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Abstract. Consider the cubic nonlinear Schrödinger equation set on a d-dimensional torus, with
data whose Fourier coefficients have phases which are uniformly distributed and independent. We
show that, on average, the evolution of the moduli of the Fourier coefficients is governed by the
so-called wave kinetic equation, predicted in wave turbulence theory, on a nontrivial timescale.
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1. Introduction

1.1. The Kinetic Equation. The central theme in the theory of non-equilibrium statistical
physics of interacting particles is the derivation of a kinetic equation that describes the distribution
of particles in phase space. The main example here is Boltzmann’s kinetic theory: rather than
looking at the individual trajectories of N -point particles following N−body Newtonian dynam-
ics, Boltzmann derived a kinetic equation that described the effective dynamics of the distribution
function in a certain large-particle limit (so-called the Boltzmann-Grad limit).

A parallel kinetic theory for waves, being as fundamental as particles, was proposed by physicists in
the past century. Much like the Boltzmann theory, the aim is to understand the effective behavior
and energy-dynamics of systems where many waves interact nonlinearly according to time-reversible
dispersive or wave equations. The theory predicts that the macroscopic behavior of such nonlinear
wave systems is described by a wave kinetic equation that gives the average distribution of energy
among the available wave numbers (frequencies). Of course, the shape of this kinetic equation
depends directly on the particular dispersive system/PDE that describes the reversible microscopic
dynamics.

The aim of this work is to start the rigorous investigation of such passage from a reversible nonlinear
dispersive PDE to an irreversible kinetic equation that describes its effective dynamics. For this,
we consider the cubic nonlinear Schrödinger equations on a generic torus of size L (with periodic
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boundary conditions) and with a parameter λ > 0 quantifying the importance of nonlinear effects
(or equivalently via scaling, the size of the initial datum):




i∂tu−∆βu = −λ2|u|2u, x ∈ TdL = [0, L]d,

u(0, x) = u0(x).
(NLS)

The spatial dimension is d ≥ 3. Here, and throughout the paper, we denote

∆β :=
1

2π

d∑

i=1

βi∂
2
i ,

where β := (β1, . . . , βd) ∈ [1, 2]d, and we denote ZdL := 1
LZ

d, the dual space to TdL.

Typically in this theory, the initial data are randomly distributed in an appropriate fashion. For
us, we consider random initial data of the form

u0(x) =
1

Ld

∑

k∈ZdL

√
φ(k)e2πi[k·x+ϑk(ω)], (1.1)

for some nice (smooth and localized) deterministic function φ : Rd → [0,∞). The phases ϑk(ω)
are independent random variables, uniformly distributed on [0, 1]. Notice that the normalization
of the Fourier transform is chosen so that

‖u0‖L2 ∼ 1.

Filtering by the linear group and expanding in Fourier series, we write

u(t, x) =
1

Ld

∑

k∈ZdL

ak(t)e
2πi[k·x+tQ(k)], where Q(k) :=

d∑

i=1

βi(ki)
2. (1.2)

The main conjecture of wave turbulence theory is that as L → ∞ (large box limit) and λ2

Ld
→ 0

(weakly nonlinear limit), the quantity

ρLk (t) = E|ak(t)|2

converges to a solution of a kinetic equation. More precisely, it is conjectured that, as L → ∞,

t → ∞ and λ2

Ld
→ 0, then ρLk (t) ∼ ρ(t, k), where ρ : R × Rd → R+ satisfies the wave kinetic

equation



∂tρ = 1

τ T (ρ) = 1
τ

´
(Rd)3

δ(Σ)δ(Ω)
∏3
i=0 ρ(ki)

[∑3
i=0

(−1)i

ρ(ki)

]∏3
i=0 dki,

ρ(0, k) = φ(k).

(WKE)

where τ ∼
(
Ld

λ2

)2
, we introduced the convention k0 = k and the notation

{
Σ = Σ(k, k1, . . . , k3) =

∑3
i=0(−1)iki

Ω = Ω(k, k1, . . . , k3) =
∑3

i=0(−1)iQ(ki),

and finally δ(Σ)δ(Ω) is to be understood in the sense of distributions: δ(Σ) is just the convolution
integral over k1 − k2 + k3 = k, whereas δ(Ω = 0) := limε→0

´
ϕ(Ω

ε )dk1dk2dk3 for some ϕ ∈ C∞c (R)
with

´
ϕ = 1. Note that this is absolutely continuous to the surface measure through the formula

δ(Ω) = 1
|∇Ω|dµΩ, with dµΩ being the surface measures on {Ω = 0}.
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1.2. Background. In the physics literature, the wave kinetic equation (WKE) was first derived by
Peierls [33] in his investigations of solid state physics; it was discovered again by Hasselmann [23, 24]
in his work on the energy spectrum of water waves. The subject was revived and systematically
investigated by Zakharov and his collaborators [38], particularly after the discovery of special power-
type stationary solutions for the kinetic equation that serve as analogs of the Kolmogorov spectra
of hydrodynamic turbulence. These so-called Kolmogorov-Zakharov spectra predict steady states
of the corresponding microscopic system (possibly with forcing and dissipation at well-separated
extreme scales), where the energy cascades at a constant flux through the (intermediate) frequency
scales. Nowadays, wave turbulence is a vibrant area of research in nonlinear wave theory with
important practical applications in several areas including oceanography and plasma physics, to
mention a few. We refer to [31, 32] for recent reviews.

The analysis of (WKE) is full of very interesting questions, see [16, 22, 34] for recent develop-
ments, but we will focus here on the problem of its rigorous derivation. Several partial or heuristic
derivations have been put forward for (WKE), or the closely related quantum Boltzmann equa-
tions [1, 2, 3, 13, 10, 17, 28, 30, 36]. However, to the best of our knowledge, there is no rigorous
mathematical statement on the derivation of (WKE) from random data. The closest attempt in
this direction is due to Lukkarinen and Spohn [29], who studied the large box limit for the discrete
nonlinear Schrödinger equation at statistical equilibrium (corresponding to a stationary solution to
(WKE)).

In preparation for such a study, one can first try to understand the large box and weakly nonlinear
limit of (NLS) without assuming any randomness in the data. In the case where (NLS) is set on a
rational torus, it is possible to extract a governing equation by retaining only exact resonances [18,
21, 20, 6]. The limiting equation is then Hamiltonian and dictates the behavior of the microscopic
system (NLS on TdL) on the timescales L2/λ2 (up to a log loss for d = 2) and for sufficiently small
λ. It is worth mentioning that such a result is not possible if the equation is set on generic tori,
since most of the exact resonances are destroyed there.

Finally, we point out that there are very few instances where the derivation of kinetic equations
has been done rigorously. The fundamental result of Lanford [27], later clarified in [19], deals
with the N -body Newtonian dynamics, from which emerges, in the Grad limit, the Boltzmann
equation. This can be understood as a classical analog of the rigorous derivation on (WKE).
Another instance of such success was the case of random linear Schrödinger operators (Anderson’s
model) [12, 14, 15, 35]. This can be understood as a linear analog of the problem of rigorously
deriving (WKE).

1.3. The difficulties of the problem. There are several difficulties in proving the validity of
(WKE) which we now enumerate:

(a) The textbook derivation of the wave kinetic equation is done under the assumption that the
independence of the data propagates for all time. This assumption cannot be verified for any
nonlinear model. A way around this difficulty is to Taylor expand the profile ak in terms of the
initial data. Such an expansion can be represented by Feynman trees, and permits us to utilize
the statistical independence of the data in computing the expected value of |ak|2. Moreover
one needs to control the errors in such an expansion to derive the kinetic equation (WKE).
These calculations are presented in Sections 4 and 5.

(b) The wave kinetic equation induces an O(1) change on its initial configuration at a timescale
of τ . Thus we need to establish that for solutions of (NLS), the expansion mentioned above
converge up to time τ . This requires a local existence result on a timescale which is several
orders of magnitude longer than what is known. This shortcoming is a main reason why our
argument cannot reach the kinetic timescale τ , and we have to contend with a derivation
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over timescales where the kinetic equation only affects a relatively small change on the initial
distribution, and as such coincides (up to negligible errors) with its first time-iterate.

Therefore, a pressing issue is to increase the length of the time interval [0, T ], over which
the Taylor expansion gives a good representation of solutions to the nonlinear problem. For
deterministic data, the best known results that give effective bounds in terms of L come from
our previous work [6] which gives a description of the solution up to times ∼ L2/λ2 (up to a
logL loss for d = 2) and for λ� 1. Such timescale would be very short for our purposes.

To increase T , we have to rely on the randomness of the initial data. Roughly speaking, for
a random field that is normalized to 1 in L2(TdL), its L∞ norm can be heuristically bounded

on average by L−d/2. Therefore, regarding the nonlinearity λ2|u|2u as a nonlinear potential
V u with V = λ2|u|2 and ‖V ‖L∞ . λ2L−d, one would hope that this should get a convergent
expansion on an interval [0, T ] provided that Tλ2L−d � 1, which amounts to T ≤ √τ . This
is the target in this manuscript.

The heuristic presented above can be implemented by relying on Khinchine-type improvements
to the Strichartz norms of a linear solution eit∆βu0 with random initial data u0. Similar im-
provements have been used to lower the regularity threshold for well-posedness of nonlinear
dispersive PDE. Here, the aim is to prolong the existence time and improve the Taylor ap-
proximation. The randomness gives us better control on the size of the linear solution over
the interval [0, T ], while an improved deterministic Strichartz estimate for ‖eit∆βψ‖Lp([0,T ]×Td)

with ψ ∈ L2(Td), allows us to maintain the random improvement for the nonlinear problem.
The genericity of the (βi) is crucial (as was first observed in [11]), and allows us to go be-

yond the limiting T 1/p growth that occurs on the rational torus. Unfortunately, the available
estimates here (including those in [11]) are not optimal for some ranges of the parameters λ
and L, which is why, in d = 3, our result in Theorem 1.1 below falls short of the timescale√
τ ∼ L3/λ.

(c) To derive the kinetic equation in the large box limit, using the expansion for ρLk (t) = E|ak(t)|2,
one has to prove equidistribution theorems for the quasi-resonances over a very fine scale, i.e.,
T−1. Since T could be � L2, such scales are much finer than the any equidistribution scale
on the rational torus. Again, here the genericity of the (βi) is crucial. For this we use and
extend a recent result of Bourgain on pair correlation for irrational quadratic forms [5].

1.4. The main result. Precise statements of our results in arbitrary dimensions d ≥ 3 will be
given in Section 2. Those statements depend on several parameters coming from equidistribution
of lattice points and Strichartz estimates. For the purposes of this introductory section, we present
a less general theorem without the explicit appearance of these parameters.

Theorem 1.1. Consider the cubic (NLS) on the three-dimensional torus T3
L. Assume that the

initial data are chosen randomly as in (1.1). There exists δ > 0 such that the following holds for L
sufficiently large and L−A ≤ λ ≤ LB (for positive A and B):

E|ak(t)|2 = φ(k) +
t

τ
T (φ)(k) +O`∞

(
L−δ

t

τ

)
, Lδ ≤ t ≤ T, (1.3)

where τ = 1
2

(
L3

λ2

)2
and T ∼ L3−γ

λ2
, for some 0 < γ < 1 stated explicitly in Theorem 2.2.

We note that the right-hand side of (1.3) is nothing but the first time-iterate of the wave kinetic
equation (WKE) with initial data φ (cf. (1.1)) which coincides (up to the error term in (1.3)) with
the exact solution of the (WKE) over long times scales, but shorter than the kinetic timescale
τ .
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The proof this theorem can be split into three components:

(1) Section 4: Feynman tree representation. In this section we derive the Taylor expansion of the
nonlinear solution in terms of the initial data. Roughly speaking, we write the Fourier modes
of the nonlinear solution ak(t) (see (1.2)) as follows:

ak(t) =
N∑

n=0

Jn(t, k)(a(0)) +RN+1(t, k)(a(t)),

where Jn are sums of monomials of degree 2n + 1 in the initial data a(0), and RN is the
remainder which depends on the nonlinear solution a(t). Each term of Jn can be represented
by a Feynman tree which makes the calculations of E(JnJn′) more transparent. Such terms
appear in the expansion of E|ak|2. The estimates in this section rely on essentially sharp bounds
on quasi-resonant sums of the form

∑

~k∈ZrdL

1(|~k| . 1)1(|Q(k)| ∼ 2−A) . 2−ALrd (1.4)

where 1(S) denotes the characteristic function of a set S and Q is an irrational quadratic form.
Since A will be taken large 2A ∼ T � L2, such estimates belong to the realm of number theory
and will be a consequence the third component of this work.

The bounds we obtain for such interaction are good up to times of order
√
τ which is sufficient

given the restrictions on the time interval of convergence imposed by the second component
below.

(2) Section 5: Construction of solutions. In this section we construct solutions on a time interval
[0, T ] via a contraction mapping argument. To maximize T while maintaining a contraction, we
rely on the Khinchine improvement to the space-time Strichartz bounds, as well as the long-time
Strichartz estimates on generic irrational tori proved in [11]. It is here that our estimates are
very far from optimal, since there is no proof to the conjectured optimal Strichartz estimates.

(3) Section 8: Equidistribution of irrational quadratic forms. The purpose of this section is two-
fold. The first is proving bounds on quasi-resonant sums like those in (1.4) for the largest
possible T , and the second is to extract the exact asymptotic, with effective error bounds,
of the leading part of the sum. It is this leading part that converges to the kinetic equation
collision kernel as L→∞.

Here we remark, that if Q is a rational form, then the largest A for which one could hope for an
estimate like (1.4) is 2A ∼ L2 which reflects the fact that a rational quadratic form cannot be
equidistributed at scales smaller than L−2 (at the level of NLS, it would yield a time interval
restriction of T . L2 for the rational torus). However, for generic irrational quadratic forms,
Q is actually equidistributed at much finer scales than L−2. Here, we adapt a recent work of
Bourgain [5] which will allow us to reach equidistribution scales essentially up to L−d.

1.5. Notations. In addition to the notation introduced earlier for TdL = [0, L]d and ZdL = 1
LZ

d, we

use standard notations. A function f on TdL and its Fourier transform f̂ on ZdL are related by

f(x) =
1

Ld

∑

ZdL

f̂ke
2πik·x and f̂k =

ˆ

TdL

e−2πik·xf(x) dx.

Parseval’s theorem becomes

‖f‖2
L2(TdL)

= ‖f̂‖2
`2L(ZdL)

=
1

Ld

∑

k∈ZdL

|f̂k|2.



6 T. BUCKMASTER, P. GERMAIN, Z. HANI, J. SHATAH

We adopt the following definition for weighted `p spaces: if p ≥ 1, s ∈ R, and b ∈ `p,

‖b‖`p,sL (ZdL) =


 1

Ld

∑

k∈ZdL

(〈k〉s|bk|)p



1/p

.

Sobolev spaces Hs(Td) are then defined naturally by

‖f‖Hs(Td) = ‖〈k〉sf̂‖`2,s(ZdL).

For functions defined on Rd, we adopt the normalization

f(x) =

ˆ

Rd

e2πiξ·xf̂(ξ) dξ and f̂(ξ) =

ˆ

Rd

e−2πik·xf(x) dx.

We denote by C any constant whose value does not depend on λ or L. The notation A . B means

that there exists a constant C such that A ≤ CB. We also write A . Lr
+
B, if for any ε > 0 there

exists Cε such that A ≤ CεL
r+εB. Similarly A & Lr

−
B, if for any ε > 0 there exists Cε such that

A ≥ CεLr−εB. Finally we use the notation u = OX(B) to mean ‖u‖X . B.

We would like to thank Peter Sarnak for pointing us to unpublished work by Bourgain [5]. This
reference helped us improve an earlier version of our work. We also would like to thank Peter and
Simon Myerson for many helpful and illuminating discussions.

2. The general result

We start by writing the equations for the interaction representation (ak(t))k∈ZdL
, given in (1.2):





iȧk = −
(
λ
Ld

)2 ∑
(k1,...,k3)∈(ZdL)3

k−k1+k2−k3=0

ak1ak2ak3e
−2πitΩ(k,k1,k2,k3)

ak(0) = a0
k =

√
φ(k)eiϑk(ω),

(2.1)

where we recall Ω(k, k1, k2, k3) = Q(k) − Q(k1) + Q(k2) − Q(k3), and ϑk(ω) are i.i.d. random
variables that are uniformly distributed in [0, 2π]. Our results depend on two parameters: the
equidistribution parameter ν, and a Strichartz parameter θp, which we now explain.

2.1. The Equidistribution parameter ν. The interaction frequency Ω(k, k1, k2, k3) above is an
irrational quadratic form. Such quadratic forms can be equidistributed at scales that are much
smaller than the finest scale ∼ L−2 of rational forms.

We will denote by ν the largest real number such that for all k ∈ ZdL, |k| ≤ 1, and ε > 0, there

exists δ > 0 such that, for |a|, |b| < 1 with b− a ≥ L−ν− ,
∑

a≤Ω(k,k1,k2,k3)≤b
|k1|,|k2|,|k3|≤1
k−k1+k2−k3=0

1 = (1 +O(L−δ))L2d

ˆ

|k1|,|k2|,|k3|≤1

1a≤Ω(k,k1,k2,k3)≤bδ(k − k1 + k2 − k3) dk1 dk2 dk3.

