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Definitions of the super-elevation and balance speed are provided in order
to have a better understanding of their variations within the space curve
of the spiral sggment. In order to develgp this understapding, three'differ— elevation: Frenet bank
ent curves which have fundamentally different geometries are considered; angle; balance speed;
a super-elevated constant-curvature curve with zero twist and zero vertical centrifugal forces
elevation, a vertically-elevated helix curve with a constant curvature and

twist and zero super-elevation, and a spiral curve with non-zero varying-

curvature, twist, super-elevation, and vertical elevation. The curve equa-

tions are developed in terms of Euler angles used by the rail industry to

describe the track geometry in the computer simulations. Because the

geometry of the spiral space curve can be completely defined in terms of

two Euler angles only, the horizontal-curvature and the vertical-development

angles; a third Euler angle referred to as the Frenet bank angle is written in

terms of these two angles using an algebraic equation. The fact that, for

given curvature and elevation angles, the Frenet bank angle cannot be

treated as an independent geometric parameter is used to obtain accurate

quantification of the spiral-intersection discontinuities. The severity of the

twist and elevation discontinuities at the spiral intersections with the tan-

gent and curve segments demonstrates the need for the adjustments used

in practice by the rail engineers to achieve a higher degree of smoothness.

In order to properly define the direction of the centrifugal force, a distinc-

tion is made between the super-elevation of a surface and the bank angle

of a curve on the surface.
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1. Introduction

A large number of investigations have been focused on many aspects of railroad vehicle mechan-
ics and geometry, including wheel/rail contact, track geometry, suspension design, accidents and
derailments, high-speed passenger and freight trains, nonlinear dynamics and stability, noise and
vibration, virtual prototyping and computer simulations, field testing, etc. The track geometry,
which has a significant effect on the safe operation of railroad vehicle systems, has been the sub-
ject of several investigations focused on the definition of the track layout and design (Gailiené
2012; Gilchrist 1998; Hamid et al. 1983; Kerr and El-Sibaie 1987; Klauder 2012; Klauder,
Chrismer and Elkins 2002; Liu and Magel 2009). Some of these investigations are focused on the
track transition discontinuity, defects, irregularities, fatigue, and geometric variations on the
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railroad performance and stability (Blue and Kulakowski 1991; Magel et al. 2005; Zhang, El-Sibaie
and Lee 2004; Wickens 2005). The effect of the wheel/rail interaction, suspension characteristics,
braking, and critical speeds on the dynamics, stability, and derailments are other important issues
that have been the subject of many studies in the railroad literature (Andersson and
Abrahamsson 2002; Berghuvud 2002; De Pater 1988; Elkins and Gostling 1977; Endlicher and
Lugner 1990; Grassie 1993; Handoko, Xia, and Dhanasekar 2004; Jalili et al. 2020; Kik 1992;
Knothe and Grassie 1993; Knothe and Stichel 1994; Pascal and Sany 2019; True 1994). Despite
the large number of investigations, railroad accidents and derailments remain common, particu-
larly when the rail vehicle negotiates the spiral and curve sections of the track. The spiral, in par-
ticular, does not have constant geometric invariants because of the variation of the curvature,
twist, and elevation. This paper builds on a previous investigation (Ling and Shabana 2020) by
developing a new procedure for the characterization and quantification of the spiral-transition
discontinuities. The relationship between track geometry and inertia forces that can cause derail-
ments is also discussed in this paper.

1.1. Track geometry

For the most part, the rail track is constructed using three basic segments; tangent, curve, and spi-
ral, shown in Fig. 1. The tangent segment is a straight section which has zero curvature, zero
twist, and zero elevation; while the curve segment has a constant curvature and zero twist. The
spiral segment, on the other hand, is designed to connect two segments which can have different
curvatures and different elevations. In order to achieve a certain degree of continuity at the seg-
ment transitions, the spiral is designed to have the value of the curvature at its joints with other
segments. Therefore, spirals have varying curvature, elevation, and non-zero twist. Despite the
large number of derailments during curve and spiral negotiations, the spiral geometry and transi-
tion discontinuities are not well understood. Such an understanding is necessary for accurate def-
inition of the balance speeds and wheel/rail contact forces. It is demonstrated in this paper that
the direction of the centrifugal force during curve and spiral negotiations depends mainly on the
direction of the vector normal to the motion-trajectory curve and not on the track
super-elevation.

1.2. Numerical representation of the track geometry

In the computer simulations of railroad vehicle systems, the track geometry is numerically con-
structed in a track-preprocessor computer program by mesh of points along the track. At each
point, the position coordinates and three Euler angles are provided. The position coordinates and
Euler angles are used as field variables that depend on the distance traveled along the track.

