ONSET OF THE WAVE TURBULENCE DESCRIPTION OF THE LONGTIME
BEHAVIOR OF THE NONLINEAR SCHRODINGER EQUATION

T. BUCKMASTER, P. GERMAIN, Z. HANI, J. SHATAH

ABSTRACT. Consider the cubic nonlinear Schrédinger equation set on a d-dimensional torus, with
data whose Fourier coefficients have phases which are uniformly distributed and independent. We
show that, on average, the evolution of the moduli of the Fourier coefficients is governed by the
so-called wave kinetic equation, predicted in wave turbulence theory, on a nontrivial timescale.

We dedicate this manuscript to the memory of Jean Bourgain (1954 — 2018).
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1. INTRODUCTION

1.1. The Kinetic Equation. The central theme in the theory of non-equilibrium statistical
physics of interacting particles is the derivation of a kinetic equation that describes the distribution
of particles in phase space. The main example here is Boltzmann’s kinetic theory: rather than
looking at the individual trajectories of N-point particles following N —body Newtonian dynam-
ics, Boltzmann derived a kinetic equation that described the effective dynamics of the distribution
function in a certain large-particle limit (so-called the Boltzmann-Grad limit).

A parallel kinetic theory for waves, being as fundamental as particles, was proposed by physicists in
the past century. Much like the Boltzmann theory, the aim is to understand the effective behavior
and energy-dynamics of systems where many waves interact nonlinearly according to time-reversible
dispersive or wave equations. The theory predicts that the macroscopic behavior of such nonlinear
wave systems is described by a wave kinetic equation that gives the average distribution of energy
among the available wave numbers (frequencies). Of course, the shape of this kinetic equation
depends directly on the particular dispersive system/PDE that describes the reversible microscopic
dynamics.

The aim of this work is to start the rigorous investigation of such passage from a reversible nonlinear

dispersive PDE to an irreversible kinetic equation that describes its effective dynamics. For this,

we consider the cubic nonlinear Schrodinger equations on a generic torus of size L (with periodic
1
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boundary conditions) and with a parameter A > 0 quantifying the importance of nonlinear effects
(or equivalently via scaling, the size of the initial datum):

i0u — Agu = —Nu|?u, z€T¢ =0, L],
u(0, ) = up(z).

The spatial dimension is d > 3. Here, and throughout the paper, we denote

1 d
== Bid%,
2m —

where 3 := (81, .., 84) € [1,2]¢, and we denote Z¢ := %Zd, the dual space to T¢.

(NLS)

Typically in this theory, the initial data are randomly distributed in an appropriate fashion. For
us, we consider random initial data of the form

2) = % S VolR)emilatn@], (1.1)

kezd

for some nice (smooth and localized) deterministic function ¢ : RY — [0,00). The phases ¥z (w)
are independent random variables, uniformly distributed on [0,1]. Notice that the normalization
of the Fourier transform is chosen so that

[uollz2 ~ 1.

Filtering by the linear group and expanding in Fourier series, we write
d

u(t, ) Ld > ag(t)e?™ T HARI where  Q(k) =Y Bilki)*. (1.2)

kJEZd i=1

The main conjecture of wave turbulence theory is that as L — oo (large box limit) and 2 7z — 0
(weakly nonlinear limit), the quantity

L 2
pi (t) = Elak(t)]
converges to a solution of a kinetic equation. More precisely, it is conjectured that, as L — oo,

t — oo and )‘d — 0, then pE(t) ~ p(t,k), where p : R x R? — R, satisfies the wave kinetic
equation

_ — , (=1 A
0= 3T =7 | SZ) Taplh) [t k] o -

p(0, k) = ¢(k).
2
where 7 ~ (ﬁ—;) , we introduced the convention ky = k and the notation

{2 = Sk, Ky, ... k) = Y0 o(—1)ik;

Q2= 0k, ky, .. ks) = Y0o(-1)'Q(ki),

and finally 6(X)0(£2) is to be understood in the sense of distributions d(X) is just the convolution
integral over ky — kg + ks = k, whereas 6(Q = 0) := limc_,0 | ¢( (s dkldkgdkg for some ¢ € CX(R)
with [ ¢ = 1. Note that this is absolutely continuous to the surface measure through the formula
() = ﬁdug, with dugq being the surface measures on {Q2 = 0}.
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1.2. Background. In the physics literature, the wave kinetic equation (WKE) was first derived by
Peierls [33] in his investigations of solid state physics; it was discovered again by Hasselmann [23, 24]
in his work on the energy spectrum of water waves. The subject was revived and systematically
investigated by Zakharov and his collaborators [38], particularly after the discovery of special power-
type stationary solutions for the kinetic equation that serve as analogs of the Kolmogorov spectra
of hydrodynamic turbulence. These so-called Kolmogorov-Zakharov spectra predict steady states
of the corresponding microscopic system (possibly with forcing and dissipation at well-separated
extreme scales), where the energy cascades at a constant flux through the (intermediate) frequency
scales. Nowadays, wave turbulence is a vibrant area of research in nonlinear wave theory with
important practical applications in several areas including oceanography and plasma physics, to
mention a few. We refer to [31, 32] for recent reviews.

The analysis of (WKE) is full of very interesting questions, see [16, 22, 34] for recent develop-
ments, but we will focus here on the problem of its rigorous derivation. Several partial or heuristic
derivations have been put forward for (WKE), or the closely related quantum Boltzmann equa-
tions [1, 2, 3, 13, 10, 17, 28, 30, 36]. However, to the best of our knowledge, there is no rigorous
mathematical statement on the derivation of (WKE) from random data. The closest attempt in
this direction is due to Lukkarinen and Spohn [29], who studied the large box limit for the discrete
nonlinear Schrédinger equation at statistical equilibrium (corresponding to a stationary solution to

In preparation for such a study, one can first try to understand the large box and weakly nonlinear
limit of (NLS) without assuming any randomness in the data. In the case where (NLS) is set on a
rational torus, it is possible to extract a governing equation by retaining only exact resonances [18,
21, 20, 6]. The limiting equation is then Hamiltonian and dictates the behavior of the microscopic
system (NLS on T¢) on the timescales L?/A\? (up to a log loss for d = 2) and for sufficiently small
A. It is worth mentioning that such a result is not possible if the equation is set on generic tori,
since most of the exact resonances are destroyed there.

Finally, we point out that there are very few instances where the derivation of kinetic equations
has been done rigorously. The fundamental result of Lanford [27], later clarified in [19], deals
with the N-body Newtonian dynamics, from which emerges, in the Grad limit, the Boltzmann
equation. This can be understood as a classical analog of the rigorous derivation on (WKE).
Another instance of such success was the case of random linear Schrédinger operators (Anderson’s
model) [12, 14, 15, 35]. This can be understood as a linear analog of the problem of rigorously
deriving (WKE).

1.3. The difficulties of the problem. There are several difficulties in proving the validity of
(WKE) which we now enumerate:

(a) The textbook derivation of the wave kinetic equation is done under the assumption that the
independence of the data propagates for all time. This assumption cannot be verified for any
nonlinear model. A way around this difficulty is to Taylor expand the profile ag, in terms of the
initial data. Such an expansion can be represented by Feynman trees, and permits us to utilize
the statistical independence of the data in computing the expected value of |az|?>. Moreover
one needs to control the errors in such an expansion to derive the kinetic equation (WKE).
These calculations are presented in Sections 4 and 5.

(b) The wave kinetic equation induces an O(1) change on its initial configuration at a timescale
of 7. Thus we need to establish that for solutions of (NLS), the expansion mentioned above
converge up to time 7. This requires a local existence result on a timescale which is several
orders of magnitude longer than what is known. This shortcoming is a main reason why our
argument cannot reach the kinetic timescale 7, and we have to contend with a derivation
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over timescales where the kinetic equation only affects a relatively small change on the initial
distribution, and as such coincides (up to negligible errors) with its first time-iterate.

Therefore, a pressing issue is to increase the length of the time interval [0,7], over which
the Taylor expansion gives a good representation of solutions to the nonlinear problem. For
deterministic data, the best known results that give effective bounds in terms of L come from
our previous work [6] which gives a description of the solution up to times ~ L2/A\? (up to a
log L loss for d = 2) and for A < 1. Such timescale would be very short for our purposes.

To increase T, we have to rely on the randomness of the initial data. Roughly speaking, for
a random field that is normalized to 1 in L?(T¢), its L> norm can be heuristically bounded
on average by L~%2. Therefore, regarding the nonlinearity A2|ul?u as a nonlinear potential
Vu with V= A2Ju|? and ||V]|z < A2L~¢, one would hope that this should get a convergent
expansion on an interval [0, T provided that TA?L~% < 1, which amounts to T < /7. This
is the target in this manuscript.

The heuristic presented above can be implemented by relying on Khinchine-type improvements
to the Strichartz norms of a linear solution €26y with random initial data ug. Similar im-
provements have been used to lower the regularity threshold for well-posedness of nonlinear
dispersive PDE. Here, the aim is to prolong the existence time and improve the Taylor ap-
proximation. The randomness gives us better control on the size of the linear solution over
the interval [0, T, while an improved deterministic Strichartz estimate for ||| LP([0,T]xT4)

with ¢ € L? ("]I‘d)7 allows us to maintain the random improvement for the nonlinear problem.
The genericity of the (§;) is crucial (as was first observed in [11]), and allows us to go be-
yond the limiting 77/ growth that occurs on the rational torus. Unfortunately, the available
estimates here (including those in [11]) are not optimal for some ranges of the parameters A
and L, which is why, in d = 3, our result in Theorem 1.1 below falls short of the timescale

T ~ L3/,

(¢) To derive the kinetic equation in the large box limit, using the expansion for pF(t) = E|a(t)
one has to prove equidistribution theorems for the quasi-resonances over a very fine scale, i.e.,
T~'. Since T could be > L?, such scales are much finer than the any equidistribution scale
on the rational torus. Again, here the genericity of the (5;) is crucial. For this we use and
extend a recent result of Bourgain on pair correlation for irrational quadratic forms [5].

%,

1.4. The main result. Precise statements of our results in arbitrary dimensions d > 3 will be
given in Section 2. Those statements depend on several parameters coming from equidistribution
of lattice points and Strichartz estimates. For the purposes of this introductory section, we present
a less general theorem without the explicit appearance of these parameters.

Theorem 1.1. Consider the cubic (NLS) on the three-dimensional torus T3. Assume that the
initial data are chosen randomly as in (1.1). There exists 6 > 0 such that the following holds for L
sufficiently large and L= < X\ < LB (for positive A and B):

Elag(t)|? = ¢(k) + ;T(@(k) + Oyeo <L‘5i> , LO<t<T, (1.3)

2 _
where T = % ({(—;) and T ~ %, for some 0 < v < 1 stated explicitly in Theorem 2.2.

We note that the right-hand side of (1.3) is nothing but the first time-iterate of the wave kinetic
equation (WKE) with initial data ¢ (cf. (1.1)) which coincides (up to the error term in (1.3)) with
the exact solution of the (WKE) over long times scales, but shorter than the kinetic timescale
T.
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The proof this theorem can be split into three components:

(1) Section 4: Feynman tree representation. In this section we derive the Taylor expansion of the
nonlinear solution in terms of the initial data. Roughly speaking, we write the Fourier modes
of the nonlinear solution ay(t) (see (1.2)) as follows:

N
ay(t) =D Tult.k)(@) + Ry (t, k) (a"),
n=0

where 7, are sums of monomials of degree 2n + 1 in the initial data a(o), and Ry is the
remainder which depends on the nonlinear solution aV. Each term of Jn can be represented
by a Feynman tree which makes the calculations of E(7,J,/) more transparent. Such terms
appear in the expansion of E|ay|?. The estimates in this section rely on essentially sharp bounds
on quasi-resonant sums of the form

> Lk SDL(QR) ~274) S 2741 (1.4)
kezrd
where 1(.5) denotes the characteristic function of a set S and Q is an irrational quadratic form.

Since A will be taken large 24 ~ T'>> L2, such estimates belong to the realm of number theory
and will be a consequence the third component of this work.

The bounds we obtain for such interaction are good up to times of order /7 which is sufficient
given the restrictions on the time interval of convergence imposed by the second component
below.

(2) Section 5: Construction of solutions. In this section we construct solutions on a time interval
[0, T via a contraction mapping argument. To maximize 7" while maintaining a contraction, we
rely on the Khinchine improvement to the space-time Strichartz bounds, as well as the long-time
Strichartz estimates on generic irrational tori proved in [11]. It is here that our estimates are
very far from optimal, since there is no proof to the conjectured optimal Strichartz estimates.

(3) Section 8: Equidistribution of irrational quadratic forms. The purpose of this section is two-
fold. The first is proving bounds on quasi-resonant sums like those in (1.4) for the largest
possible T', and the second is to extract the exact asymptotic, with effective error bounds,
of the leading part of the sum. It is this leading part that converges to the kinetic equation
collision kernel as L — oo.

