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Abstract The geometry description plays a central role in many engineering applications and directly influ-
ences the quality of the computer simulation results. The geometry of a space curve can be completely defined
in terms of two parameters: the horizontal and vertical curvatures, or equivalently, the curve curvature and
torsion. In this paper, distinction is made between the track angle and space-curve bank angle, referred to
in this paper as the Frenet bank angle. In railroad vehicle systems, the track bank angle measures the track
super-elevation required to define a balance speed and achieve a safe vehicle operation. The formulation of
the track space-curve differential equations in terms of Euler angles, however, shows the dependence of the
Frenet bank angle on two independent parameters, often used as inputs in the definition of the track geometry.
This paper develops the general differential equations that govern the track geometry using the Euler angle
sequence adopted in practice. It is shown by an example that a curve can be twisted and vertically elevated but
not super-elevated while maintaining a constant vertical-development angle. The continuity conditions at the
track segment transitions are also examined. As discussed in the paper, imposing curvature continuity does not
ensure continuity of the tangent vectors at the curve/spiral intersection. Several curve geometries that include
planar and helix curves are used to explain some of the fundamental issues addressed in this study.

1 Introduction

In railroad vehicle system dynamics, the description of the track geometry enters into the formulation of the
wheel/rail contact problem. Therefore, a proper numerical representation of the track geometry is necessary
in order to accurately define the locations of the contact points and predict correctly the wheel/rail contact
forces [1-20]. The track geometry is numerically described using a point mesh that defines the location of
material points on the track centerline and rail space curves. At each nodal point, specific data are provided
in order to define the point locations as well as rotation coordinates that define the curve geometry as well as
the track frames that follow the vehicle components in railroad vehicle formulations. These data include the
space-curve arc length parameter that corresponds to the node, the coordinates of the position vector of the
node, and three Euler angles that define the track geometry and the orientation of the track frames. Having the
position and angle nodal information, an interpolation scheme is used during the dynamic simulation in order
to determine the geometry at a contact point within a track segment. In order to achieve the desired accuracy,
the lengths of the segments in the track geometry file are chosen small, and therefore, this track geometry file,
often created in a preprocessor computer program, can be very large.
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The track layout is normally constructed using three basic segments: tangent, curve, and spiral. The
tangent segment is straight and has zero curvature; the curve segment has a constant curvature; and the
spiral segment that connects two segments with varying curvatures is designed to have a linearly varying
curvature. In the case of a curve segment, use of super-elevation is necessary in order to create a gravity force
component that balances the centrifugal force when the vehicle negotiates the curve. Therefore, tracks are
curved horizontally, elevated vertically, and super-elevated in the case of curved segments. While the spiral
segments are introduced to reduce the possibility of derailments, accidents still occur when trains negotiate
the spiral sections of the track because of inappropriate designs resulting from lack of good understanding of
their geometry. Consequently, understanding the spiral geometry, particularly at the transition points which
define the intersections of segments with different geometries, is necessary in order to avoid deadly, costly,
and environmentally damaging accidents. Virtual prototyping and computer simulations can play a significant
role in understanding the cause of these accidents.

In order to develop the numerical representation of the track geometry and determine the position coor-
dinates and angles at the nodal points in a preprocessor computer program, three pieces of information, at
each track point at which the geometry changes, are provided. These pieces of information are the horizontal
curvature, grade, and track bank angle. Because a track can have very long straight and curved segments,
the input to the preprocessor computer program that produces the track geometry file is simple, despite the
fact that the output of this preprocessor can be a very large file in which the nodal position coordinates and
Euler angles are provided. The three inputs to the preprocessor computer program are used in the numerical
construction of the track geometry and are associated with three Euler angles: the horizontal-curvature angle
Y, the vertical-development angle 6, and the track bank angle ¢,, defined using the Euler sequence Z, — Y,
and — X, where X is the longitudinal axis, Y is the lateral axis, and Z is the vertical axis [18, 19]. These three
angles serve to completely define the track geometry, and therefore, they are used as geometric parameters.
The negative signs for the axes Y and X are used for consistency with practical considerations used in the
layout of the track structure.

The three Euler angles v, 8, and ¢, are treated in existing railroad vehicle algorithms as independent
geometric parameters. Nonetheless, as it has been demonstrated recently, Euler angles used in the general
description of curve geometry are not totally independent because the geometry of a space curve is completely
defined using two independent geometric parameters only [21, 22]. In existing railroad algorithms, the curvature
angle ¥ is determined using the horizontal curvature Cpg, which is the first input to the track preprocessor;
and the vertical development angle 6 is determined using the second input which is the vertical curvature Cy .
The track bank angle ¢; is determined from the third input which defines the super-elevation. Assuming that
the track bank angle is independent, linear interpolation is used to convert it to a field variable within a track
segment. In this linear interpolation, the two bank angles at the two ends of a segment are used. Nonetheless,
the use of this approach, which is based on providing three inputs, implies that these three Euler angles are
independent, and such an assumption is justified when defining the orientation of the track frames that follow
the vehicle components. However, because the geometry of a space curve is completely defined using two
variables [23, 24], the track bank angle ¢, obtained using the independent linear interpolation is not the Frenet
bank angle ¢ used in the definition of the geometry of the space curve. The direction of the centrifugal force
is defined by the bank angle of the motion trajectory curve and not by the track bank angle obtained using
the linear interpolation. This distinction between the two bank angles (track and curve) is necessary in order
to have a better understanding of the track geometry that has a significant effect on the vehicle dynamics and
stability [25-29]. In this paper, a field variable refers to a variable that is a function of other parameters and
has a continuous domain with infinite number of points, but with finite length. On the other hand, the phrase
“rigid rotation” is used to refer to a rigid-body rotation of the curve that does not change the curve geometry,
that is, a rigid rotation is a rigid-body rotation of the entire curve.