Proposition 2.1. With the above definition for ν, we have

(i) If βi = 1 for all i ∈ {1, . . . , d}, ν = 2.

(ii) If the βi are generic, ν = d.

Proof. The first assertion is classical, e.g., see [6]. The second assertion is proved in Section 8. �
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2.2. The Strichartz parameter θd. Our proof relies on long-time Strichartz estimates, which
are used to maintain linear bounds for the nonlinear problem. The genericity of the β’s gives
crucial improvements from the rational case. The improved estimates for generic β’s were proved
in [11],

‖eit∆βPNψ‖Lpt,x([0,T ]×Td) . N
d
2
− d+2

p

(
1 +

T

Nγ(d,p)

)1/p

‖ψ‖L2(Td)

for some 0 ≤ γ(d, p) ≤ d − 2. The Nγ term can be thought of as the time it takes for a focused
wave with localized wave number ≤ N , to focus again. For the rational torus γ = 0.

Here we only need to use the L4
t,x([0, T ]× TdL) norm, and therefore we introduce a parameter θd to

record how the constant in the L4
t,x([0, T ]× TdL) estimates depends on L. By scaling, the result in

[11] translates into,

‖eit∆βPk≤1ψ‖L4
t,x([0,T ]×TdL) . L

0+
(

1 +
T

Lθd

)1/4

‖ψ‖L2(TdL) (2.2)

where θd :=

{
4
13 + 2, d = 3
(d−2)2

2(d−1) + 2, d ≥ 4.

2.3. The approximation theorem. With these parameters defined, we state the approximation
theorem for the cubic NLS in dimension d ≥ 3 and generic β’s.

Theorem 2.2. Assume the β’s are generic and d ≥ 3. Let φ0 : Rd → R+, a rapidly decaying smooth
function. Suppose that ak(0) =

√
φ(k)eiϑk(ω) where ϑk(ω) are i.i.d. random variables uniformly

distributed in [0, 2π]. For every ε0, a sufficiently small constant, and L > L∗(ε0) sufficiently large,
the following holds:

There exists a set Eε0,L of measure P(Eε0,L) ≥ 1 − e−Lε0 such that: if ω ∈ Eε0,L , then for any

L > L∗(ε0), the solution ak(t) of (NLS) exists in CtH
s([0, T ]× TdL) for

T ∼
{
λ−2L

d+θd
2
−4ε0 if L

−d+θd
4 . λ . L

d−θd
4
−2ε0 ,

λ−4Ld−8ε0 if λ ≥ L
d−θd

4
−2ε0 .

Moreover,

E
[
|ak(t)|21Eε0,L

]
= φ(k) +

t

τ
T3(φ)(k) +O`∞

(
L−ε0

t

τ

)
, Lε0 ≤ t ≤ T, and τ =

L2d

2λ4
.

For d = 3, 4, the solutions exist globally in time [4, 26], and one has the same estimate without
multiplying with 1Eε0 inside the expectation.

Here we note that the error could be controlled in a much stronger norm than `∞, and that other
randomizations of the data are possible (complex Gaussians for instance) without any significant
changes in the proof.

3. Formal derivation of the kinetic equation

In this section, we present the formal derivation of the kinetic equation, whose basic steps we shall
follow in the proof. The starting point is equation (2.1) integrated in time,
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ak(t) = a0
k +

iλ2

L2d

tˆ

0

∑

(k1,k2,k3)∈(ZdL)3

k−k1+k2−k3=0

ak1ak2ak3e
−2πisΩ(k,k1,k2,k3) ds (3.1)

The derivation of the kinetic equation proceeds as follows:

Step 1: expanding in the data. Noting the symmetry in (3.1) in the variables k1 and k3, we have
upon integrating by parts twice, and substituting (2.1) for ȧk,

ak(t) =a0
k (3.2a)

+
λ2

L2d

∑

k−k1+k2−k3=0

a0
k1a

0
k2
a0
k3

1− e−2πitΩ(k,k1,k2,k3)

2πΩ(k, k1, k2, k3)
(3.2b)

+ 2
λ4

L4d

∑

k−k1+k2−k3=0
k1−k4+k5−k6=0

a0
k4a

0
k5
a0
k6a

0
k2
a0
k3

1

2πΩ(k, k1, k2, k3)

[
e−2πitΩ(k,k4,k5,k6,k2,k3) − 1

2πΩ(k, k4, k5, k6, k2, k3)
− e−2πitΩ(k1,k4,k5,k6) − 1

2πΩ(k1, k4, k5, k6)

]
(3.2c)

+
λ4

L4d

∑

k−k1+k2−k3=0
k2−k4+k5−k6=0

a0
k1a

0
k4
a0
k5a

0
k6
a0
k3

1

2πΩ(k, k1, k2, k3)

[
e−2πitΩ(k,k1,k4,k5,k6,k3) − 1

2πΩ(k, k1, k4, k5, k6, k3)
− e−2πitΩ(k2,k4,k5,k6) − 1

2πΩ(k2, k4, k5, k6)

]
(3.2d)

+ {higher order terms}. (3.2e)

where we denoted Ω(k, k1, k2, k3, k4, k5) = Q(k) +
∑5

i=1(−1)iQ(ki); we also used the convention

that, if a = 0, e2πita−1
2πa = it, while, if a = b = 0, 1

2πa

(
e2πit(a+b)−1

2π(a+b) − e2πita−1
2πa

)
= −1

2 t
2.

Step 2: parity pairing. We now compute E|ak|2, where the expectation E is understood with respect
to the random phases (random parameter ω). The key observation is,

E(a0
k1 . . . a

0
ksa

0
`1
. . . a0

`s
) =

{
φk1 . . . φks if there exists a γ such that kγ(i) = `i
0 otherwise.

(for k ∈ ZdL, we write φk = φ(k)). Computing E
(
|ak|2

)
with the help of the above formula, we see

that, there are no terms of order λ2. There are two kinds of terms of order λ4 obtained as follows:
either by pairing the term of order λ2, namely (3.2b), with its conjugate, or by pairing one of the
terms of order λ4, (3.2c) or (3.2d), with the term of order 1, namely a0

k. Overall, this leads to

E|ak|2(t) = φk +
2λ4

L4d

∑

k−k1+k2−k3=0

φkφk1φk2φk3

[ 1

φk
− 1

φk1
+

1

φk2
− 1

φk3

]∣∣∣sin(tπΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣
2

+ {higher order terms}+ {degenerate cases},
where degenerate cases occur for instance if k, k1, k2, k3 are not distinct1. The details of the
computation are as follows:

1Degenerate cases, like higher order terms, have smaller order of magnitude, on the timescales we consider as will
be illustrated in Section 4.
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(a) Consider first E|(3.2b)|2 = E(3.2b)(3.2b), and denote k1, k2, k3 the indices in (3.2b) and

k′1, k
′
2, k
′
3 the indices in (3.2b). There are two possibilities:

• {k1, k3} = {k′1, k′3}, in which case k2 = k′2, and Ω(k, k1, k2, k3) = Ω(k, k′1, k
′
2, k
′
3).

• (k2 = k1 or k3) and (k′2 = k′1 or k′3), in which case Ω(k, k1, k2, k3) = Ω(k, k′1, k
′
2, k
′
3) = 0.

Overall, we find, neglecting degenerate cases (which occur if k, k1, k2, k3 are not distinct),

E|(3.2b)|2 =
2λ4

L4d

∑

k−k1+k2−k3=0

φk1φk2φk3

∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

+
4λ4

L4d
t2
∑

k1,k3

φkφk1φk2 .

(b) Consider next the pairing of a0
k with (3.2c), which contributes 2ERe

[
(3.2c)a0

k

]
. The possible

pairings are

• {k, k2} = {k4, k6}, implying k3 = k5, and leading to Ω(k1, k4, k5, k6) = −Ω(k, k1, k2, k3),
and Ω(k, k4, k5, k6, k2, k1) = 0.

• (k3 = k2 or k) and (k5 = k4 or k6) in which case Ω(k, k1, k2, k3) = Ω(k1, k4, k5, k6) = 0.

This gives, neglecting degenerate cases,

2ERe
[
a0
k(3.2c)

]
=

8λ4

L4d
×

∑

k−k1+k2−k3=0

φkφk2φk3Re

[
e−2πitΩ(k,k1,k2,k3) − 1

4π2Ω(k, k1, k2, k3)2

]
− 8λ4

L4d
t2
∑

k1,k3

φkφk2φk3

= −2λ4

L4d

∑

k−k1+k2−k3=0

φkφk1φk2φk

[
1

φk1
+

1

φk3

] ∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

− 8λ4

L4d
t2
∑

k1,k3

φkφk2φk3 ,

where we used in the last line the symmetry between the variables k1 and k3, as well as the
identity Re(eiy − 1) = −2| sin(y/2)|2, for y ∈ R.

(c) Finally, the pairing of a0
k with (3.2d) can be discussed similarly, to yield

2ERe
[
a0
k(3.2d)

]
=

2λ4

L4d

∑

k−k1+k2−k3=0

φkφk1φk3

∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

+
4λ4

L4d
t2
∑

k1,k3

φkφk2φk3 ,

Summing the above expressions for E|(3.2b)|2, 2ERe
[
a0
k(3.2c)

]
and 2ERe

[
a0
k(3.2d)

]
gives the

desired result.

Step 3: the big box limit L→∞. Assuming that Ω(k, k1, k2, k3) is equidistributed on a scale

L−ν � 1

t
, (3.3)

we see that, as L→∞,

∑

k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

] ∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

∼

L2d

ˆ
δ(Σ)φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

] ∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1 dk2 dk3.
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Step 4: the large time limit t→∞ Observe that2
´ (sinx)2

x2
dx = π2, so that, in the sense of distri-

butions,
∣∣∣∣
sin(πtΩ)

πΩ

∣∣∣∣
2

∼ tδ(Ω) as t→∞.

Therefore, as t→∞,

∑

k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

] ∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

∼ tL2d

ˆ
δ(Σ)δ(Ω)φ(k)φ(k1)φ(k2)φ(k3)

[
1

φ(k)
− 1

φ(k1)
+

1

φ(k2)
− 1

φ(k3)

]
dk1 dk2 dk3

= tL2dT (φ, φ, φ).

Conclusion: relevant timescales for the problem. Overall, we find, assuming that the above limits
are justified

E|ak|2(t) = φk + 2
λ4

L2d
tT (φ, φ, φ) + {lower order terms}. (3.4)

This suggests that the actual timescale of the problem is

τ =
L2d

2λ4
,

and that, setting s = t
τ , the governing equation should read

∂sφ = T (φ, φ, φ) (3.5)

In which regime is this approximation expected? Let T be the timescale over which we consider
the equation.

• In order for (3.4) to hold, the condition (3.3) has to hold, and the limits L→∞ and T →∞
have to be taken: one needs

T � Lν , L� 1, and T � 1.

• In order for the nonlinear evolution of (3.5) to affect an O(κ) change on the initial data,
the two conditions above should be satisfied; in addition T should be of the order of κτ
(equivalently s ∼ κ). Thus we find the conditions

1� T ≈ κτ � Lν and κ
1
4Ld/2 � λ� κ

1
4Ld/2−ν/4.

4. Feynman trees: bounding the terms in the expansion

Since we are considering the problem with rapidly decaying φ, then the rapid decay of φ yields

all the bounds one needs for wave numbers |k| ≥ L0+ , thus we might as well consider φ to be
compactly supported.

2This follows from Plancherel’s theorem, and the fact that the Fourier transform of 1
π

sin x
x

is the characteristic

function of [− 1
2π
, 1
2π

].
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4.1. Expansion of the solution in the data. We follow mostly the notations in Lukkarinen-
Spohn [29], Section 3 (see also [9]).

The iterates of φ, considered in the previous section, can be represented through trees (at least up
to lower order error terms). To explain these trees, let us start with the equation satisfied by the
amplitude of the wave number ak

ak(t) = a0
k +

iλ2

L2d

tˆ

0

∑

(k1,k2,k3)∈(ZdL)3

k−k1+k2−k3=0

ak1ak2ak3e
−2πisΩ(k,k1,k2,k3) ds,

ak(t) = a0
k +

iλ2

L2d

tˆ

0

P3(a)(s)e−2πisΩ ds.

where the subscript in P3 is to indicate that it is a monomial of degree 3, and where we suppressed
the k dependence for convenience. The expansion can be obtained by integrating by parts on the
oscillating factor e−2πisΩ. Thus the first integration by parts gives the cubic expansion,

ak(t) = a0
k +

iλ2

L2d
P3(a)(0)F t0 +

iλ2

L2d

tˆ

0

Ṗ3(a)(s)F ts ds, F ts :=

tˆ

s

e−2πiτΩdτ .

Using the equation for a, we see that Ṗ3(a) consists of three monomials of degree 5, and if we
denote on of them by P5, then the integral term consists of three integrals of the type,

(
iλ2

L2d

)2 tˆ

0

P5(a)(s)e−2πisΩF ts ds.

Another integration by parts gives the quintic expansion, which consist of three terms of the
form

(
iλ2

L2d

)2

P5(a)(0)Gt0 +

(
iλ2

L2d

)2 tˆ

0

Ṗ5(a)(s)Gts ds, Gts =

tˆ

s

e−2πiτΩF tτ dτ .

Consequently, to compute the expansion to order N we need to integrate by parts N times on the
oscillating exponentials, giving the expansion,

ak(t) =

N∑

n=0

Jn(t, k)(a(0)) +RN+1(t, k)(a(t)), (4.1)

where Jn =
∑
`

Jn,`, and each Jn,` is a monomial of degree 2n+ 1 generated by the nth integration

by parts. The index ` is a vector whose entries keep track of the history of how the monomial Jn,`
was generated. RN+1 is the remaining time integral.

Each Jn,` can be represented by a tree similar to Figure 1 below. which we now explain.

The trees will be constructed in reverse order of their usage. Therefore the labeling of the wave
numbers will be done backwards: n− j, 0 ≤ j ≤ n.

The tree corresponding to Jn,`, is given as follows.

• There are n + 1 levels in the tree, the bottom level is the 0th level. Descending from the top to
the bottom, each level is generated from the previous level by an integration by parts step. Thus
level j represents the terms present after n− j integration by parts.
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k3,1

k1,1

k0,1 k0,2 k0,3 k0,4 k0,6 k0,7k0,5

k2,1

k1,2 k1,3 k1,4 k1,5

k2,2 k2,3

s3

s0

s1

s2

+

− +

+

+++

�` = �1
<latexit sha1_base64="jT27yKM+lb1PtAT+SxuuckdC07c=">AAACDHicbVDLSsNAFJ3UV61Wq126CRbBhZakLnQjFNy4rGAf0IQymdy2Q2eSMDMRQ8gHuPFX3LhQxK0f4M6PEZy0XWjrgWHOnHsuc+/xIkalsqwvo7Cyura+UdwsbW2Xd3Yre/sdGcaCQJuELBQ9D0tgNIC2oopBLxKAuceg602u8nr3DoSkYXCrkghcjkcBHVKClZYGlZrjhffgp46kI44HqX4yXyZcXw4wll2e2pl2WXVrCnOZ2HNSaxpO9bu8nrQGlU/HD0nMIVCEYSn7thUpN8VCUcIgKzmxhAiTCR5BX9MAc5BuOl0mM4+04pvDUOgTKHOq/u5IMZf5gNrJsRrLxVou/lfrx2p44aY0iGIFAZl9NIyZqUIzT8b0qQCiWKIJJoLqWU0yxgITpfMr6RDsxZWXSadRt8/qjRudxgmaoYgO0CE6RjY6R010jVqojQh6QE/oBb0aj8az8Wa8z6wFY95TRX9gfPwAokKeHQ==</latexit>

+

+ −

−+ +

−

−

−

`3 = 1, ⌦3
<latexit sha1_base64="Wt9sWSuTmKyRIh45sA9pv/xUKYY=">AAACBXicbVDJSgNBEO2JW4xb1KMeGoPgIYSZRNCLEPDizQhmgUwYajqVpEnPYndPIIRcvPgrXjwo4tV/8Obf2FkOmvig4PFeFVX1/FhwpW3720qtrK6tb6Q3M1vbO7t72f2DmooSybDKIhHJhg8KBQ+xqrkW2IglQuALrPv964lfH6BUPArv9TDGVgDdkHc4A20kL3vsohBeiV45eeo+JNCm7gDkbYBd8EpeNmcX7CnoMnHmJEfmqHjZL7cdsSTAUDMBSjUdO9atEUjNmcBxxk0UxsD60MWmoSEEqFqj6RdjemqUNu1E0lSo6VT9PTGCQKlh4JvOAHRPLXoT8T+vmejOZWvEwzjRGLLZok4iqI7oJBLa5hKZFkNDgElubqWsBxKYNsFlTAjO4svLpFYsOKVC8e48V87P40iTI3JCzohDLkiZ3JAKqRJGHskzeSVv1pP1Yr1bH7PWlDWfOSR/YH3+ABy/lv0=</latexit>

`2 = 3, ⌦2
<latexit sha1_base64="GMi8ewqZd1dNVrsRs31Ij2MP8RY=">AAACBXicbVDJSgNBEO2JW4xb1KMeGoPgIYSZRNCLEPDizQhmgUwYajqVpEnPYndPIIRcvPgrXjwo4tV/8Obf2FkOmvig4PFeFVX1/FhwpW3720qtrK6tb6Q3M1vbO7t72f2DmooSybDKIhHJhg8KBQ+xqrkW2IglQuALrPv964lfH6BUPArv9TDGVgDdkHc4A20kL3vsohBekV6V8tR9SKBN3QHI2wC74BW9bM4u2FPQZeLMSY7MUfGyX247YkmAoWYClGo6dqxbI5CaM4HjjJsojIH1oYtNQ0MIULVG0y/G9NQobdqJpKlQ06n6e2IEgVLDwDedAeieWvQm4n9eM9Gdy9aIh3GiMWSzRZ1EUB3RSSS0zSUyLYaGAJPc3EpZDyQwbYLLmBCcxZeXSa1YcEqF4t15rpyfx5EmR+SEnBGHXJAyuSEVUiWMPJJn8krerCfrxXq3PmatKWs+c0j+wPr8ARzPlv0=</latexit>

`1 = 2, ⌦1
<latexit sha1_base64="Y9MDcYUm8BoPGHmwSKzu/kRlLA0=">AAACBXicbVDJSgNBEO1xjXEb9aiHxiB4CGEmCnoRAl68GcEskAlDTaeSNOlZ7O4JhJCLF3/FiwdFvPoP3vwbO8tBEx8UPN6roqpekAiutON8W0vLK6tr65mN7ObW9s6uvbdfVXEqGVZYLGJZD0Ch4BFWNNcC64lECAOBtaB3PfZrfZSKx9G9HiTYDKET8TZnoI3k20ceCuG79KqYp95DCi3q9UHehtgB3/XtnFNwJqCLxJ2RHJmh7NtfXitmaYiRZgKUarhOoptDkJozgaOslypMgPWggw1DIwhRNYeTL0b0xCgt2o6lqUjTifp7YgihUoMwMJ0h6K6a98bif14j1e3L5pBHSaoxYtNF7VRQHdNxJLTFJTItBoYAk9zcSlkXJDBtgsuaENz5lxdJtVhwzwrFu/NcKT+LI0MOyTE5JS65ICVyQ8qkQhh5JM/klbxZT9aL9W59TFuXrNnMAfkD6/MHGBqW+g==</latexit>

level 0

level 2

level 1

level 3

Figure 1. tree of depth 3.