Here we remark, that if Q is a rational form, then the largest A for which one could hope for an
estimate like (1.4) is 24 ~ L? which reflects the fact that a rational quadratic form cannot be
equidistributed at scales smaller than L~2 (at the level of NLS, it would yield a time interval
restriction of T < L? for the rational torus). However, for generic irrational quadratic forms,
Q is actually equidistributed at much finer scales than L~2. Here, we adapt a recent work of
Bourgain [5] which will allow us to reach equidistribution scales essentially up to L~

1.5. Notations. In addition to the notation introduced earlier for T¢ = [0, L|? and Z§ = $Z¢, we

use standard notations. A function f on ’]I‘dL and its Fourier transform fon ZdL are related by

1 ~ omik ~ —omik-
f@) = 2a SRt and fo= [ do
zg T4
Parseval’s theorem becomes

~ 1 ~
171 2msy = 1712 oy = 7 S 1ol

kezd
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We adopt the following definition for weighted #P spaces: if p > 1, s € R, and b € (P,
1/p
1
Bllep» zg) = | 7a D (k) [bwl)”

d
kezd

Sobolev spaces H*(T?) are then defined naturally by
[ s cnay = 1K) fllezs 24 -
For functions defined on R¢, we adopt the normalization
f) = [ e flgas ad flo = [
Rd Rd

We denote by C any constant whose value does not depend on A or L. The notation A < B means
that there exists a constant C' such that A < C'B. We also write A < L™ B, if for any € > 0 there
exists C, such that A < C.L""B. Similarly A > L" B, if for any e > 0 there exists C, such that
A > C.L"“B. Finally we use the notation u = Ox(B) to mean |ju||x < B.

We would like to thank Peter Sarnak for pointing us to unpublished work by Bourgain [5]. This
reference helped us improve an earlier version of our work. We also would like to thank Peter and
Simon Myerson for many helpful and illuminating discussions.

2. THE GENERAL RESULT

We start by writing the equations for the interaction representation (ag(t)) kezd » given in (1.2):

.- A2 — —omitQ2(k,k1,ka,k
idy = — (£x) > gy Ty apg e 2T R k)
(k1,....k3)€(Z3)?
k—k1+ka—k3=0 (2.1)

ar(0) = ai = /o(k)e' "),

where we recall (2(k,ki,ko,k3) = Q(k) — Q(k1) + Q(k2) — Q(k3), and V(w) are ii.d. random
variables that are uniformly distributed in [0,27]. Our results depend on two parameters: the
equidistribution parameter v, and a Strichartz parameter ¢,, which we now explain.

2.1. The Equidistribution parameter v. The interaction frequency £2(k, k1, ko, k3) above is an
irrational quadratic form. Such quadratic forms can be equidistributed at scales that are much
smaller than the finest scale ~ L2 of rational forms.

We will denote by v the largest real number such that for all & € Z¢, |k| < 1, and € > 0, there
exists 0 > 0 such that, for |a|, |b] <1 with b—a > L™" |

> 1=(1+0(L%))L* / L (b ko oo i) <00 (k — k1 + ko — k) dky dky dks.

GSQ(k»klyk%kS)Sb k k kal<1
et | oo e | <1 k1 lk2l,|k3|<
k—k1+ko—ks=0

Proposition 2.1. With the above definition for v, we have
(i) If Bi =1 for alli € {1,...,d}, v=2.
(ii) If the B; are generic, v =d.

Proof. The first assertion is classical, e.g., see [6]. The second assertion is proved in Section 8. [
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2.2. The Strichartz parameter 64. Our proof relies on long-time Strichartz estimates, which
are used to maintain linear bounds for the nonlinear problem. The genericity of the B’s gives
crucial improvements from the rational case. The improved estimates for generic 8’s were proved
in [11],

1
itABP < Ngf 1 T /p
e NPl Ly (orxm) S P\t e %1l L2 ey

for some 0 < y(d,p) < d—2. The N7 term can be thought of as the time it takes for a focused
wave with localized wave number < N, to focus again. For the rational torus v = 0.

Here we only need to use the Lfix([O, T] x T¢) norm, and therefore we introduce a parameter ; to
record how the constant in the Lim([O, T] x T¢) estimates depends on L. By scaling, the result in
[11] translates into,

1/4
s + T
168 Prcrbllg openty S 27 (14 755 ) Iolcay 22)
L+2, d=3

where 0, := {(d2)2
sa—1) T % d>4.

2.3. The approximation theorem. With these parameters defined, we state the approximation
theorem for the cubic NLS in dimension d > 3 and generic f’s.

Theorem 2.2. Assume the 3’s are generic and d > 3. Let ¢o : R* — RT, a rapidly decaying smooth
function. Suppose that ap(0) = \/d(k)e*@) where 9y (w) are i.i.d. random variables uniformly
distributed in [0,27]. For every ey, a sufficiently small constant, and L > L.(ey) sufficiently large,
the following holds:

There exists a set Ee, 1, of measure P(E, 1) > 1 — e L such that: if w € E 1 ., then for any
L > L.(e), the solution ay(t) of (NLS) eists in CtH*([0,T] x T¢) for

A2 7 e i LTt <A< LT
T ~ d,gN ~y ?
N\ —41,d—8¢0 if A> L1 d —2e0
Moreover,
— —e € —
E |ak<t)| ]lEeO,L:| —(;5(/4?)—1—;75,((]5)(]{7)4-0400 <L OT> , Lo StST, andT—ﬁ.

For d = 3,4, the solutions exist globally in time [4, 26], and one has the same estimate without
multiplying with 1, inside the expectation.

Here we note that the error could be controlled in a much stronger norm than ¢>°, and that other
randomizations of the data are possible (complex Gaussians for instance) without any significant
changes in the proof.

3. FORMAL DERIVATION OF THE KINETIC EQUATION

In this section, we present the formal derivation of the kinetic equation, whose basic steps we shall
follow in the proof. The starting point is equation (2.1) integrated in time,
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t

12
i\ —omi
ar(t) = ap + T2d Z Uy Ty g 2Tk k2 k3) (3.1)
0 (k1,k2,k3)e(29)3
k—ki1+ko—ks=0

The derivation of the kinetic equation proceeds as follows:

Step 1: expanding in the data. Noting the symmetry in (3.1) in the variables k; and k3, we have
upon integrating by parts twice, and substituting (2.1) for ay,

ax(t) =ay (3.2a)
1 _ e—2mit2(k ki ko ks)

)\2 0 0 ,0
3.2b
+L2d Z Wy Ty Vs 21082(k, k1, k2, k3) (3:20)
k—k1+ko—k3=0

) A4 o o .0 0 .0 1

—_— ap a; Q. a; Q

L4d 2 ha ks ke Tk TR 9 Qe K, oo, Ki3)
k—k1+ko—ks=0
k1—ka+ks—ke=0

e 2mitQ(k.ka ks ko.kaks) 1 p—2mitS2(kika ks ke) _ |
— 3.2
27Ok, ki, ko ko o k) 2n82(kr, ks K, o) (3.2¢)
A 0 70,0 70,0 1
= Z o T Fes T Ths 21 02(k, k1, ka2, k3)
k—k1+ko—k3=0
ko—ky+ks—ke=0
e—27’rit9(k,k:1,]{34,]65,]{36,]63) -1 B e—27l'it.Q(k:2,k‘4,k‘5,k6) -1 (3 2d)
27T0(k7k17k4ak‘57k6ak’3) QWQ(k‘27k‘4ak57k6) .
+ {higher order terms}. (3.2e)

where we denoted Q2(k, ki, ko, k3, ks, ks) = Q(k) + 327_,(=1)'Q(k;); we also used the convention

. . eQ‘rritail . . . . . 1 e27rit(a+b)71 627rita71 . 1,2
that, if a = 0, = it, while, if a =0 =0, 5~ ( Sr@h) . %ra = —5t*.

2ma

Step 2: parity pairing. We now compute E|ay|?, where the expectation E is understood with respect
to the random phases (random parameter w). The key observation is,

0 00 0y —d Ok
E(akl...aksael...a&)_{ 0 1

.. ¢k, if there exists a v such that k) = {;
otherwise.

(for k € Z¢, we write ¢y = ¢(k)). Computing E (|ay|?) with the help of the above formula, we see
that, there are no terms of order \2. There are two kinds of terms of order A\* obtained as follows:
either by pairing the term of order A2, namely (3.2b), with its conjugate, or by pairing one of the
terms of order A, (3.2¢) or (3.2d), with the term of order 1, namely a?. Overall, this leads to
)% 1 1 1 1 qysin(tr82(k, k1, k2, k3)) |2
Ea2t: + |:7_7+7_7:H ) ) )
ol O=oct T 2 wondetnlg =50 5= Gl e k)

+ {higher order terms} + {degenerate cases},

where degenerate cases occur for instance if k, ki, ko, k3 are not distinct!. The details of the
computation are as follows:

1Degenera‘ce cases, like higher order terms, have smaller order of magnitude, on the timescales we consider as will
be illustrated in Section 4.
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(a) Consider first E|(3.2b)|> = E(3.2b)(3.2b), and denote ki, ko, ks the indices in (3.2b) and
1, kb, k5 the indices in (3.2b). There are two possibilities:

= Q(k, K} kb, k).

o {ki,ks} = {kl|,k4}, in which case ko = kb, and 2(k, k1, k2, k3)
= Q(k, Kk, kS, k5) =0

(k2 = k1 or k3) and (k4 = K} or k%), in which case 2(k, k1, ko, k3)

Overall, we find, neglecting degenerate cases (which occur if k, ki, ko2, k3 are not distinct)

2N sin(mt2(k, k1, ko, ks)) [* 4A4
E[(3.2b)* = Tad > Pley Phey Phes 020k, or oo g +Wt2 > " Okdk, Oy
k—Fk1+ko—k3=0 e ky ks

(b) Consider next the pairing of a) with (3.2c), which contributes 2ERe [(3 20)ak] The possible

pairings are
° {/{7 k‘g} = {k:4,k‘6}, implying k‘g = ]{75, and leading to Q(k‘l,k‘z;, ]{25,k6) = —.Q(k‘, k‘l,k'g, kig),

and Q(k, k‘4, ]{}5, k‘6, k?g, k‘l) =0.

(ks = ko or k) and (ks = k4 or kg) in which case Q2(k, ki1, ka, k3) = 2(k1, ka, ks, ke) = 0.

This gives, neglecting degenerate cases,
__ 8 4
2[ESRe [a2(320)} = mx

> kb, tr,Re

k—k1+ko—ks=0

% 1

k—ki1+ko—ks=0
where we used in the last line the symmetry between the variables k1 and k3, as well as the

identity Re(e® — 1) = —2|sin(y/2)|?, for y € R.
(¢) Finally, the pairing of a? with (3.2d) can be discussed similarly, to yield

sin(mt2(k, ky, kg, k3)) | 5

7t

w(2(k, k1, k2, k3) t 7ad g}; Pl Pk Phis
1,3

e—27rit()(/€,/€1,k2,k3) 1 8)\4 )
A2 Q(k, ki, ko, k3)2 | Tadb Z Pk Pky P
T k1,k3

sin(mtQ(k, ki, ko, k3)) |2
7‘(‘9(1{}, ]{317 k27 k3)

t2 Z ¢k¢k2 ¢k37

k1,k3

,m

— )%
9ERe [ag(3.2d)} o D DDl Phy
k—k1+ko—k3z=0

Summing the above expressions for E|(3.2b)|?, QEE)‘{e[ (3. 20)} and QED‘ie[ (3. 2d)} gives the

desired result.
Step 3: the big box limit L — co. Assuming that 2(k, k1, ke, k3) is equidistributed on a scale

1
L7« 7 (3.3)
we see that, as L — oo,
11 1 1 7 |sin(wt2(k, k1, ko, k3)) |2
Ok Pky Py Pk { - — = }
k_,ﬂ%_kgo R P ¢>k2 Py m§2(k, k1, ko, k3)
11 1 1 1 |sin(rt2(k, ki, ko, k3)) |2

L2d/62 - - A LA dky dks dks.
(3) 0k 0k 91,01 Lﬁk o o qbkj T B
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: 2
Step 4: the large time limit ¢ — co Observe that? i (Snxlif) dr = 7%, so that, in the sense of distri-
butions,

. 2
sm(wtﬂ)‘ ~ t0(£2) as t — 00.
w2

Therefore, as t — o0,

S ¢mmw{l_11_1}

by ka0 bk @ Py Phs

sin(mtQ(k, k1, ko, k3)) |
0k, k1, ko, k3)
1 1 1 1

2 [ )00 01000 [ 05~ 5+ i~ i)
—m”r¢¢@

Conclusion: relevant timescales for the problem. Overall, we find, assuming that the above limits
are justified

)\4

Elag|>(t) = ép + 21T (¢, ¢, ) + {lower order terms}. (3.4)

LZd
This suggests that the actual timescale of the problem is
1,2d
= o\’

and that, setting s = %, the governing equation should read

In which regime is this approximation expected? Let T be the timescale over which we consider
the equation.

e In order for (3.4) to hold, the condition (3.3) has to hold, and the limits L — oo and T' — oo
have to be taken: one needs

T LY, L>1, and T > 1.

e In order for the nonlinear evolution of (3.5) to affect an O(k) change on the initial data,
the two conditions above should be satisfied; in addition 7" should be of the order of 7
(equivalently s ~ k). Thus we find the conditions

1<« T~k <LV and ,ﬁLd/2 S A0S I{,iLd/Q_V/Zl'

4. FEYNMAN TREES: BOUNDING THE TERMS IN THE EXPANSION

Since we are considering the problem with rapidly decaying ¢, then the rapid decay of ¢ yields
all the bounds one needs for wave numbers |k| > L%, thus we might as well consider ¢ to be
compactly supported.

