent advancements in sampling
via hashing and randomization. In particular, we embed
XOR-Sampling (Ermon et al. [2013b]) into SGD, a sam-
pling scheme which guarantees that the probability of draw-
ing a sample is sandwiched between a constant bound of the
true probability. We only present the general idea of XOR-
Sampling on unweighted functions here and refer the readers
to the paper (Ermon et al. [2013b]) for the weighted case.
For the unweighted case, assuming w(θ) takes binary values,
we need to draw samples from the set W = {θ : w(θ) = 1}
uniformly at random; i.e., suppose |W | = 2l , then each
member in W should have 2−l probability to be sampled.
Following notations from the SAT community, we call one
assignment θ0 which makes w(θ0) = 1 a “satisfying as-
signment”. XOR-Sampling obtains near-uniform samples
by querying a NP oracle to find one satisfying assignment
subject to additional randomly generated XOR constraints.
Initially, the NP oracle will find one satisfying assignment
subject to zero XOR constraints, albeit not at random. We
then keep adding XOR constraints. We can prove that in
expectation, each newly added XOR constraint rules out
approximately half of the satisfying assignments at random.
Therefore, if we start with 2l satisfying assignments in W ,
after adding l XOR constraints, we will be left with only
one satisfying assignment in expectation. We return this
assignment as our first sample. Because we can prove that
the assignments are ruled out randomly, we can guarantee
that the returned assignment must be a randomly chosen
one from W . Figure 1 (right) shows an intuitive picture of
the unweighted case. See Gomes et al. [2007a,b] for details.

For the weighted case, the authors of Ermon et al. [2013b]
present a sampler with a constant approximation guaran-
tee. The idea is to discretize w(θ) using points that are
geometrically far apart, transforming the weighted problem
into an unweighted one by introducing additional variables.
The discretization scheme is in the supplementary mate-
rials. XOR-Sampling draws a sample θ0 with probability

Return one solution
uniformly at random 

using an exact sampler 
when #solutions is small

All solutions

1/2
solutions

1/2
solutions

1/4
solutions

1/4
solutions

1st XOR cstr.

kth XOR cstr.

2nd XOR cstr.

……

1/2k

solutions

……

Figure 1: High-level idea of XOR-Sampling. When sam-
pling uniformly at random from the set of solutions W =
{θ : w(θ) = 1}, XOR-Sampling repeatedly adds randomly
generated XOR constraints, each of which randomly re-
moves half of the solutions from W . Finally XOR-Sampling
returns one solution uniformly at random when the set is
small enough after adding k XOR constraints.

proportional to w(θ), i.e., Pr(θ0) ∝ w(θ). Notice that XOR-
Sampling only needs unnormalized probability distribution.
Our paper uses their results through the following theorem:

Theorem 2. (Ermon et al. [2013b]) Let ε > 0,b >
1, P ≥ 2, and γ = log((P + 2

√
P+1 + 2)/P). For any

α ∈ Z, α > γ , let c(α,P) = 1− 2γ−α/(1− 1
P − 2γ−α)2.

Let r = 2b/(2b−1), l = dlogr(2
n/ε)e,ρ = r2/(1− ε),κ =

1/c(α,P) and bucket Bl as in Definition 1 in the supple-
mentary materials. Denote Pr′s(θ) as distribution of the
samples generated by XOR-Sampling(w, l,b,δ ,P,α). Let
φ : {0,1}n → R+ be one non-negative function 1 satisfy-
ing ηφ = maxθ∈Bl |φ(θ)| ≤ ||φ ||∞. Then, with probability
at least (1− δ )c(α,P)2−(γ+α+1) P

P−1 , XOR-Sampling suc-
ceeds and outputs a sample θ0. Upon success, each θ0
is output with probability Pr′s(θ0), which is within a con-
stant factor of the true Pr(θ0). Furthermore, the expectation
EPr(θ)[φ(θ)], can be bounded by the sample estimate:

1
ρκ

EPr′s(θ)[φ(θ)]− εηφ ≤ EPr(θ)[φ(θ)]

≤ ρκEPr′s(θ)[φ(θ)]+ εηφ .

(3)

1The theorem requires that φ is non-negative, which was held
as an implicit assumption in paper Ermon et al. [2013b]. A mir-
rored result can be obtained when φ is non-positive, at which time
ρκEPr′s(θ)[φ(θ)] − εηφ ≤ EPr(θ)[φ(θ)] ≤ 1

ρκ
EPr′s(θ)[φ(θ)] +

εηφ .



The value of Theorem 2 mainly comes from the fact that the
expectation of function φ , EPr(θ)[φ(θ)] can be estimated
by the empirical mean of the samples generated by XOR-
Sampling within a constant approximation bound (Equa-
tion 3). The tail εηφ is often negligible. Furthermore, there
is a way to set the hyper-parameters of XOR-Sampling
which makes εηφ zero (see the supplementary materials).
Hence for the rest of the paper, we assume εηφ is zero for
our derivations.

Notations For function f : Rd → R, we call it L-smooth
if for all x,y in the convex domain dom f , f (y) ≤ f (x)+
∇ f (x)T (y− x)+ L

2 ||y− x||2. Denote f+(x) as the positive
part of function f (x). In other words, f+(x)=max{ f (x),0}.
f−(x) is defined similarly. For a random vector x, we define
E[x] as the element-wise expectation and the total variation
Var(x) = E[||x||22]−||E[x]||22 where || · ||22 is the square of l2
norm.