• kj,m denote the wave numbers present in level j, and therefore 1 ≤ m ≤ 2(n− j) + 1.

• kj,m has a parity σm due to complex conjugation. For m odd or even, σm = +1 or σm = −1
respectively.

akj,m,σm =




akj,m if σm = +1

akj,m if σm = −1
.

• For each level j, we associate a number `j , which signals out the wave number kj,`j which has 3

branches. This is the wave number of the a (or ā) that was differentiated by the jth integration
by parts. The index vector `, keeps track of the integration by parts history in the tree for Jn,`.
The entries `j , 1 ≤ j ≤ n, are given by

` = (`1, . . . , `n) ∈ {1, . . . , 2n− 1} × {1, . . . , 2n− 3} × · · · × {1, 2, 3} × {1}.

• The tree has a signature σ` =
∏n
j=1(−1)`j+1.

• Transition rules. To go from level j to level j − 1, the wave numbers are related as follows





kj,m = kj−1,m for m < `j

kj,m = kj−1,m+2 for `j < m

kj,`j = kj−1,`j − kj−1,`j+1 + kj−1,`j+2

(4.2)

Note that for any j,
∑2(n−j)+1

m=1 (−1)m+1kj,m = kn,1 = k. The wave numbers at level 0, i.e., those
present in Jn,`, are labeled

k = (k0,1, . . . , k0,2n+1) ∈ (ZdL)2n+1 .

• At each level j, the derivative of the element with wave number kj,`j (due to the integration by
parts), generates a oscillatory term with frequency

Ωj(k) = (−1)`j+1
(
Q(kj,`j )−Q(kj−1,`j ) +Q(kj−1,`j+1)−Q(kj−1,`j+2)

)
.
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• We introduce variables s = (s0, . . . , sn) ∈ Rn+1
+ ; tj(s) =

j−1∑
k=0

sk, 1 ≤ j ≤ n. This choice of

variables can be explained as follows. Repeated integration by parts generates terms of the form

tˆ

0

g0(s0)

tˆ

s0

g1(s1) . . .

tˆ

sn−2

gn−1(sn−1) =

tˆ

0

g0(s0)

t−s0ˆ

0

g1(s0 + s1) . . .

t−s0−···−sn−2ˆ

0

gn−1(s0 + · · ·+ sn−1)

which can be written asˆ
Rn+1
+

g0(s0)g1(s0 + s1) . . . gn−1(s0 + · · ·+ sn−1)δ(t−
n∑

l=0

sl)

With this notation at hand,

J0 = a0
k, J1 = J1,1 = (3.2b), J2 = J2,(1,1) + J2,(2,1) + J2,(3,1),

J2,(2,1) = (3.2d), J2,(1,1) = J2,(3,1) =
1

2
(3.2c),

and Figure 1 represents J3,(2,3,1). The general formula for Jn,` is given by

Jn,`(t,k) =

(
iλ2

L2d

)n
σ`

∑

k∈(ZdL)2n+1

δkkn,1

2n+1∏

j=1

a0
k0,j ,σj

ˆ

Rn+1
+

n∏

m=1

e−2πitm(s)Ωm(k)δ

(
t−

n∑

0

si

)
ds (4.3)

Here and throughout the manuscript we write

δkj =

{
1, k = j,

0, k 6= j,

while δ(·) is the Dirac delta.

Finally, we write Rn(t, k)(a) =
∑
`

t́

0

Rn,`(t, s0; k)(a(s0))ds0, where

Rn,`(t, s0; k)(b) =

(
iλ2

L2d

)n
σ`

∑

k∈(ZdL)2n+1

δkkn,1

2n+1∏

j=1

bk0,j ,σj

ˆ

Rn+

n∏

j=1

e−2πitj(s)Ωj(k)×

δ

(
t− s0 −

n∑

1

si

)
ds. (4.4)

4.2. Bound on the correlation. Our aim is to prove the following proposition.

Proposition 4.1. If t < Ld−ε0, then
∣∣∣∣∣∣
∑

n+n′=S

∑

`,`′

E(Jn,`(t, k)Jn′,`′(t, k))

∣∣∣∣∣∣
.S (log t)2

(
t√
τ

)S 1

t
. (4.5)

Remark 4.2. The trivial estimate would be that∣∣∣∣∣∣
∑

n+n′=S

∑

`,`′

E(Jn,`(t, k)Jn′,`′(t, k))

∣∣∣∣∣∣
.

(
t√
τ

)S
.
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Indeed, Jn,`Jn′,`′ comes with a prefactor
(
λ2

L2d

)n+n′

; the size of the domains where the time integra-

tion takes place is O(tn+n′); and the summation over k and k′ is over 2d(n+n′+1) dimensions, half
of which are canceled by the pairing (see below), out of which d further dimensions are canceled by

the requirement that kn,1 = k. Overall, this gives a bound
(
λ2

L2d

)n+n′

×tn+n′×Ld(n+n′) =
(

t√
τ

)n+n′

.

Therefore, the above proposition essentially allows a gain of 1
t over the trivial bound. This gain

of 1
t comes from cancelations in the “non degenerate interactions” as will be exhibited by equation

(4.13).

Before we start the proof of Proposition 4.1, we shall classify the transitions (4.2) as degenerate
if

kj,`j ∈ {kj−1,`j , kj−1,`j+2},
i.e., if the parallelogram with verticies (kj,`j , kj−1,`j−1, kj−1,`j , kj−1,`j+2) degenerates into a line. In
this case Ω`j (k) = 0. When all transitions in a tree that represents Jn,` are degenerate we denote

the term by Dn,`(t, k), and if one transition is non degenerate we denote it by J̃n,`(t, k), that
is

Jn,`(t, k) = J̃n,`(t, k) +Dn,`(t, k) (4.6)

Dn,`(t, k) =

(
iλ2

L2d

)n
σ`

∑

k∈(ZdL)2n+1

δkkn,1(1−∆(k))

2n+1∏

j=1

a0
k0,j ,σj

ˆ
Rn+1
+

δ
(
t−

n∑

0

si

)
ds

= 2n
tn

n!

(
iλ2

L2d

)n
σ`a

0
k

∑

k∈(ZdL)n

n∏

j=1

|a0
kj
|2, (4.7)

J̃n,`(t, k) =

(
iλ2

L2d

)n
σ`

∑

k∈(ZdL)2n+1

δkkn,1∆(k)
2n+1∏

j=1

a0
k0,j ,σj

ˆ

Rn+1
+

n∏

m=1

e−2πitm(s)Ωm(k)δ
(
t −

n∑

0

si

)
ds, (4.8)

where ∆(k) = 1−∏n
j=1 δ

kj,`j
{kj−1,`j+1,kj−1,`j+1+σj,`j

}. Note that ∆(k) = 1 whenever J̃n,`(t, k) 6= 0.

4.3. Cancellation of degenerate interactions. As can be seen from a simple computation in
the formula for Dn,`, the contribution of each E(Dn,`(t, k)Dn′,`′(t, k)) to the sum in (4.5) is of size

∼
(

t√
τ

)S
, which is too large. Luckily, all those terms cancel out as shows the lemma below.

Note that this cancellation between graph expectations is essentially due to the invariance of the
expectation E|ak|2 under Wick renormalization, which is a classical trick in the analysis of the
nonlinear Schrödinger equation that eliminates all degenerate interactions. However, working at
the level of graph expectations might be applicable in more general contexts.

Lemma 4.3. For any S ≥ 2
∑

n+n′=S

∑

`,`′

E(Dn,`(t, k)Dn′,`′(t, k)) = 0.

Proof. First we note that since each level in the tree has parity equal to 1, then

∑

`

σ` =
n∏

j=1

(parity of line j) = (1)n = 1 .
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Hence by equation (4.7)

∑

`

Dn,`(t, k) = 2n
tn

n!

(
iλ2

L2d

)n

 ∑

k∈(ZdL)n

n∏

j=1

|a0
kj
|2

 a0

k .

Thus we obtain

∑

n+n′=S

∑

`,`′

E(Dn,`(t, k)Dn′,`′(t, k)) = 2StS
(
λ2

L2d

)S

 ∑

k∈(ZdL)S

S∏

j=1

|a0
kj
|2

 |a0

k|2
( ∑

n+n′=S

in−n
′

n!n′!

)
.

The result will follow once we show that

∑

n+n′=S

in−n
′

n!n′!
= 0.

This follows by parametrizing the above sum as {(n, n′) = (S − j, j) : j = 0, . . . S}, which gives

∑

n+n′=S

in−n
′

n!n′!
= iS

S∑

j=0

(−1)j

(S − j)!j! =
iS

S!

S∑

j=0

(−1)jS!

(S − j)!j! =
iS

S!
(1 + x)S

∣∣
x=−1

= 0.

�

4.4. Estimate on non-degenerate interactions. Proposition 4.1 now follows from the following
lemma:

Lemma 4.4. Suppose Gn′,`′(t, k) ∈ {J̃n′,`′(t, k)), Dn′,`′(t, k))}, then for 0 < t < Ld−ε0,

∣∣∣E(J̃n,`(t, k)Gn′,`′(t, k))
∣∣∣ .n (log t)2

(
t√
τ

)n+n′ 1

t
.

Proof. We will only consider the case of Gn′,`′(t, k) = J̃n′,`′(t, k), since the case Gn′,`′(t, k) =
Dn′,`′(t, k)) is easier to bound. Using the identity

δ

(
t−

n∑

0

sj

)
=

1

2π

ˆ
e−iα(t−

∑n
j=0 sj) dα ,

we can write for any (e0, . . . , en) ∈ Rn+1 and η > 0

ˆ
Rn+1
+

n∏

j=0

e−isjejδ

(
t−

n∑

0

si

)
ds =

eηt

2π

ˆ
R
e−iαt

n∏

j=0

i

α− ej + iη
dα . (4.9)

Thus by choosing η = 1
t , we have

J̃n,`(t, k) =
ie

2π

(
− λ2

L2d

)n
σ`

∑

k∈(ZdL)2n+1

δkkn,1∆(k)
2n+1∏

j=1

a0
k0,j ,σj

×

ˆ
e−iαtdα

(α−Ω1 −Ω2 − · · · −Ωn + i
t) . . . (α−Ωn + i

t)(α+ i
t)
.

Here we employed the notation Ωj = 2πΩj(k).
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To bound E(J̃n,`(t, k)J̃n′,`′(t, k)), we will simplify the notation by setting k0,2n+1+j = k′0,j , which

also preserves the parity convention. Consequently, we have 2n+ 2n′ + 2 wave numbers present in

the expression for E(J̃n,`(t, k)J̃n′,`′(t, k)).

k1,1

k0,3k0,1 k0,2

+

− +

−

− −

+ −

k′�1,1 k′�1,2 k′�1,3

k′�2,1

k′�0,3 = k0,6 k′�0,4 = k0,7 k′�0,5 = k0,8k′�0,2 = k0,5k′�0,1 = k0,4

eJ 2,(3,1)
<latexit sha1_base64="HS4T/nOniKMULXVEqhCpZBgW0/M=">AAACFXicbVDLSsNAFJ34rPUVdelmsAgVSklaQZcFN+Kqgn1AE8JkMm2HTjJhZqKUkJ9w46+4caGIW8Gdf+OkzUJbDwwczrmHuff4MaNSWda3sbK6tr6xWdoqb+/s7u2bB4ddyROBSQdzxkXfR5IwGpGOooqRfiwICn1Gev7kKvd790RIyqM7NY2JG6JRRIcUI6Ulz6w5XNt5OnUeaEAUZYGmIVJjjFh6k2WZlzZq1WbNPss8s2LVrRngMrELUgEF2p755QQcJyGJFGZIyoFtxcpNkVAUM5KVnUSSGOEJGpGBphEKiXTT2VUZPNVKAIdc6BcpOFN/J1IUSjkNfT2ZrysXvVz8zxskanjppjSKE0UiPP9omDCoOMwrggEVBCs21QRhQfWuEI+RQFjpIsu6BHvx5GXSbdTtZr1xe15pWUUdJXAMTkAV2OACtMA1aIMOwOARPINX8GY8GS/Gu/ExH10xiswR+APj8wfp258q</latexit>

+− −

eJ1,1
<latexit sha1_base64="C2h+sjIo1IrsZvP1vnSeNXUmZGM=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwISWpgi4LbsRVBfuAJoTJ5KYdOnkwM1FKyMqNv+LGhSJu/QZ3/o2TNgttPXDhcM693HuPlzAqpGl+a5Wl5ZXVtep6bWNza3tH393rijjlBDokZjHve1gAoxF0JJUM+gkHHHoMet74qvB798AFjaM7OUnACfEwogElWCrJ1Q/tB+qDpMyHzA6xHBHMsps8dzPr1MpdvW42zCmMRWKVpI5KtF39y/ZjkoYQScKwEAPLTKSTYS4pYZDX7FRAgskYD2GgaIRDEE42fSM3jpXiG0HMVUXSmKq/JzIcCjEJPdVZXCrmvUL8zxukMrh0MholqYSIzBYFKTNkbBSZGD7lQCSbKIIJp+pWg4wwx0Sq5GoqBGv+5UXSbTass0bz9rzeMss4qugAHaETZKEL1ELXqI06iKBH9Ixe0Zv2pL1o79rHrLWilTP76A+0zx+oaZkr</latexit>

+

+

Figure 2. Relabeling trees.

Next, since the phases are i.i.d. with mean 0, then only specific paring of the wave numbers
contribute nonzero terms, namely the paring should be between terms with the same wave number
and opposite parity. For this reason we introduce P = P(n, n′,σ,σ′) a class of pairings indices and
parities, as illustrated in Figure 3

P 3 ψ : {1, . . . , 2n+ 2n′ + 2} → {1, . . . , 2n+ 2n′ + 2} ⇔ ψ(j) = l⇒ ψ(l) = j, and σψ(j) = −σj

Furthermore, we define the pairing of wave numbers induced by ψ, Γψ(k,k′) =
∏2n+2n′+2
j=1 δ

k0,j
k0,ψ(j)

.

By the independence of the phases ϑk0,j (ω), we have,
∣∣∣∣∣∣
Eω




2n+1∏

j=1

e
iσ0,jϑk0,j (ω)

2n′+1∏

j′=1

e
−iσ0,j′ϑk0,j (ω)



∣∣∣∣∣∣
.
∑

ψ∈P
Γψ(k .k′),

Hence we obtain

∣∣∣E(J̃n,`(t, k)J̃n′,`′(t, k))
∣∣∣ .

(
λ2

L2d

)n+n′∑

ψ∈P

∑

k∈(ZdL)2n+1

k′∈(ZdL)2n
′+1

Aψ(k,k′)×

∣∣∣∣
ˆ

e−iαtdα

(α−Ω1 − · · · −Ωn + i
t) . . . (α−Ωn + i

t)(α+ i
t)
×

ˆ
eiα
′tdα′

(α′ −Ω′1 − · · · −Ω′n′ + i
t) . . . (α

′ −Ω′n′ + i
t)(α

′ + i
t)

∣∣∣∣.

where Aψ(k,k′) = δ
kn,1
k δkk′

n′,1
∆(k)∆(k′)Γψ(k,k′)

∏2n+1
j=1

√
φ(k0,j)

∏2n′+1
j′=1

√
φ(k′0,j′).