2This follows from Plancherel’s theorem, and the fact that the Fourier transform of %% is the characteristic

function of [—5=, 5=].
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4.1. Expansion of the solution in the data. We follow mostly the notations in Lukkarinen-
Spohn [29], Section 3 (see also [9]).

The iterates of ¢, considered in the previous section, can be represented through trees (at least up
to lower order error terms). To explain these trees, let us start with the equation satisfied by the
amplitude of the wave number ay,

i\ -
_ —2mis(k k1 ko, k:
ap(t) = ad + T2d E Ay Aoy g€ " (kkvka ks) g

0 (k1,ka,k3)e(Z$)?
k‘*k’l +ko—ks=0

7’)‘2 —271'1'3(2
ak(t = ak + L2d e@g ds.
where the subscript in 75 is to indicate that it is a monomial of degree 3, and where we suppressed
the k& dependence for convenience. The expansion can be obtained by integrating by parts on the
oscillating factor e =272 Thus the first integration by parts gives the cubic expansion,

iA? N[ Lo
T PO F + Ty [ Pa)o)Fids, FLim [,
0

s

ak(t) = CLk +

Using the equation for a, we see that 9’23(@) consists of three monomials of degree 5, and if we
denote on of them by &5, then the integral term consists of three integrals of the type,

in2\* | :
<L2d> /@5(@)(3)6_27”59Fstd8.
0

Another integration by parts gives the quintic expansion, which consist of three terms of the

form
A2\’ Gt + iA? t t / —2miT 2 ot
T4 P5(a)(0)Gy T4 /95 s)Gyds, G, :/e F; dr.

S
Consequently, to compute the expansion to order N we need to integrate by parts N times on the
oscillating exponentials, giving the expansion

Zjn (t, k) (@) + Ry11(t, k) (aD), (4.1)

where J, = Y Jne, and each J, ¢ is a monomial of degree 2n + 1 generated by the n integration

£
by parts. The index £ is a vector whose entries keep track of the history of how the monomial 7, ¢
was generated. Ry, is the remaining time integral.

Each J,, ¢ can be represented by a tree similar to Figure 1 below. which we now explain.

The trees will be constructed in reverse order of their usage. Therefore the labeling of the wave
numbers will be done backwards: n — 7, 0 < j < n.

The tree corresponding to [, ¢, is given as follows.

e There are n + 1 levels in the tree, the bottom level is the 0" level. Descending from the top to
the bottom, each level is generated from the previous level by an integration by parts step. Thus
level j represents the terms present after n — j integration by parts.
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level3 S3— +@ k3,1 op=—1 f3 =1, _(23

level2 S2— + o kyy - 0 kyy  +te ka3 ly=3, 2
v v

level I sy — +? kiy -eky, + ok13 - ok14 + ok1s by =2, ()

level 0 o — +i koyy -eokyy L @ ko3 —e Koy :o kos to ko,s\\l‘o ko7

FIGURE 1. tree of depth 3.

k;jm denote the wave numbers present in level j, and therefore 1 <m < 2(n — j) + 1.

k;m has a parity o, due to complex conjugation. For m odd or even, o, = +1 or o, = —1
respectively.
Qk; o, if o, = +1
akj,mya'm =
akjym if Om = -1

For each level j, we associate a number ¢;, which signals out the wave number k;,, which has 3

branches. This is the wave number of the a (or @) that was differentiated by the j** integration
by parts. The index vector £, keeps track of the integration by parts history in the tree for 7, .
The entries ¢, 1 < j < n, are given by

£=(l,....0) e{l,....2n — 1} x {1,...,2n — 3} x --- x {1,2,3} x {1}.

The tree has a signature op = H?Zl(—l)gﬁl.

Transition rules. To go from level j to level j — 1, the wave numbers are related as follows

kj7m = kj—l,m for m < €j
kjm = kj—1,m+2 for ¢; <m (4.2)
kj,fj = kj—l,fj - kj—1,€j+1 + kj—1,£j+2

Note that for any j, Z%i}j)ﬂ(—l)m“kjm = kp,1 = k. The wave numbers at level 0, i.e., those
present in 7, ¢, are labeled

k = (ko,l, . ,k072n+1) S (Z%)ZnJrl .

At each level j, the derivative of the element with wave number k; ;. (due to the integration by
parts), generates a oscillatory term with frequency

2;(k) = (=15 (Q(kje,) — Qkj—1,6,) + Qkj—1.0,41) — Qkj1,0,42)) -
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j—1
e We introduce variables s = (sg,...,s,) € RI! t;(s) = kzosk, 1 < j < n. This choice of
variables can be explained as follows. Repeated integration by parts generates terms of the form

t t t t t—sgo t—sp——8n—2
/90(80) /91(81) . / In—1(Sn—1) = /90(80) / g1(so+s1) ... /gn—l(so + ot Sno1)
0 %0 Sm—2 0 0 0
which can be written as
n
/ » 90(s0)g1(so +51) .- gn-1(so + -+ sp—1)0(t = ) 1)
R 1=0

With this notation at hand,
Jo = 427 Ji=011=32b), Jo=To0,1)+ To21) + To,31)

1
Joy21) = (3.2d),  To11) = To,31) = 5(3.20),

and Figure 1 represents J3 (23,1). The general formula for J, ¢ is given by

2n+1 n
gt = (7) 70 3 ot Lo f TLewmomms (-3 n)an
€(zd)2m+1 n+1 m=1 0
Here and throughout the manuscript we write
(5k; — 17 k= j7
’ 0, k#J,

while §(-) is the Dirac delta.

Finally, we write Ry, (¢, k)(a) = Y [ Rn.e(t, s0; k)(al*0))dsg, where
£

o o

Z')\Q n 2n+1 o
Ry, 6(t, 505 k)(b) = <L2d> o 5k B H bkoj,aJ/H —2mit;(s)
7j=1

ke(Zg)2n+1 R J=1

) (t — S0 — zn: 5i> ds. (44)

1

4.2. Bound on the correlation. Our aim is to prove the following proposition.

Proposition 4.1. Ift < L4, then

o[ t\1
> S E(Guelt T )| Ss et (72) 1 (15

n+n'=S £,0

Remark 4.2. The trivial estimate would be that

> E(Tnelt k) T g (£ E)) 5(\2)5-

n+n'=S 0,0
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n+n’
Indeed, Jy, 0T, ¢ comes with a prefactor (2‘—;) ; the size of the domains where the time integra-

tion takes place is O(t"*™); and the summation over k and k' is over 2d(n+n’'+1) dimensions, half
of which are canceled by the pairing (see below), out of which d further dimensions are canceled by

. . . 22 n+n’ , d , . n+n’
the requirement that k,, 1 = k. Overall, this gives a bound (W) x T paln+n’) — (\ﬁ) .

Therefore, the above proposition essentially allows a gain of % over the trivial bound. This gain

of% comes from cancelations in the “non degenerate interactions” as will be exhibited by equation
(4.13).

Before we start the proof of Proposition 4.1, we shall classify the transitions (4.2) as degenerate
if
kje; € {kj—16; kj—1,6,42}

e., if the parallelogram with verticies (kj¢,,kj—1,6,-1,kj-14,,kj—1,;+2) degenerates into a line. In
this case ng (k) = 0. When all transitions in a tree that represents [J,, ¢ are degenerate we denote
the term by D, ¢(t, k), and if one transition is non degenerate we denote it by 7, e(t,k), that
is

jn,l(tv k) = jn,ﬁ(ta k) + Dn,ﬁ(ta k) (46)
ix2\"” N 2n+1 o n
De(t, k) = (LM) oo Y. ok (1-A®) [] b, / Ma(t— Zs,»)ds
ke(z24 )2n-+1 j=1 Ry 0

:2”5 (L2d> OeQy; Z H|akj|» (4.7)

ke(zd)n j=1

2n+1 n n
~ —2mitm Qm k
Tne(t k) = <L2d) O¢ E: 6k 1 H ago,jﬂ/ H e 2t ()2 k) ( Zsl)
Zd )2n+l j=1 R+ m=1 0
+

where A(k) = 1-]/_, {k Note that A(k) = 1 whenever jmg(t, k) # 0.

1,041,k -1, I+ }
4.3. Cancellation of degenerate interactions. As can be seen from a simple computation in
the formula for Dy, ¢, the contribution of each E(Dy ¢(t, k) D, o (t, k)) to the sum in (4.5) is of size

S
~ (i) , which is too large. Luckily, all those terms cancel out as shows the lemma below.

\/;
Note that this cancellation between graph expectations is essentially due to the invariance of the
expectation E|ay|? under Wick renormalization, which is a classical trick in the analysis of the
nonlinear Schrodinger equation that eliminates all degenerate interactions. However, working at
the level of graph expectations might be applicable in more general contexts.

Lemma 4.3. For any S > 2

Z ZE(DH,E(tv k>ﬁn’,£'(t7 k)) =0

n+n'=5 £.¢

Proof. First we note that since each level in the tree has parity equal to 1, then

Zag = H parity of line j) = (1)" =1.
7j=1
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Hence by equation (4.7)

> oneti) =25 (fa) | XTIt
£

ke(zg)n j=1

Thus we obtain

2\ 9 Z'n—n’
S S E(Duelt.)Dy g (t k) = 2565 (;) > H\ak [ W( 2 n'n'>

ntn'=S 0.0 ke(z4)s j=1 ntn/=S

The result will follow once we show that

‘n—n'

7
> =0
nln'!

n+n/=S

This follows by parametrizing the above sum as {(n,n') = (S — j,5) : 7 =0,...S}, which gives

n—n'

' ' S 2 1)4 8! S
¢ ;S ( 1
Z n!n" o Z _] ']' | Z S ] ]' = S'(l + ) ‘J::—l = 0.

n+n’'=S Jj=

0

4.4. Estimate on non-degenerate interactions. Proposition 4.1 now follows from the following
lemma:

Lemma 4.4. Suppose G, p(t, k) € {jn,’g (t,k)), Dy g (t,k))}, then for 0 <t < L4,

_ _ £\ 1
BGnat e )| S0 08 (=) 1

Proof. We will only consider the case of G, »(t,k) = jn’,é’ (t,k), since the case G,/ ¢ (t, k) =
D, ¢(t,k)) is easier to bound. Using the identity

n 1 ) n
' (t -2 ) — g [ da,
0

we can write for any (eg,...,e,) € R" ! and n >0

n .
; 7
—isje t— ; - —tat e . 4.
/R”+1|I JJ(S( g s)ds Re jlzloa—€j+i77da (4.9)

Thus by choosing n = %, we have

" ie )\2 n 2n+1
jn,ﬂ(t? k) = ﬂ <_[/2d> oe Z 61]§n,1A(k) H ago,jvaj X
ke (24 )21 =1
/ zatda
(a—Ql—QQ—--~—Qn+%)...(a—9n+%)(a+%)'

Here we employed the notation §2; = 27§2;(k).
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To bound E(jng(t k)T, (t,k)), we will simplify the notation by setting ko 2n+1+; = kg ;, which
also preserves the parity convention. Consequently, we have 2n + 2n’ + 2 wave numbers present in
the expression for E(Jng(t k)T, o (k).

[ ] ké’l =
~ VEXCRD
Ji1
+o ki -0k +ekip - e ki3
s s
+ o - e + e —e +o — e + e _e
ko ko2 ko3 Koy =koy kip=kos Koz=kog Koa=koy Fos=kos

FIGURE 2. Relabeling trees.