3 XOR-SGD

In this section we propose XOR-SGD, a new stochastic
gradient descent method to solve convex stochastic opti-
mization problems. XOR-SGD converges to solutions that
are at most a constant away from the true optimum in lin-
ear number of SGD iterations. We first present XOR-SGD
for unconstrained optimization (i.e., no constraints in Equa-
tion 1), and will extend our result for constrained optimiza-
tion in the second subsection. The detailed procedure of
XOR-SGD for unconstrained optimization is shown in Al-
gorithm 1. To approximate the gradient ∇xEθ f (xk,θ) at
step k, XOR-SGD draws N samples θ1, . . . ,θN from Pr(θ)
using XOR-Sampling. Because XOR-Sampling has a fail-
ure rate, XOR-SGD repeatedly call XOR-Sampling un-
til all N samples are obtained successfully (line 4 – 10).
Once θ1, . . . ,θN are obtained, XOR-SGD uses the empiri-
cal mean gk =

1
N ∑

N
i=1 ∇x f (xk,θi) as an approximation for

∇xEθ f (xk,θ).

Due to Theorem 2, we know gk is bounded within
a constant factor of ∇xEθ f (xk,θ). More precisely, we
have 1

ρκ
[∇xEθ f (xk,θ)]

+ ≤ [gk]
+ ≤ ρκ[∇xEθ f (xk,θ)]

+

and 1
ρκ

[∇xEθ f (xk,θ)]
− ≤ [gk]

− ≤ ρκ[∇xEθ f (xk,θ)]
−. Us-

ing this constant approximation, we can prove that the output
of XOR-SGD in expectation converges to the true optimum
within a small constant distance at a linear speed w.r.t. the
number of SGD iterations K (our main result is stated in
Theorem 4). To prove Theorem 4, we first prove the bounds
on two terms stated in Lemma 1. Notice the inequalities in
Lemma 1 hold not only for XOR-SGD, but also for SGD
algorithms applied on arbitrary L-smooth convex functions
with constant approximate gradients.

Lemma 1. Let f : Rd → R be a convex function and
x∗ = argminx f (x). In iteration k of SGD, gk is the es-
timated gradient, i.e., xk+1 = xk − tgk. If there exists a

Algorithm 1: XOR-SGD
Input: f (x,θ),w(θ),K,N, t, l,b,δ ,P,α

1 Initialize x0 for function f (x,θ)
2 for k = 0 to K do
3 i← 1
4 while i≤ N do
5 s← XOR-Sampling(w(θ), l,b,δ ,P,α)
6 if s 6= Failure then
7 θi← s
8 i← i+1
9 end

10 end
11 Compute gk← 1

N ∑
N
i=1 ∇x f (xk,θi)

12 Compute xk+1← xk− tgk

13 end
14 xK ← 1

K ∑
K
k=1 xk

15 return xK

constant c ≥ 1 s.t. 1
c [∇ f (xk)]

+ ≤ E[g+k ]≤ c[∇ f (xk)]
+ and

c[∇ f (xk)]
− ≤ E[g−k ]≤

1
c [∇ f (xk)]

−, then we have

1
c
||E[gk]||22 ≤ 〈∇ f (xk),E[gk]〉 ≤ c||E[gk]||22.

1
c
〈E[gk],xk− x∗〉 ≤ 〈∇ f (xk),xk− x∗〉 ≤ c〈E[gk],xk− x∗〉.

From Lemma 1 we can see both 〈∇ f (xk),E[gk]〉 and
〈∇ f (xk),xk − x∗〉 can be bounded given the constant ap-
proximation bound of the gradient. We leave the proof of
Lemma 1 to supplementary materials. Using this lemma,
we can derive the following Theorem 3, which bounds the
error of SGD on a convex optimization when the estimated
gradient gk in the k-th step resides in a constant bound of
∇ f (xk). Notice that previous convergence bounds on SGD
usually need the gradient estimation to be unbiased, i.e.,
E[gk] = ∇ f (xk). We do not require this condition.

Theorem 3. Let f : Rd→R be a L-smooth convex function
and x∗ = argminx f (x). In iteration k of SGD, gk is the es-
timated gradient, i.e., xk+1 = xk− tgk where Var(gk)≤ σ2.
If there exists 1 ≤ c ≤

√
2 s.t. 1

c [∇ f (xk)]
+ ≤ E[g+k ] ≤

c[∇ f (xk)]
+ and c[∇ f (xk)]

− ≤ E[g−k ] ≤
1
c [∇ f (xk)]

−, then

for any K > 1 and step size t ≤ 2−c2

Lc , let xK = 1
K ∑

K
k=1 xk, we

have

E[ f (xK)]− f (x∗)≤ c||x0− x∗||22
2tK

+
tσ2

c
. (4)

Proof. (Theorem 3) By L-smooth of f , for the k-th iteration,

f (xk+1)≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+
L
2
||xk+1− xk||22,

= f (xk)− t〈∇ f (xk),gk〉+
Lt2

2
||gk||2.



Because of the constant bound on gradient and ||E[gk]||22 =
E[||gk||22]−Var(gk), by taking expectation on both sides
w.r.t gk we get from Lemma 1 that

E[ f (xk+1)]≤ f (xk)−
t
c
||E[gk]||22 +

Lt2

2
E[||gk||22],

= f (xk)−
t
c
(E[||gk||22]−Var(gk))+

Lt2

2
E[||gk||22],

≤ f (xk)−
t(2−Ltc)

2c
E[||gk||22]+

t
c

σ
2,

≤ f (xk)−
tc
2
E[||gk||22]+

t
c

σ
2,

where the last inequality follows as Ltc≤ 2− c2. Because
f is convex, still from Lemma 1 we get

E[ f (xk+1)]≤ f (x∗)+ 〈∇ f (xk),xk− x∗〉− tc
2
E[||gk||22]+

t
c

σ
2,

≤ f (x∗)+ c〈E[gk],xk− x∗〉− tc
2
E[||gk||22]+

t
c

σ
2,

= f (x∗)+ cE[〈gk,xk− x∗〉− t
2
||gk||22]+

t
c

σ
2.