By Hölder’s inequality, for any m ≥ 1 and b1, . . . , bn′+1 ∈ R,ˆ
R

dα′

|α′ − b1 + i
t | . . . |α′ − bm+1 + i

t |
. tm , (4.10)
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and applying this bound to the α′ integral yields

∣∣∣E(J̃n,`(t, k)J̃n′,`′(t, k))
∣∣∣ . tn′

(
λ2

L2d

)n+n′∑

ψ∈P

∑

k∈(ZdL)2n+1

k′∈(ZdL)2n
′+1

Aψ(k,k′)×

∣∣∣∣∣

ˆ
dα

(α−∑n
l=1Ωl + i

t) . . . (α−Ωn + i
t)(α+ i

t)

∣∣∣∣∣ .

Let p = p(k) be the smallest integer such that kp+1,`p /∈ {kp,`p+1, kp,`p+1+σp+1,`p
}, i.e., in the tree

for J̃n,` the transition from level p+ 1 to level p is not degenerate. Note that 0 ≤ p ≤ n− 1, and

∣∣∣E(J̃n,`(t, k)J̃n′,`′(t, k))
∣∣∣ . tn′

(
λ2

L2d

)n+n′∑

ψ∈P

∑

k∈(ZdL)2n+1

k′∈(ZdL)2n
′+1

Aψ(k,k′)×

∣∣∣∣∣

ˆ
dα

(α−∑n
l=p+1Ωl + i

t)
p+1 . . . (α−Ωn + i

t)(α+ i
t)

∣∣∣∣∣ =:
∑

ψ

∑

p

Ip,ψ .

We now set

I1 = `p, I2 = `p + 1, I3 = `p + 2, kp = (kp,I1 , kp,I2 , kp,I3),

J1 = ψ(I1), J2 = ψ(I2), J3 = ψ(I3) .

Note that, by definition of p,

{I1, I2, I3} ∩ {J1, J2, J3} = ∅.
The figure below illustrate all the introduced notations and parings for the product of two non
degenerate terms.

k1,1

k0,3k0,1 k0,2

+

− +

−

− −

+ −

k′ 1,1 k′ 1,2 k′ 1,3

k′ 2,1

k′ 0,3 = k0,6 k′ 0,4 = k0,7 k′ 0,5 = k0,8k′ 0,2 = k0,5k′ 0,1 = k0,4

eJ 2,(3,1)
<latexit sha1_base64="HS4T/nOniKMULXVEqhCpZBgW0/M=">AAACFXicbVDLSsNAFJ34rPUVdelmsAgVSklaQZcFN+Kqgn1AE8JkMm2HTjJhZqKUkJ9w46+4caGIW8Gdf+OkzUJbDwwczrmHuff4MaNSWda3sbK6tr6xWdoqb+/s7u2bB4ddyROBSQdzxkXfR5IwGpGOooqRfiwICn1Gev7kKvd790RIyqM7NY2JG6JRRIcUI6Ulz6w5XNt5OnUeaEAUZYGmIVJjjFh6k2WZlzZq1WbNPss8s2LVrRngMrELUgEF2p755QQcJyGJFGZIyoFtxcpNkVAUM5KVnUSSGOEJGpGBphEKiXTT2VUZPNVKAIdc6BcpOFN/J1IUSjkNfT2ZrysXvVz8zxskanjppjSKE0UiPP9omDCoOMwrggEVBCs21QRhQfWuEI+RQFjpIsu6BHvx5GXSbdTtZr1xe15pWUUdJXAMTkAV2OACtMA1aIMOwOARPINX8GY8GS/Gu/ExH10xiswR+APj8wfp258q</latexit>

− −ψ (1) = 4
ψ (2) = 5
ψ (3) = 7
ψ (6) = 8

eJ1,1
<latexit sha1_base64="C2h+sjIo1IrsZvP1vnSeNXUmZGM=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwISWpgi4LbsRVBfuAJoTJ5KYdOnkwM1FKyMqNv+LGhSJu/QZ3/o2TNgttPXDhcM693HuPlzAqpGl+a5Wl5ZXVtep6bWNza3tH393rijjlBDokZjHve1gAoxF0JJUM+gkHHHoMet74qvB798AFjaM7OUnACfEwogElWCrJ1Q/tB+qDpMyHzA6xHBHMsps8dzPr1MpdvW42zCmMRWKVpI5KtF39y/ZjkoYQScKwEAPLTKSTYS4pYZDX7FRAgskYD2GgaIRDEE42fSM3jpXiG0HMVUXSmKq/JzIcCjEJPdVZXCrmvUL8zxukMrh0MholqYSIzBYFKTNkbBSZGD7lQCSbKIIJp+pWg4wwx0Sq5GoqBGv+5UXSbTass0bz9rzeMss4qugAHaETZKEL1ELXqI06iKBH9Ixe0Zv2pL1o79rHrLWilTP76A+0zx+oaZkr</latexit>

+

+

+
I1 I3I2

J1 J2 J3

Figure 3. Pairing trees.

We distinguish three cases depending on the values of the numbers Ji.

Case 1: J1, J2, J3 ≥ 2n+ 2. For a fixed p and ψ we sum over all wave numbers in Ip,ψ that yield

degenerate transitions, i.e., wave numbers generated in rows 0 ≤ l ≤ p− 1. This contributes Ldp to
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the bound,

Ip,ψ . t
n′Ldp

(
λ2

L2d

)n+n′∑∗∑

kp

Aψ(k,k′)

ˆ
dα

|(α−∑n
l=p+1Ωl + i

t)
p+1 . . . (α−Ωn + i

t)(α+ i
t)|
,

where
∑∗ stands for the sum over kp,j , where 1 ≤ j ≤ 2(n − p) + 1 and j /∈ {I1, I2, I3}, and k′0,j′

for 1 ≤ j′ ≤ 2n′ + 1 with j′ /∈ {J1, J2, J3}.
The contribution of the above integral is acceptable as long as the denominator is O(〈α〉−2). There-
fore, it suffices to prove the desired bound when the domain of integration reduces to α ∈ [−R,R],
for some R > 0, since the resonance moduli Ωi are bounded. Furthermore by bounding the inte-

grand by tn−1

|α−Ωp+1−···−Ωn+ i
t
||α+ i

t
| , matters reduce to estimating

tn
′+n−1Ldp

(
λ2

L2d

)n+n′∑∗
Aψ(k,k′)

∑

kp

ˆ R

−R

dα

|α−∑n
l=p+1Ωl + i

t ||α+ i
t |
. (4.11)

By the identity kp+1,I1 − kp,I2 = σp,I1(kp,I3 − kp,I1), this can also be written

tn
′+n−1Ldp

(
λ2

L2d

)n+n′∑∗
Aψ(k,k′)

ˆ R

−R


∑

kp

δ
kp+1,I1

kp,I2+σp,I1 (kp,I3−kp,I1 )

1

|α−∑n
l=p+1Ωl + i

t |


 dα

|α+ i
t |
,

and since
∑2(n−p)+1

j=1 σp,jkp,j = kn,1 = k, we note that

Ωp+1 + . . .+Ωn = Q(k)−
2(n−p)+1∑

j=1

σp,jQ(kp,j) =

− σp,I1Q(kp,I1)− σp,I3Q(kp,I3)− σp,I2Q(kp+1,I1 − σp,I1(kp,I3 − kp,I1)) + C (4.12)

where C depends only on k and the variables kp,j with j /∈ {I1, I2, I3}.
By setting P = kp,I3 and R = kp,I1 , for t < Lν we bound

∑

P,R∈ZdL
|P |,|R|≤1

1∣∣−Q(P ) +Q(R)−Q(N + P −R) + C + i
t

∣∣ ,

using the equidistribution result in Section 8. If | −Q(P ) +Q(R)−Q(N + P −R) +C| ≤ t−1, we
have by Corollary 8.5

∑

P,R∈ZdL
|P |,|R|≤1

1∣∣−Q(P ) +Q(R)−Q(N + P −R) + C + i
t

∣∣ . t
(
L2d 1

t
+ Ld

)
.

Whereas for | −Q(P ) +Q(R)−Q(N + P −R) + C| ≥ t−1, we bound

∑

P,R∈ZdL
|P |,|R|≤1

1∣∣−Q(P ) +Q(R)−Q(N + P −R) + C + i
t

∣∣ .

∑

1
t
<2n.1

2−n
∑

|−Q(P )+Q(R)−Q(N+Q−R)+C|∼2n

1 . L2d
∑

1
t
<2n.1

1 . L2d log t. (4.13)
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Therefore, we can bound (4.11) by

tn
′+n−1Ldp

(
L2d log t+ tLd

)( λ2

L2d

)n+n′∑∗
Γψ(k,k′)

ˆ R

−R

dα

|α+ i
t |
,

The sum
∑∗ is over 2(n + n′ − p − 2) variables; however, because of the pairing Γψ, half of them

drop out, so that the remaining sum is . Ld(n+n′−p−2). Ans since
´ R
−R

dα
|α+ i

t
| . log t, the above

expression can be bounded by,

tn
′+n−1

(
(log t)2Ld(n+n′) + t(log t)Ld(n+n′−1)

)( λ2

L2d

)n+n′

,

which gives the stated bound.

Case 2: only two of J1, J2, J3 are ≥ 2n+ 2. Suppose for instance that J2 ≤ 2n + 1. Then, there
exists I4 ≤ 2(n−p)+1 such that ψ(I4) = J4 ≥ 2n+2 (such an index exists because there is an odd
number of elements in the set of elements in {1, . . . , 2(n− p) + 1} \ {I1, I2, I3, J2}, so they cannot
be paired together completely). One can then follow the above argument replacing I2 by I4.

Case 3: two of J1, J2, J3 are ≤ 2n+ 1 Assume for instance that J1, J3 ≤ 2n + 1. Proceeding as in
Case 1, it suffices to bound

tn
′
Ldp

(
λ2

L2d

)n+n′∑∗ ∑

kp,I1 ,kp,I3

Aψ(k,k′)

ˆ
dα

|(α−∑n
l=p+1Ωl + i

t)
p+1 . . . (α−Ωn + i

t)(α+ i
t)|
,

where Σ∗ is the sum over kp,j , with j ∈ {1, . . . , 2(n − p) + 1} \ {I1, I3, J1, J3}, and over k0,j′ , with
j′ ∈ {1, . . . , 2n′ + 1}.

A crucial observation is that, since
∑2(n−p)+1

j=1 σp,jkp,j = kn,1 = k, the wave numbers kp,I1 and
kp,I3 do not contribute to this sum since the paring kp,I1 = kp,J1 and kp,I3 = kp,J3 , causes them to
cancel one another. Furthermore, 0 ≤ p ≤ n− 2 since J1, J3 ≤ 2n+ 1, and therefore we bound the

integrand by tn−1

|α−Ωp+2−···−Ωn+ i
t
||α+ i

t
| . Overall, we can bound the above by

Ldptn+n′−1

(
λ2

L2d

)n+n′∑∗
Aψ(k,k′)

ˆ R

−R


 ∑

kp,I1 ,kp,I3

1

|α−Ωp+2 − · · · −Ωn + i
t |


 dα

|α+ i
t |
.

From equation (4.12), we conclude

n∑

l=p+2

Ωl = −σp,I1Q(kp,I1)− σp,I3Q(kp,I3)− σp,I2Q(kp+1,I1 − σp,I1(kp,I3 − kp,I1)) + C

where C only depends on the variables in
∑∗. Applying (4.13) enables us to bound the inner sum

by L2d log t, and the α integral by log t. Finally, the number of variables in
∑∗ is 2(n+n′− p− 1).

By pairing them there are only n + n′ − p − 1, and fixing kn,1 = k brings their number down to

n+ n′ − p− 2. Thus
∑∗ will contribute . Ld(n+n′−p−2). Overall, we obtain the bound

. (log t)2tn
′+n−1Ld(n+n′)

(
λ2

L2d

)n+n′

,

which is the desired estimate. �
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5. Deterministic local well-posedness

Local or long time existence existence of smooth solutions is usually carried out by using Strichartz
estimates to bound solutions. The known Strichartz estimates for our problem (2.2) are not suf-
ficient to allow us to prove existence of solutions for a long time interval where the wave kinetic
equation (WKE) emerges. However, if the data is assumed to be random, then one has improved
estimates due to Khinchin’s inequality [7]. Based on this, we first present a local well-posedness
theorem provided the data satisfies a certain estimate. In Section 6, we show that such an improved
estimate occurs with high probability.

Moreover, to use the results from Sections 4 and 8, we will restrict discussion to the case T <
Ld−ε0 .

5.1. Strichartz estimate. Recall equation (2.2) , which can be written as,

‖eit∆βP1ψ‖L4
t,x([0,T ]×TdL) ≤ Sd,ε‖ψ‖L2(TdL), Sd,ε := Cd,εL

ε
〈 T

Lθd

〉1/4

Moreover if we denote the characteristic function of the unit cube centered at j ∈ Zd by 1Bj , and
define

ψ̂Bj (k) = 1Bj (k)ψ̂(k), and therefore ψB0 = P1ψ .

Then, using the Galilean invariance
∣∣e−it∆βψBj (x)

∣∣ =
∣∣[e−it∆β (e2πijxψ)B0 ](x− 2tj)

∣∣, we have

‖eit∆βψBj‖L4
t,x([0,T ]×TdL) ≤ Sd,ε‖ψ‖L2(TdL). (5.1)

Converting this estimate to its dual, and applying the Christ-Kiselev inequality, one gets

∥∥∥∥∥∥

T̂

0

e−is∆FBj (s) ds

∥∥∥∥∥∥
L2(TdL)

≤ Sd,ε‖F‖L4/3
t,x ([0,T ]×TdL)

(5.2)

∥∥∥∥∥∥

tˆ

0

ei(t−s)∆FBj (s) ds

∥∥∥∥∥∥
L4
t,x([0,T ]×TdL)

≤ S2
d,ε‖F‖L4/3

t,x ([0,T ]×TdL)
(5.3)

for an appropriate choice of Cd,ε used in the definition of Sd,ε.

5.2. A priori bound in Zs
T and energy. Let ZsT denote the function space defined by the

norm,

‖u‖ZsT =


∑

j∈Zd
〈j〉2s‖uBj‖2L4

t,x([0,T ]×TdL)




1/2

, (5.4)

then the ZsT norm of the nonlinearity is bounded.

Lemma 5.1. Fix s > d
2 . For every ε0 > 0, and an appropriate choice of Cd,ε0, we have

∥∥∥∥
ˆ t

0
ei(t−s)∆β |u(s)|2u(s)ds

∥∥∥∥
ZsT

≤ S2
∗‖u‖3ZsT , S∗ := Sd,ε0 = Cd,ε0L

ε0
〈 T

Lθd

〉1/4
. (5.5)
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Proof. Consider v ∈ L
4
3
t,x([0, T ]× TdL), and let ṽ(s, x) =

´ T
s ei(s−s

′)∆βv(s′)ds′, then

∥∥∥∥
ˆ t

0
ei(t−s)∆βPBj |u(s)|2u(s)ds

∥∥∥∥
L4
t,x([0,T ]×TdL)

= sup
‖v‖

L
4/3
t,x

=1

ˆ T

0

ˆ t

0

ˆ
TdL

[
ei(t−s)∆βPBj |u(s)|2u(s)

]
v(t, x)dx, ds dt

= sup
‖v‖

L
4/3
t,x

=1

ˆ T

0

ˆ t

0

ˆ
TdL
|u(s)|2u(s)ei(t−s)∆βvBj (t, x) dx ds dt

= sup
‖v‖

L
4/3
t,x

=1

ˆ T

0

ˆ
TdL
|u(s)|2u(s)ṽBj (s, x) ds dx.

Using equation (5.3), we have for every ε0 > 0,

ˆ T

0

ˆ
TdL
|u(s)|2u(s)ṽBj (s, x) ds dx =

∑

j1−j2+j3−j=O(1)

ˆ T

0

ˆ
TdL
uBj1uBj2uBj3 ṽBj ds dx

.
∑

j1−j2+j3−j=O(1)

j1,j2,j3∈Zd

3∏

k=1

‖uBjk‖L4
t,x
‖ṽBj‖L4

t,x
. Lε0

〈 T

Lθd

〉1/2 ∑

j1−j2+j3−j=O(1)

j1,j2,j3∈Zd

3∏

k=1

‖uBjk‖L4
t,x
,

and therefore

∥∥∥∥
ˆ t

0
ei(t−s)∆βPBj |u(s)|2u(s)ds

∥∥∥∥
L4
t,x([0,T ]×Td)

. Lε0
〈 T

Lθd

〉1/2 ∑

j1−j2+j3−j=O(1)

j1,j2,j3∈Zd

3∏

k=1

‖uBjk‖L4
t,x
.

Consequently, for s > d/2, we have


∑

j∈Zd
〈j〉2s

∥∥∥∥
ˆ t

0
ei(t−s)∆βPBj |u(s)|2u(s)ds

∥∥∥∥
2

L4
t,x




1/2

. Lε0
〈 T

Lθd

〉1/2


∑

j∈Zd
〈j1〉2s‖uBj1‖

2
L4
t,x




1/2
∑

`∈Zd
‖uB`‖L4

t,x




2

. Lε0
〈 T

Lθd

〉1/2
‖u‖3ZsT .

proving equation (5.5). �

Lemma 5.2 (A priori energy estimates).