Next, since the phases are i.i.d. with mean 0, then only specific paring of the wave numbers
contribute nonzero terms, namely the paring should be between terms with the same wave number
and opposite parity. For this reason we introduce P = P(n,n’, o, ') a class of pairings indices and
parities, as illustrated in Figure 3

Pod¢:{l,....2n+2n"+2} = {1,....2n+ 20" + 2} & ¢(j) =l = ¢(l) = j, and oy = —0;

Furthermore, we define the pairing of wave numbers induced by 1, I'y(k, k') = H2-2+2",+2 ko

J=1 ko)
By the independence of the phases ¥y, (w), we have,
241 an'+1
H eZUOvjﬂkD,j (w) H 6—20'07j/’l9k0’j(w) S Z F¢(kk/),
j=1 j'=1 »eEP
Hence we obtain
- )\2 n-+n ,
St T ()X etk
VEP ke(z)r+
k/ (Zd)Zn +1
‘ / zatda y
(=21 = =2+ 5) .. (=2 + })(a+7)
/ 1" tdOé
(@ = = = By D) = 2+ D+ D)

where o/ (k, k') = 61" 0f, MUK K) T V3o TEE! folky )

n’ 1

By Hélder’s inequality, for any m > 1 and by,...,b41 € R,

d/
/ / O — St (4.10)
R’Oé—b1+g‘|04—bm+1+ﬂ
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and applying this bound to the o/ integral yields

—_— 22 n+n’
B(nalts )T 0 k))‘ (de) YooY Ak K)x
YEP ke (24 )2t
k/E(Zd)2n’+1
/ da
(=32 +5) . (=2 + §)(a+ )

Let p = p(k) be the smallest integer such that kyi1,0, ¢ {kp,e,+1, kpy+1+40,.1,, )5 1€, in the tree
for jmg the transition from level p + 1 to level p is not degenerate. Note that 0 <p <n — 1, and

e (X
(jn E(t k)jn’ A (t k:))‘ <LQd> Z Z ’Q{w(ka k,)X
YEP ke(zd )2+t
k/E(Zd )2n —+1

da
n i 7 | = Tpap -
'/(a—zl:pﬂﬂl—i—t)p+1,..(a—(2n+t)(a+t) %:Zp: p

We now set
Il :fp, IQ :Ep_'_ 17 I3 :€p+27 kp - (kp,f17kp,127kp,f3)7
J1 = (1), Jo = 1p(12), J3 =1(I3).
Note that, by definition of p,
{I17IQ7I3} N {Jlu JQ; J3} = @

The figure below illustrate all the introduced notations and parings for the product of two non
degenerate terms.

_ e K21
Ji1 J2,3,1)
+o ki -0 ki +eki, -o ki3
w(6) =38 : :
w3 =17 I b
vy =5 RN k=g vkl =Kos vy =k ks =k
Y1 — Ro4d v102 = Ros5 0,3 — "o, 0,5 — *08
w()=4 +

FIGURE 3. Pairing trees.

We distinguish three cases depending on the values of the numbers J;.

Case 1: Jyi, Jo,J3 > 2n + 2. For a fixed p and ¢ we sum over all wave numbers in J, 4 that yield

degenerate transitions, i.e., wave numbers generated in rows 0 < < p — 1. This contributes L% to
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the bound,

2 e * da
Tpp S Ldp< ) %(k,k’)/ - . ; —,
L2d Z % |<a_2l:p+1 QH—E)PH...(a—Qn—i—;)(a%-g)]

where Y stands for the sum over k, j, where 1 < j < 2(n—p)+1 and j ¢ {[1,I2, I3}, and k:éyj,
for 1 < jl < 2n' + 1 with j/ ¢ {Jl, Jo, Jg}.

The contribution of the above integral is acceptable as long as the denominator is O((a)~2). There-
fore, it suffices to prove the desired bound when the domain of integration reduces to a € [~ R, R],
for some R > 0, since the resonance moduli 2; are bounded. Furthermore by bounding the inte-

grand by oo tn_; TP matters reduce to estimating
— 21—t HJat ©
A2\ R do
g tn pdp < ) Ay (ke k) / 4y
72d Z ¥ k:z,, _R |a_2f:p+1ﬁl+§||a+%\

By the identity kpy1,1, — kp.1, = 0p.1, (kp,1; — kp,1,), this can also be written

+ !
et o \2 \ " Z*ﬂf (e, k) / Z(S p1,1 1 do
72d PR Fpaatorn Gots~kon) o — S5+ 4| o+ 3]

and since Z?(an_p)ﬂ 0p,ikpj = kn,1 = k, we note that
2(n—p)+1
Lt = Q) = D 0pQUkpy) =
j=1

— 0p., Qkp.1y) = 0p1;Q(Fp 15) = 0p. 1, Qkp1,1y — op1 (Bp iy — k) +C (412)
where C' depends only on k and the variables k, ; with j ¢ {I1, I5, I3}.
By setting P = kj 1, and R =k, 1,, for t < L” we bound

3 1
P,ReZ4 ‘_Q(P)+Q(R>_Q(N+P—R)+C+%’
PRI

using the equidistribution result in Section 8. If | — Q(P) + Q(R) —Q(N + P — R) + C| <t !, we
have by Corollary 8.5

1 2q1 d
PRXE:Zd |-Q(P)+QR)—Q(N+P—-R)+C+ %~ (L +L>
IPLIRI<1

Whereas for | — Q(P) + Q(R) — Q(N + P — R) + C| > t~1, we bound

> 1 <
|-Q(P)+Q(R) —Q(N+P-R)+C+1 "~

P,Rez¢
[Pl |R|<1

> oo > 150 Y 15 L% logt. (4.13)
1congy [-Q(P)+Q(R)-Q(N+Q—R)+C|~2" 1congy



ONSET OF WAVE TURBULENCE FOR NLS 19

Therefore, we can bound (4.11) by

¢ Hn—1 pdp (de logt+tLd) <’\2>n+n Sk k) / " _da
L2 ’ R |a + %|,

The sum Y " is over 2(n + n' — p — 2) variables; however, because of the pairing I, half of them
(n+n'—p—2) do
' |+

drop out, so that the remaining sum is < L¢ Ans since f_RR < logt, the above

expression can be bounded by,
/ / ’ AQ n+n/
g An—1 ((log t)QLd(nJrn ) + t(log t)Ld(”+" 71)) <Lgd> ’
which gives the stated bound.
Case 2: only two of Jy, Js, J3 are > 2n + 2. Suppose for instance that Jo < 2n 4+ 1. Then, there
exists Iy < 2(n—p)+1 such that ¢(I4) = Jy > 2n+2 (such an index exists because there is an odd

number of elements in the set of elements in {1,...,2(n —p) + 1} \ {1, I2, I3, Jo}, so they cannot
be paired together completely). One can then follow the above argument replacing Iy by I4.

Case 3: two of Jy, Js, J3 are < 2n + 1 Assume for instance that Ji, Js < 2n + 1. Proceeding as in
Case 1, it suffices to bound

/ A2 e * do
t" L () %(kz,k’)/ - : : —
L 2. 2 (o =3y 20+ P (o= 20+ () (e + 1)

kPJ1 ’kpylgs

where ¥* is the sum over ky, j, with j € {1,...,2(n — p) + 1} \ {11, I3, J1, J3}, and over kg j/, with
Je{l,...,2n +1}.

A crucial observation is that, since E?(:nl_p i op,jkpj = kna = k, the wave numbers k,;, and
k, 1, do not contribute to this sum since the paring k, ;, = kp s, and kj 1, = kp j,, causes them to
cancel one another. Furthermore, 0 < p < n — 2 since J1, J3 < 2n + 1, and therefore we bound the
. tnfl
integrand by P p— R TR Overall, we can bound the above by
R\ R 1 da
Lol () Ay (k, k' / : —.
72d Z w(k, )—R Z o= 2pro— - — Qu+ 1| ] |a+ i
kp,ll 7kp,I3 p t 3

From equation (4.12), we conclude

Z 9 = _O'PJ1Q(kal) - O'PJsQ(ka:a) - UszQ(karl,h —OpIh (kas - k:mh)) +C
l=p+2

where C only depends on the variables in >_.*. Applying (4.13) enables us to bound the inner sum
by L?*@logt, and the « integral by logt. Finally, the number of variables in >"* is 2(n +n/ —p—1).
By pairing them there are only n +n’ —p — 1, and fixing k,; = k brings their number down to
n+n' —p—2. Thus 3% will contribute < LU"+7'=P=2) " Overall, we obtain the bound

: N A2\
S (log t)2tn +n71Ld(n+n ) <L2d) ?

which is the desired estimate. ]
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5. DETERMINISTIC LOCAL WELL-POSEDNESS

Local or long time existence existence of smooth solutions is usually carried out by using Strichartz
estimates to bound solutions. The known Strichartz estimates for our problem (2.2) are not suf-
ficient to allow us to prove existence of solutions for a long time interval where the wave kinetic
equation (WKE) emerges. However, if the data is assumed to be random, then one has improved
estimates due to Khinchin’s inequality [7]. Based on this, we first present a local well-posedness
theorem provided the data satisfies a certain estimate. In Section 6, we show that such an improved
estimate occurs with high probability.

Moreover, to use the results from Sections 4 and 8, we will restrict discussion to the case T <
Ldfeo'

5.1. Strichartz estimate. Recall equation (2.2) , which can be written as,

i . 1/4
le tA5P1¢||L§z([0,T]X’JI‘C£) < Saclllrzmy)  Saci=Cacl <L9d>

Moreover if we denote the characteristic function of the unit cube centered at j € Z¢ by 1 B;, and
define

bp, (k) =1p,(k)d(k),  and therefore p, = Pi.

Then, using the Galilean invariance ‘e‘imﬁ VB, (:1:)’ = |[e‘imﬁ (e2™%4h) g, ] (z — 2t5)],

|’eitAﬁ¢BjHL§m [0,T]xT¢) = (T)" (5'1)

Converting this estimate to its dual, and applying the Christ-Kiselev inequality, one gets

T
/e—isAFBj(s) ds < Sd,eHFHLf/f([O,T]XTCLl) >
. L2(T¢)

t
/ =90 py (s ds < SaclFl e ety o
0

Li .([0,7]xT¢)

for an appropriate choice of Cy, used in the definition of Sg..

5.2. A priori bound in Zj and energy. Let Z7 denote the function space defined by the
norm,

1/2

_ .\ 2 2
HUHZ% = Z<]> SHUB]'HL;{Q:([O’T}XT%) ) (5.4)
jEZA

then the Z7 norm of the nonlinearity is bounded.

Lemma 5.1. Fix s > %. For every eg > 0, and an appropriate choice of Cy.,, we have

t
‘/ ! t=9)881y(s)|Pu(s)ds

2 3 €0 1/4
0 < Sulds.  Sii=Saq = CaeL <L9 ) (5.5)

Zr
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4 ol
Proof. Consider v € L}, ([0, T] x T4), and let ¥(s,z) = fsT e (5=5)26y(s")ds', then

L}, ([0,11xT4)

t
/ei(t_s)ABPBj|u(s)\2u(s)ds
0
= sup / // it=9)2s pp | (5)[2u(s)| v(t, z)dz, dsdt
Td

[|lv]] 4/3 1
= sup / / / s)elt=92syp (t,2) dx ds dt
lloll 4/3—1 T¢

HUH 4/3—1/ /Td B (5 :L‘) dsdx.

Using equation (5.3), we have for every ¢y > 0,

/ /]I‘d 5)UB; (s x)dsdx = Z / /Td uBh%quSTBjdsdm

J1—j2+3j3—j=0(1
3 . E 12 3
S X sl sy, s2o(z) " X Tl
J1—Jj2+jz—j=0(1) k=1
J1,42,43€2Z4

J1—j2+jz—j=0(1) k=1
J1,42,43€2Z4

and therefore

. 1/2
<1( ) > HHuBJkHLg,Z-

J1—Jj2+jz3—j=0(1) k=

t
‘/ ez(t*S)ABPBj\u(s)]QU(s)ds
0 L ,([0,7]xT9)
J1.52,53€Z%
Consequently, for s > d/2, we have
. ) 1/2
S| [ et g us) Puls)as
jezd 0 Lis
1/2 2
. 1/2 . o/ T \1/2
<ro( ) T S P, 13 | el | (o) Tl
jezZ U4
proving equation (5.5). O
Lemma 5.2 (A priori energy estimates).
t .
‘ / e =388y 2y ds < Syllul%s. (5.6)
0 Lg©Hs T
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Proof. By duality, we have

t
H/ ei(t—s)A5|u’2ud8
0

sup
Hwan—
0<t<T

L H3

= sup

el 2 =1

0<t<T

// lul?u €25 (V)59 da: ds
']Td
Z //Td uB; UB;, UB,,

J1—Jja+jz—ja=0(1

Applying the Strichartz estimate (5.1) yields

J1 J3+J3 Jja=0(1

S X

J1—j2+373—ja=0(1)

T \1/4
< el
S L <L9d>

S 0<L9d>
<( g

This establishes the stated bound.

—_— isAgy7s
/ /]I‘d up; UB, UB;, € \Y wBM dxr ds

> (max(|jal, 72, [73]))"

J1—Jj2+js—ja=0(1)

ZWB 172

Nl s

3
isA
0 T s, o %26, .
=1

1/2 1/2

S0 lus, 134

J

"2 (V) g, drds.

3
[T llus,, llzs 195, Iz
k=1

2

Z Hqu||L4
J

0

5.3. Existence theorem. Local well-posedness for (NLS) will be established in the space ZF,

with data f of size at most .7,

S = LOTLT)E > e84 ]| 5.