2 Scope and contributions of this investigation
The main objective of this investigation is to develop the general differential geometry equations of railroad

tracks in terms of the Euler angle sequence used in practice. This Section explains the scope and the specific
contributions of this study.
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2.1 Scope of this investigation

As previously mentioned, in the virtual prototyping of railroad vehicle systems, a track preprocessor is often
used to define the geometry of the track centerline curve and the right and left rail space curves. For each
curve, the large point mesh data are generated by the track preprocessor based on the values of the horizontal
curvature, grade, and super-elevation provided at few points at which the track geometry changes. These
data define the positions and the orientation of track frames at a large number of nodal points. These points
are normally spaced one feet apart in order to ensure the accuracy of the interpolation during the dynamic
simulations. At each node, three Euler angles are provided in order to define the orientation of the track frames
at the nodes, and such a description is justified because the orientation of a coordinate system in space can be
defined using three independent angles.

Nonetheless, it is important to distinguish between the angles used to define the rail space curve geometry
and the angles used to define the orientation of the track frames at the nodal points. In railroad vehicle
algorithms, both sets of angles share two angles, the horizontal curvature angle 1/ and the vertical development
angle 0. In the case of the track frames, the third angle is the track bank angle ¢ used to define the track
super-elevation used in the computation of the balance speed. This track bank angle ¢, is defined at the nodes
using independent linear interpolation. While this angle is used to define the balance speed and determine the
component of the gravity force that balances the lateral component of the centrifugal force, such a track bank
angle is not the angle that defines the direction of the centrifugal force, which is often assumed parallel to
the horizontal plane when the balance speed is determined. The track frames, whose orientations are defined
using the three independent Euler angles v, 6, and ¢, at the track nodes, follow the motion of the vehicle
components and are used in the formulation of kinematic equations of railroad vehicle systems. The linear
interpolation used for the track bank angle ¢, defines the super-elevation of the track in the transition sections.

The geometry of the track centerline curve and right and left rail space curves can also be described
using three Euler angles. However, these three Euler angles for a space curve are not totally independent
because the curve geometry can be described in terms of only two independent geometric parameters [21, 22].
Therefore, a distinction must be made between Euler angles used in the definition of the track frames that
follow the motion of the vehicle components and Euler angles that define the geometry of the space curves.
In railroad vehicle dynamics algorithms, the track frames and the space curves share the two angles ¥ and 9,
but differ by one rotation. The third rotation used to define the space curve geometry is the curve bank angle
¢, referred to in this paper as the Frenet bank angle, which can be obtained from the two angles ¥ and 6
using an algebraic equation, as demonstrated in this study. It is important, however, to distinguish between
the two angles ¢, and ¢ in order to shed light on the linear interpolation used to determine ¢; which does not
enter into the definition of the curve geometry, does not directly define the direction of the centrifugal force,
and is used mainly to define the track super-elevation and the balance speed. This investigation is focused
on developing the general differential geometry equations of the rail space curves in order to have a better
understanding of the fundamental difference between the track and Frenet bank angles. This understanding
will allow addressing geometry, design, and discontinuity problems at the track transitions which will be the
subject of future investigations.

2.2 Contributions of this investigation

The specific contributions of this study are summarized as follows:

1. The differential geometry equations of the track space curve are formulated in terms of the three Euler
angles used by the rail industry: the horizontal curvature, vertical development, and Frenet bank angles.
Using this angle representation, the matrix that defines the orientation of the Frenet frame along the space
curve is formulated. The solution of the differential geometry equations developed in this study defines
completely the angles.

2. The paper introduces the new definition of the Frenet bank angle to the railroad literature and demonstrates
that the rail curve (spiral) bank angle can be determined from an algebraic equation in terms of two inputs,
and consequently, the Frenet bank angle cannot be considered as a third independent parameter. This
distinguishes this bank angle from the track bank angle which enters into the definition of the orientation of
the track frames, is treated as an independent angle, and is linearly interpolated in the numerical description
of the track geometry in railroad vehicle algorithms.
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3. The differential equation singularity that results from a rigid rotation of a track segment is explained.
The track segment geometry is invariant under a rigid rotation, and therefore, such a rigid rotation does
not influence the differential geometry equations developed in this study. Another special case which is
discussed in this paper is the case of constant horizontal and vertical curvatures, as in the case of a helix
curve. The curve elevation and the vertical development angle and their relationship to the bank angle in
this special case of constant curvature and torsion are discussed.

4. Using an example, the paper demonstrates that a curve can be twisted and vertically elevated, but not super-
elevated while maintaining a constant vertical development angle which is not a rigid rotation. Using a
helix curve, it is shown that the helix curvature vector remains in the horizontal plane, and the acceleration
of a particle tracing the helix curve with a constant forward velocity has no vertical component. This
result is consistent with the fact that a helix curve has zero Frenet bank angle. In this paper, the phrase
“super-elevated curve” is used to indicate that the curve has nonzero Frenet bank angle.

5. The paper examines the degree of continuity at the intersection of two track segments with different
geometries. It is shown that position and curvature continuities do not ensure smoothness because of the
discontinuity in the tangent vectors. The results obtained using the curvature continuity conditions are
compared with the results obtained by imposing slope continuity.

3 Track differential geometry equations

The use of Euler angles in the definition of the track curve geometry leads to three equations in a differential
form. Two of these equations define the curvature and torsion of the space curve in terms of Euler angles and
their derivatives [21, 22]. If the curve curvature and torsion are given, these three differential equations can
be integrated numerically to define Euler angles as functions of the curve arc length, demonstrating that the
three Euler angles of a space curve are not independent. In this Section, the sequence of Euler angles adopted
in practice in the numerical definition of the track geometry is used.