We now repeat the calculations by completing the square
for the middle two terms to get

E[ f (xk+1)]≤ f (x∗)+
c
2t
E[2t〈gk,xk− x∗〉− t2||gk||22]+

t
c

σ
2,

≤ f (x∗)+
c
2t
E[||xk− x∗||22−||xk− x∗− tgk||22]+

t
c

σ
2,

= f (x∗)+
c
2t
E[(||xk− x∗||22−||xk+1− x∗||22)]+

t
c

σ
2.

Summing the above equations for k = 0, . . . ,K−1, we get

K−1

∑
k=0

E[ f (xk+1)− f (x∗)]

≤ c
2t
(||x0− x∗||22−E[||xK− x∗||22])+

Kt
c

σ
2

≤ c||x0− x∗||22
2t

+
Kt
c

σ
2.

Finally, by Jensen’s inequality, K f (xK)≤ ∑
K
k=1 f (xk),

K−1

∑
k=0

E[ f (xk+1)− f (x∗)] = E[
K

∑
k=1

f (xk)]−K f (x∗)

≥ KE[ f (xK)]−K f (x∗).

Combining the above equations we get

E[ f (xK)]≤ f (x∗)+
c||x0− x∗||22

2tK
+

t
c

σ
2.

This completes the proof.

The bound of XOR sampling (Equation 3) assumes a non-
negative function φ . In XOR-SGD, the entries of vector gk
can be both positive or negative. Therefore, the bound from

XOR-Sampling needs to be imposed on the positive and
negative parts of gk with a multiplicative factor of ρκ . More
precisely,

1
ρκ

Eθ [∇x f (xk,θ)]
+ ≤ E[gk

+]≤ ρκEθ [∇x f (xk,θ)]
+,

ρκEθ [∇x f (xk,θ)]
− ≤ E[gk

−]≤ 1
ρκ

Eθ [∇x f (xk,θ)]
−.

Leveraging this bound, our main result, Theorem 4 can
be proved using Theorem 2 and 3, by replacing the objec-
tive f (x) in Theorem 3 with Eθ∼p(θ) f (x,θ), while noticing
Var(gk) =Varθ (∇x f (x,θ))/N due to the sample size N.

Theorem 4. (Main) Let b,ε, l,δ ,P,α,ρ,κ and Bl be
as in Theorem 2, function f (x,θ) : Rd × {0,1}n → R
be a L-smooth convex function w.r.t. x. Denote OPT =
minxEθ∼Pr(θ) f (x,θ) as the global optimum. Let σ2 =

maxx{Var(∇x f (x,θ))} and ε2 = maxx{||E[∇x f (x,θ)]||22}.
For any 1≤ ρκ ≤

√
2, step size t ≤ 2−ρ2κ2

Lρκ
and sample size

N ≥ 1, xK is the output of XOR-SGD and obj=Eθ [ f (xK ,θ)]
is the objective function value at xK . We have:

ExK [obj]−OPT ≤ ρκ||x0− x∗||22
2tK

+
t(σ2 + ε2)

N
. (5)

Theorem 4 states that in expectation, the difference in terms
of the objective function values between the output of XOR-
SGD algorithm xK and the true optimum OPT is bounded
by a term that scales inversely proportional to the number
of SGD iterations K and a tail term t(σ2+ε2)

N . To tighten the
bound with fixed number of steps K, we can either conduct
more accurate XOR-Sampling scheme leading to smaller
ρκ (still greater than 1), or generate more samples at each
iteration to reduce the variance (increase N) in the tail term.
It should be noticed that although hard to compute, σ2 and
ε2 are from the input which do not depend on the algorithm.

While Theorem 4 provides a linear convergence rate guar-
antee, we expect XOR-SGD can be further accelerated if
new schemes can be developed to estimate higher moments
reliably. In such case, our method can be fit into acceler-
ated SGD algorithms such as Adagrad (Duchi et al. [2011]),
RMSprop (Hinton et al. [2012]) and Adam (Kingma and
Ba [2014]). In addition, it should be noticed that the conver-
gence rate of XOR-SGD is determined by the approximation
constant ρκ from XOR-sampling. By setting proper param-
eter values in Theorem 2, we can get ρκ =

√
2. As a conse-

quence, we can collect N samples successfully by running
XOR-Sampling around 40N times. The time complexity can
be further reduced via parallel sampling. Samples can be
obtained before each optimization step since Pr(θ) does not
depend on x. Even though obtaining samples in XOR-SGD
is more expensive, we show in experiment section that our
algorithm achieves better results in less time compared to
SGD with MCMC samples.



3.1 EXTENSION TO CONSTRAINED CONVEX
STOCHASTIC OPTIMIZATION

Now consider the constrained case as in equation 1. Writing
down the Lagrangian:

F(x,λ ,µ,θ) = Eθ∼Pr(θ) f (x,θ)+∑
i

λihi(x)+∑
j

µ jg j(x).

where we require ∀ j, µ j ≥ 0. In this paper we only consider
convex problems which satisfies the Slater’s condition. As a
consequence, strong duality holds. It implies the following
optimization

min
x

max
λi,µ j

F(x,λ ,µ,θ) (6)

shares the same optimal solution with the optimization prob-
lem in equation 1. We modify algorithm 1 to its constrained
version (Algorithm 2), where we use alternating min-max
to solve the problem in Equation 6. In this algorithm, outer
loop optimizes over λ and µ for K steps. Every time when
they are updated, in the inner loop we update x along its ap-
proximate gradient direction for M steps. The approximate
gradient direction is computed via XOR-Sampling.