(5.7)

This seemingly strange normalization is actually well adapted to the problem we are considering.
Indeed, consider for simplicity initial data f supported on Fourier frequencies < 1, whose L? norm is
of size L%, and with random Fourier coefficients of uncorrelated phases. Then we expect €24 f to be
evenly spread over T¢. By conservation of the L? norm, this corresponds to [e?24 f| z5 ~ .

Theorem 5.3. Let f € Z§ with . and S, defined in equations (5.7) and (5.5) respectively, then

¥

18 locally well-posed in Z75., provided

RE 12(08,.7)% <

10 — Agu = —\2|u|?u
(0, )

= f(z)

def

l\DM—l

The solution u € Zz., satisfies |lul|zs, < 2.%. Moreover

R
[ull oo s ro,merey < M fIlezg + CNS5.7° = || fllms + Cs—ﬂ < | fllz; + CR.

(5.8)

(5.9)
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Remark 5.4. The time scale T' over which the solution can be constructed would be equal to /T, up
to subpolynomial losses in L, if the long-time Strichartz estimate conjectured in [11] for p = 4 could
be established. Since it is currently not known to be true, the result stated above gives a shorter
time scale, with a more complicated numerology.

Proof. This theorem is proved by using a contraction mapping argument, to find a fixed point of

the map,
¢

B(u) = P8 f 4 i)\2/ei(t_smﬁ\u|2u(s) ds,
0
in {u € Z3 | |ullzz, < 27}, Consequently u = limy_o0 &N (0), where &V stands for the N-th

iterate of &:
t

@0(0) — eitA/Hf, @N+1(0) — eitABf + Z)\2/€Z(ts)AB@N(O)|2QSN(O) dS .
0

To check that @ is a contraction on Bgzs (0,2.%), note that by equation (5.5),

t
[®(u) — 8°(0)]| 25 = /\2/6 80 ufPu(s)ds|| < N2SF|ull, <8N*STFP <RI < 7.

N |

0 z3,
and thus @ maps Bz (0,2.) into itself. Again, by equation (5.5),

1
12(u) = @)l 25 < BNSE25)*|lu = vz < Rllw = vllz5 < 5 llu—vllz;.

Therefore & is a contraction on {u € Z§ | ||ul zs. < 2.7}, and the H® estimate follows from the a
priori energy bound. O

Besides the established bounds on u, we need to investigate the rate of convergence of &V (u) —
u.

Corollary 5.5. Under the conditions of Theorem 5.3, there holds

N N
<
S*f_CR

||lu — (PN(O)HLOOHS <

Proof. Since @ is a contraction with modulus R, then
[97(0) = #77(0) || z5. < B™H|2°(0)] 2.

Moreover the energy estimate (5.6) gives

. . R . .
|2772(0) = 7 (0) | s < C-[#7(0) = & 7H(0)]| ;.-

0 . .
Consequently by writing u — &V (0) = > &7+1(0) — &7(0), we bound
=N

© . R X . -
= VO < 3 [[971(0) = D) e < O D [99(0) =97 0)] .
j=N

j=N
RN

<C ZRJ H@°(0)]lz; <

] N

(0)l zg.-
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Next we establish an energy bound for the Feynman trees,

1 .
Une(t) = 73 D Jnelt, k)e*reH@®),
kezd

Corollary 5.6. Under the conditions of Theorem 5.3,

RN
|Un.ellgoms < C 5

7 < CRN

*

Proof. Since Uy, g is the linear propagator of J, ¢ in physical space, then they can be represented

by the following iterative procedure: Set vj® = e2™ 2y for 0 < m < 2n+1 and for any 1 < j <n

we define v, for 0 < m < 2(n—j7)+1 as vt =ity if m < ¢;, and vt = vij if m > ¢;, where

we set ’
v = i\? /Ot ei(t_s)AﬁvngvfiQd&
Hence we have U, ¢ = vl
Using the energy estimate (5.6), we bound
lopllzso s < A2Sallop |z v _ 1l zs |10 | zs.-

We can then descend down the tree by estimating vi":j using the Z° estimate (5.5). This leads to

the stated bound. O
6. IMPROVED INTEGRABILITY THROUGH RANDOMIZATION

Recall that

1 2mik-x 2midy (w
u = 73 Z vV o(k)e 2k w),

d
ezl

where the ¥ (w) are independent random variables, uniformly distributed on [0, 27].

For any ¢, s, w, we have
1/2

: 1
e uolls = | £5 > (k)*e(k)

d
kezd

In other words, the randomization of the angles of the Fourier coefficients does not have any effect
on L? based norms. This is not the case for Lebesgue indices larger than 2.

Theorem 6.1. Assume that |¢(k)| < (k)~%, with s > 4. Then
. ; 4
(i) E HeltABUOHL;},m([o,T]deL) S %HUOH%%

(ii) (large deviation estimate)

i 4 A ’
Pl w1y qompery) > A S exp (‘C <T1/4L—d/4> >
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Proof. (i) The proof is more or less standard. See [7] for instance.

(73) We follow the argument in [7]. By Minkowski’s inequality (for p > 4) and Khinchin’s inequality,

HeitAﬁUOHLS,(Q,L?,QC([O,T]WL)) N HeimﬁuoHLE‘,x([OvT]XT%’Lg(Q)))

<o)

S pT1/4L7d/4'
Lt . ((0,T]xTg)

By Chebyshev’s inequality,
P [HeitABuOHLZI([QT]XT%) > )\} S )\—p(co\/ﬁT1/4L—d/4)p,
The desired inequality is then obvious if A < 2eCoTY/*L=%4; if not, it follows upon choosing

A\ 2
p = (CQT1/4L_d/4€) N D

As a consequence, we deduce the following proposition.

Proposition 6.2. Let ¢g > 0, & > s+ 4, and assume that |¢(k)| < (k) =2, Then, for two constant
C,c>0,
P |:HeitAﬁu0HZs < T1/4L60—d/4] >1— Ce_CLEO.

Proof. Applying Theorem 6.1 to (uo)p;,
; N €« _d .
P [HenAﬂuOHL;{I([O,T]X’E%) > () *TY*L> 4] < exp(—c(j)**L?).
Therefore, for L sufficiently large,

B [l onel. < TV 5 1= S [0 > VLS Gy

J
>1-C> exp(—c(j)** L)
J

>1— Ce L7,

7. PROOF OF THE MAIN THEOREM
Fix €9 > 0 sufficiently small, and recall that 7' < L%, with
1) Ezcluding exceptional data. Let E 1 be the event {Heimﬁu[)uzs < ./}, and Fy, [, its contrary:
{Heimﬁug! zs > 4 }. By Proposition 6.2,
P(Fe) Se 7.
This is the set appearing in the statement of Theorem 2.2. By conservation of mass

E (jax(t)?) = E (|ax(t)? | Eep.z) + O (=2 L),

7 =LoTL~ %%, and R 12008,.9)%

2) Iterative resolution. To ensure that R < % we restrict the range of the parameters A, T relative
to L. There are two regimes depending on the Strichartz constant S, and the number theory
restriction ¢ < L4~ (see Remark 8.2).
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d+-0,
o L9 <T < L The condition R < % translates into 7' ~ A~2L 2" %% Therefore we restrict
A to

7d+6d 8¢p 70d 8¢p

<A<L

For this range of parameters, the energy inequality (5.9) implies ||ul] Lo Hs ([0,T]xT) <1.

e T < L%, In this case the condition on R restricts T ~ min(L%, A=4L4=80) and therefore
Ld t9d 8eq < )\
Here the energy inequality also implies [[ul[ H3(10,T)xT) S

Note that for these ranges of parameters T' < L~20,/7, where § is that of Theorem 8.1.

With these restrictions on the range of the parameters we proceed by writing u = &V (0) 4+ u —
&N (0). Note that since @V (0) is a polynomial of degree 3V, we write

N
u= ZUn’g—i- Z Up.e +u—dN(0),
n=0 (n,0)eSN
where SV includes all the terms in " (0) of degree greater than N.
By Corollary 5.5 and Proposition 5.6, this implies that

N
U= Z Z Une+ Orzms (RN)

n=1 ¢

where the constant depends on N. In terms of Fourier variables this can be written as,

N 2
lak(t) ZZJ"Z +O€1 25 ): ZZJnjg + Oypos (LdRN).
n=1 ¢ n=1 ¢
3) Pairing. By Proposition 4.1,
ttlogt
S5 | =8 [l + 078 + 7 o (L)
n=1 ¢

204 1 1 1
=0r+ 715 > Pk Pry Py Dl [ +— - ]

L kit ka0 Gk Py Ok Ok

Sin(tﬂ'ﬁ(k},k‘l,kg,kjg))‘ L0 (ttlogt)
g

Tk, k1, ko, k3) T

4) Large box limit L — co. By the equidistribution theorem 8.1, we have for ¢t < L€

sin(tw2(k, k1, k2, k3)) |
7'('9(1{3, kla k?) k3)

4
%\d > kb Ok B [1 L 1]

k—ki+ko—k3=0 Ok d)kl ¢k2 ¢k3
4
i ?d/ R0 Lb(lk) B ¢<}q> " ¢(}<:2) B ¢<23>] :

sin(mt2(k, ki, ke, k3)) | t s
dkey dksy dk o (= L79).
70k, k1, ka, k3) 1dky dhs + Ope (- L77)
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5) Large time limit t ~ T — oo. Since for a smooth function f,

. 2
/ Sm(;m) f(z)dz = 7% £(0) + O(1),
then, with 7 = 5—;1, we have
204 1 1 1 1
e ROECEE TS [¢(k) o) T o) ¢<k3>] g

sin(nt$2(k, k1, ko, k3))
7k, k1, ka, k3)

2
dky dko dks = 37 (9, 0,0)+ O <1) :
T T

Consequently, for eg sufficiently small and ¢t < T < L4 we choose L > Li(€p) to bound the error
term in Step 1 by %L*CO. Also, since R < % then by picking N large enough we can bound the
error in Step 2 by O(%L‘eo). Similarly, since tlogt < L™%/7, then the error for Steps 3, 4, and 5,
are of order Ogoo(fL*‘s), and this concludes the proof of Theorem 2.2.

8. NUMBER THEORETIC RESULTS

Our aim in this section is to prove the asymptotic formula for the following Riemann sum,

Theorem 8.1. Given ¢ € .7 (R?) and € > 0, there exists a § > 0 such that if 0 <t < L€, then

11 1 1 } sin(wt2(k, ki, ka, ks)) |?

—_— _I_ —_
Ok Dk Oky  Phs w(2(k, k1, k2, k3)

> Pk Pler Pl P {
kiezd
k—ki+ko—ks=0
2

Sln(ﬂ'tQ(k}, k]_,k27 k3)) dklde dk3

ﬂ-Q(k7 kl) k?u k3)

— -+

¢k ¢k1 ¢k2 d’ks
+0 (tLQd*‘S) +0 (Ld> ,

where we recall X(k, ki, ko, k3) =k — k1 + ko — k3.

1 1 1 1}

L2d/6(2)¢k¢k1¢k2¢k3 [

The difficulty in proving this theorem is that {2 can be very small, while the stated time interval for
the validity of the asymptotic formula is very large. In fact if we restrict ourselves to a timescale
which is not too long, then the asymptotic formula is straight forward as will be demonstrated
in Proposition 8.10. However to prove this theorem as stated we need to generalize a result of
Bourgain on pair correlations of generic quadratic forms [5].

Bourgain considered a positive definite diagonal form,
d
Qn)=> Bini, n=(m,...,na),  Qp,q):=Qp) — Qq), (8.1)
i=1

for generic 3 = (B4, ..., B4) € [1,2]%, and proved that for d = 3 the lattice points in the region,

def
Rz = {(p.q) € Z*' N[0, L1** | Q(p.q) € [a,b],p # q},
are equidistributed at a scale of ﬁ, for 0 < p < d — 1. Specifically, he proved,

So1= L2 (b — a2 ({(wy) € [FL1 | Q(a,y) = 0}) +0 (L0 —a)
Ry

provided |al, |b| < O(1) and L™" < b —a < 1. Here H??~! is the 2d — 1 Hausdorff measure.
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Our quadratic form (2, restricted to X', can be transformed to Q(p,q), given in (8.1), as follows.
Rescale time p := tL™2, let K; = Lk; € Z, and denote by

. 2
o) = () (L) =t |4 ook

T Z’T7T’T st _d)ik‘l ¢k’2 ¢k23 '
Then the sum can be expressed as
K Ky Ky Kj
t2 Wy | —, —, —=, == QK, K1, Ky, K3)).
Z O<L7L7L7L>g(u(7 1,012, 3))
K, K1,Ko,K3€74
K—-Ki1+Ko—K3=0
By defining
W =K, — K ez W'=Ks;— K eZ4, and u = (v/,u") € %7
then
K, Ky, Ko, K3) = Qo(u)
where

Qo(u) = —2p1ujuy — 2Boubuly — -+ — 2Bululy . (8.2)
Hence the sum can be expressed as

K Jv+K +u'+K "+ K

(u}ullez?
The quadratic form Qg can be diagonalized by making the change of coordinates
=il =
where p; and ¢; are either both even or both odd, i.e.
)DL D DD S D VD DD
u; €22  pi,qi€2Z  p;,q;€(2Z+1) D€L pi€2L,q;i€L  p;€L,q;€E2Z Di,qi €27
Consequently, the sum (8.3), can be written as four different sums of the form,
P q
N <Z’ Z> 9(uQ(p, ), (8.4)
(p.a)ez??

where Q(p, q) is given by® (8.1), and where we suppressed the dependence of W on k for conve-
nience.