3.1 Euler angle representation of space curves

In the description of the track geometry, Euler angles are used as geometric variables and not motion variables.
Using a track coordinate system X"Y”"Z", the track space-curve geometry can be described using the three
Euler angles v, 0, and ¢ about the axes Z", — Y”, and — X", respectively. This sequence is used because of
practical considerations, as previously discussed [18, 19]. These three Euler angles are related, respectively, to
the horizontal curvature, grade, and super-elevation, used by the rail industry as inputs to define numerically
the track geometry. The orientation of a coordinate system at an arbitrary point on the track space curve can
be defined in terms of these three Euler angles as

cosyrcos —sinyrcosg +cosysinfsing —siny sing — cos Y sinf cos ¢
A= sinyycosf  cosycose +siny sin6 sin ¢ cos Yy sing — siny sinf cos¢ |. q))
sin 0 — cos 8 sin ¢ cos B cos ¢

If certain relationships are established between Euler angles, the above matrix can be used to define the Frenet
frame at an arbitrary point on the space curve. Following the systematic procedure described in a recent
publication, one can show that [22]

T /90 ¥'sin@ — ¢’
0|=6G (—) = | —y'sin¢cos® — 6 cos ¢ )
K ds Y’ cospcosh — 0’ sing

. . T .
where « and t are, respectively, the curvature and torsion of the track space curve, 6 = [w 0 d)] , s is the arc

length, @’ = da / ds, and the columns of the matrix G define the three axes, in the coordinate system X" Y Z",
about which the three Euler rotations are performed, that is,

sin @ 0 —1

G=| —singcosd —cos¢p 0 |. 3)
cos¢pcosfd —sing O
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Equation (2) defines the curvature and torsion in terms of Euler angles and their derivatives as
k = cos¢cosd — 0 sin¢p @
T =1 sinh — ¢’ '
It is clear from this equation that the curve torsion can be nonzero even in the case of constant angle ¢. Using
Eq. (2), one can show that the derivatives of Euler angles can be written in terms of the curvature and torsion
as

Y’ =k cos¢/cos
0’ = —k sing . 5)
¢ =«ktanfcosp — 1

The preceding equations demonstrate that if the curvature and torsion of the curve are given, the three Euler
angles can be determined using numerical integration. That is, the three Euler angles can be written in terms
of only two parameters, and therefore, these three angles for a space curve are not totally independent as will
be further explained in later Sections of this paper.

Distinction is made between the curve (Frenet) and track bank angles ¢ and ¢, respectively, as previously
mentioned. One can think of the super-elevation as the result of the bank angle ¢; as the orientation of the ties
(sleepers). That is, the track bank angle ¢, defines the track super-elevation (tie orientation), while the Frenet
bank angle ¢ that enters into the definition of the curve geometry is independent of the orientation of the tie
or the track plane. It is important to also note that the rail can be canted inward, and such a canting has an
effect on the rail vehicle dynamics and the wheel/rail contact forces. The track bank angle ¢; is used in the
computer simulations to define the orientation of the track frames that serve as a reference to and follow the
vehicle components. This is the angle that is linearly interpolated in the railroad algorithms and not the Frenet
bank angle ¢ that enters into the definition of the curve geometry.

3.2 Differential singularity

It is clear from Eq. (3) that the matrix G is singular if 6 = 7 / 2. If 6 is constant, different from zero, and

describes a rigid rotation, one has from the second relation in Eq. (2), w/ sin¢ cos 6 = 0. Since in a general
rigid rotation cos 6 # 0 and since a planar curve with an arbitrary curvature is invariant under a rigid body
rotation, the equation ¥’ sin ¢ cos @ = 0 implies that ¢ = 0. For such a singular configuration, the differential
relationships of Eq. (5) no longer hold.

In this paper, distinction is made between rigid and constant rotations; a rigid rotation is a special case
of a constant rotation. While a rigid rotation is a constant rotation within the track segment and does not
depend on the arc length parameter, such a rigid rotation does not contribute to a change in the curve geometry.
Nonetheless, not every constant rotation is considered arigid rotation. While the geometry of a curve is invariant
under an arbitrary rigid rotation, as explained using the helix curve example, a curve can have zero vertical
curvature Cy and nonzero torsion 7 because the vertical development angle 6 defined by the relationship
do / ds = Cy is different from zero and is a constant rotation.

3.3 Use of Frenet frame

Because the three Euler angles used in the definition of the curve geometry are not independent, Eq. (1) defines
the orientation of the Frenet frame at points on the curve defined by the arc length s [21, 22]. While the Frenet
frame is used in this study, the sequence of Euler angles used by the rail engineers to define the numerical
description of the track geometry can always be related to and associated with any other representation of
the track frame. The advantage of using the Euler angle sequence with the Frenet frame, however, is to have
a direct relationship between the angles and the geometric invariants of a curve such as the curvature and
torsion. Furthermore, the centrifugal inertia force that arises during curve negotiations is in the direction of
the curvature vector that represents one of the axes of the Frenet frame. If the curve is defined in its parametric
form by the equations r = r(s), where s is the arc length, the velocity vector is defined along the vector tangent
to the curve as ¥ = §ry, where ry = or / ds is the unit tangent. The acceleration vector is defined as ¥ =

(5)%rgs + 515 = ((s')2 / R)n + 51, where n is the unit normal and R is the radius of curvature. Therefore, there
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is a clear advantage in establishing the relationship between the axes of the Frenet frame and the Euler angle
sequence used by the rail industry to define the track geometry. This is with the understanding that the bank
angle of the motion trajectory curve defines the direction of the curve curvature vector and centrifugal force
and not the linearly interpolated track bank angle ¢, that defines the track super-elevation. If the Frenet bank
angle ¢ is zero, the curvature and centrifugal force vectors always lie in a plane parallel to the horizontal plane
regardless of the value of the track bank angle ¢;.