∥∥∥∥
ˆ t

0
ei(t−s)∆β |u|2u ds

∥∥∥∥
L∞t H

s
x

≤ S∗‖u‖3ZsT . (5.6)
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Proof. By duality, we have
∥∥∥∥
ˆ t

0
ei(t−s)∆β |u|2u ds

∥∥∥∥
L∞t H

s
x

≤ sup
‖ψ‖

L2
x

=1

0≤t≤T

ˆ t

0

ˆ
TdL
|u|2u eis∆β 〈∇〉sψ dx ds

= sup
‖ψ‖

L2
x

=1

0≤t≤T

∑

j1−j3+j3−j4=O(1)

ˆ t

0

ˆ
TdL
uBj1uBj2uBj3 e

is∆β 〈∇〉sψBj4 dx ds .

Applying the Strichartz estimate (5.1) yields

∑

j1−j3+j3−j4=O(1)

∣∣∣∣∣

ˆ t

0

ˆ
TdL
uBj1uBj2uBj3 e

is∆β∇sψBj4 dx ds
∣∣∣∣∣

.
∑

j1−j2+j3−j4=O(1)

〈j4〉s
3∏

k=1

‖uBjk‖L4
t,x
‖eis∆βψBj4‖L4

t,x

. Lε0
〈 T

Lθd

〉1/4 ∑

j1−j2+j3−j4=O(1)

〈max(|j1|, |j2|, |j3|)〉s
3∏

k=1

‖uBjk‖L4
t,x
‖ψBj4‖L2

x

. Lε0
〈 T

Lθd

〉1/4


∑

j

‖ψBj‖2L2




1/2
∑

j

〈j〉2s‖uBj‖2L4




1/2
∑

j

‖uBj‖L4




2

. Lε0
〈 T

Lθd

〉1/4
‖u‖3ZsT ‖ψ‖L2

x
.

This establishes the stated bound. �

5.3. Existence theorem. Local well-posedness for (NLS) will be established in the space ZsT ,
with data f of size at most I ,

I := Lε0(TL−d)
1
4 ≥ ‖eit∆βf‖ZsT . (5.7)

This seemingly strange normalization is actually well adapted to the problem we are considering.
Indeed, consider for simplicity initial data f supported on Fourier frequencies . 1, whose L2 norm is
of size Lε0 , and with random Fourier coefficients of uncorrelated phases. Then we expect eit∆βf to be
evenly spread over TdL. By conservation of the L2 norm, this corresponds to ‖eit∆βf‖ZsT ∼ I .

Theorem 5.3. Let f ∈ ZsT with I and S∗ defined in equations (5.7) and (5.5) respectively, then
{
i∂tu−∆βu = −λ2|u|2u
u(0, x) = f(x)

is locally well-posed in ZsT , provided

R
def
= 12(λS∗I )2 ≤ 1

2
. (5.8)

The solution u ∈ ZsT , satisfies ‖u‖ZsT ≤ 2I . Moreover

‖u‖L∞t Hs
x([0,T ]×TdL) ≤ ‖f‖Hs

x
+ Cλ2S∗I

3 = ‖f‖Hs
x

+ C
R

S∗
I ≤ ‖f‖Hs

x
+ CR. (5.9)
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Remark 5.4. The time scale T over which the solution can be constructed would be equal to
√
τ , up

to subpolynomial losses in L, if the long-time Strichartz estimate conjectured in [11] for p = 4 could
be established. Since it is currently not known to be true, the result stated above gives a shorter
time scale, with a more complicated numerology.

Proof. This theorem is proved by using a contraction mapping argument, to find a fixed point of
the map,

Φ(u) = eit∆βf + iλ2

tˆ

0

ei(t−s)∆β |u|2u(s) ds,

in {u ∈ ZsT
∣∣ ‖u‖ZsT ≤ 2I }. Consequently u = limN→∞ Φ

N (0), where ΦN stands for the N -th
iterate of Φ:

Φ0(0) = eit∆βf, ΦN+1(0) = eit∆βf + iλ2

tˆ

0

ei(t−s)∆β |ΦN (0)|2ΦN (0) ds .

To check that Φ is a contraction on BZsT (0, 2I ), note that by equation (5.5),

‖Φ(u)− Φ0(0)‖ZsT =

∥∥∥∥∥∥
λ2

tˆ

0

ei(t−s)∆β |u|2u(s) ds

∥∥∥∥∥∥
ZsT

≤ λ2S2
∗‖u‖3ZsT ≤ 8λ2S2

∗I
3 ≤ RI ≤ 1

2
I .

and thus Φ maps BZsT (0, 2I ) into itself. Again, by equation (5.5),

‖Φ(u)− Φ(v)‖ZsT ≤ 3λ2S2
∗(2I )2‖u− v‖ZsT ≤ R‖u− v‖ZsT ≤

1

2
‖u− v‖ZsT .

Therefore Φ is a contraction on {u ∈ ZsT
∣∣ ‖u‖ZsT ≤ 2I }, and the Hs estimate follows from the a

priori energy bound. �

Besides the established bounds on u, we need to investigate the rate of convergence of ΦN (u) →
u.

Corollary 5.5. Under the conditions of Theorem 5.3, there holds

‖u− ΦN (0)‖L∞Hs ≤ CR
N

S∗
I ≤ CRN

Proof. Since Φ is a contraction with modulus R, then

‖Φj(0)− Φj−1(0)‖ZsT ≤ R
j−1‖Φ0(0)‖ZsT .

Moreover the energy estimate (5.6) gives

‖Φj+1(0)− Φj(0)‖L∞T Hs ≤ C R

S∗
‖Φj(0)− Φj−1(0)‖ZsT .

Consequently by writing u− ΦN (0) =
∞∑
j=N

Φj+1(0)− Φj(0), we bound

‖u− ΦN (0)‖L∞T Hs ≤
∞∑

j=N

∥∥Φj+1(0)− Φj(0)
∥∥
L∞T H

s ≤ C
R

S∗

∞∑

j=N

∥∥Φj(0)− Φj−1(0)
∥∥
Zs

≤ C R

S∗

∞∑

j=N

Rj−1‖Φ0(0)‖ZsT ≤ C
RN

S∗
‖Φ0(0)‖ZsT .
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�

Next we establish an energy bound for the Feynman trees,

Un,`(t) =
1

Ld

∑

k∈ZdL

Jn,`(t, k)e2πi(k·x+tQ(k)).

Corollary 5.6. Under the conditions of Theorem 5.3,

‖Un,`‖L∞T Hs ≤ CR
N

S∗
I ≤ CRN

Proof. Since Un,` is the linear propagator of Jn,` in physical space, then they can be represented

by the following iterative procedure: Set vm0 = e2πit∆βu0 for 0 ≤ m ≤ 2n+ 1 and for any 1 ≤ j ≤ n
we define vjm for 0 ≤ m ≤ 2(n − j) + 1 as vmj = vmj−1 if m < `j , and vmj = vm+2

j−1 if m > `j , where
we set

v`j = iλ2

ˆ t

0
ei(t−s)∆βv

`j
j−1v

`j+1
j−1 v

`j+2
j−1 ds .

Hence we have Un,` = v1
n.

Using the energy estimate (5.6), we bound

‖v1
n‖L∞T Hs ≤ λ2S∗‖v1

n−1‖ZsT ‖v
2
n−1‖ZsT ‖v

3
n−1‖ZsT .

We can then descend down the tree by estimating v
`n−j
n−j using the Zs estimate (5.5). This leads to

the stated bound. �

6. Improved integrability through randomization

Recall that

u0 =
1

Ld

∑

k∈ZdL

√
φ(k)e2πik·xe2πiϑk(ω),

where the ϑk(ω) are independent random variables, uniformly distributed on [0, 2π].

For any t, s, ω, we have

‖eit∆βu0‖Hs =


 1

Ld

∑

k∈ZdL

〈k〉2sφ(k)




1/2

.

In other words, the randomization of the angles of the Fourier coefficients does not have any effect
on L2 based norms. This is not the case for Lebesgue indices larger than 2.

Theorem 6.1. Assume that |φ(k)| . 〈k〉−s, with s > d
2 . Then

(i) E
∥∥eit∆βu0

∥∥4

L4
t,x([0,T ]×TdL)

. T
Ld
‖u0‖4L2

x

(ii) (large deviation estimate)

P
[∥∥eit∆βu0

∥∥4

L4
t,x([0,T ]×TdL)

> λ
]
. exp

(
−c
(

λ

T 1/4L−d/4

)2
)
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Proof. (i) The proof is more or less standard. See [7] for instance.

(ii) We follow the argument in [7]. By Minkowski’s inequality (for p ≥ 4) and Khinchin’s inequality,
∥∥eit∆βu0

∥∥
Lpω(Ω,L4

t,x([0,T ]×TdL))
.
∥∥eit∆βu0

∥∥
L4
t,x([0,T ]×TdL,L

p
ω(Ω)))

.
√
p

Ld

∥∥∥∥
(∑

φ(k)
)1/2

∥∥∥∥
L4
t,x([0,T ]×TdL)

.
√
pT 1/4L−d/4.

By Chebyshev’s inequality,

P
[∥∥eit∆βu0

∥∥
Lpt,x([0,T ]×TdL)

> λ
]
. λ−p(C0

√
pT 1/4L−d/4)p.

The desired inequality is then obvious if λ < 2eC0T
1/4L−d/4; if not, it follows upon choosing

p =
(

λ
C0T 1/4L−d/4e

)2
. �

As a consequence, we deduce the following proposition.

Proposition 6.2. Let ε0 > 0, α > s+ d
2 , and assume that |φ(k)| . 〈k〉−2α. Then, for two constant

C, c > 0,

P
[∥∥eit∆βu0

∥∥
Zs
< T 1/4Lε0−d/4

]
> 1− Ce−cLε0 .

Proof. Applying Theorem 6.1 to (u0)Bj ,

P
[∥∥eit∆βu0

∥∥
L4
t,x([0,T ]×TdL)

> 〈j〉−αT 1/4L
ε0
2
− d

4

]
. exp(−c〈j〉2αLε0).

Therefore, for L sufficiently large,

P
[∥∥eit∆βu0

∥∥
Zs
< T 1/4Lε0−d/4

]
> 1−

∑

j

P
[∥∥eit∆β (u0)Bj

∥∥
Zs
> T 1/4L

ε0
2
−d/4〈j〉−α

]

> 1− C
∑

j

exp(−c〈j〉2αLε0)

> 1− Ce−cLε0 .
�

7. Proof of the main theorem

Fix ε0 > 0 sufficiently small, and recall that T ≤ Ld, with

S∗ = C4,ε0L
ε0
〈 T

Lθd

〉1/4
, I = Lε0(TL−d)

1
4 , and R

def
= 12(λS∗I )2.

1) Excluding exceptional data. Let Eε0,L be the event {
∥∥eit∆βu0

∥∥
Zs
≤ I }, and Fε0,L its contrary:

{
∥∥eit∆βu0

∥∥
Zs
> I }. By Proposition 6.2,

P(Fε0,L) . e−cL
ε0
.

This is the set appearing in the statement of Theorem 2.2. By conservation of mass

E
(
|ak(t)|2

)
= E

(
|ak(t)|2 | Eε0,L

)
+O`∞(e−cL

ε0
Ld).

2) Iterative resolution. To ensure that R ≤ 1
2 we restrict the range of the parameters λ, T relative

to L. There are two regimes depending on the Strichartz constant S∗ and the number theory
restriction t ≤ Ld−ε0 (see Remark 8.2).
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• Lθd . T . Ld. The condition R ≤ 1
2 translates into T ∼ λ−2L

d+θd
2
−4ε0 . Therefore we restrict

λ to

L
−d+θd−8ε0

4 . λ . L
d−θd−8ε0

4 .

For this range of parameters, the energy inequality (5.9) implies ‖u‖L∞t Hs
x([0,T ]×TdL) . 1.

• T . Lθd . In this case the condition on R restricts T ∼ min(Lθd , λ−4Ld−8ε0), and therefore

L
d−θd−8ε0

4 . λ.

Here the energy inequality also implies ‖u‖L∞t Hs
x([0,T ]×TdL) . 1.

Note that for these ranges of parameters T ≤ L−2δ√τ , where δ is that of Theorem 8.1.

With these restrictions on the range of the parameters we proceed by writing u = ΦN (0) + u−
ΦN (0). Note that since ΦN (0) is a polynomial of degree 3N , we write

u =
N∑

n=0

Un,` +
∑

(n,`)∈SN
Un,` + u− ΦN (0),

where SN includes all the terms in ΦN (0) of degree greater than N .

By Corollary 5.5 and Proposition 5.6, this implies that

u =
N∑

n=1

∑

`

Un,` +OL∞t Hs
x

(
RN
)

where the constant depends on N . In terms of Fourier variables this can be written as,

|ak(t)|2 =

∣∣∣∣∣
N∑

n=1

∑

`

Jn,`

∣∣∣∣∣

2

+O
`1,2sL

(
RN
)

=

∣∣∣∣∣
N∑

n=1

∑

`

Jn,`

∣∣∣∣∣

2

+O`∞
(
LdRN

)
.

3) Pairing. By Proposition 4.1,
∣∣∣∣∣
N∑

n=1

∑

`

Jn,`

∣∣∣∣∣

2

= E
[
|J1(k)|2 + J0(k)J2(k) + J0(k)J2(k)

]
+O

(
t

τ

t log t√
τ

)

= φk +
2λ4

L4d

∑

k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

]
×

∣∣∣∣
sin(tπΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

+O`∞

(
t

τ

t log t√
τ

)

4) Large box limit L→∞. By the equidistribution theorem 8.1, we have for t < Ld−ε

2λ4

L4d

∑

k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

] ∣∣∣∣
sin(tπΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

=
2λ4

L2d

ˆ
δ(Σ)φ(k)φ(k1)φ(k2)φ(k3)

[
1

φ(k)
− 1

φ(k1)
+

1

φ(k2)
− 1

φ(k3)

]
×

∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1 dk2 dk3 +O`∞(
t

τ
L−δ).
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5) Large time limit t ∼ T →∞. Since for a smooth function f ,ˆ ∣∣∣∣
sin(πtx)

x

∣∣∣∣
2

f(x) dx = π2tf(0) +O(1),

then, with τ = L2d

2λ4
, we have

2λ4

L2d

ˆ
δ(Σ)φ(k)φ(k1)φ(k2)φ(k3)

[
1

φ(k)
− 1

φ(k1)
+

1

φ(k2)
− 1

φ(k3)

]
×

∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1 dk2 dk3 =
t

τ
T (φ, φ, φ) +O

(
1

τ

)
.

Consequently, for ε0 sufficiently small and t ≤ T ≤ Ld−ε0 , we choose L ≥ L1(ε0) to bound the error
term in Step 1 by t

τL
−ε0 . Also, since R ≤ 1

2 then by picking N large enough we can bound the

error in Step 2 by O( tτL
−ε0). Similarly, since t log t ≤ L−δ√τ , then the error for Steps 3, 4, and 5,

are of order O`∞( tτL
−δ), and this concludes the proof of Theorem 2.2.

8. Number theoretic results

Our aim in this section is to prove the asymptotic formula for the following Riemann sum,

Theorem 8.1. Given φ ∈ S (Rd) and ε > 0, there exists a δ > 0 such that if 0 < t ≤ Ld−ε, then

∑

ki∈ZdL
k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

] ∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

=

L2d

ˆ
δ(Σ)φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

] ∣∣∣∣
sin(πtΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1dk2 dk3

+O
(
tL2d−δ

)
+O

(
Ld
)
,

where we recall Σ(k, k1, k2, k3) = k − k1 + k2 − k3.

The difficulty in proving this theorem is that Ω can be very small, while the stated time interval for
the validity of the asymptotic formula is very large. In fact if we restrict ourselves to a timescale
which is not too long, then the asymptotic formula is straight forward as will be demonstrated
in Proposition 8.10. However to prove this theorem as stated we need to generalize a result of
Bourgain on pair correlations of generic quadratic forms [5].

Bourgain considered a positive definite diagonal form,

Q(n) =

d∑

i=1

βin
2
i , n = (n1, . . . , nd), Q(p, q) := Q(p)−Q(q), (8.1)

for generic β = (β1, . . . , βd) ∈ [1, 2]d, and proved that for d = 3 the lattice points in the region,

RZ
def
= {(p, q) ∈ Z2d ∩ [0, L]2d

∣∣ Q(p, q) ∈ [a, b], p 6= q},
are equidistributed at a scale of 1

Lρ , for 0 < ρ < d− 1. Specifically, he proved,
∑

RZ

1 = L2(d−1)(b− a)H2d−1
(
{(x, y) ∈ [−1, 1]2d

∣∣ Q(x, y) = 0}
)

+O
(
Ld−2−δ(b− a)

)
,

provided |a|, |b| < O(1) and L−ρ < b− a < 1. Here H2d−1 is the 2d− 1 Hausdorff measure.
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Our quadratic form Ω, restricted to Σ, can be transformed to Q(p, q), given in (8.1), as follows.
Rescale time µ := tL−2, let Ki = Lki ∈ Z, and denote by

g(x) =

(
sin(πx)

πx

)2

, W0

(
K

L
,
K1

L
,
K2

L
,
K3

L

)
= φkφk1φk2φk3

[
1

φk
− 1

φk1
+

1

φk2
− 1

φk3

]
.