Remark 8.2. Note that we do not exclude the points when p? = ¢? for alli € [1,...,n], as Bourgain
did. These points contribute O(L?) to the sum and will be considered as lower order terms. They
also explain the O(LY) term in Theorem 8.1.

It is this fact that prevents us from using the full strength of our equidistribution result which holds
for p = tL™% < L17¢ and we use the result for t < L. This ensures that O(L?) term is an
error in the asymptotic formula.

To prove the asymptotic formula given in Theorem 8.1, with 0 < p = tL=2 < L4~17¢, we proceed
as follows: 1) identify which part of the sum contributes the leading order term and which part
contributes error terms; 2) prove equidistribution of lattice points on a coarse scale; 3) present
Bourgain’s theorem on equidistribution on a fine scale; and finally /) prove Theorem 8.1.

3There are factors of 2 missing due to sums over even terms. However, this has no impact since (8 is generic.
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8.1. Identifying main terms vs error terms. To identify the leading order term in the equidis-
tribution formula, we first obtain upper bounds on lattice sums that are optimal up to sub-
polynomial factor.

For generic 8 = (f1,...,54) € [1,2]%, a good upper bound for the linear form 3 -n € [a, b], where

n = Z% is a consequence of the pigeonhole principle:

Lemma 8.3. The linear form (- n € [a,b] satisfies the following bound
#nezZ! N[-M M| a<p-n<b= > 1MV (b-a)+1 (8.5)

a<B-n<b
[n|<M

Proof. Since B = (1, ..., Ba4) are generic, then for 0 < |n| < M (see for example [8], Chapter VII)

18-n| 2 FYiCESi
For arbitrary n™) # n( e 74 satisfying « < 8- n® <band 0 < ‘n(i)‘ < M,
1
s S |8 @0 —n®)| <b—a.
By the pigeonhole principle we obtain (8.5). O

An upper bound on the cardinality of the set,

Ry {(p,q) € 22N [0, L] | Q(p,q) € [a,}],p # q},

can be obtained by bounding the number of lattice points in subsets of the form,
Ry ={(p,q) € Z*' N[0, L** | Q(p,q) € [a,b],pi # ¢;, 1 <i < ¢, and p; = q;, L + 1 < i < d},

using Lemma 8.3, and by using the divisor bound d(k) <. k.

Lemma 8.4. For { =1,...d the cardinality of Ry satisfies the bound

#Rze=> 1S LD (b —q)+ L@0" (8.6)
Rz,

Proof. Define k; = (p; — ¢;)(pi + ¢;), for 1 < i < £. Since p; = ¢;, for £ + 1 < i < d, we conclude

#Rze SLT0 Y >, o1

a<y> Biki<b (pi—a:)(pi+aqi)=k;
=1
0<|k|<L?

> 1<,

(Pi—q:)(Pi+ai)=k;
and by (8.5), with M = L? we obtain

#Rzp S LU0 (walﬁ(b —a)+ 1) ;

By the divisor bound

and (8.6) follows. O
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Corollary 8.5. The number of elements in Rz, can be bounded by

#Ry < L2V — q) 4 Ld-DF (8.7)
Moreover, if we further assume |a|, |b| < 1, then we have the improved bound
#Ry < L2V (h —a) + L@ (8.8)

Proof. Tt suffices to apply the Lemma 8.4, and to observe that £ € {1,...,d} since p = ¢ is excluded.
(8.8) follows from noting that if |a|, |b| < 1, then Rz is empty. O

Remark 8.6. Note, that in terms of the first estimate (8.7), the second term may be treated as an
error as long as b—a > L=@=D+<0 for some eg > 0. Analogously, the second term of (8.8) may be
treated as an error assuming b — a > [~d+eo,

Following this remark on identifying the leading order term, we can now identify subsets of Ry that
contribute error terms only. The first such subsets are when |p; — ¢;| < L'~ for some fixed § > 0
and some i that we may without loss of generality assume to be 1.

Lemma 8.7. For |a|,|b| < 1, the number of elements in Ry, satisfying |p1 — qi| < L'79 satisfy the
following bound

#Rz N {(p.q) € 2% | |pr — o] S L0} S LD 9 —g) 4 LLDT

Proof. If p; = q; for at least one 7, then by Corollary 8.5 with d replaced by d — 1, we have
#Rs 0 {(p,) € 72 | pi = g} S L (L4 (b —a) + LO"),

which is lower order. Moreover, if p; # ¢; for all i, and [p; —q1| < L', then the sum over 2 < i < d
can be bounded by L2<d_2)+(b —a)+ LOJr, using Lemma 8.4, while the sum over p; and ¢; can be

by L?>79. This gives a bound of L?~9 (LQ(d_2)+(b —a)+ L0+>, which is lower order if d > 3. O

Next we show that if one p; or g; is less than L'~%, where we may again assume i = 1, then the
contribution to the number of elements in Ry is lower order.

Lemma 8.8. For |al,|b] < 1, we have the following estimate

#Rz 0 {(p,0) € 2% | |p1| S L0} S L2200 — a) + LODT
Proof. If both |py| < L' and |q1| < L'79 or p; = ¢; for at least one i, then by Lemma 8.7 we have
the stated bound. Otherwise, the sum over 2 < i < d contributes L2427 (b — a) + L°", while the
sum over p; and ¢ contributes L279. O

From Lemma 8.7 and Lemma 8.8, we have

Corollary 8.9. Setting

d
Ryzs = Ry \ U ({(p, q) € 7% ‘ where, |pil, |q|, or |pi — ¢i| < L'79, for at least one z}) )
i=1

Then, for |a|,|b| <1, we have the following cardinality bound on the set difference Ry \ Rzs
#Ry \ Rys < LAV =0(h — q) 4 L4-D7
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8.2. Asymptotic formula on a coarse scale. These upper bounds, in particular Corollary 8.5
allow us to present a simple proof of the asymptotic formula for # Ry on a coarser scale, e.g.

b—a = L3. Note hat this is still better then the trivial Riemann sum scale of b—a = O(L?).

Proposition 8.10. Fiz § > 0 sufficiently small, then if L't** < b —a < L?*79, we have the
asymptotic formula

# {(p, q) € Z° N[0, L]* | Q(p, q) € [a, b]} = L2 D (b — a) //]1[0,1}2«1(96,?;)5(@(%?;)) drdy

R2d
+O (L2<d—1>—5 (b— a)) .

Proof. First we will smooth the characteristic functions by extending the region to a slightly bigger
region with a controlled error term. This is done as follows. Let wy € C®([-L?, L + L°]) be a
bump function satisfying wr(z) = 1 for x € [0, L] and

lwrlen S LY.
Then by setting Wi (z,y) = H?Zl wr(Lx;)wr (y;), we have,
P q _
> Wi (7o) = Lo (no) = O (L7147)
L' L
p,qEZL

Moreover, if we denote by hy € C®([a— L'*20 b4 L'+29]) a bump function hz(x) = 1 for = € [a, ]
and

lhrllon S L7NUF2),

then by Corollary 8.5, we have

> oW (3 g) he (Q(p:q)) — Lo rp2a (P @) Loy (Q(P,q)) =

L'L
p.q€LY
O(LQd—1+5) + O(L(2d—1+25)+) ~0 (L2(d—1)—5(b _ a)) '
assuming that b —a > L%, Thus, it is sufficient to obtain the asymptotic formula for

s:= 3 Wi (L) h@p.a) -

p,qeZ?

Using Fourier transform, we express S as

S /°° hie(9) YW (2, 2) e(QUp, a)s) ds ;_/ B ()S(s) ds (8.9)
e p,q -
Applying Poisson summation we may rewrite S(s) as
5(s) _Z/WL (%,%) e(Q(z,y)s —m-x —n-y)drdy (8.10)
¢
=L Z / Wi, (2) e(L2Q(2)s — L - z) dz (8.11)
¢

where z = (z,y), and £ = (m,n).
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The term ¢ = 0 contributes the asymptotic formula

L / Wi (2)h(L2Q(2))dz = LV (b —a) / 1o 1124(2)3(Q(2)) dz + O (L2<d—1>—5 (b— a))
R2d

where we used (b — a) < L27% in replacing hr(L?Q)) by dgirac(Q). So it remains to show that the
sum for £ # 0 can be treated as error. First we estimate the sum for s < ﬁ In this case we write
®(z,0,5) = L?Q(z)s — L{ - z, and note that since |s| < ﬁ and |z| < 1, then |V, ®(z,m, s)| > %,
where

V.®(z,0,s) = L*VQ(z)s — LI, (8.12)
and thus upon integrating (8.11) by parts, we obtain

S(s 2 L2d/v <2mv <I>Ez)f S)> e(®(2,4,5)) dz. (8.13)

Since each derivative of W, contributes L' =9, then each integration by parts contributes a factor of
L+|ZI' Applying a sufficient number of integrations by parts, and using the fact that |hz(s)| < b—a,
we may ensure that the contribution for £ # 0 and |s| < ﬁ is arbitrarily small.

For |s| > - we note that

~ 1
Iho(s)] S (b= a)———7F,
(L20]s))"
for all NV, and thus this term can be treated as an error. This concludes the stated result. O

8.3. Bourgain’s Theorem. Now we present Bourgain’s proof of equidistribution.

Theorem 8.11. Fiz ¢ > 0, then for 6 > 0 sufficiently small the following statement is true:
Suppose I;,J; C [0,L], j=1,...,d for d > 3 are intervals with length satisfying

L < ||, |J;| < L 1)
Then for a,b satisfying |a|,|b| < 1 and L= < b —a < L™ we have
S a=f o Resdedy + O ). (519
a<Q(p,q)<b Iixox Iy J JixxJg
pi€lj,q;€J;
P#q

In order to prove Theorem 8.11, we first make a series of reductions.

Step 1: Restrict to dyadic lengths and discrete intervals (a,b). We first show that it sufficient to
assume dyadic lengths L = 2™ for Ny € N and that (a,b) = (NoL™4T1F2 (Ny + 1)L=4+1+2) | for
N, € Z such that | No| < 209717, The restriction to dyadic lengths L = 2™ is valid since it only has
potential effect of modifying the implicit constants in the theorem. Now suppose (8.15) is satisfied
for all such L and (a,b) as described above and suppose we are given another interval (a’,’) such
that o', b’ satisfies |a|,|0'| < 1 and L=9F1*2¢ < i/ — 4’ < L. Then, by assuming ¢ is sufficiently
small (depending on ), and summing over intervals of the form (NoL =91+ (Ny + 1) L=91%¢) we
obtain

Z 1= / / ]lzz’<Q(m,y)<b’ dl'dy + O(L2(d_1)_€(b/ — CL/)) .
I XxIgJJ1 XX Jg N N

a'<Q(p,q)<b’
Pj€lj,q;€J;
P#q
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Thus, by again taking § smaller if needed, we obtain Theorem 8.11 with € replaced by 2¢, i.e. up
to a relabeling of ¢, we obtain Theorem 8.11.

Step 2: Ignore intervals that contribute lower order sums. Set & = 4d6, then by Corollary 8.9 we

have for ¢ sufficiently small,

S 1=Y"1+40 (L2<d*1>+*5 (b a))) +O(L*" =% "140 (LQ(d’1)+*S(b - a)) (8.16)
Rz, Rys 5

7.6

where we have used the restriction of a — b and assumed § to be sufficiently small compared to
€.

Thus we restrict our attention to the case where

(a) Vp; € E;, and Vq; € F;, we have |p;| > Ll_g, lqi| > Ll_S,

(b) distance(E;, F;) > L3,
With this reduction at hand, we divide each interval into at most L3 intervals, E; = Uyl and
F; = U, J;* each satisfying

(¢) 3L < I |p| < 1%,

and prove that for intervals I and J¢, satisfying Conditions (a), (b), and (c) we have

o= / / Lo<qay)<p dady + O(LAA-D=Bd+1d(p _ 4y (8.17)
Igx e xI¢ JJgxxJ¢ N

a<Q(p,q)<b
i€l g €T

P#£q

Summing in « and using (8.16) we have

2 =2 </ / La<Qay)<p dody + O(LH1=BHDI(p — a)>>
I Ig S JExx TS

a<Q(p,q)<b a
pj EI]' K EJ]'
p#q

L0 <L2(d71)+74d6(b _ a)>

=2 / / Lo<qay)<p drdy + O (LQ(d*l)t‘;(b - a)) :
I XX I S IF XX G

«

Using that § = 4dé and

/ / Locqay)<s dody =) / / La<Q(ay)<b drdy
I X x1g J Jyp XX Jg o f‘><~~~><I§‘ f><~~-><J:lX

S, L2(d71)+75(b o CL)

we conclude (8.15).