4 Numerical representation of the track geometry

The geometry of the track is defined in practice using three inputs at points of intersections of track segments
with different geometries. Using these three inputs at few discrete points, a numerical representation of long
tracks stretching hundreds of miles can be developed using a small set of data points. The values at the discrete
points are used as end conditions that define corresponding field variables, considered in existing algorithms
as independent to determine the track frames. Two different, but related, arc length parameters are often used
in these algorithms: the space curve arc length parameter s and the arc length S of a curve defined by projecting
the space curve on the horizontal plane.

4.1 Track inputs

The track inputs, assumed independent and provided at points of intersection of track segments with different
geometric properties, are the following [18, 19]:

1. Horizontal curvature Cg: Input values of the horizontal curvature at endpoints of the track segments are
used to define Cp as field variable function of the projected arc length S, thatis, Cyg = Cg (S).

2. Vertical development angle 6: Input values of the vertical development angle 6 at endpoints of the track
segments are used to define 6 as field variable within the segment. In this case 6 is written as function of
the arc length parameter s using the ratio of vertical and longitudinal distances, that is, 8 = 6(s).

3. Track bank angle ¢,: Values of the track bank angle, which describes the super-elevation, at endpoints
of the segments are used to write ¢; as field variable function of the projected arc length S, that is,

b1 = ¢ ().

These three track geometry inputs are treated in existing algorithms as independent and unrelated, as previously
discussed.

4.2 Horizontal curvature

The horizontal curvature is the curvature of the curve obtained by projecting the track space curve on the
horizontal plane. Therefore, one has dS = cos 8ds, where S is the arc length of the projected curve and s is the
arc length of the track space curve. For a spiral segment, the horizontal curvature is assumed to vary linearly
between two endpoints. The horizontal curvature angle ¥ is obtained by the integration of Cy(S) with respect
to the projected arc length S as ¥/ (S) = f;) Cy(S)dS. Given the values of Cy at the endpoints Sg and S,

and assuming that Cy varies linearly within the segment, the equation ¥ (S) = fs f) Cy(S5)dS can be used to
determine the curvature angle i at arbitrary discrete nodal points.

4.3 Vertical development angle

Given the grade at the endpoints of a segment, the vertical development angle 6 can be defined from the ratio
between the vertical and longitudinal distances within the track segment. The track segment is designed such
that d6/ds is constant, thatis, 8(s) = (1 — &;)00 + £,61, where 8y = 0(sg), 61 = 0(s1), and &; = s/ (s1 — $0).
The relationship between this angle and the vertical curvature Cy of the space curve will be explained. It will
be also shown that the formula 6 (s) = (1 — &;)60p + £40; is the result of a numerical integration, and therefore,
no linear interpolation assumptions are made in this case.
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4.4 Track bank angle

Given the values of the super-elevation at the endpoints of a segment, the track bank angle ¢;, used to define the
orientation of the track frame, can be defined as a field variable within the segment using a linear interpolation
with respect to the arc length S, that is, ¢; = ¢, (S). This linear interpolation implies that the track bank angle
¢: is independent of the horizontal curvature angle ¥ and the vertical development angle 6. This is one of the
important issues addressed in this investigation since distinction needs to be made between the independent
track bank angle ¢, obtained using the linear interpolation to define the orientations of the track frames, and
the Frenet bank angle ¢ that enters directly into the definition of the curve geometry and defines the direction
of the centrifugal force if a mass traces this curve.

4.5 Transition continuity

In the numerical description of the track, the continuity conditions at the track transitions are defined using
algebraic equations. Therefore, the degree of continuity depends on the number of algebraic equations imposed
to achieve a certain level of smoothness. Continuity of higher derivatives does not always imply continuity
of lower derivatives. For example, two separate and disconnected curves can have the same gradients and
curvatures, but not the same coordinates. One can also have two separate and disconnected curves and use
one algebraic equation to impose a condition that the curvatures of the two curves at a point are the same.
Such an algebraic equation does not guarantee continuity of the position or gradients at the two points.
Therefore, imposing continuity of three track geometric variables does not necessarily imply continuity of
other geometric variables including the gradients whose continuity is desirable in order to achieve smoothness
at the track transitions in the numerical representation of the track geometry. While in practice smoothing
adjustments are often made, the numerical representation of the track is based on only three measurements: the
horizontal curvature, the grade, and the super-elevation. These three measurements are sufficient to determine
Euler angles used to define the track geometry in the computer simulations, but are not sufficient to ensure
the gradient continuity. After determining Euler angles at the nodal points of the track in a track preprocessor
computer program, gradient continuity can be ensured by using the angles to determine gradient vectors to be
used with the interpolation of the absolute nodal coordinate formulation (ANCF) as discussed in the literature.

5 Bank angle and curve geometry

Using the space-curve equations presented in Sect. 3, one can demonstrate that the procedures used for
converting the horizontal curvature angle v and the vertical development angle 0 to field variables are consistent
with the differential geometry analysis.