Qualitatively, with big M and N, from Theorem 4 we know
that the solution of the inner loop will be close to the opti-
mal solution for any µ and λ fixed by the outer loop. Due
to the Slater’s condition, F is convex in x and concave in λ

and µ . Suppose the solution from the inner loop is close to
optimum, the outer loop will also converge to the optimal
values of µ and λ . Hence the overall solution will be close
to optimal. We leave the theoretic characterization of the
convergence speed of the constrained algorithm as future
work. Constraints introduce additional difficulties for theo-
retic analysis. To our knowledge, the convergence speed
analysis involving inequality constraints is still an active
research area even assuming having access to unbiased gra-
dients. The stochastic optimization problem considered in
this paper attacks an even more complicated case, where we
do not have unbiased gradient estimation.

4 EXPERIMENTS

We evaluate our XOR-SGD algorithm on the inventory man-
agement (Ziukov [2016], Shapiro and Philpott [2007]) and
the network design problems (Sheldon et al. [2012], Wu
et al. [2017, 2016]). For comparison, we consider a base-
line which uses SGD while the gradients are estimated by
either Gibbs Sampling, Belief Propagation (BP) (Yedidia
et al. [2001], Murphy et al. [2013]), or Belief Propagation
Chain (BPChain) (Fan and Xue [2020]). For each setting
of both applications, to produce a sample, Gibbs sampling
first takes 100 steps to burn in, and then draws one sample
every 30 steps. We fix the number of iteration steps of both
BP and BPChain as 20, which is enough for belief propa-
gation to converge. We allow SGD with Gibbs sampling,

Algorithm 2: XOR-SGD (constrained version)
Input: f (x,θ),w(θ),M,K,N, t,η , l,b,δ ,P,α and

constraints hi(x) = 0,g j(x)≤ 0 for all i, j
1 Define Eθ [F(x,λ ,µ,θ)] =

Eθ [ f (x,θ)]+∑λihi(x)+∑ µ jg j(x)
2 Initialize x = x00, λ = λ0 = (λi0)i=1,...,li,

µ = µ0 = (µ j0) j=1,...,l j for function F(x,λ ,µ,θ)
3 for k = 0 to K−1 do
4 for m = 0 to M−1 do
5 s← 1
6 while s≤ N do
7 result← XOR-Sampling(w(θ), l,b,δ ,P,α)
8 if result 6= Failure then
9 θs← result

10 s← s+1
11 end
12 end
13 Compute gm← 1

N ∑
N
s=1 ∇ f (xkm,θs)+

∑λik∇hi(xkm)+∑ µ jk∇gi(xkm)
14 Update xk,m+1← xk,m− tgm

15 end
16 Let xk =

1
M ∑

M
r=1 xkr, and set xk+1,0 = xk

17 Update λi,k+1 = λik +ηhi(xk)
18 Update µ j,k+1 = min{µ jk +ηg j(xk),0}
19 end
20 return 1

K ∑
K
k=1 xk

BP and BPChain to draw more samples than XOR-SGD for
a fair comparison. For both applications, we use MRF as
probabilistic models for Pr(θ). All experiments were con-
ducted using single core architectures on Intel Xeon Gold
6126 2.60GHz machines with 96GB RAM and a wall-time
limit of 10 hours. Please see the supplementary materials
for more details on the experiment setups.

4.1 STOCHASTIC INVENTORY MANAGEMENT

We first investigate our algorithm on the stochastic inven-
tory management problem studied in Shapiro and Philpott
[2007]. A company manager has to decide, at the beginning
of each season, how much of each materials to purchase to
meet his demand later in the production season. Assuming
there are n materials. The demand of material i is di. Let
d = (d1, . . . ,dn)

T be the demand vector. At the beginning of
the season, only the distribution Pr(d) is known due to the
stochasticity down the supply chain. The demands of multi-
ple materials can be correlated because one product typically
needs many types of materials. In other words, Pr(d) cannot
be decomposed into the product of probabilities of individ-
ual demands. The manager stocks xi amount of material i
at the beginning of the season. Each unit of material i takes
storage space wi, and the total amount of pre-order is limited
by the available storage space X . At the end of the produc-
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Figure 2: Experimental results on the inventory management problem. XOR-SGD is better than baselines in all cases. (Left)
The percentage of savings of the solutions found by XOR-SGD against other methods on 100% storage limit varying the
number of materials. XOR-SGD on average saves 10% cost. (Middle) The objective values found by all methods with 50
materials varying storage limits. (Right) The objective values found by all methods with different number of samples for
approximation in SGD. 100% storage limit and 50 materials. XOR-SGD with 60 samples outperforms other methods with
20,000 samples.

tion season, demand d will be revealed to the the manager.
We assume the cost of ordering the i-th material is ci per
unit. If the demand di > xi, then a back order is needed, of
which one unit costs bi ≥ ci. Overall, the cost for back order
is bi(di− xi) if di > xi, and is zero otherwise. On the other
hand, if di < xi, then a holding cost of hi per unit is incurred,
leading to an additional total cost hi(xi−di). Summing it up,
the cost for material i is Gi = cixi+bi[di−xi]

++hi[xi−di]
+

where [a]+ denotes the maximum of a and 0. Then, the total
cost will be G(x,d) = ∑

n
i=1 Gi. The manager want to mini-

mize his operational cost, which translates to this problem:

min
x≥0

Ed∼Pr(d)[G(x,d)], s.t. wT x≤ X . (7)

We can show G(x,d) is convex w.r.t. x. Hence the inventory
management problem is a constrained convex stochastic
optimization problem. We run the experiments varying the
number of materials n, the storage limit, and the number of
samples we use in XOR-SGD and other methods. Details
on the experimental setup are in supplementary materials.