Summarizing, if by abuse of notation, we drop the index « and replace § with & , we have reduced
the proof of Theorem 8.11 to proving the following proposition.

Proposition 8.12. Fiz € > 0, then for § > 0 sufficiently small the following statement is true:
Suppose I;,J; C [=L,L|, j=1,...,d for d > 3 are intervals satisfying

(1) Vp; € I;, and Vq; € J;, we have |p;| > L', |q;| > L',
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(2) distance(I;, J;) > L',
(3) 1% < ||, |Ji| < L%

Then for a,b satisfying |a|,|b| <1 and L= < b —a < L™ we have

1= / / Lo<Qyy<p drdy + O(LHTD=CHV(p — q)). (8.18)
Iix-oxIgJ JyxxJg B

a<Q(p,q)<b
Pj GIj Kl EJj
p#q

Let us now suppose I; and J; satisfy the hypothesis of Proposition 8.12.
Step 3: Transform the region of summation. The sum can be written as,

> @)= Y i (Qea -5 (819)

pi€lj,q;€J; pi€lj,q;€J;

By writing Iy = [u—Au, u+Au], and J; = [v—Av, v+ Av], and utilizing the fact that |u—v| > L2,
we express the region Ry as,

d—
ST Bl — ) — B b—a
5 +1| <
Ba(pg — aj) 284 ‘pd - qd‘
b— b—a)L™?
_‘444441144,+_O Sgglﬁggf
204 |u? — v?| |u? — v?|
since
|p?l —q— u2 + ’U2‘ < L(Au+ Av) S L3 and ‘uQ = L%,
Setting £ = b+“ and n = 252, then by taking logarithms and Taylor expanding In(z) around z = 1
we obtain
-6
n nL
In Zﬁj —¢) =& —In(pi—q)) —InBy| < Lo +0 <‘u2 —v2!> . (8:20)

here we assumed, without loss of generality, Z?;i Bj (pj2 — q]2) —&>0and pg — qfl > 0.

Step 4: Replace the sum with an analogous sum.

Instead of considering the sum over the region Rz, we will consider the sum over the region Sz,

defined as

d d
Se=Swa) e[ *]]Jw:n Zﬁj P —qd) —¢ —1n(p3—q§)—lnﬁds%
7j=1 k=1

o [u2 — 02|
(8.21)
In order to make this reduction, we need a bound on cardinality of (p, q) satisfying
In ZB 2 _2) —¢ —ln(pz—qQ)—lnﬁd:#—&-O L_é
05 =4 ¢ afe = T O\ =)

Such a bound would follow as a consequence of a version of a weaker version of Proposition 8.12
with the asymptotic formula (8.18) replaced with a sharp upper bound, i.e.,
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Proposition 8.13. Fiz ¢ > 0, then for § > 0 sufficiently small the following statement is true:
Suppose I; and J; satisfy the hypothesis of Proposition 8.12, then for a,b satisfying |a|,|b| <1 and
L~1+e < b —a < L™ we have

> 1=0LHTNTEG — q)). (8.22)

a<Q(p,q)<b
V2 GIJ' ,45 EJ]'
p#£q

We note that for Proposition 8.12 compared with Proposition 8.13 we may require a stricter small-
ness criteria on 0 relative to the choice of e. With this in mind, applying Proposition 8.13, the
difference in summing in p and ¢ satisfying (8.20) and computing the cardinality of Sz is of order
O(LAd=D=Bd+1)5() _ g)) and hence can be treated as an error. We remark that such arguments
will be used later to bound analogous error terms.

By the arguments above, the sum in Proposition 8.13 may be estimated from above by the cardi-
nality of Sz with 7 replaced by 27 in the set’s definition. Hence up to a factor of 2 in the definition
of Sz, to prove both Proposition 8.13 and Proposition 8.12, it suffices to obtain an asymptotic
formula for S7.

If we set

= In Zﬁg pi—¢j) =& —n(pj — q3) —Infa, A:%W

|u

then we can rewrite the cardinality of Sz as
Z 1= Z L4 (F(p.q))-
Sz (pj,q;)€li % J;

For a technical reason (as will be seen in Step 7), we replace 1|_4 4) by a smooth approximation.
Let ¢ : R — R be a smooth, non-negative, symmetric Friedrich mollifier, that is monotonically
decreasing on R*. Setting ¢.(z) = e '¢(Z). Then, we have

Z 1= Z (Lj_a,4) * ¢r-100a) (F(p,q)) + Z (Lj_aa) — Lo 4 * Gp-1000) (F(p,q))
(pj,q5)€Li x J; (pj,a5)€lixJ;
[ +1I. (8.23)

In an analogous argument to showing that the cardinality of Rz can well approximated by the
cardinality of Ry, we may show that sum II can be estimated up to an acceptable error.

Step 5: Expressing the sum using Fourier Transform. The number #.S7 can be expressed using the
Fourier transform as follows. Let

=In Zﬁg ;=) =& | —In(pj—qz) —Infa. AZ%W

|u

and write

I = Z (]l[—A,A] * ¢L7100d) (F(p,q)) = Z /eiF(p’q)t (1[_A7A];E—100d) (t)dt

(Pj>a;)€LixJ; (pj,q;)EL; %X J;

_ / S1()SaB)e 4Ty 2167 oo d,
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where,

it
d—1 !

Sit)y= > Bips — ) +¢ (8.24)

pi€li,qi€di \Jj=1

i=1,...,d—1

Set)= > (hi-a)" (8.25)

Pa€la,9a€Ja

Step 6: A scaling argument. As mentioned earlier, if A is large compared to L™!, then comparing
the sum over SZ and the area of S is relatively simple. For this reason we split our sum by scaling

with a factor 4 o where Ag = W%%/SQ\’ i.e., split the integral into two terms,

A . -
N XO / S1(8)% (t)eﬂt " Bd]l[*Ao,Ao]QE—loo(i dt

- / S (t) Sy (t)e " Pa (11[—A,AJ - A]l[—Ao,Ao]> Gr-rooadt = 11T+ 1V
0

Ignoring the factor (;Smd, the first integral is counting p, ¢ such that
In Zﬁj —q) =& —In(pf— q7) —Infa| < Aoy

As in Step 4, the factor d)f_Ed can be ignored, up to a suitable contributing error. Then, one is
reduced to counting

d
ST B~ ?) — €| < L3+ O(L570).
=1

Again, applying a similar upper/lower bounding argument to that used in Step 4 with the use of
Proposition 8.13 replaced by the use of Proposition 8.10, we obtain

IIT = / / LocQay)<p dody + O(LH =Gy gy
I x-xIgJJrx-xJg

For the purpose of proving Proposition 8.13, one simply observes that the first term is of order
O(L24=1)=3d3() — @)). Thus in order to complete the proof of Proposition 8.12, Proposition 8.13,
and by implication Theorem 8.11, it suffices to estimate IV.

Step 7: Replace So with a sum involving smooth cut-offs

We now replace the sum Sy with a sum involving smooth cut-offs. This is a preparatory step,
that will be needed for Step 10, in order to apply an argument involving the Mellin transform and
Riemann zeta function estimates.

We rewrite Sy in terms of the coordinates m = pg — qq, n = pg + qq and the set

K :={ps—q4) | (Pa,qq) € Ia x Jq}.
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Then S5 becomes

Sy =Y 11,(pa)1,(qa) (0] — 43)"

Pd>4d
m+n —2u m—n — 2v it
=St (R )t (M a )
m,n
it m+n—2u m-—n-—2v\ 4
B Z " Z]l[*l’l] < 2Au > RSl < 2Av )n '
meK n

Without loss of generality, we may assume Au < Av. Let us cover K by disjoint intervals M; of
length L'~10049 and define w; to be the center of M;. It is not difficult to show that that may be
achieved such that #{M;} < L'0%% e have the following bound on the set difference

# (U Mj) \K g L1—100d5 )
k

Thus we have
i m+n—2u m-—n-—2v\ , _
S5 3wt (M)t (M) | S 1
Jj meM;

Using that M; is of length L1-100d0 " we may also replace m with the midpoints wj in order to
obtain the estimate

3 ("2 (P ) (2 (P52

n

S L1—100d5 ’

and hence
i wj +n—2u i—n—2v\ _
Sy = ZZ tz]l[u( : AW ) [11]( 2D )”“FO(LQ 1000y
Jj meM;

Again, up to an allowable error we may also replace the sharp cut-off cutoff functions with a smooth
cut-off 1) = 1 on [—1 + L1004 1 _ [,=100d9] and supported on the interval [—1,1], i.e

$=%"3 mt Zw (w] +n- 2“) ” (wj _QZU_ 2“) nit +O (L2108 (8.26)

Jj meM;

~~

Sj

Finally, the sum in m can be replaced be a sum involving a smooth cut-off, up to an allowable

error
Z Z¢ < Tic 100d5> m™S; +O(L*1009) . (8.27)

Sa

We now decompose IV as

-— e A _—
IV - /Sl(t)SQ(t)€Ztlnﬁd (1[A,A] - 140]1[1407140]) ¢L—100d dt

+ / S1 () (Salt

—

= A _— A —
— Sg(t))e_“lnﬁd <1[—A,A} — 14()]1[_1407140]) ¢r-100adt =V + VI
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y (8.27) we have

A /\ —
|VI| <L2d 100d(5/‘< AA} A [ A07A0]> ¢L7100d dt

Observe that

A sin(At)  sin(Aopt) . 91,12
1_ t)— —1,_ t) =A — < AAG IS, ————— | . 8.28
[ A,A]() AO [ Ao,Ao]( )' At Aot ~ min 0‘ ‘ 71+A’t’ ( )
and for any N we have
— 1
G -100d| S (14 L 20042V - (8.29)
Thus using that A < (b —a)L ™22 we have
‘VI‘ S (b o a)L2(d—l)—50d(5 ,
which is an acceptable error.
Step 8: V is an error. Now consider V', we aim to show that
V| S L3y, (8.30)

for a set of (B2,4) of full measure, independent of our choice of length L = 2V and interval
(a,b) = (NoL=4+1+e (N + 1) L=41+%). By Chebyshev’s inequality, it suffices to show

HV”L%Q’Bd S L2(d71) (3d+1)d 772
To see this, define
Qrn, ={B € [1,2] | V] > LDy
By Chebyshev’s inequality we have

26
QL8| S LA —6d5,2 HVHL2 5y S L.

Recall that n = L=%t1%¢ then, since

ad . 40(1-N)
ﬂ ‘92N17N2‘21—022 J :1—Cﬁ—>1 as M — oo.
N1>M, |Np|<2Ld~1-2 j=N

we obtain (8.30) for a set of ((2,034) of full measure, where the implicit constant depends on

(B2, Ba)-
Applying (8.28) and (8.29) we have

_— A — —
<1[—A,A} - Ao]l[—AO,AO]> ¢r,-100d

A
< mi AA2 2 )
len( o1t ’1—|—A\t\>

Averaging in B2 and B4, and using Plancherel’s theorem for the integral in 54, we have from the
bounds A = nL=?*% and Ay = L[5+

_ 2

52‘ dt

2 1
V12 <A2A4/ #4192 S‘dt/ 154112
VIR | < ( Il S e [ s 1,

|<LT00

R 1 -2
<Sn’L ??OH%/ t4 S ‘S’ dt +n?L~ 4+45/ s ? ’S‘ gt
NT] 1 2 2 77 — L ) 2

|t‘< ” ||L ‘t|2L1(1)0 1 772_[/ 4t2 H ||LE2

ER 1 )
<n’L 38+65/ s dt 21— 4+46/ L sl2, 18 ) it
NT] 1 2 77 — 1 ) :

|t|<L100 ” HL \ﬂZLﬁ 1+772L 442 H ”Lﬁ2

VII VIII
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where we have used the trivial bound #52 < HIH4J; < L2769,

Step 9: Bounding VII. To bound ||Sl||L% , We rewrite
2

% —it

d—1 bl
s0E= Y Y (Zaw-@-¢) [Tari-d-¢
pi€liqi€iri€lsied; \j=1 =1
1= =1 j=1,...d-1

=1,...

= > S (07— G+ Balpd — 33) + 1) (r] — 5T+ Ba(rd — 53) + b)) "
pi€li,qi€J; 7j€L;,5;€J;
=1, d—1 =1, d—1

— Z Z it (P —ai+B2(p3—a3)+41 ) ~In(rf —s3+B2(r5—s3)+¢2)))
pi€li,qi€Jiri€Lj,8,€J0;5
i=1,.,d—1 j=1,....d—1
where
d—1
Y= Bi0f —4}) —& and o= B(ri —s}) ¢
j=3 Jj=3

for d > 3 or ¥ = ¥ = £ for the case d = 3. Setting

¢ =l (p} —af + Ba(p3 — @3) +¢1) — In (1} — 57 + Ba(r3 — 53) + )

we have
‘862@ ~ |2 2 p% —2q§ 2 -2 2 7’% _28g 2
PT—q1 +52(p2_QQ)+'¢1 7“1_31“‘52(742_82)"’_1#2
>

)

’ (p3 — @3)(rf — s1 +2) — (13 — s3)(p} — qf + 1)
L4

then for ¢t < L*, and by taking the sup over indices 3 < i < d — 1, we have

—1
1508 a5 < s 2249 3 (14 igrionwl)
2

V1,92 Pi€li,qi€J;
ri€l;,s;€J;
i=1,2

Here we a using the trivial bound for the case 1 > |t|infg, |0, V|, otherwise we use Van der
Corput’s Lemma (see for example [37] Chapter 8, Proposition 2). For the former case, to apply the
proposition, we split the integral into regions for which dg,® is monotonic in .