Tangent : Spiral Curve

Figure 1. Track segments.
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The geometry of the track is often defined using only three inputs to the track preprocessor at
points of track geometry changes. These three inputs are the horizontal curvature, grade, and
super-elevation. The grade represents a vertical elevation and its geometric interpretation is funda-
mentally different from the super-elevation, as will be explained in this paper. The numerical rep-
resentation of the track geometry is used during the dynamic simulations for two fundamentally
different purposes: (1) Definition of the track centerline geometry which is used to define the
track frames used as a reference to the vehicle components; these track frames are often used in
the formulation of the equations of motion and/or in the definition of the specified motion tra-
jectories; and (2) Definition of the space curves of the rails which support the vehicle; the rail
space curves are used in the formulation of the wheel/rail contact forces. It is important to point
out, however, that the rail space curve geometry may significantly differ from the track center-
line-curve geometry; and therefore, distinction must be made between the geometric parameters
that enter into the definitions of the two sets of curves.

1.3. Track super-elevation and Frenet bank angle

In this paper distinction is made between the track bank angle used to define the super-elevation
of the track and the approximate balance speed used in practice, and the Frenet bank angle used
in the definition of the curve geometry and the exact balance speed. The track bank angle,
referred to in this paper as ¢,, is a rigid-body rotation that has no effect on the geometry of the
constant curve; that is, the curve geometry is invariant under the rigid-body rotation ¢,. This is
despite the fact that this angle is used to determine the elevation of the spiral curve, and there-
fore, indirectly has an effect on the spiral geometry. The Frenet bank angle, on the other hand,
referred to in this paper as ¢, enters into the definition of the curve geometry and can be used
to define the exact balance speed which is not a priori known, shedding light on the importance
of the computer simulations for understanding the root-causes of derailments during curve nego-
tiations. Regardless of the magnitude of the track super-elevation, a rail or motion-trajectory
curve segment that lies on a plane parallel to the horizontal plane has a zero Frenet bank angle,
that is, ¢ = 0, while ¢, # 0.

1.4. Practical considerations

As federal agencies mandate more reliance on computer simulations to develop operation and
safety guidelines for transportation systems, it is necessary to develop virtual prototyping com-
puter models that accurately describe the system physics and its complexities. Because the track
geometry enters into the formulation of the wheel/rail contact forces, understanding the spiral
geometry and the associated transition discontinuities is necessary to avoid curve and spiral
derailments. In order to develop more realistic virtual prototyping railroad algorithms and
vehicle/track models, it is important to understand the layout of the track and sources of transi-
tion discontinuities; an example of which is the discontinuity at the spiral/curve joints. The track
plane must be super-elevated by the rigid-rotation angle ¢, in order to balance the lateral compo-
nent of the centrifugal force of the vehicle during curve negotiations. On the other hand, the spi-
ral curve is elevated and twisted in addition to having non-zero varying curvature. Unlike the
curve segment, the elevation and twist of the spiral are not the result of a rigid rotation and lead
to geometric changes and discontinuities at the spiral/curve junction, which produce jump dis-
continuities in the forces and accelerations. As previously mentioned, a curve on a track super-
elevated by a non-zero rigid rotation (¢, # 0) can have zero Frenet bank angle (¢ = 0). When
numerically designing the spiral geometry, both angles, ¢ and ¢,, must be considered, despite
the fact that distinction must be made between them. The rigid-rotation angle ¢, can be used to
define the spiral vertical elevation at the spiral/curve intersection, while the angle ¢ enters into
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the definition of the curve geometry with two other angles, as discussed in this paper. The three
angles cannot be treated as totally independent, and therefore, the use of a linear interpolation
for the bank angle ¢ within the spiral does not have a mathematical justification. The track bank
angle ¢, is used with a linear interpolation to define the orientation of the coordinate systems at
the nodes of the track point-mesh. These coordinate systems differ from the Frenet frames of the
spiral space curve by a rigid rotation about the longitudinal tangent to the spiral curve.

In railroad practice, track engineers try to smooth the discontinuity by first designing the
track, which is not continuous at the spiral/curve junction, and later modify the design by using
what is referred to as doucines; such a practice depends on the engineer skills and experience
(Jean-Pierre Pascal, personal communications, 2020; Prud’home 1978). The mathematical descrip-
tion of such a process, however, is lacking and cannot be found in the literature. The curve dis-
continuity problems identified in this study explain the need for using the geometric description
based on the absolute nodal coordinate formulation (ANCF) (Shabana 2021). A curve has only
one gradient vector that cannot be used to properly account for the canting of the rail surfaces.
Such a limitation can be alleviated by using the interpolations of higher order ANCF finite ele-
ments that employ more than one gradient vector. Using this approach, the discontinuities at the
intersection of the surfaces of the track segments can be properly addressed, the orientation of
the track frame coordinates can be consistently evaluated, and the limitations of the one-dimen-
sional curve theory in the numerical description of the track geometry can be avoided
(Shabana 2021).