Figure 2 shows that our algorithm XOR-SGD outper-
forms the other methods on multiple experimental se-
tups. The left figure shows the percentage reduction of
the objective values of the solutions found by XOR-
SGD against SGD with other sampling methods. In math
form, for example for Gibbs Sampling, the metric is
(ob j(Gibbs)− ob j(XOR-SGD))/ob j(Gibbs) (metrics for
other approaches are analogous). We vary the number of
materials from 10 to 100. The middle figure shows the ob-
jective values of solutions varying the storage limit. The
right figure shows the objective values varying the number
of samples. The green line in the upper picture is re-plotted
in the bottom for clarity. For the left and the middle figures,
we let XOR-SGD take 100 samples for approximation while
SGD with other sampling methods take 10,000. The exper-
iments in the right figure is with 100% storage limit and
50 different materials. We can see from the left figure that

objective optimized by XOR-SGD is on average 10 percent
better than that optimized by the baselines. With the storage
limit increasing, the middle figure shows that XOR-SGD is
always better than all baselines. From the right figure, XOR-
SGD found better solutions with 60 samples compared to
SGD with Gibbs sampling which uses 20,000 samples. In
XOR-SGD, we set hyper-parameters to guarantee ρκ =

√
2.

Note XOR-SGD (5.5 minutes for 60 samples) runs even
faster than SGD with Gibbs (17 minutes for 20,000 sam-
ples), even though it needs to solve NP-complete problems
to get the samples. Notice the running times of both BP and
BPChain are longer than Gibbs Sampling. Therefore XOR-
SGD is both faster and better than competing methods.

4.2 STOCHASTIC NETWORK DESIGN

Network optimization searches for the optimal plan to in-
crease the network connectivity under a given budget in
preparation of stochastic events, such as natural disasters
(Israeli and Wood [2002], Dilkina and Gomes [2010]). We
consider the expected commuting time of a random walk
defined over the network, which is studied in Ghosh et al.
[2008] as the connectivity measure, and which is argued
to be realistic among field experts (McClure et al. [2016],
Inman et al. [2013]). Given an undirected graph G = (V,E),
where |V | = m, |E| = n. Each edge e is associated with a
non-negative weight ge, known as the conductance value
of edge e, which indicates the degree of easiness to travel
along edge e. Let g = (g1, . . . ,gn)

T . Natural disasters such
as earthquakes and floods typically strike one region and can
paralyze the connectivity of the road network in the given
region. Each edge e ∈ E is associated with a binary ran-
dom variable θe that describes the state of the edge during
disasters. θe = 0 means that the edge is destroyed, and 1 oth-
erwise. Let θ = (θ1, . . . ,θn). Notice that the states of θ are
correlated. The probability of θ is given by Pr(θ), which
may be constructed from domain knowledge or learned from
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Figure 3: Experimental results on the network design problem. XOR-SGD is better than baselines in all cases. (Left) The
percentage of savings of XOR-SGD against other methods. XOR-SGD saves on average > 5% commuting time on all 4
benchmarks with 100% budget. (Middle) Commuting time of the solutions found by XOR-SGD and baselines varying
budgets on network “weak 20”. (Right) Commuting time found by XOR-SGD and other methods with different number of
samples used for approximation in SGD (100% budget, “weak 20”). XOR-SGD with 40 samples outperforms others with
20,000 samples.

real world data. We can make investments to improve the
conductance ge of edge e. It will take money ce to increase
one unit of ge and we have a total budget of B. Denote
A ∈ Rm×n as an incidence matrix of graph G where each
item Ai j = 1 if the vertex vi and edge e j are incident and 0
otherwise. diag(g) is a diagonal matrix which has g on the
diagonal. Then, the weighted Laplacian matrix L of graph
G is defined as L = A diag(g)AT . From the work of Ghosh
et al. [2008] the commuting time C(g,θ) can be calculated
as 4(1T g)

(m−1)

(
Tr(L+11T/m)−1−1

)
which is convex w.r.t. g.

Here L is calculated only with edges not destroyed. We
would like to find the best network improvement plan under
the given budget, which minimizes the expected commut-
ing time averaged over all stochastic events to maximizes
the network connectivity. Let ∆ge be the improvement of
the conductance value at edge e and ∆g = (∆g1, . . . ,∆gn)

T .
Mathematically, our problem can be formulated as the fol-
lowing convex stochastic optimization:

min
∆g≥0

Eθ∼Pr(θ)[C(g+∆g,θ)], s.t. ∑
e∈E

ce∆ge ≤ B. (8)

We evaluate our algorithms on a real-world problem, the
Flood Preparation problem for the emergency medical ser-
vices (EMS) on road networks studied in Wu et al. [2016].
Edges of the graph represent road segments while nodes
represent either road intersections or EMS centers or loca-
tions need to be accessible in case of emergencies. Some
road segments are above the same river, which can be jointly
destroyed by e.g., floods of the river. We test our algorithm
on four benchmarks involving the weak and the strong net-
work originally evaluated in Wu et al. [2016]. The weak
network consists of 502 edges and 169 nodes. The strong
network consist of 1,562 edges and 526 nodes. The number
of vulnerable edges (i.e., θi = 0) can be either 20 or 80 for
both weak and strong network, resulting in 4 benchmarks.