5.1 Curvature vector

In order to better understand the procedures used in practice and their relationship to the differential geometry
theory of curves, the unit tangent vector which is the first column of the transformation matrix of Eq. (1) is
differentiated with respect to the arc length s in order to define the curvature vector K using the Euler angle
sequence used in practice. This leads to

—' sinyr cosf — 6’ cos y sin 6 —sin{ cos 6 —cos sinf
K=| ¢'cosycosd — 0 sinysind | =1"| cosyrcosd |+6'| —sinysind |. (6)
0’ cos 0 cos 6

This equation shows that the curvature vector has two components ' = 9y / ds along the unit vector vi =
[— siny cosf cos iy cosf O]T defined in the horizontal plane, and 0 = 96 / ds along the unit vector

vy = [— cosysinf —sinysingd cosf ]T which is perpendicular to the track plane before performing
the last Euler rotation ¢. For example, if ¢ is equal to zero in Eq. (1), v, represents the third column of the
transformation matrix A and defines a unit vector along the Z" axis of the track coordinate system. It is clear
that the two vectors vi and v; are orthogonal unit vectors. It can be shown that the curvature vector of Eq. (6) is
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parallel to the vector that defines the second column of the transformation matrix A of Eq. (1) [21, 22]. Using
Eq. (6), one can define the horizontal curvature Cy and vertical curvature Cy as

oy Oy Os /4
CH = — =
N ds 9§ cosf U (7
Co — 00 _y
VT s

This equation shows that the procedure used in practice for determining the horizontal curvature angle ¥ from
Cp is consistent with the differential geometry theory of curves. In practice, track segments are designed
such that the horizontal curvature Cy varies linearly. Therefore, no interpolation assumptions are made in
converting v to a geometric field variable.

The second equation in Eq. (7), on the other hand, shows that df / ds = Cy, which leads to

0(s) = 0(sp) + f °I Cyds. Track segments are designed to have a constant vertical curvature Cy, and therefore,
50

one has Cy = (8(s) — 60(sp)) / (s — s0). This equation is not the result of a linear interpolation assumption; it
is the result of numerical integration based on a design consideration of the track segment.

In summary, the procedure used for converting the horizontal curvature angle ¥ and the vertical development
angle 6 to field variables is consistent with the differential geometry theory of curves and does not involve
any assumptions of linear interpolation. This fact is important in the discussion and analysis presented in the
remainder of this paper.

5.2 Torsion and vertical curvature

While a space curve is uniquely defined by its curvature and torsion, one can show that the torsion (twist) can
be replaced by the vertical curvature used in the railroad algorithms. That is, a curve is uniquely defined by its
horizontal and vertical curvatures. In order to demonstrate that the curve can be uniquely defined in terms of
Cpy and Cvy, the first and second equations in Eq. (5) are written as

Y’ = Cpcosf =k cos ¢ [ cos ®)
0 =Cy = —ksing :
Using the expression of the curvature components, one can write
k= /(Crcos26)* +C2. ©)

The second equation in Eq. (2) can also be used to obtain an expression for the Frenet bank angle ¢ in terms
of the derivatives of the two other Euler angles. This relationship can be used to write the torsion 7 in terms
of the derivatives of the two angles { and 6 defined in Eq. (8), demonstrating that the track space curve is
uniquely defined by its horizontal and vertical curvatures.

5.3 Frenet and track bank angles

By distinguishing the Frenet bank angle ¢ from the track bank angle ¢, and using Eqgs. (2) and (8), one can
write the third angle ¢ in terms of Cyy and Cy, astan¢ = —Cy / Cpy cos? 6, or alternatively,

® :tan_l(—CV/CH 00526). (10)

Using the first equation in Eq. (2), one has

1
r:W’sin@—qﬁ’:ECHsinM—qﬁ’. (11)

The torsion of a curve is invariant under a rigid-body rotation. Therefore, a super-elevation by a constant
rigid bank angle ¢ within a track segment does not change the curve geometry including the torsion. In this
case of rigid super-elevation angle, ¢’ = 0. Additionally, one can, in general, write the derivative of ¢ by
differentiating Eq. (10) with respect to the arc length as

¢ =sin2¢(Cy tand — (Cps/2Ch) cosb). (12)
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In this equation, Cys = 0Cpy / dS. Because in the construction of the track geometry Cp is assumed as a

linear function of the horizontal arc length S, Cygs = 0Cpy / S is constant. Equation (10) clearly shows that
the Frenet bank angle ¢ can be completely defined using the horizontal and vertical curvatures. Therefore,
such an angle cannot be considered as a third independent variable. This is consistent with the general theory
of differential geometry that states that a space curve is uniquely defined by two geometric invariants: the
curvature and torsion. The track bank angle ¢, obtained by a linear interpolation within the spiral curve is used
to determine the orientations of the track frames, and this angle is different from the Frenet bank angle ¢ used
in the definition of the curve geometry.

5.4 Summary of the equations

The analysis presented in this Section demonstrates that the derivatives of Euler angles can be uniquely
determined using the horizontal and vertical curvatures used in practice. It is important, however, to point out
that zero vertical curvature Cy does not always imply zero torsion 7 as will be demonstrated in this paper
using the helix curve example. As an alternate to Eq. (5), the derivatives of Euler angles can be expressed in
terms of the horizontal and vertical curvatures as

Y = Cpy cosé, 0 =Cy

1 13
¢ = = sin2¢ 2Cvtan9—%cose (13)
2 Cu

It is clear from this equation that the use of the track segment design assumptions of linear horizontal curvature
and constant vertical curvature does not, in general, lead to a constant derivative of the angle ¢. In fact,
according to Eq. (10), the angle ¢ can be defined in terms of Cy, Cy, and the angle 6 by an algebraic equation.
Therefore, the preceding equations can be reorganized and written as

Y’ =Cpcost, 0 =Cy, ¢=tan"'(~Cy/Cpcos’0). (14.1-3)

This equation demonstrates that the Frenet bank angle cannot be considered an independent parameter.

6 Vertical development and super-elevation

In this Section, it is demonstrated that a constant vertical development angle does not always correspond to a
rigid rotation. It is also demonstrated that a curve can be twisted and vertically elevated while the Frenet bank
angle remains zero. To this end, a helix curve geometry is considered. Before considering the helix example,
the case of planar curves is discussed in order to explain some configurations relevant to the argument made
in the remainder of this paper.