Set (p; — ;) (pi + ¢;) = w; and (r; — s;)(r; + 8;) = 2;, and sum over fixed w; and z; using the divisor
bound d(k) <. |k|¢, we obtain
2 2(d—3)* |t -
[ 1810002 g < sup 2 S (1l 4 ) — za(wn + w)
vrbe L2325 <yl || <12

The above sum can rearranged by summing first over the set,

y(k,wa, 20) = {L*7% < Junl, |z| < L | [Jwa(z1 + o) — 22(wr +¢1)|| =k},
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and then over (k,ws, z2) to obtain,

_3)+ Lt
1807 a2 s swp 22697 S0 ety ) o
1,92 0<k<L?
L2 <y, | 22| < L2
+ L+
< sup L2(d—3) Z max #Mw(k,wg,,@) 14+ —
1,2 2-26 » k i
L2720y, 22|<L

Now we estimate #.97,(k, wa, 22) for a fixed (k,ws, 22). Assume o7 (k, wa, 22) # 0, then there exists
wo and zg, such that, L?2~20 < lwp — 12| < L? and L2720 < |z0 — 91| < L? and

[lwa(z0) — z2(wo)] = k.
Thus

~ ~ ~ ~ ’lUQEl ~ ~
#ty S #{waz = 20wy | Wy — wol, |71 — 20] < L?} = #{w = o | |01 — wol, |21 — 20| < L}

Since wy € Z then #.o7, S1+ M, and consequently

22

- L L? ged(ws, z
[ 1510 ag, 5 20" (”m) Y (1 B

L2=25<|wa),|22|<L?

4+
2(d—3)* L 2+
<L (1 + ] ) E 1+ E L

L2=20<|ws|,|22|<L? L2 20 Jws|,|z2|<L2
ged(wa,z2)#1

4
< [2d-1)+5 (1 + ‘L‘> '
~ t

Hence, applying this bound to VII yields

VII < 772L_38+65/ 1 \75\3 L2(d+140) gy < n2L4(d—1)L—2d+%+75+% < 173L4(d—1) ‘
[t|<LT00

where we used that = L=+ § is sufficiently small and d > 3.

Step 10: Bounding VIII. Now consider VIII, we have

tl+ LY 152
VIII < p* L2919 / %— So| dt
>rho 1+ n2L=42 [¢]
1+ 4 74,0+
< PRI KT+ LR 1 }32‘2 dt
1 1+ L2 Jjys oo [t
x> L T00 =

L2+ | LTO0 2k +1 12

< 2 L2(A-3) 450 ( +L4+> sumeozk/ ) ‘SQ‘ dt | . (8.31)
n k LT00 2k

We proceed to estimate |.S;], defined in (8.26). Defining

w; — 2u w; — 20  zAu
X(z):¢< J2Au +Z>¢( JZAU a Av)
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and letting x denote Mellin transform of x, then

1 2
2 _ . s .
S5 = (27” /%8:2 X(s)(2Au)%¢(s —zt)ds> :
Shifting the contour to Rs = % we pick up the residue
(1 + it) (2Au) T
which for |t| > L3 is order O(L~N) for any N due to the decay of ¥ and that Au and Av are of

comparable size. Then using Ay ~ L'~3°
2
1
1S;* = / X(8)(2Au)*C(s —it)ds| + O(1)
27T 9‘%5:%
’ 1 1 2
o Al / X(8)C(s —it)ds| +0O(1) = L7305 (2 + z) % C (2 — z> (t)| +0(1)
ﬂ‘Es:E

Again, using the rapid decay of 1&, we have

(n[_wqwﬂo)x (; " )) < (; - z‘(-)) 0

We now utilize following classical L* bound of the zeta function in the critical strip [25]

4
[k
Using the above bound yields

A
(b+io)[

2

|57 S L' +0(1).

dt <1,

4

LA([LT00 2%, I, T00 2k+1])

S Il pes

L‘L([L%Z’C L100d5 [, T00 2k+14-[,100d4))

Thus we obtain )
H j”4 ) L < L2+m7552k.
LA([LT00 2k, [ T00 2k+1]) ™
An analogous argument also yields

4
it 24 55 —50 ok
<L1 100d5) Z S LHrme o2
LA([LT0 2%, L T00 2%+1))
Using the decomposition (8.26) and the bound # { i1 < L0 we have

2
< L 24 —= 100 +10052k

~

|
Thus, combining the above estimate on Sy with (8.31), we obtain
2+
VIIT < g2 [2d-3)+5 (L I L4+> <Sup L—l(l)o2—k:L2+1(1)0+100d52k)
n k

< T]2L2(d72)+(5+100d)6 <LQ+ 4 L4+>
n

< g2 [A=1) [~2d+24200d5 1

L2([LT00 2%, T00 2%+1])
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where we used that n = L~%t1*¢ > L2 since d > 3. Thus assuming ¢ to be sufficiently small,

then
[, 20+2+200d5 - p2d+2+e—3d5 _ 172L_3d5,

and hence
VIII S L2(d71)73d5n?

as desired.

8.4. Proof of Theorem 8.1. . First we note that the sum in Theorem 8.1 can be simplified as
follows,

1) Ignore all pairs (p, q) such that [p;| = |¢;| for each j. The sum of such pairs such that [p|,|q| <
L' is of order O(t>L4*9)) and hence contributes to an admissible error, where here we used
the restriction ¢ < L€,

2) We restrict the sum to the positive sector p,q € Zi N[0, LH‘S] for p # q. Here we are using
that the subset of (p,q) such that p; = 0 or ¢; = 0 for some j is an admissible error. This
follows as a consequence of Lemma 8.8. To rigorously carry out such an estimate, one must
split the contributions when |Q(p, )] < p~! and |Q(p,q)| > p~!. Assuming without of loss of
generality that p; = 0, then splitting up the later part dyadically in the size of |Q(p,q)| and
using |g(x)| < ﬁ one obtains the estimate

2 P4 < 42
2y ‘W (L, L) g(uQ(p,q))) St
(p,q)€z3?
p1=0, p#q

1,2(d=1)*—26
7

+ L(dl)+> S tL2d76,

where W was defined in (8.4).

With all these reductions in mind, proving Theorem 8.1 will follow as a consequence of the following
theorem.

Theorem 8.14 (Equidistribution). Fiz e > 0 and let 6 > 0 be sufficiently small. Then for generic
B € [1,2]¢, we have that for any function W € #(R%), the following holds,

[,2(d-1)=¢
> w(Z ) swew ) = / W (z,9)9(L*uQ(x, ) dxdy + O ()
(P.a)€Z3? R2d a
p#q *

where 1 < p < L3—17¢,

We remark that the above theorem is actually stronger than required: in view of the restriction on ¢
in the hypothesis of Theorem 8.1, we need only consider ;¢ within the range 0 < p < L%27¢,

Before we prove Theorem 8.14, we will need a couple of auxiliary lemmas. The following lemma is
helpful in bounding errors to the asymptotic formula.

Lemma 8.15. Let € > 0. Given a generic quadratic from Q(p,q) as defined in (8.1), we have the
following estimate
(2d—2)+
2. e
(P,Q)EZQdm[QLPd Q(p7 Q) a

(8.32)

for a > L—te
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Proof. We begin by dyadically subdividing the interval [a, C'L?], for some large C, we define
de m
Ry = {(p,q) € 22001 [0, 12| |Q(p. 9)]| € 27,271, p # g,
Mmin = |logsal, and mpyay = [log, CL?].

Applying Lemma 8.4 yields

1 Mmax

Y. GoaE S 2 T#Ruw
(p,q)€Z24N[0,L]%¢ (p-q) M=Mmin
p#4,|Q(p,9)|>a
mmax
§ Z 2—2mL(2d—2)+2m
M=Mmin

Mmax (2d—2)+
< ="
~ a
M=Mmin

The following lemma will be useful localizing the sum in Theorem 8.14.
Lemma 8.16. Fiz e > 0, then for § > 0 sufficiently small the following statement is true: Suppose
I;,J; C[0,L] for j =1,...,n are intervals with length satisfying
L' < |15, |71 (8.33)
and define
S(1,7) “ {(p,q) € 2 |pjelj, g€ Jj, p#q}.
Then for u satisfying L€ < pu < L€ we have

2(d—1—ds)
> awewa=[ _”ngcz(x,y)mxdwo(L). (5.3

(P:9)€S(1,) .

Proof. First note that by Lemma 8.15

[2(d—1)+(1-4d)

Y gwQpa) - D, 9wp, )| S ————

(P9)€S(1,7) (P,9)€S(1,4)
|Q(p,q)|<p—tLAd

7

[,2(d—1-d5)

Define the sum A(y) and the integral A as follows

Aly)= > 1 and fl(y):/IlXWXId/JIXWXJd]l[_y@}(Q(u,v))dudv

(P,9)€S(1,)
Q(p9)|<y
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Then in the sense of distributions
71L4d5

i
> 9wQp.q) = / 9(ny)A'(y) dy
(P,9)E€S(1,7) 0
1Q(p,q)|<p~ LA

/J,_IL4d6
= —u /0 9 (1) Aly) dy + g(L*®) A~ L'%)

potpAds [,2(d—2)—4ds
= —u/o 9 (ny)Aly) dy + O —

where in the last inequality we applied Lemma 8.4 and the bound L < p < L4=¢. Writing
A=A+ (A—-A), we have

M71 [,4ds U71 [,4ds

! A 1,2(d—2)—4ds

2, Q)= /g/(“y)A(y) dy+p /g’wy)(A(y)—A(y))derO ()

(P.9)ES(1,1) / / :
|Q(p,q)| <p—tLAd0

By Theorem 8.11 (by choosing § smaller than the § used in the theorem) it follows that assuming
y > L™9F¢ then

|A(y) = Aly)| 5 L2108
For y < L=%¢ by the trivial bound
A(y) — Aly)| < Aly) + A(y) S L2
Using the trivial bound ¢/(z) < 1 we have

u /0 e ‘g’(uy)(A(y) - fl(y))) dy

[, —d+e p_1L4d6

< “/0 9 () (Aly) — Aw))| dy + /L L Jgiwam - A dy
M71L4d5

SML—2+26+5+ML2(d—1)—10d6/ ydy
L*d+€

< M—1L2(d—1)—e+6 4 M—1L2(d—2)—2d6

where in the last inequality we used p < L%¢. Choosing ¢ sufficiently small in relation to e, this
constitutes an allowable error. The proof concludes by noting that by integration by parts

ﬂ_1L4d5
—p / g (uy)Ay) dy = // -1 paas -1 paas) (Q (2, y)) (g(uQ(ﬂc,y)) +9(L4d‘5)) dady
0 I x--x1g

J1 XX Jyg

O

Proof of Theorem 8.14. We first note that by symmetry, it is sufficient to restrict ourselves to the
positive sector p,q € Zi. Note that Lemma 8.8 implies the subset of (p,q) such that p; = 0 or
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¢; = 0 may be treated as an admissible error. Thus, it suffices to show

Y . 9 . . LQ(d—l)—5
> W< ) 9(uQ(p, q)) = L 4W( gL pQ(x,y)) d dy+0(ﬂ )

(p,q)€Z3? R
LQ(d—l) L2(d—1)—5
= [ Waw)sQe ) dedy + 0 | S
RQd

p7q
Divide [0, L°]¢ x [0, L°]? into products of cubes M;, N, C R? of length L=194°. Define W; to be
the average of W over M; x Ny:

Wik = ][ W(z,y) dxdy
M; Ny,

Note that if (z,y) € M; x N}, then from the smoothness of W
W (z,y) = Wyg| S L710.

Hence using Lemma 8.15

7,2(d—1)(1+6)+5—10d6

p q

>ow <f’ f) WRP.a) =Y. Y. Wikg(uQp )| S
(p,q)€Z2? J.k pELM;,qe LNy, K

P#q p#q
2(d—1)—8
S

1
Applying Lemma 8.16 (taking § to be sufficiently small) we obtain

2(d—1)—
o> Wing(uQ(p.g Z/LM / W;xg(pQ(z,y)) dedy + O (L )

j,k’ pELMj ,qGLNk
P#q

04 ) L2(d 1)
=L W(p,q)g(L*pQ(z,y)) devdy + O — ]
2d

R¥

0
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