Figure 3 shows that XOR-SGD outperforms other methods.
The results are similar to those for the inventory manage-

ment problem. Additional experiment details and discus-
sions are in the supplementary materials. We would like to
emphasize that XOR-SGD with 40 samples already outper-
forms other methods in Figure 3 (right). In particular, XOR-
SGD with 40 samples take 1 minutes 40 seconds, while
SGD with 20,000 Gibbs samples needs 2.5 minutes. Results
clearly show that XOR-SGD outperforms other methods
both in efficiency and in the quality of solutions.

5 CONCLUSION

We proposed XOR-SGD, a novel algorithm based on
stochastic gradient descent and XOR-Sampling, to attack
constrained convex stochastic optimization problems, which
are crucial for many decision-making applications with un-
certainty. We showed theoretically that our algorithm has a
linear convergence rate to the global optimum. Empirically,
we demonstrated the superior performance of XOR-SGD on
both the stochastic inventory management and the stochastic
network design problems. In particular, XOR-SGD access-
ing 60 XOR samples runs faster and finds better solutions
than SGD accessing 20,000 MCMC samples for the inven-
tory management problem. XOR-SGD accessing 40 XOR
samples outperforms SGD accessing 20,000 MCMC sam-
ples both in running speed and in solution quality for the
network design problem. Overall, our paper demonstrates
the power of integrating cutting-edge computer science tech-
nology with real-world problems. Our paper will also stimu-
late further academic progress in stochastic gradient descent,
probabilistic inference with hashing and randomization, and
more broadly, convex and non-convex optimizations with
insights from real-world applications. Future work includes
tightening the constant bound and accelerating the conver-
gence rate with modifications to the SGD procedure. We
will also investigate if our approach can motivate new algo-
rithms for non-convex stochastic optimization problems.
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SUPPLEMENTARY MATERIALS

A XOR-SAMPLING FOR THE
WEIGHTED CASE

The text here provides a synopsis for the approach in Ermon
et al. [2013b]. We still encourage the readers to read the
original text for a better explanation. Let w(θ), p(θ) and Z
as defined before, the high-level idea of XOR-Sampling is
to first dicretize w(θ) to w′(θ) as in Definition 1, followed
by embedding the weighted w′(θ) to the unweighted space
∆w. Finally, XOR-sampling uses counting based on hashing
and randomization to sample uniformly from ∆w.

Definition 1. Assume w(θ) has both upper and lower
bound, namely, M = maxθ w(θ) and m = minθ w(θ). Let
b ≥ 1,ε > 0,r = 2b/(2b− 1) and l = dlogr(2

n/ε)e. Parti-
tion the configurations into the following weight based dis-
joint buckets: Bi = {θ |w(θ) ∈ ( M

ri+1 ,
M
ri ]}, i = 0, . . . , l− 1

and Bl = {θ |w(θ) ∈ (0, M
rl ]}. The discretized weight func-

tion w′ : {0,1}n→R+ is defined as follows: w′(θ) = M
ri+1 if

θ ∈Bi, i = 0, . . . , l−1 and w′(θ) = 0 if θ ∈Bl . This leads
to the corresponding discretized probability distribution
p′(θ) = w′(θ)/Z′ where Z′ is the normalization constant of
w′(θ).

For the weighted case, the goal of XOR-sampling is to guar-
antee that the probability of sampling one θ is proportional
to the unnormalized density (up to a multiplicative con-
stant). By Definition 1, we obtain a distribution p′(x) which
satisfying 1

ρ
p(x) ≤ p′(x) ≤ ρ p(x) where ρ = r2

1−ε
. Then,

XOR-sampling implements a horizontal slice technique to
transform a weighted problem into an unweighted one. For
the easiness of illustration, we denote M′ = maxθ w′(θ) and
m′ as the smallest non-zero value of w′(θ). Then consider
the simple case where b = 1 and r = 2, where we have
M′ = 2l−1m′. Let δ = (δ0, . . . ,δl−2)

T ∈ {0,1}l−1 be a bi-
nary vector of length l−1, XOR-sampling samples (θ ,δ )
uniformly at random from the following set ∆w using the
unweighted version of sampling based on hashing and ran-
domization:

∆w = {(θ ,δ ) : w′(θ)≤ 2i+1m′⇒ δi = 0}. (9)

If we sample (θ ,δ ) uniformly at random from ∆w and then
only return θ , it can be proved that the probability of sam-
pling θ from w′(θ) is proportional to m′2i−1 when w(θ)
is sandwiched between m′2i−1 and m′2i. Therefore, this
technique leads to the constant approximation guarantee of
XOR-Sampling. The precise statement of the guarantee is
in Theorem 2. For general case of b and r, please refer to
Ermon et al. [2013b].

Setting εηφ to Zero In Definition 1 we can make b larger
and ε smaller enough, then there will be a possibly large but
finite value of l such that M

rl is smaller than m , which leads
Bl to be empty and εηφ to be zero.