6.1 Planar curves

It is clear from Eq. (14.3) that the value of ¢ can be uniquely defined along the arc length using the nonlinear
algebraic equation ¢ = tan™! (—C 1% / Cy cos? 0). If the vertical development angle € is small, cos 6 = 1, and

¢ is mostly dependent on the ratio of Cy / Cpy. In this case, Cy = df / ds is also small. If Cy is zero, there is
no need for a super-elevation or definition of a balance speed. This geometric configuration covers a straight
track segment or a segment bent vertically, Cy # 0. Both cases do not require using super-elevation to balance
the effect of the centrifugal forces. If Cy = 0 and 6 = 0, one obtains again an untwisted planar curve, and in
this case the bank angle ¢ = 0 and the curve torsion 7 is zero as it is clear from Eq. (11), T = ¥'sin0 — ¢’ =
(1 / 2) Cpy sin 20 — ¢’. Therefore, the geometry of a planar curve, defined by one curvature component only,
Cy or Cy, and zero vertical development angle is completely described by one angle that varies with the arc
length parameter regardless of whether or not this planar curve is defined in the horizontal or vertical plane.
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Fig. 1 Helix geometry

6.2 Helix geometry

First, a case of a curve with Cy # 0 and Cy = 0 is considered. If the vertical development angle 0 is assumed
constant, the curvature and torsion of the curve are defined, respectively, as

Kk =|Cpcos?0], t=(1/2)Cpysin26. (15)

A curve can be both vertically elevated and twisted, but not super-elevated. This fact can be demonstrated by a
helix curve. Recall that a circular helix r(s), as the one shown in Fig. 1a, is defined by the following equation:

x(s) acosa
r(s)=| y(s) | = | asinex (16)
z(s) ba

where o = s / v/a? + b2, s is the arc length parameter, a is the helix radius, and b/a is the slope of the helix.
One can show that the curvature « and torsion t are constant and defined as

k =lal/(a*+b%), t©=0b/(a®+b?). (17)
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Fig. 2 Euler angles in the case of the helix curve (—[J}— Euler angle ¢ = 0 rad, — A Euler angle 6 = 0.1849 rad,
—@— Euler angle )
Using these equations, one can write Cy and 6 in terms of a and b, respectively, as Cy = =*£1 / a and

tand = :I:b/a. In this case, the curve is not a planar curve, yet Cy = 0, and ¢ = 0. That is, in the case of a
helix with constant curvature and torsion, the vertical development angle 6 is constant, and the Frenet bank
angle ¢ is zero despite the fact that the curve is twisted. If the helix is projected on the horizontal plane, one
has a circle of radius a as shown in Fig. 1b, while a projection on the vertical plane leads to the geometric
shape shown in Fig. 1c. Figure 2 shows the Euler angle solution of the differential equations of Eq. (5) in
the case of the helix curve. The results presented in this Figure show nonzero horizontal curvature angle ,
constant vertical elevation angle 6, and a zero bank angle ¢. These results were obtained using the constants
a =0.0686 m, and b = 0.01273 m.

6.3 Explanation

The fact that the Frenet bank angle ¢ is equal to zero in the case of the helix curve can further be explained
by evaluating the unit tangent vector dr / ds = (1/r)[ —asin(s/r) acos(s/r) b ]T, where r = v a? + b2.
Using this tangent vector, the curvature vector, which defines the unit normal to the curve, is evaluated as
9%r / s> = —(a / rz)[cos(s/ r) sin(s/r) O]T, which shows that the curvature vector has no vertical compo-

nent. One can also show that if a particle is tracing the helix curve with a constant forward velocity s, the

particle acceleration a is given by a = — (a / rz)i2 [ cos(s/r) sin(s/r) 0 ]T, which shows that the acceleration
vector of the particle is in the horizontal plane and has no component along the vertical axis. That is, the particle
has no gravity force component that balances its centrifugal force because of the zero Frenet bank angle ¢.

7 Spiral geometry and degree of continuity

The track spiral segment is used to connect two track segments with different geometric properties. The goal
from using the spiral segment is to avoid abrupt geometric changes that can lead to jump discontinuities in the
velocities and forces. Track spirals are designed to have linearly varying curvature. A spiral that connects a
tangent segment to a curve segment has zero curvature at the point of intersection with the tangent segment and
a nonzero curvature equal to that of the curve at the point of intersection with the curve. Within the spiral, the
curvature varies linearly, and therefore, having the values of the horizontal curvature at the two endpoints Sg
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and S, allows writing the horizontal curvature within the segment as Cy (S) = (1 — &.)Cr (So) — &.Cu(S1),
where §, = S / (S1 — So)- This equation can be used to define the horizontal curvature angle ¥ as previously
discussed in this paper. It is important to point out that continuity of the horizontal curvature does not ensure
continuity of Euler angles or the gradients (slopes). For example, two curve segments can have the same
curvature at an intersection point, but still have a cusp discontinuity at this intersection point. At this point, the
tangents (gradients or slopes) are not the same; that is, the curve is continuous but not smooth. Furthermore,
a curve segment may not be twisted, but it can be super-elevated to achieve a certain balance speed, that is,
Cy; # 0 and ¢¢ # 0, where superscript c refers to the curve segment. The constant curve segment has zero
vertical curvature and zero vertical development angle, that is, Cj, = 0 and 6¢ = 0. This super-elevated
curve can be connected to a spiral segment whose other end is connected to a tangent segment which has zero
horizontal curvature.

7.1 Transition points

As demonstrated by the helix example, a curve can be vertically elevated and twisted, while the Frenet bank
angle ¢ is equal to zero. A spiral segment connecting tangent and super-elevated curve segments can be
vertically elevated and twisted, demonstrating the need for proper interpretation of the angle representation.
In this case, the vertical curvature, the vertical development angle, and the horizontal curvature are not zero,
that is, Cj, # 0, 6* # 0, and C}; # 0, where superscript s refers to the spiral segment. This example shows
that the spiral and curve at the intersection point have different values for the Frenet bank angle. Because
the tangent and curve segments have simple geometry that does not require numerical integration, one must
use consistent data at the intersection points in order to ensure accurate numerical construction of the spiral
geometry. This can be further made clear from the simple example discussed in the following Section which
demonstrates non-uniqueness of the values of the angles at the transition points.