Then the sum can be expressed as

t2
∑

K,K1,K2,K3∈Zd
K−K1+K2−K3=0

W0

(
K

L
,
K1

L
,
K2

L
,
K3

L

)
g(µΩ(K,K1,K2,K3)) .

By defining

u′ = K1 −K ∈ Zd, u′′ = K3 −K ∈ Zd, and u = (u′, u′′) ∈ Z2d

then

Ω(K,K1,K2,K3) = Q0(u)

where

Q0(u) := −2β1u
′
1u
′′
1 − 2β2u

′
2u
′′
2 − · · · − 2βdu

′
du
′′
d . (8.2)

Hence the sum can be expressed as

t2
∑

(u′i,u
′′
i )∈Z2

W0

(
K

L
,
u′ +K

L
,
u′ + u′′ +K

L
,
u′′ +K

L

)
g(µQ0(u)). (8.3)

The quadratic form Q0 can be diagonalized by making the change of coordinates

pi = u′i + u′′i , qi = u′i − u′′i
where pi and qi are either both even or both odd, i.e.

∑

ui∈Z2

=
∑

pi,qi∈2Z
+

∑

pi,qi∈(2Z+1)

=
∑

pi,qi∈Z
−

∑

pi∈2Z,qi∈Z
−

∑

pi∈Z,qi∈2Z
+2

∑

pi,qi∈2Z
.

Consequently, the sum (8.3), can be written as four different sums of the form,

t2
∑

(p,q)∈Z2d

W
( p
L
,
q

L

)
g(µQ(p, q)), (8.4)

where Q(p, q) is given by3 (8.1), and where we suppressed the dependence of W on k for conve-
nience.

Remark 8.2. Note that we do not exclude the points when p2
i = q2

i for all i ∈ [1, . . . , n], as Bourgain
did. These points contribute O(Ld) to the sum and will be considered as lower order terms. They
also explain the O(Ld) term in Theorem 8.1.

It is this fact that prevents us from using the full strength of our equidistribution result which holds
for µ = tL−2 ≤ Ld−1−ε, and we use the result for t ≤ Ld−ε. This ensures that O(Ld) term is an
error in the asymptotic formula.

To prove the asymptotic formula given in Theorem 8.1, with 0 < µ = tL−2 ≤ Ld−1−ε, we proceed
as follows: 1) identify which part of the sum contributes the leading order term and which part
contributes error terms; 2) prove equidistribution of lattice points on a coarse scale; 3) present
Bourgain’s theorem on equidistribution on a fine scale; and finally 4) prove Theorem 8.1.

3There are factors of 2 missing due to sums over even terms. However, this has no impact since β is generic.
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8.1. Identifying main terms vs error terms. To identify the leading order term in the equidis-
tribution formula, we first obtain upper bounds on lattice sums that are optimal up to sub-
polynomial factor.

For generic β = (β1, . . . , βd) ∈ [1, 2]d, a good upper bound for the linear form β · n ∈ [a, b], where
n = Zd is a consequence of the pigeonhole principle:

Lemma 8.3. The linear form β · n ∈ [a, b] satisfies the following bound

#{n ∈ Zd ∩ [−M,M ]d
∣∣ a ≤ β · n ≤ b} =

∑

a≤β·n≤b
|n|≤M

1 .M (d−1)+(b− a) + 1 (8.5)

Proof. Since β = (β1, . . . , βd) are generic, then for 0 < |n| ≤M (see for example [8], Chapter VII)

|β · n| & 1

M (d−1)+
.

For arbitrary n(1) 6= n(2) ∈ Zd satisfying a ≤ β · n(i) ≤ b and 0 <
∣∣n(i)

∣∣ ≤M ,

1

M (d−1)+
.
∣∣∣β · (n(1) − n(2))

∣∣∣ ≤ b− a .

By the pigeonhole principle we obtain (8.5). �

An upper bound on the cardinality of the set,

RZ
def
= {(p, q) ∈ Z2d ∩ [0, L]2d

∣∣ Q(p, q) ∈ [a, b], p 6= q},
can be obtained by bounding the number of lattice points in subsets of the form,

RZ` = {(p, q) ∈ Z2d ∩ [0, L]2d
∣∣ Q(p, q) ∈ [a, b], pi 6= qi, 1 ≤ i ≤ `, and pi = qi, `+ 1 ≤ i ≤ d},

using Lemma 8.3, and by using the divisor bound d(k) .ε kε.

Lemma 8.4. For ` = 1, . . . d the cardinality of RZ` satisfies the bound

#RZ` =
∑

RZ`

1 . L(d+`−2)+(b− a) + L(d−`)+ (8.6)

Proof. Define ki = (pi − qi)(pi + qi), for 1 ≤ i ≤ `. Since pi = qi, for `+ 1 ≤ i ≤ d, we conclude

#RZ` . L
d−`

∑

a≤
∑̀
i=1

βiki≤b

0<|k|.L2


 ∑

(pi−qi)(pi+qi)=ki

1




By the divisor bound ∑

(pi−qi)(pi+qi)=ki

1 . L0+ ,

and by (8.5), with M = L2, we obtain

#RZ` . L
(d−`)+

(
L2(`−1)+(b− a) + 1

)
,

and (8.6) follows. �
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Corollary 8.5. The number of elements in RZ, can be bounded by

#RZ . L
2(d−1)+(b− a) + L(d−1)+ (8.7)

Moreover, if we further assume |a| , |b| ≤ 1, then we have the improved bound

#RZ . L
2(d−1)+(b− a) + L(d−2)+ , (8.8)

Proof. It suffices to apply the Lemma 8.4, and to observe that ` ∈ {1, . . . , d} since p = q is excluded.
(8.8) follows from noting that if |a| , |b| ≤ 1, then RZ1 is empty. �

Remark 8.6. Note, that in terms of the first estimate (8.7), the second term may be treated as an

error as long as b− a ≥ L−(d−1)+ε0 for some ε0 > 0. Analogously, the second term of (8.8) may be
treated as an error assuming b− a ≥ L−d+ε0.

Following this remark on identifying the leading order term, we can now identify subsets of RZ that
contribute error terms only. The first such subsets are when |pi − qi| . L1−δ for some fixed δ > 0
and some i that we may without loss of generality assume to be 1.

Lemma 8.7. For |a| , |b| ≤ 1, the number of elements in RZ satisfying |p1 − q1| . L1−δ satisfy the
following bound

#RZ ∩ {(p, q) ∈ Z2d
∣∣ |p1 − q1| . L1−δ} . L2(d−1)+−δ(b− a) + L(d−1)+ .

Proof. If pi = qi for at least one i, then by Corollary 8.5 with d replaced by d− 1, we have

#RZ ∩ {(p, q) ∈ Z2d
∣∣ pi = qi} . L

(
L2(d−2)+(b− a) + L(d−3)+

)
,

which is lower order. Moreover, if pi 6= qi for all i, and |p1−q1| . L1−δ, then the sum over 2 ≤ i ≤ d
can be bounded by L2(d−2)+(b− a) + L0+ , using Lemma 8.4, while the sum over p1 and q1 can be

by L2−δ. This gives a bound of L2−δ
(
L2(d−2)+(b− a) + L0+

)
, which is lower order if d ≥ 3. �

Next we show that if one pi or qi is less than L1−δ, where we may again assume i = 1, then the
contribution to the number of elements in RZ is lower order.

Lemma 8.8. For |a| , |b| ≤ 1, we have the following estimate

#RZ ∩ {(p, q) ∈ Z2d
∣∣ |p1| . L1−δ} . L2(d−1)+−δ(b− a) + L(d−1)+

Proof. If both |p1| . L1−δ and |q1| . L1−δ or pi = qi for at least one i, then by Lemma 8.7 we have

the stated bound. Otherwise, the sum over 2 ≤ i ≤ d contributes L2(d−2)+(b− a) + L0+ , while the
sum over p1 and q1 contributes L2−δ. �

From Lemma 8.7 and Lemma 8.8, we have

Corollary 8.9. Setting

RZδ = RZ \
d⋃

i=1

(
{(p, q) ∈ Z2d

∣∣ where, |pi|, |qi|, or |pi − qi| . L1−δ, for at least one i}
)
.

Then, for |a| , |b| ≤ 1, we have the following cardinality bound on the set difference RZ \RZδ

#RZ \RZδ . L
2(d−1)+−δ(b− a) + L(d−1)+
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8.2. Asymptotic formula on a coarse scale. These upper bounds, in particular Corollary 8.5
allow us to present a simple proof of the asymptotic formula for #RZ on a coarser scale, e.g.

b−a = L
4
3 . Note hat this is still better then the trivial Riemann sum scale of b−a = O(L2).

Proposition 8.10. Fix δ > 0 sufficiently small, then if L1+4δ ≤ b − a ≤ L2−δ, we have the
asymptotic formula

#
{

(p, q) ∈ Zd ∩ [0, L]2d
∣∣ Q(p, q) ∈ [a, b]

}
= L2(d−1)(b− a)

¨

R2d

1[0,1]2d(x, y)δ(Q(x, y)) dxdy

+O
(
L2(d−1)−δ(b− a)

)
.

Proof. First we will smooth the characteristic functions by extending the region to a slightly bigger
region with a controlled error term. This is done as follows. Let wL ∈ C∞c ([−Lδ, L + Lδ]) be a
bump function satisfying wL(x) = 1 for x ∈ [0, L] and

‖wL‖CN . L−Nδ .

Then by setting WL(x, y) =
∏d
i=1wL(Lxi)wL(yi), we have,

∑

p,q∈Zd
WL

( p
L
,
q

L

)
− 1[0,L]2d (p, q) = O

(
L2d−1+δ

)
.

Moreover, if we denote by hL ∈ C∞c ([a−L1+2δ, b+L1+2δ]) a bump function hL(x) = 1 for x ∈ [a, b]
and

‖hL‖CN . L−N(1+2δ) .

then by Corollary 8.5, we have

∑

p,q∈Zd
WL

( p
L
,
q

L

)
hL (Q(p, q))− 1[0,L]2d (p, q)1[a,b](Q(p, q)) =

O
(
L2d−1+δ

)
+O

(
L(2d−1+2δ)+

)
= O

(
L2(d−1)−δ(b− a)

)
.

assuming that b− a ≥ L1+4δ. Thus, it is sufficient to obtain the asymptotic formula for

S :=
∑

p,q∈Zd
WL

( p
L
,
q

L

)
hL (Q(p, q)) .

Using Fourier transform, we express S as

S =

ˆ ∞
−∞

ĥL(s)
∑

p,q

WL

( p
L
,
q

L

)
e(Q(p, q)s) ds :=

ˆ ∞
−∞

ĥL(s)S(s) ds (8.9)

Applying Poisson summation we may rewrite S(s) as

S(s) =
∑

`

ˆ
WL

(x
L
,
y

L

)
e(Q(x, y)s−m · x− n · y) dx dy (8.10)

=L2d
∑

`

ˆ
WL (z) e(L2Q(z)s− L` · z) dz (8.11)

where z = (x, y), and ` = (m,n).
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The term ` = 0 contributes the asymptotic formula

L2d

ˆ
WL(z)hL(L2Q(z))dz = L2(d−1)(b− a)

ˆ

R2d

1[0,1]2d(z)δ(Q(z)) dz +O
(
L2(d−1)−δ(b− a)

)

where we used (b− a) < L2−δ in replacing hL(L2Q)) by δdirac(Q). So it remains to show that the
sum for ` 6= 0 can be treated as error. First we estimate the sum for s ≤ 1

L1+δ . In this case we write

Φ(z, `, s) = L2Q(z)s−L` · z, and note that since |s| ≤ 1
L1+δ and |z| . 1, then |∇zΦ(z,m, s)| ≥ L|`|

2 ,
where

∇zΦ(z, `, s) = L2∇Q(z)s− L` , (8.12)

and thus upon integrating (8.11) by parts, we obtain

S(s) =
∑

6̀=0

L2d

ˆ
∇j
(

WL(z)

2πi∇jΦ(z, `, s)

)
e(Φ(z, `, s)) dz. (8.13)

Since each derivative of WL contributes L1−δ, then each integration by parts contributes a factor of
1

Lδ|`| . Applying a sufficient number of integrations by parts, and using the fact that |ĥL(s)| . b−a,

we may ensure that the contribution for ` 6= 0 and |s| ≤ 1
L1+δ is arbitrarily small.

For |s| ≥ 1
L1+δ we note that

|ĥL(s)| . (b− a)
1

(L1+2δ|s|)N
,

for all N , and thus this term can be treated as an error. This concludes the stated result. �

8.3. Bourgain’s Theorem. Now we present Bourgain’s proof of equidistribution.

Theorem 8.11. Fix ε > 0, then for δ > 0 sufficiently small the following statement is true:
Suppose Ij , Jj ⊂ [0, L], j = 1, . . . , d for d ≥ 3 are intervals with length satisfying

L1−δ ≤ |Ij | , |Jj | ≤ L (8.14)

Then for a, b satisfying |a| , |b| ≤ 1 and L−d+1+ε < b− a < L−ε we have

∑

a≤Q(p,q)≤b
pj∈Ij ,qj∈Jj

p 6=q

1 =

ˆ
I1×···×Id

ˆ
J1×···×Jd

1a≤Q(x,y)≤b dxdy +O(L2(d−1−dδ)(b− a)) . (8.15)

In order to prove Theorem 8.11, we first make a series of reductions.

Step 1: Restrict to dyadic lengths and discrete intervals (a, b). We first show that it sufficient to

assume dyadic lengths L = 2N1 for N1 ∈ N and that (a, b) = (N2L
−d+1+ε, (N2 + 1)L−d+1+ε), for

N2 ∈ Z such that |N2| ≤ 2Ld−1−ε. The restriction to dyadic lengths L = 2N1 is valid since it only has
potential effect of modifying the implicit constants in the theorem. Now suppose (8.15) is satisfied
for all such L and (a, b) as described above and suppose we are given another interval (a′, b′) such
that a′, b′ satisfies |a′| , |b′| ≤ 1 and L−d+1+2ε < b′ − a′ < L−ε. Then, by assuming δ is sufficiently
small (depending on ε), and summing over intervals of the form (N2L

−d+1+ε, (N2 + 1)L−d+1+ε) we
obtain

∑

a′≤Q(p,q)≤b′
pj∈Ij ,qj∈Jj

p 6=q

1 =

ˆ
I1×···×Id

ˆ
J1×···×Jd

1a′≤Q(x,y)≤b′ dxdy +O(L2(d−1)−ε(b′ − a′)) .
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Thus, by again taking δ smaller if needed, we obtain Theorem 8.11 with ε replaced by 2ε, i.e. up
to a relabeling of ε, we obtain Theorem 8.11.

Step 2: Ignore intervals that contribute lower order sums. Set δ̃ = 4dδ, then by Corollary 8.9 we

have for δ̃ sufficiently small,
∑

RZ

1 =
∑

RZδ̃

1 +O
(
L2(d−1)+−δ̃(b− a))

)
+O(L(d−2)+ =

∑

RZδ̃

1 +O
(
L2(d−1)+−δ̃(b− a)

)
(8.16)

where we have used the restriction of a − b and assumed δ to be sufficiently small compared to
ε.

Thus we restrict our attention to the case where

(a) ∀pi ∈ Ei, and ∀qi ∈ Fi, we have |pi| > L1−δ̃, |qi| > L1−δ̃,

(b) distance(Ei, Fi) > L1−δ̃.

With this reduction at hand, we divide each interval into at most L3δ̃ intervals, Ei = ∪αIαi and
Fi = ∪αJαi each satisfying

(c) 1
2L

1−3δ̃ ≤ |Iαi | , |Jαi | ≤ L1−3δ̃,

and prove that for intervals Iαi and Jαi , satisfying Conditions (a), (b), and (c) we have

∑

a≤Q(p,q)≤b
pj∈Iαj ,qj∈Jαj

p 6=q

1 =

ˆ
Iα1 ×···×Iαd

ˆ
Jα1 ×···×Jαd

1a≤Q(x,y)≤b dxdy +O(L2(d−1)−(3d+1)δ̃(b− a)) . (8.17)

Summing in α and using (8.16) we have

∑

a≤Q(p,q)≤b
pj∈Ij ,qj∈Jj

p 6=q

1 =
∑

α

(ˆ
Iα1 ×···×Iαd

ˆ
Jα1 ×···×Jαd

1a≤Q(x,y)≤b dxdy +O(L2(d−1−(3d+1)δ̃)(b− a))

)

+O
(
L2(d−1)+−4dδ(b− a)

)

=
∑

α

ˆ
Iα1 ×···×Iαd

ˆ
Jα1 ×···×Jαd

1a≤Q(x,y)≤b dxdy +O
(
L2(d−1)+−δ̃(b− a)

)
.

Using that δ̃ = 4dδ and
∣∣∣∣∣

ˆ
I1×···×Id

ˆ
J1×···×Jd

1a≤Q(x,y)≤b dxdy −
∑

α

ˆ
Iα1 ×···×Iαd

ˆ
Jα1 ×···×Jαd

1a≤Q(x,y)≤b dxdy

∣∣∣∣∣

. L2(d−1)+−δ̃(b− a)

we conclude (8.15).

Summarizing, if by abuse of notation, we drop the index α and replace δ̃ with δ, we have reduced
the proof of Theorem 8.11 to proving the following proposition.