B PROOFS

B.1 PROOF OF LEMMA 1

We define two functions g+k = max{gk,0} and g−k =
min{gk,0} where 0 is a vector of all 0 which has the same
dimension as gk. We have gk = g+k + g−k . We define both
∇ f (xk)

+ and ∇ f (xk)
− in the similar way. Then Lemma 1

gives the new bounds of two terms assuming the constant
bound on the gradient, which are essential to the proof of
convergence rate. The proof of Lemma 1 is as follows:

Proof. (Lemma 1) Since we have the constant bound that

1
c

∇ f (xk)
+ ≤ E[g+k ]≤ c∇ f (xk)

+. (10)

c∇ f (xk)
− ≤ E[g−k ]≤

1
c

∇ f (xk)
−. (11)

and because of g+k ≥ 0 and g−k ≤ 0 we can obtain

1
c
||E[g+k ]||

2
2 =

1
c
〈E[g+k ],E[g

+
k ]〉 ≤ 〈∇ f (xk)

+,E[g+k ]〉

≤ c〈E[g+k ],E[g
+
k ]〉= c||E[g+k ]||

2
2.

1
c
||E[g−k ]||

2
2 =

1
c
〈E[g−k ],E[g

−
k ]〉 ≤ 〈∇ f (xk)

−,E[g−k ]〉

≤ c〈E[g−k ],E[g
−
k ]〉= c||E[g−k ]||

2
2.

which exactly means

1
c
||E[gk]||22 ≤ 〈∇ f (xk),E[gk]〉 ≤ c||E[gk]||22.

To prove the second inequality, we need to take advantage of
the convexity of f . Denote [xk−x∗]+ = max{xk−x∗,0} and
[xk−x∗]−=min{xk−x∗,0}, we know xk−x∗= [xk−x∗]++
[xk− x∗]−. In addition, because f is convex, the index set
of non-zero entries of [xk− x∗]+ and ∇ f (xk)

+ is the same.
The index set of non-zero entries of [xk−x∗]− and ∇ f (xk)

−

is also the same. In addition, because of Equation 10 and
11, the index set of non-zero entries of E[g+k ] (E[g−k ]) is the
same with ∇ f (xk)

+ (∇ f (xk)
−). Combining these facts with

Equations 10 and 11, we have

1
c
〈E[g+k ], [xk− x∗]+〉 ≤ 〈∇ f (xk)

+, [xk− x∗]+〉

≤ c〈E[g+k ], [xk− x∗]+〉.
1
c
〈E[g−k ], [xk− x∗]−〉 ≤ 〈∇ f (xk)

−, [xk− x∗]−〉

≤ c〈E[g−k ], [xk− x∗]−〉.

Combining these two equations, we have

1
c
〈E[gk],xk− x∗〉 ≤ 〈∇ f (xk),xk− x∗〉 ≤ c〈E[gk],xk− x∗〉.

This completes the proof.



B.2 PROOF OF THEOREM 4

Proof. (Theorem 4) Since we use N samples at each iter-
ation, we have gk =

1
N ∑

N
i=1 gi

k and E[gk] = E[gi
k]. In each

iteration k we can adjust the parameters in XOR-Sampling
to make the tail εηφ zero, then for each sample gi

k we can
obtain from Theorem 2 that

1
ρκ

Eθ [∇ f (xk,θ)]
+ ≤ E[gi+

k ]≤ ρκEθ [∇ f (xk,θ)]
+. (12)

ρκEθ [∇ f (xk,θ)]
− ≤ E[gi−

k ]≤ 1
ρκ

Eθ [∇ f (xk,θ)]
−.

(13)

The variance of each sample gi
k can also be bounded by

Var(gi
k)

= Eθ ′∼p′(θ ′)[||∇ f (xk,θ
′)||22]−||Eθ ′∼p′(θ ′)[∇ f (xk,θ

′)]||22,
≤ ρκEθ∼p(θ)[||∇ f (xk,θ)||22],
= ρκ(Var(∇ f (xk,θ))+ ||Eθ∼p(θ)[∇ f (xk,θ)]||22),
≤ ρκ(σ2 + ε

2).

Denote gk
+ = max{gk,0} and gk

− = min{gk,0}. Clearly,
gi+

k ≥ 0 and gi−
k ≤ 0. Moreover, for a given dimension, ei-

ther gi+
k = 0 for that dimension or gi−

k = 0. Evaluating gk

dimension by dimension, we can see that gk
+ = 1

N ∑
N
i=1 gi+

k
and gk

− = 1
N ∑

N
i=1 gi−

k . Combined with Equation 12 and 13,
we know

1
ρκ

Eθ [∇ f (xk,θ)]
+ ≤ E[gk

+]≤ ρκEθ [∇ f (xk,θ)]
+.

ρκEθ [∇ f (xk,θ)]
− ≤ E[gk

−]≤ 1
ρκ

Eθ [∇ f (xk,θ)]
−.

Because E[gk] = E[gi
k], we also have

Var(gk) =
1

N2 Var(
N

∑
i=1

gi
k) =

Var(gi
k)

N
.

Then the variance of gk can be bounded as

Var(gk)≤
ρκ(σ2 + ε2)

N
.

Therefore, we can then apply Theorem 3 to get the result in
equation 5.

ExK [Eθ [ f (xK ,θ)]]−Eθ [ f (x∗,θ)]

≤ ρκ||x0− x∗||22
2tK

+
t maxk{Var(gk)}

ρκ
,

≤ ρκ||x0− x∗||22
2tK

+
t(σ2 + ε2)

N
.

which can also be written as

ExK [obj]−OPT ≤ ρκ||x0− x∗||22
2tK

+
t(σ2 + ε2)

N
. (14)

This completes the proof.