7.2 ANCEF curve and gradient continuity

In the preprocessor computer program that produces the track data file, the continuity of the horizontal curvature
Cp is used with other conditions to determine Euler angles and the global positions of the track nodal points.
During the dynamic simulations, the position and the angle coordinates are used to determine the locations
of the wheel/rail contact points within a track segment. This representation ensures continuity of the tangent
vectors at the nodes when the absolute nodal coordinate formulation (ANCF) finite elements are used as the
basis for the interpolation [18, 30]. Nonetheless, curvature continuity is not normally enforced during the
dynamic simulations despite the fact that the principal curvatures and principal directions at the contact points
are evaluated in order to be able to compute the dimensions of the contact ellipse using Hertz’s contact theory
[31, 32].

8 Discontinuity and track data

In this Section a simple track model is used to discuss the discontinuity and the problems that arise if distinction
is not made between the Frenet bank angle ¢ and the track bank angle ¢,. based on the equations obtained in
this paper. The track model used as an example in this Section has a tangent and curved segments connected
by a spiral. The curved segment is super-elevated as it is often the case in practice.

Table 1 Preprocessor track data

Arc length Horizontal curvature Super-elevation (m) Vertical development angle 0
(m) (m™h) (rad)

so = 0.0 0 0 0

s1 =30.48 0 0 0

52 =45.72 0.00286 0.0381 0.005
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8.1 Track model and results

Typical railroad curved-track data used as input to the preprocessor computer program that produces the
numerical representation of the track geometry are shown in Table 1. The data in this Table describe the input
parameters for defining a curved track that consists of tangent and spiral segments. The start point of the
tangent segment is at the origin defined by the arc length parameter value s9 = 0 m, while the endpoints of
the spiral are defined by the values of s1 and s, provided in Table 1. The geometric properties at the start point
of the spiral segment are of zero values, while at the endpoint, Cy = 0.00286 m~! and & = 0.005 rad. The
horizontal and vertical curvatures within the spiral segment can be defined by using the method described in
this paper. Using the data presented in Table 1, Eq. (14) can be solved for the angles within the spiral segment.
The solution of the Frenet bank angle ¢ along the segment is shown in Fig. 3. Using the solution of Eq. (14),
the geometry of the spiral segment can be fully determined as shown in Fig. 4. It is clear from the results
presented in Fig. 4 that the track curve is not smooth at the transition from the spiral to the curve. This is
despite the fact that continuity is imposed on the horizontal curvature.

8.2 Gradient continuity

Another alternate approach can be used to define the spiral geometry by using the ANCF cable element [18, 30].
In this case, the position and gradient coordinates at the two endpoints of the spiral are used with the ANCF cubic
interpolation instead of using the procedure described in this paper. Using ANCEF finite elements, continuity
can be imposed on the position gradients ensuring smoothness at the transition points. The displacement field
of the ANCF cable element can be written as r(x) = S(x)e, where r is the global position vector on the track
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Fig. 5 ANCEF spiral segment
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segment, S is the element shape function matrix, e is the vector of the element nodal coordinates, and x is the
element spatial coordinate [30]. The cable element has two nodes, and the vector of nodal coordinates at each
T

node consists of its position and gradient vector; that is, ek = [rkT r)’gT ] , where superscript k, k = 1, 2,
refers to the node number, and r, = dr / dx is the position gradient vector. Imposing continuity of the position
gradient vector at the endpoints achieves smoothness but does not ensure curvature continuity. By using the
ANCEF cable element position and gradient coordinates to define the geometry, one obtains the geometric
representation shown in Fig. 5. A comparison between the curve geometry obtained using the procedure used
in railroad practice, described in detail in this paper, and the ANCF geometry is shown in Fig. 6. It is clear
from the results presented in Figs. 5 and 6 that smoothness is achieved by imposing the gradient continuity.
It is important, however, to point out that when the ANCF element is used, no assumption is made that the
curvature varies linearly within the element. While a cubic interpolation in x is used for this element and
or? / dx? is linear in x, an accurate definition of the curvature using the arc length parameter s demonstrates
that the curvature is not a linear function of the arc length [30]. The results presented in Fig. 6 demonstrate the
degree of smoothness achieved by imposing the gradient continuity using the ANCF element. The curve with
the curvature continuity, on the other hand, is not smooth at the spiral/curve transition.

8.3 Discontinuity

Equation (10), ¢ = tan™! (—C 1% / Cpy cos? 0), which defines the Frenet bank angle, is an algebraic equation.
If the desired super-elevation at the endpoint of the spiral intersection with a super-elevated curve is provided,
one can obtain the corresponding value of the development angle 65 at this spiral/curve intersection point. The
value of Cy can then be determined and used in Eq. (14) to define the bank angle at this transition point. For the
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example considered in this Section, the curve segment is super-elevated by the bank angle ¢y = 0.0268 rad,
which also defines the super-elevation at the spiral endpoint. Because at the tangent/spiral intersection all Euler
angles are zero and for the spiral segment As = s —s1 = 15.24 m, the constant value of the vertical curvature
can be written as Cy = (6, — 01) / (50 —s51) =0, / 15.24. Because the super-elevated curve segment has zero
grade in the simple example considered in this Section, the position z-coordinate at the spiral/curve intersection
is determined from the curve segment super-elevation resulting from the rotation of the curve about the left
(lower) rail, as shown in Fig. 7. The vertical position of the super-elevated curve segment can be obtained using
the equation z = G sin¢;, where G = 1.42 m is the track gage. The integration of the curve unit tangent,
which is the first column of the matrix of Eq. (1), determines the position of points along the track segments
[18, 19]. For the spiral segment, one has z(s) = (1 — cos8(s)) / Cy, which upon defining z with respect to
the left rail (not track centerline), leads to 0.0025 = (1 — cos 6;) / 6. This nonlinear equation can be solved

to determine 6, = 0.005 rad and the corresponding vertical curvature Cy = 3.2808 x 10~* m~!.