Proposition 8.12. Fix ε > 0, then for δ > 0 sufficiently small the following statement is true:
Suppose Ij , Jj ⊂ [−L,L], j = 1, . . . , d for d ≥ 3 are intervals satisfying

(1) ∀pi ∈ Ii, and ∀qi ∈ Ji, we have |pi| > L1−δ, |qi| > L1−δ.
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(2) distance(Ii, Ji) > L1−δ.

(3) 1
2L

1−3δ ≤ |Ii| , |Ji| ≤ L1−3δ

Then for a, b satisfying |a| , |b| ≤ 1 and L−d+1+ε < b− a < L−ε we have

∑

a≤Q(p,q)≤b
pj∈Ij ,qj∈Jj

p 6=q

1 =

ˆ
I1×···×Id

ˆ
J1×···×Jd

1a≤Q(x,y)≤b dxdy +O(L2(d−1)−(3d+1)δ(b− a)) . (8.18)

Let us now suppose Ij and Jj satisfy the hypothesis of Proposition 8.12.

Step 3: Transform the region of summation. The sum can be written as,

∑

pi∈Ij ,qj∈Jj

1[a,b](Q(p, q)) =
∑

pi∈Ij ,qj∈Jj

1[0, b−a2 ]

(
Q(p, q)− a+ b

2

)
(8.19)

By writing Id = [u−∆u, u+∆u], and Jd = [v−∆v, v+∆v], and utilizing the fact that |u−v| > L1−δ,
we express the region RZ as,

∣∣∣∣∣

∑d−1
j=1 βj(p

2
j − q2

j )− b+a
2

βd(p
2
d − q2

d)
+ 1

∣∣∣∣∣ ≤
b− a

2βd
∣∣p2
d − q2

d

∣∣ ,

≤ b− a
2βd |u2 − v2| +O

(
(b− a)L−δ

|u2 − v2|

)

since ∣∣p2
d − q2

d − u2 + v2
∣∣ . L(∆u+ ∆v) . L2−3δ and

∣∣u2 − v2
∣∣ ≥ L2−2δ .

Setting ξ = b+a
2 and η = b−a

2 , then by taking logarithms and Taylor expanding ln(x) around x = 1
we obtain∣∣∣∣∣∣

ln



d−1∑

j=1

βj(p
2
j − q2

j )− ξ


− ln

(
p2
d − q2

d

)
− lnβd

∣∣∣∣∣∣
≤ η

βd |u2 − v2| +O

(
ηL−δ

|u2 − v2|

)
, (8.20)

here we assumed, without loss of generality,
∑d−1

j=1 βj(p
2
j − q2

j )− ξ > 0 and p2
d − q2

d > 0.

Step 4: Replace the sum with an analogous sum.

Instead of considering the sum over the region RZ, we will consider the sum over the region SZ,
defined as

SZ =



(p, q) ∈

d∏

j=1

Ij ×
d∏

k=1

Jk :

∣∣∣∣∣∣
ln



d−1∑

j=1

βj(p
2
j − q2

j )− ξ


− ln

(
p2
d − q2

d

)
− lnβd

∣∣∣∣∣∣
≤ η

βd |u2 − v2|





(8.21)
In order to make this reduction, we need a bound on cardinality of (p, q) satisfying

∣∣∣∣∣∣
ln



d−1∑

j=1

βj(p
2
j − q2

j )− ξ


− ln

(
p2
d − q2

d

)
− lnβd

∣∣∣∣∣∣
=

η

βd |u2 − v2| +O

(
ηL−δ

|u2 − v2|

)
,

Such a bound would follow as a consequence of a version of a weaker version of Proposition 8.12
with the asymptotic formula (8.18) replaced with a sharp upper bound, i.e.,
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Proposition 8.13. Fix ε > 0, then for δ > 0 sufficiently small the following statement is true:
Suppose Ij and Jj satisfy the hypothesis of Proposition 8.12, then for a, b satisfying |a| , |b| ≤ 1 and

L−d+1+ε < b− a < L−ε we have
∑

a≤Q(p,q)≤b
pj∈Ij ,qj∈Jj

p 6=q

1 = O(L2(d−1)−3dδ(b− a)) . (8.22)

We note that for Proposition 8.12 compared with Proposition 8.13 we may require a stricter small-
ness criteria on δ relative to the choice of ε. With this in mind, applying Proposition 8.13, the
difference in summing in p and q satisfying (8.20) and computing the cardinality of SZ is of order

O(L2(d−1)−(3d+1)δ(b − a)) and hence can be treated as an error. We remark that such arguments
will be used later to bound analogous error terms.

By the arguments above, the sum in Proposition 8.13 may be estimated from above by the cardi-
nality of SZ with η replaced by 2η in the set’s definition. Hence up to a factor of 2 in the definition
of SZ, to prove both Proposition 8.13 and Proposition 8.12, it suffices to obtain an asymptotic
formula for SZ.

If we set

F (p, q) = ln



d−1∑

j=1

βj(p
2
j − q2

j )− ξ


− ln

(
p2
d − q2

d

)
− lnβd, A =

η

|u2 − v2| ,

then we can rewrite the cardinality of SZ as
∑

SZ

1 =
∑

(pj ,qj)∈Ii×Jj

1[−A,A](F (p, q)) .

For a technical reason (as will be seen in Step 7), we replace 1[−A,A] by a smooth approximation.
Let φ : R → R be a smooth, non-negative, symmetric Friedrich mollifier, that is monotonically
decreasing on R+. Setting φε(x) = ε−1φ(xε ). Then, we have
∑

SZ

1 =
∑

(pj ,qj)∈Ii×Jj

(
1[−A,A] ∗ φL−100d

)
(F (p, q)) +

∑

(pj ,qj)∈Ii×Jj

(
1[−A,A] − 1[−A,A] ∗ φL−100d

)
(F (p, q))

= I + II . (8.23)

In an analogous argument to showing that the cardinality of RZ can well approximated by the
cardinality of RZ, we may show that sum II can be estimated up to an acceptable error.

Step 5: Expressing the sum using Fourier Transform. The number #SZ can be expressed using the
Fourier transform as follows. Let

F (p, q) = ln



d−1∑

j=1

βj(p
2
j − q2

j )− ξ


− ln

(
p2
d − q2

d

)
− lnβd, A =

η

|u2 − v2| ,

and write

I =
∑

(pj ,qj)∈Ii×Jj

(
1[−A,A] ∗ φL−100d

)
(F (p, q)) =

∑

(pj ,qj)∈Ij×Jj

ˆ
eiF (p,q)t ̂(

1[−A,A] ∗ φL−100d

)
(t)dt

=

ˆ
S1(t)S2(t)e−it lnβd1̂[−A,A]φ̂L−100d dt,
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where,

S1(t) =
∑

pi∈Ii,qi∈Ji
i=1,...,d−1



d−1∑

j=1

βj(p
2
j − q2

j ) + ξ



it

(8.24)

S2(t) =
∑

pd∈Id,qd∈Jd

(p2
d − q2

d)
it. (8.25)

Step 6: A scaling argument. As mentioned earlier, if A is large compared to L−1, then comparing
the sum over SZ and the area of S is relatively simple. For this reason we split our sum by scaling

with a factor A
A0

, where A0 = L4/3

|u2−v2| , i.e., split the integral into two terms,

I =
A

A0

ˆ
S1(t)S2(t)e−it lnβd ̂1[−A0,A0]φ̂L−100d dt

+

ˆ
S1(t)S2(t)e−it lnβd

(
1̂[−A,A] −

A

A0

̂1[−A0,A0]

)
φ̂L−100d dt = III + IV .

Ignoring the factor φ̂L−100d , the first integral is counting p, q such that

∣∣∣∣∣∣
ln



d−1∑

j=1

βj(p
2
j − q2

j )− ξ


− ln

(
p2
d − q2

d

)
− lnβd

∣∣∣∣∣∣
≤ A0β

−1
d .

As in Step 4, the factor φ̂L−100d can be ignored, up to a suitable contributing error. Then, one is
reduced to counting

∣∣∣∣∣∣

d∑

j=1

βj(p
2
j − q2

j )− ξ

∣∣∣∣∣∣
≤ L 4

3 +O(L
4
3
−δ) .

Again, applying a similar upper/lower bounding argument to that used in Step 4 with the use of
Proposition 8.13 replaced by the use of Proposition 8.10, we obtain

III =

ˆ
I1×···×Id

ˆ
J1×···×Jd

1a≤Q(x,y)≤b dxdy +O(L2(d−1)−(3d+1)δ(b− a)) .

For the purpose of proving Proposition 8.13, one simply observes that the first term is of order
O(L2(d−1)−3dδ(b − a)). Thus in order to complete the proof of Proposition 8.12, Proposition 8.13,
and by implication Theorem 8.11, it suffices to estimate IV .

Step 7: Replace S2 with a sum involving smooth cut-offs

We now replace the sum S2 with a sum involving smooth cut-offs. This is a preparatory step,
that will be needed for Step 10, in order to apply an argument involving the Mellin transform and
Riemann zeta function estimates.

We rewrite S2 in terms of the coordinates m = pd − qd, n = pd + qd and the set

K := {pd − qd)
∣∣ (pd, qd) ∈ Id × Jd} .
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Then S2 becomes

S2 =
∑

pd,qd

1Id(pd)1Jd(qd)(p
2
d − q2

d)
it

=
∑

m,n

1[−1,1]

(
m+ n− 2u

2∆u

)
1[−1,1]

(
m− n− 2v

2∆v

)
mitnit

=
∑

m∈K
mit

∑

n

1[−1,1]

(
m+ n− 2u

2∆u

)
1[−1,1]

(
m− n− 2v

2∆v

)
nit .

Without loss of generality, we may assume ∆u ≤ ∆v. Let us cover K by disjoint intervals Mj of

length L1−100dδ and define wj to be the center of Mj . It is not difficult to show that that may be

achieved such that #{Mj} . L100dδ we have the following bound on the set difference

#

(⋃

k

Mj

)
\K . L1−100dδ .

Thus we have∣∣∣∣∣∣
S2 −

∑

j

∑

m∈Mj

mit
∑

n

1[−1,1]

(
m+ n− 2u

2∆u

)
1[−1,1]

(
m− n− 2v

2∆v

)
nit

∣∣∣∣∣∣
. L2−100dδ .

Using that Mj is of length L1−100dδ, we may also replace m with the midpoints wj in order to
obtain the estimate
∣∣∣∣∣
∑

n

(
1[−1,1]

(m+ n− 2u

2∆u

)
1[−1,1]

(m− n− 2v

2∆v

)
− 1[−1,1]

(wj + n− 2u

2∆u

)
1[−1,1]

(wj − n− 2v

2∆v

))∣∣∣∣∣
. L1−100dδ ,

and hence

S2 =
∑

j

∑

m∈Mj

mit
∑

n

1[−1,1]

(
wj + n− 2u

2∆u

)
1[−1,1]

(
wj − n− 2v

2∆v

)
nit +O(L2−100dδ) .

Again, up to an allowable error we may also replace the sharp cut-off cutoff functions with a smooth
cut-off ψ ≡ 1 on [−1 + L−100dδ, 1− L−100dδ] and supported on the interval [−1, 1], i.e.

S2 =
∑

j

∑

m∈Mj

mit
∑

n

ψ

(
wj + n− 2u

2∆u

)
ψ

(
wj − n− 2v

2∆v

)
nit

︸ ︷︷ ︸
Sj

+O(L2−100dδ) . (8.26)

Finally, the sum in m can be replaced be a sum involving a smooth cut-off, up to an allowable
error

S2 =
∑

j

∑

m

ψ

(
wj −m
L1−100dδ

)
mitSj

︸ ︷︷ ︸
S̃2

+O(L2−100dδ) . (8.27)

We now decompose IV as

IV =

ˆ
S1(t)S̃2(t)e−it lnβd

(
1̂[−A,A] −

A

A0

̂1[−A0,A0]

)
φ̂L−100d dt

+

ˆ
S1(t)(S2(t)− S̃2(t))e−it lnβd

(
1̂[−A,A] −

A

A0

̂1[−A0,A0]

)
φ̂L−100d dt = V + V I
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By (8.27) we have

|V I| . L2d−100dδ

ˆ ∣∣∣∣
(
1̂[−A,A] −

A

A0

̂1[−A0,A0]

)
φ̂L−100d

∣∣∣∣ dt .

Observe that∣∣∣∣1̂[−A,A](t)−
A

A0

̂1[−A0,A0](t)

∣∣∣∣ = A

∣∣∣∣
sin(At)

At
− sin(A0t)

A0t

∣∣∣∣ . min

(
AA2

0 |t|2 ,
A

1 +A |t|

)
. (8.28)

and for any N we have ∣∣∣φ̂L−100d

∣∣∣ . 1

(1 + L−200dt2)N
. (8.29)

Thus using that A . (b− a)L−2+2δ, we have

|V I| . (b− a)L2(d−1)−50dδ ,

which is an acceptable error.

Step 8: V is an error. Now consider V , we aim to show that

|V | . L2(d−1)−3dδη (8.30)

for a set of (β2, βd) of full measure, independent of our choice of length L = 2N1 and interval
(a, b) = (N2L

−d+1+ε, (N2 + 1)L−d+1+ε). By Chebyshev’s inequality, it suffices to show

‖V ‖L2
β2,βd

. L2(d−1)−(3d+1)δη
3
2 .

To see this, define

ΩL,N2 = {β ∈ [1, 2]d
∣∣ |V | > L2(d−1)−3dδη} .

By Chebyshev’s inequality we have

|ΩL,N2 | .
1

L4(d−1)−6dδη2
‖V ‖2L2

β2,βd

. L−2δη .

Recall that η = L−d+1+ε, then, since

⋂

N1≥M, |N2|≤2Ld−1−ε

∣∣Ω2N1 ,N2

∣∣ ≥ 1− C
∞∑

j=N

2−2jδ = 1− C 4δ(1−N)

4δ − 1
→ 1 as M →∞ .

we obtain (8.30) for a set of (β2, βd) of full measure, where the implicit constant depends on
(β2, βd).

Applying (8.28) and (8.29) we have
∣∣∣∣
(
1̂[−A,A] −

A

A0

̂1[−A0,A0]

)
φ̂L−100d

∣∣∣∣ . min

(
AA2

0 |t|2 ,
A

1 +A |t|

)
.

Averaging in β2 and βd, and using Plancherel’s theorem for the integral in βd, we have from the

bounds A = ηL−2+2δ and A0 = L−
2
3

+2δ

‖V ‖2L2
β2,βd

. A2

(
A4

0

ˆ
|t|≤L

1
100

t4 ‖S1‖2L2
β2

∣∣∣S̃2

∣∣∣
2
dt+

ˆ
|t|≥L

1
100

1

1 +A2t2
‖S1‖2L2

β2

∣∣∣S̃2

∣∣∣
2
dt

)

. η2L
−20
3

+12δ

ˆ
|t|≤L

1
100

t4 ‖S1‖2L2
β2

∣∣∣S̃2

∣∣∣
2
dt+ η2L−4+4δ

ˆ
|t|≥L

1
100

1

1 + η2L−4t2
‖S1‖2L2

β2

∣∣∣S̃2

∣∣∣
2
dt

. η2L
−8
3

+6δ

ˆ
|t|≤L

1
100

t4 ‖S1‖2L2
β2

dt

︸ ︷︷ ︸
V II

+ η2L−4+4δ

ˆ
|t|≥L

1
100

1

1 + η2L−4t2
‖S1‖2L2

β2

∣∣∣S̃2

∣∣∣
2
dt

︸ ︷︷ ︸
V III
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where we have used the trivial bound #S̃2 ≤ #Id#Jd ≤ L2−6δ.

Step 9: Bounding V II. To bound ‖S1‖L2
β2

, we rewrite

|S1(t)|2 =
∑

pi∈Ii,qi∈Ji
i=1,...,d−1

∑

rj∈Ij ,sj∈Jj
j=1,...,d−1



d−1∑

j=1

βj(p
2
j − q2

j )− ξ



it

d−1∑

j=1

βj(r
2
j − s2

j )− ξ



−it

=
∑

pi∈Ii,qi∈Ji
i=1,...,d−1

∑

rj∈Ij ,sj∈Jj
j=1,...,d−1

(p2
1 − q2

1 + β2(p2
2 − q2

2) + ψ1)it(r2
1 − s2

1 + β2(r2
2 − s2

2) + ψ2)−it

=
∑

pi∈Ii,qi∈Ji
i=1,...,d−1

∑

rj∈Ij ,sj∈Jj
j=1,...,d−1

eit((ln(p21−q21+β2(p22−q22)+ψ1)−ln(r21−s21+β2(r22−s22)+ψ2)))

where

ψ1 :=
d−1∑

j=3

βj(p
2
j − q2

j )− ξ and ψ2 =
d−1∑

j=3

βj(r
2
j − s2

j )− ξ

for d > 3 or ψ1 = ψ2 = ξ for the case d = 3. Setting

φ := ln
(
p2

1 − q2
1 + β2(p2

2 − q2
2) + ψ1

)
− ln

(
r2

1 − s2
1 + β2(r2

2 − s2
2) + ψ2

)

we have

|∂β2φ| =
∣∣∣∣

p2
2 − q2

2

p2
1 − q2

1 + β2(p2
2 − q2

2) + ψ1
− r2

2 − s2
2

r2
1 − s2

1 + β2(r2
2 − s2

2) + ψ2

∣∣∣∣

≥
∣∣∣∣
(p2

2 − q2
2)(r2

1 − s2
1 + ψ2)− (r2

2 − s2
2)(p2

1 − q2
1 + ψ1)

L4

∣∣∣∣ ,

then for t ≤ L4, and by taking the sup over indices 3 ≤ i ≤ d− 1, we have

ˆ
|S1(t)|2 dβ2 . sup

ψ1,ψ2

L2(d−3)
∑

pi∈Ii,qi∈Ji
ri∈Ii,si∈Ji
i=1,2

(
1 + |t| inf

β2
|∂β2Ψ|

)−1

.