C EXPERIMENTS

We evaluate our XOR-SGD algorithm on the inventory man-
agement Ziukov [2016], Shapiro and Philpott [2007] and
the network design problems Sheldon et al. [2012], Wu et al.
[2017, 2016]. For each setting of both applications, to pro-
duce a sample, Gibbs sampling first takes 100 steps to burn
in, and then draws samples every 30 steps. We fix the itera-
tion step of both BP and BPChain as 20, which is enough
for BP to converge. We allow SGD with Gibbs sampling,
BP and BPChain to draw more samples than XOR-SGD for
a fair comparison. All experiments were conducted using
single core architectures on Intel Xeon Gold 6126 2.60GHz
machines with 96GB RAM and a wall-time limit of 10
hours. For both applications, we use MRF as probabilistic
models for Pr(θ), which can be seen in the next section.
For a fair comparison, once a solution x is generated by
either algorithm, we use an exact weighted counter ACE
Barton et al. [2016] to evaluate Eθ∼Pr(θ) f (x,θ) exactly. All
objective values reported here are from ACE.

C.1 SETTINGS OF STOCHASTIC INVENTORY
MANAGEMENT

Taking into account of the storage constraint, the original
problem is equivalent to the following problem:

min
x≥0

max
µ≥0

Ed∼Pr(d)[G(x,d)]+µ(wT x−X). (15)

For inventory management problem, we assume each di can
take two different values, one corresponding to the high
demand one corresponding to the low demand. Then, we
introduce a new vector θ where θi = 1 means di is the high
value while θi = 0 otherwise. In the experiment we range n
from 10 to 100 increased by a step size of 10 and draw 10
instances for each setting. Under each setting, we draw every
ci uniformly from (0,5], hi uniformly from (0,10], sample
si uniformly drawn from (0,10] and let bi = ci + si. The two
values of each di are also uniformly drawn from (0,10]. We
model Pr(θ) as a MRF with several cliques. The variables
in each clique are highly correlated with each other. For a
problem with n products, we draw the number of cliques
uniformly from [n,2n]. The domain size of each clique φα

is chosen from the range of [1,6] at random. The potential
function of a clique involving l variables is in the form of
a table of size 2l . The i-th entry of this table, denoted as
vi, is modeled as vi = vi1 + vi2vi3, where vi1 is uniformly
drawn from (0,1), v3 uniformly from (10,1000) and binary
variable vi2 uniformly randomly drawn from {0,1}. Each
storage requirement wi is drawn from (0,10] uniformly at
random. The largest storage limit X is set to be 5n. We
also evaluate our method given different percentages of the
largest storage limit, which is shown in Figure 2 (middle). In
the SGD algorithm, x is initialized with the absolute value



of a Gaussian random variable from N (5,3) to ensure it is
non-negative.

In terms of the parameters in XOR-Sampling we fix P =
100,b = 7,ε = 0.01 and the others the same as in Ermon
et al. [2013b] to guarantee ρκ =

√
2. Learning rate t is 0.1

at first and divided by 10 after 50 iterations, then further
divided by 10 after 100 iterations. η is 10 at first and divided
by 10 after 50 iterations, then further divided by 10 after
100 iterations. The total number of both K and M are set to
be 200. However, since we run each algorithm on one single
core with a wall-time limit of 10 hours for a fair comparison,
not all algorithms can complete all iterations. The plots are
based on the best results found by each algorithm within the
time limit.

C.2 SETTINGS OF STOCHASTIC NETWORK
DESIGN

The task in equation 8 is equivalent to solving the following
problem:

min
∆g≥0

max
µ≥0

Eθ∼Pr(θ)[C(g+∆g,θ)]+µ(∑
e∈E

ce∆ge−B).

(16)

Because of the convexity of C(g+∆g,θ) and strong duality,
both problems have the same optimal solution.

We test our algorithm on a real-world problem, the so-called
Flood Preparation problem for the emergency medical ser-
vices (EMS) on road networks Wu et al. [2016]. The prob-
lem setup, including the graph structure and the definition of
Pr(θ), are the same as that in Wu et al. [2016]. The original
network is unweighted, hence we set the initial conductance
value for each edge as 1. ce is initialized uniformly from the
range (0,10). The largest budget size B is 1000. We evaluate
our method varying the percentage allowed of the largest
budget size, which is shown in Figure 3 (middle). In the
experiment, each entry of ∆g is initialized with the absolute
value of a Gaussian random variable from N (0,1). Total
number of SGD iterations is 2000, while not all algorithms
can complete all 2000 iterations within the time limit of
10 hours. The experimental results reported in the plots are
based on the best solutions found by each algorithm within
the time limit. Learning rate t is 1 at first and divided by
10 after 20 iterations, further by 10 after 100 iterations. Pa-
rameters in XOR-Sampling are set to be the same as in the
inventory management problem.

The left figure in Figure 3 shows the percentage of savings
between SGD with other sampling methods and XOR-SGD
among all of the 4 different networks, while the middle
and the right figures show the averaged commuting time
with regard to different budget sizes and different number
of samples, respectively. For the left and the middle figures,
we let XOR-SGD take 100 samples in each iteration while

SGD with other methods take 10,000. We can see from the
left figure that objective optimized by XOR-SGD is at least
5% better than that optimized by other methods for all the 4
different networks. In addition, from the middle and the right
figures we know that with the increase of either budget size
or the number of samples, our method can find consistently
better solutions than the compared methods. In particular,
from the right figure we can see even 40 samples in each
iteration are enough for XOR-SGD to compete with the
result from Gibbs with 20,000 samples. Meanwhile, XOR-
SGD also runs faster than the compared method under this
situation. In this experiment, XOR-SGD with 40 samples
take 1 minutes 40 seconds per SGD iteration, while SGD
with 20,000 Gibbs samples need 2.5 minutes per iteration.
Since sampling time of both BP and BPChain is no shorter
than Gibbs Sampling, we thus conclude that XOR-SGD
outperforms other methods both in efficiency and in the
quality of solutions found.
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