9 Comparison with previous approaches

In this Section, the basic differences between the approach presented in this paper for the description of the
spiral geometry and the approach used by Klauder [33] are discussed. This Section also presents some practical
considerations that need to be considered when super-elevating the track.

In the approach used by Klauder, the curvatures at two spiral ends are used to develop the linear expression
of the curvature based on a tentative spiral length. The direction of the longitudinal tangent on the horizontal
plane at each point on the spiral curve can be defined in terms of the horizontal plane x and y coordinates
using Fresnel integrals (see the Appendix). After the coordinates of the spiral two endpoints are determined, an
offset is determined by extending the tangent and curve segments as shown in Fig. 8. The value of the obtained
offset has to be compared with a given value if there is any, and the spiral length is adjusted iteratively until
the obtained offset satisfies the requirement.

In the steps summarized by Klauder for the track layout, it is assumed that the spiral geometry is rep-
resented by a planar curve without considering the grade. Consequently, the curvature referred to above
is considered as the horizontal curvature. The bank angle ¢ is obtained by solving the balancing equation
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dy /ds = (g/ (va)?) tan ¢(s) along the segment, where g is the gravity constant, and v, is the balance speed
of the curve. Due to the small angle assumption used in practice, the bank angle is assumed to be proportional
to the track curvature, where the difference between ¢ and tan ¢ does not exceed 0.5%. In the case of a spiral,
where the curvature is linearly interpolated as function of the arc length, the bank angle is assumed to be
subject to the same linearity assumption. The track super-elevation is then achieved by raising the to-be high
rail by ensuring that the track plane has the appropriate bank angle.

The concept of the offset, as the minimum distance between extensions of the segments that maintain their
respective fixed curvatures, is introduced in the procedure for determining the spiral geometry. As discussed
in the literature, a longer spiral with a lower rate of curvature variation leads to larger offset. While a shorter
spiral segment has been preferred in the past because of the manufacturing, assembly, and maintenance cost,
a relatively short spiral can result in a smaller offset and track warpage. For this reason, the offset requirement
needs to be considered in order to adjust the spiral length such that the track warpage is avoided.

While the practical considerations highlighted above need to be taken into account in the actual track
layout, it is important to mention some fundamental geometric differences between the approach used by
Klauder [33] and the approach discussed in this paper. First, when considering the curve geometry, Klauder
assumes linear interpolation of the track bank angle ¢;, an assumption that implies that this angle within the
segment is independent of the curvature and vertical elevation angles and no distinction is made between ¢ and
¢:. Second, in this paper, the gravity constant is not used in the geometric description of the spiral. Third, an
iterative procedure is used by Klauder to determine the length of the spiral segment in order to satisfy certain
offset value requirements. This offset issue is not addressed in this paper.

10 Summary and conclusions

In the design of the rail track, geometry plays a central role and directly influences the quality of the computer
simulation results. Based on given inputs, the geometry of the track space curve can be constructed and
numerically represented using a large number of nodal points. The geometry of a space curve can be completely
defined in terms of two parameters: the horizontal and vertical curvatures, or equivalently, the curve curvature
and torsion; this is with the understanding that zero vertical curvature does not imply zero torsion, as discussed
in this paper and demonstrated by the helix curve example. In the case of zero vertical curvature, the torsion
can be nonzero if the vertical development angle is nonzero, as it is the case with the helix curve example. In
railroad vehicle systems, the track bank angle is associated with the track super-elevation required to achieve
a certain balance speed required for the safe operation of the vehicle. In practice, Euler angles are often used
in the formulation of the track space-curve differential equations. Using this approach, however, one can show,
as demonstrated in this paper, the dependence of the Frenet bank angle on two independent parameters, often
used as inputs in the definition of the track geometry. The general differential equations that govern the track
geometry using the Euler angle sequence adopted by the rail industry are developed. The paper demonstrates
that the Frenet bank angle can be determined from two other independent variables, and consequently, a
distinction must be made between the Frenet bank angle ¢ and the track bank angle ¢; used to define the
orientation frames that follow the vehicle components in railroad vehicle algorithms.

Using the helix curve example, the paper demonstrates that a curve can be twisted and vertically elevated,
but not super-elevated. It is shown that the helix curvature vector, which is along the unit normal to the curve,
remains in the horizontal plane, and the acceleration of a particle tracing the helix curve with a constant forward
velocity has no vertical component. This result, which is consistent with the fact that a helix has zero Frenet
bank angle, demonstrates that the particle has no gravity force component that balances the centrifugal force.
The paper also discusses the continuity conditions at the track segment transitions. As explained in the paper,
imposing curvature continuity does not ensure continuity of the tangent vectors at the curve/spiral intersection.
An ANCEF finite element is used to develop the spiral geometry by imposing gradient continuity instead of
curvature continuity. The geometry results obtained using the ANCF element are compared with the geometry
results obtained using the curvature continuity.
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Appendix
Fresnel integrals

The Fresnel integrals S(x) and C(x) are defined by following power-series expansions which converge for all
values of the argument x:

x4n+3

o
S(x) = [y sin(?)dt = ZO(—I)"—(zn+1)!(4n+3)
o

x4n+1

x : 0 (18)
C(x) = [y cos(r?)dr = ZO(_])HW

The trace of the parametric plot of Fresnel integrals [C(x), S(x)] is called an Euler spiral or a clothoid, whose
curvature at any point is proportional to the distance from the origin.
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