Here we a using the trivial bound for the case 1 ≥ |t| infβ2 |∂β2Ψ|, otherwise we use Van der
Corput’s Lemma (see for example [37] Chapter 8, Proposition 2). For the former case, to apply the
proposition, we split the integral into regions for which ∂β2Φ is monotonic in β2.

Set (pi− qi)(pi + qi) = wi and (ri− si)(ri + si) = zi, and sum over fixed wi and zi using the divisor
bound d(k) .ε |k|ε, we obtain

ˆ
|S1(t)|2 dβ2 . sup

ψ1,ψ2

L2(d−3)+
∑

L2−2δ≤|wi|,|zi|≤L2

(
1 +
|t|
L4
|w2(z1 + ψ2)− z2(w1 + ψ1)|

)−1

The above sum can rearranged by summing first over the set,

Aψ(k,w2, z2) = {L2−2δ ≤ |w1| , |z1| ≤ L2
∣∣ ⌊|w2(z1 + ψ2)− z2(w1 + ψ1)|

⌋
= k},



40 T. BUCKMASTER, P. GERMAIN, Z. HANI, J. SHATAH

and then over (k,w2, z2) to obtain,
ˆ
|S1(t)|2 dβ2 . sup

ψ1,ψ2

L2(d−3)+
∑

0≤k.L2

L2−2δ≤|w2|,|z2|≤L2

#Aψ(k,w2, z2)
L4

L4 + |t| k

. sup
ψ1,ψ2

L2(d−3)+
∑

L2−2δ≤|w2|,|z2|≤L2

max
k

#Aψ(k,w2, z2)

(
1 +

L4+

|t|

)

Now we estimate #Aψ(k,w2, z2) for a fixed (k,w2, z2). Assume Aψ(k,w2, z2) 6= ∅, then there exists

w0 and z0, such that, L2−2δ ≤ |w0 − ψ2| ≤ L2 and L2−2δ ≤ |z0 − ψ1| ≤ L2 and

[|w2(z0)− z2(w0)|] = k .

Thus

#Aψ . #{w2z̃1 = z2w̃1

∣∣ |w̃1 − w0| , |z̃1 − z0| ≤ L2} = #{w1 =
w2z̃1

z2

∣∣ |w̃1 − w0| , |z̃1 − z0| ≤ L2}

Since w̃1 ∈ Z then #Aψ . 1 + L2 gcd(w2,z2)
z2

, and consequently

ˆ
|S1(t)|2 dβ2 . L

2(d−3)+

(
1 +

L4+

|t|

) ∑

L2−2δ≤|w2|,|z2|≤L2

(
1 +

L2 gcd(w2, z2)

z2

)

. L2(d−3)+

(
1 +

L4+

|t|

)



∑

L2−2δ≤|w2|,|z2|≤L2

1 +
∑

L2−2δ≤|w2|,|z2|≤L2

gcd(w2,z2) 6=1

L2+




. L2(d−1)+δ

(
1 +

L4

|t|

)
.

Hence, applying this bound to V II yields

V II . η2L
−8
3

+6δ

ˆ
|t|≤L

1
100

|t|3 L2(d+1+δ) dt . η2L4(d−1)L−2d+ 10
3

+7δ+ 1
25 . η3L4(d−1) .

where we used that η = L−d+1+ε, δ is sufficiently small and d ≥ 3.

Step 10: Bounding V III. Now consider V III, we have

V III . η2L2(d−3)+5δ

ˆ
|t|≥L

1
100

|t|+ L4

1 + η2L−4t2
1

|t|
∣∣∣S̃2

∣∣∣
2
dt

. η2L2(d−3)+5δ sup

κ≥L
1

100

κ1+ + L4κ0+

1 + η2L−4κ2

ˆ
|t|≥L

1
100

1

|t|1+

∣∣∣S̃2

∣∣∣
2
dt

. η2L2(d−3)+5δ

(
L2+

η
+ L4+

)
sup

k
L−

1
100 2−k

ˆ L
1

100 2k+1

L
1

100 2k

∣∣∣S̃2

∣∣∣
2
dt


 . (8.31)

We proceed to estimate |Sj |, defined in (8.26). Defining

χ(z) = ψ

(
wj − 2u

2∆u
+ z

)
ψ

(
wj − 2v

2∆v
− z∆u

∆v

)
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and letting χ̂ denote Mellin transform of χ, then

S2
j =

(
1

2πi

ˆ
<s=2

χ̂(s)(2∆u)sζ(s− it)ds
)2

.

Shifting the contour to <s = 1
2 we pick up the residue

χ̂(1 + it)(2∆u)1+it ,

which for |t| ≥ L
1
3 is order O(L−N ) for any N due to the decay of χ̂ and that ∆u and ∆v are of

comparable size. Then using ∆u ∼ L1−3δ

|Sj |2 =

∣∣∣∣∣
1

2π

ˆ
<s= 1

2

χ̂(s)(2∆u)sζ(s− it)ds
∣∣∣∣∣

2

+O(1)

. L1−3δ

∣∣∣∣∣

ˆ
<s= 1

2

χ̂(s)ζ(s− it)ds
∣∣∣∣∣

2

+O(1) = L1−3δ

∣∣∣∣χ̂
(

1

2
+ i·

)
∗ ζ
(

1

2
− i·

)
(t)

∣∣∣∣
2

+O(1) .

Again, using the rapid decay of ψ̂, we have

|Sj |2 . L1−3δ

∣∣∣∣
(
1[−L100dδ,L100dδ](·)χ̂

(
1

2
+ ·
))
∗ ζ
(

1

2
− i(·)

)
(t)

∣∣∣∣
2

+O(1) .

We now utilize following classical L4 bound of the zeta function in the critical strip [25]

1

T

ˆ T

0

∣∣∣∣ζ
(

1

2
− it

)∣∣∣∣
4

dt . T 0+ .

Using the above bound yields
∥∥∥∥
(
1[−L100dδ,L100dδ](·)χ̂

(
1

2
+ i·

))
∗ ζ
(

1

2
− i·

)∥∥∥∥
4

L4([L
1

100 2k,L
1

100 2k+1])

. ‖χ̂‖L∞
∥∥∥∥ζ
(

1

2
+ i(·)

)∥∥∥∥
4

L4([L
1

100 2k−L100dδ,L
1

100 2k+1+L100dδ])

. L
1

100
+δ2k

Thus we obtain
‖Sj‖4

L4([L
1

100 2k,L
1

100 2k+1])
. L2+ 1

100
−5δ2k .

An analogous argument also yields
∥∥∥∥∥
∑

m

ψ

(
wj −m
L1−100dδ

)
mit

∥∥∥∥∥

4

L4([L
1

100 2k,L
1

100 2k+1])

. L2+ 1
100
−5δ2k .

Using the decomposition (8.26) and the bound #{Mj} . L100dδ, we have
∥∥∥S̃2

∥∥∥
2

L2([L
1

100 2k,L
1

100 2k+1])
. L2+ 1

100
+100δ2k .

Thus, combining the above estimate on S2 with (8.31), we obtain

V III . η2L2(d−3)+5δ

(
L2+

η
+ L4+

)(
sup
k
L−

1
100 2−kL2+ 1

100
+100dδ2k

)

. η2L2(d−2)+(5+100d)δ

(
L2+

η
+ L4+

)

. η2L4(d−1)L−2d+2+200dδη−1
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where we used that η = L−d+1+ε > L2 since d ≥ 3. Thus assuming δ to be sufficiently small,
then

L−2d+2+200dδ ≤ L2d+2+ε−3dδ = η2L−3dδ ,

and hence

V III ≤ L2(d−1)−3dδη ,

as desired.

8.4. Proof of Theorem 8.1. . First we note that the sum in Theorem 8.1 can be simplified as
follows,

1) Ignore all pairs (p, q) such that |pj | = |qj | for each j. The sum of such pairs such that |p| , |q| ≤
L1+δ is of order O(t2Ld(1+δ)) and hence contributes to an admissible error, where here we used
the restriction t ≤ Ld−ε.

2) We restrict the sum to the positive sector p, q ∈ Zd+ ∩ [0, L1+δ] for p 6= q. Here we are using
that the subset of (p, q) such that pj = 0 or qj = 0 for some j is an admissible error. This
follows as a consequence of Lemma 8.8. To rigorously carry out such an estimate, one must
split the contributions when |Q(p, q)| ≤ µ−1 and |Q(p, q)| > µ−1. Assuming without of loss of
generality that p1 = 0, then splitting up the later part dyadically in the size of |Q(p, q)| and
using |g(x)| . 1

|x|2 one obtains the estimate

t2
∑

(p,q)∈Z2d
+

p1=0, p 6=q

∣∣∣W
( p
L
,
q

L

)
g(µQ(p, q))

∣∣∣ . t2
(
L2(d−1)+−2δ

µ
+ L(d−1)+

)
. tL2d−δ ,

where W was defined in (8.4).

With all these reductions in mind, proving Theorem 8.1 will follow as a consequence of the following
theorem.

Theorem 8.14 (Equidistribution). Fix ε > 0 and let δ > 0 be sufficiently small. Then for generic
β ∈ [1, 2]d, we have that for any function W ∈ S (Rd), the following holds,

∑

(p,q)∈Z2d
+

p6=q

W
( p
L
,
q

L

)
g(µQ(p, q)) = L2d

ˆ

R2d
+

W (x, y)g(L2µQ(x, y)) dxdy +O

(
L2(d−1)−δ

µ

)

where 1 < µ ≤ Ld−1−ε.

We remark that the above theorem is actually stronger than required: in view of the restriction on t
in the hypothesis of Theorem 8.1, we need only consider µ within the range 0 < µ ≤ Ld−2−ε.

Before we prove Theorem 8.14, we will need a couple of auxiliary lemmas. The following lemma is
helpful in bounding errors to the asymptotic formula.

Lemma 8.15. Let ε > 0. Given a generic quadratic from Q(p, q) as defined in (8.1), we have the
following estimate

∑

(p,q)∈Z2d∩[0,L]2d

p 6=q,|Q(p,q)|≥a

1

Q(p, q)2
.
L(2d−2)+

a
. (8.32)

for a ≥ L−d+ε
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Proof. We begin by dyadically subdividing the interval [a,CL2], for some large C, we define

RZ(m)

def
= {(p, q) ∈ Z2d ∩ [0, L]2d

∣∣ |Q(p, q)| ∈ [2m, 2m+1], p 6= q},
mmin = blog2 ac, and mmax = dlog2CL

2e .

Applying Lemma 8.4 yields

∑

(p,q)∈Z2d∩[0,L]2d

p 6=q,|Q(p,q)|≥a

1

Q(p, q)2
.

mmax∑

m=mmin

2−2m#RZ(m)

.
mmax∑

m=mmin

2−2mL(2d−2)+2m

.
mmax∑

m=mmin

L(2d−2)+

a
.

�

The following lemma will be useful localizing the sum in Theorem 8.14.

Lemma 8.16. Fix ε > 0, then for δ > 0 sufficiently small the following statement is true: Suppose
Ij , Jj ⊂ [0, L] for j = 1, . . . , n are intervals with length satisfying

L1−δ ≤ |Ij | , |Jj | (8.33)

and define

S(I,J)
def
= {(p, q) ∈ Z2d

∣∣ pj ∈ Ij , qj ∈ Jj , p 6= q} .

Then for µ satisfying Lε ≤ µ ≤ Ld−ε we have

∑

(p,q)∈S(I,J)

g(µQ(p, q)) =

ˆ
I1×···×Id

ˆ
J1×···×Jd

g(µQ(x, y)) dxdy +O

(
L2(d−1−dδ)

µ

)
. (8.34)

Proof. First note that by Lemma 8.15
∣∣∣∣∣∣∣∣∣

∑

(p,q)∈S(I,J)

g(µQ(p, q))−
∑

(p,q)∈S(I,J)

|Q(p,q)|≤µ−1L4dδ

g(µQ(p, q))

∣∣∣∣∣∣∣∣∣
.
L2(d−1)+(1−4d)δ

µ

.
L2(d−1−dδ)

µ
.

Define the sum A(y) and the integral Ã as follows

A(y) =
∑

(p,q)∈S(I,J)

|Q(p,q)|≤y

1 and Ã(y) =

ˆ
I1×···×Id

ˆ
J1×···×Jd

1[−y,y](Q(u, v)) dudv
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Then in the sense of distributions

∑

(p,q)∈S(I,J)

|Q(p,q)|≤µ−1L4dδ

g(µQ(p, q)) =

ˆ µ−1L4dδ

0
g(µy)A′(y) dy

= −µ
ˆ µ−1L4dδ

0
g′(µy)A(y) dy + g(L4dδ)A(µ−1L4dδ)

= −µ
ˆ µ−1L4dδ

0
g′(µy)A(y) dy +O

(
L2(d−2)−4dδ

µ

)

where in the last inequality we applied Lemma 8.4 and the bound Lε ≤ µ ≤ Ld−ε. Writing
A = Ã+ (A− Ã), we have

∑

(p,q)∈S(I,J)

|Q(p,q)|≤µ−1L4dδ

g(µQ(p, q)) = −µ
µ−1L4dδˆ

0

g′(µy)Ã(y) dy+µ

µ−1L4dδˆ

0

g′(µy)(A(y)− Ã(y)) dy+O

(
L2(d−2)−4dδ

µ

)

By Theorem 8.11 (by choosing δ smaller than the δ used in the theorem) it follows that assuming
y ≥ L−d+ε then ∣∣∣A(y)− Ã(y)

∣∣∣ . L2(d−1)−10dδy .

For y ≤ L−d+ε by the trivial bound
∣∣∣A(y)− Ã(y)

∣∣∣ . A(y) + Ã(y) . Ld−2+ε+δ .

Using the trivial bound g′(z) . 1 we have

µ

ˆ µ−1L4dδ

0

∣∣∣g′(µy)(A(y)− Ã(y))
∣∣∣ dy

. µ
ˆ L−d+ε

0

∣∣∣g′(µy)(A(y)− Ã(y))
∣∣∣ dy +

ˆ µ−1L4dδ

L−d+ε

∣∣∣g′(µy)(A(y)− Ã(y))
∣∣∣ dy

. µL−2+2ε+δ + µL2(d−1)−10dδ

ˆ µ−1L4dδ

L−d+ε
ydy

. µ−1L2(d−1)−ε+δ + µ−1L2(d−2)−2dδ

where in the last inequality we used µ ≤ Ld−ε. Choosing δ sufficiently small in relation to ε, this
constitutes an allowable error. The proof concludes by noting that by integration by parts

−µ
µ−1L4dδˆ

0

g′(µy)Ã(y) dy =

¨

I1×···×Id
J1×···×Jd

1[−µ−1L4dδ,µ−1L4dδ](Q(x, y))
(
g(µQ(x, y)) + g(L4dδ)

)
dxdy

�

Proof of Theorem 8.14. We first note that by symmetry, it is sufficient to restrict ourselves to the
positive sector p, q ∈ Zd+. Note that Lemma 8.8 implies the subset of (p, q) such that pj = 0 or
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qj = 0 may be treated as an admissible error. Thus, it suffices to show

∑

(p,q)∈Z2d
+

p6=q

W
( p
L
,
q

L

)
g(µQ(p, q)) = L2d

ˆ

R2d
+

W (x, y)g(L2µQ(x, y)) dxdy +O

(
L2(d−1)−δ

µ

)

=
L2(d−1)

µ

ˆ

R2d
+

W (x, y)δ(Q(x, y)) dxdy +O

(
L2(d−1)−δ

µ

)

Divide [0, Lδ]d × [0, Lδ]d into products of cubes Mj , Nk ⊂ Rd+ of length L−10dδ. Define Wj,k to be
the average of W over Mj ×Nk:

Wj,k :=

 
Mj

 
Nk

W (x, y) dxdy

Note that if (x, y) ∈Mj ×Nk then from the smoothness of W

|W (x, y)−Wj,k| . L−10dδ .

Hence using Lemma 8.15
∣∣∣∣∣∣∣∣∣

∑

(p,q)∈Z2d
+

p 6=q

W
( p
L
,
q

L

)
g(µQ(p, q))−

∑

j,k

∑

p∈LMj ,q∈LNk
p 6=q

Wj,kg(µQ(p, q))

∣∣∣∣∣∣∣∣∣
.
L2(d−1)(1+δ)+δ−10dδ

µ

.
L2(d−1)−δ

µ

Applying Lemma 8.16 (taking δ to be sufficiently small) we obtain

∑

j,k

∑

p∈LMj ,q∈LNk
p 6=q

Wj,kg(µQ(p, q)) =
∑

j,k

ˆ
LMj

ˆ
LNk

Wj,kg(µQ(x, y)) dxdy +O

(
L2(d−1)−δ

µ

)

= L2d

ˆ

R2d
+

W (p, q)g(L2µQ(x, y)) dxdy +O

(
L2(d−1)−δ

µ

)
.

�
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