1.5. Track geometry and motion trajectories

The actual magnitude and direction of the centrifugal inertia forces depend on the loads and
operating conditions of the rail vehicles. Nonetheless, because such conditions vary for different
trains that negotiate the same fixed track; operation guidelines, such as balance speeds, are devel-
oped based on the predefined track geometry. In developing some of these operation guidelines,
the vehicle is assumed to trace a horizontal circle when negotiating a constant curve. Such an
assumption leads to a centrifugal inertia force that lies in a horizontal plane. Because the actual
motion-trajectory curves and directions of the centrifugal forces are not a priori known, this
assumption has been considered a good approximation in the design of the track layout.

Because the track super-elevation is designed to create a gravity force component that balances
the lateral component of the centrifugal force resulting from curve negotiations; quantifying the
bank-angle discontinuities at the track transitions is necessary for understanding the discontinu-
ities in the direction of the centrifugal force. Nonetheless, the direction of the centrifugal force is
independent of the track super-elevation angle ¢, and depends on the Frenet bank angle ¢ as dis-
cussed in this paper. Therefore, in this study, particular attention is given to the general defin-
ition of the centrifugal force in order to understand the effect of the discontinuity in the bank
angle ¢ on the railroad-vehicle dynamics. To this end, a distinction is made between the super-
elevation of a surface and the super-elevation of the osculating plane which defines the direction
of the tangent and normal to the motion-trajectory curve. The vector normal to the actual
motion-trajectory curve defines the direction of the centrifugal inertia force.

2. Scope and contributions of this investigation

This paper introduces a new procedure for the characterization and quantification of the spiral/
tangent and spiral/curve intersection discontinuities. The paper is focused on the numerical
description of the track geometry used in railroad vehicle system algorithms. The severity of the
intersection discontinuities of the spiral space curve, quantified analytically in this study, sheds
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Figure 2. Track and motion-trajectory planes.

light on the significance of the smoothing process used in practice (Jean-Pierre Pascal, personal
communications, 2020; Prud’home 1978).

2.1. Geometry concepts and definition of the centrifugal force

In order to explain the importance of accurate definition of the track super-elevation and Frenet
bank angle, the simple example of the super-elevated conic surface shown in Fig. 2 is considered.
The figure shows a circular curve C that lies on the horizontal plane; that is, this circular curve is
the intersection of the conic surface and a horizontal planar surface. If a mass strictly follows this
horizontal circular curve, the centrifugal force remains in the horizontal plane along the vector
n¢ normal to curve. If the mass, on the other hand, moves laterally in addition to the forward
motion on the conic surface, the mass traces another curve D, shown in the figure. This lateral
displacement in railroad systems can represent hunting oscillations, sliding toward the low rail,
and/or lateral wheel climb displacements. The figure shows the actual motion plane at an arbi-
trary point on curve Dj this is the osculating plane formed by the tangent vector tp and the nor-
mal vector np. This motion plane is, in general, different from the plane tangent to the surface,
that is, the normal vector np does not in general lie on the tangent plane of the surface which
has the curve D. As explained in this paper, the direction of the centrifugal force is always along
the normal vector np, which does not always lie in the horizontal plane. The curvature of the
curve D resulting from the lateral motion cannot always be assumed small, particularly at
higher speeds.

Because of the difference in the elevations of the conic surface and the osculating plane, which
represents the actual motion plane that contains the velocity and acceleration vectors; distinction
must be made between the track super-elevation and the super-elevation of the motion (osculat-
ing) plane which defines correctly the direction of the centrifugal force. The track (displacement-
velocity) plane and the osculating (velocity-acceleration) plane share the vector tangent to the
motion-trajectory curve, and therefore, they differ by a single rotation about the tangent vector
tp. The geometry of the actual motion-trajectory curve can be significantly different from the
geometry of the desired-motion circular curve. In this study, whenever referring to the motion-
trajectory curve, the bank angle used, ¢, refers to the super-elevation of the motion osculating
plane and not the track super-elevation angle ¢,. These two planes may temporarily coincide,
and in this special case, the centrifugal force is in the plane of the super-elevated track; unless the
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motion is constrained to strictly follow a horizontal circle. The analysis presented in this paper
demonstrates that the expression of the balance speed using the track super-elevation is an
approximation based on the assumption that the centrifugal force remains in the horizontal
plane. Nonetheless, by maintaining the track super-elevation below 6 or 7 inches, this approxima-
tion is considered a good approximation. One important observation from Fig. 2, discussed fur-
ther in the appendix, is that the variation of the Curve-C curvature angle with respect to the arc
length of curve D is always smaller than the variation of the same angle with respect to the arc
length of the circle C.

2.2. Contributions of this study

The specific contributions of this paper can be summarized as follows:

1. A new approach for the characterization and quantification of the transition discontinuities
of the spiral space curve is developed. This approach is based on analytical description of the
track based on the differential-geometry theory of curves. In developing this approach dis-
tinction is made between the geometry of the spiral space curve, and the geometry of the
track centerline that defines the orientations of the coordinate systems used to define the
track frames.

2. Definitions and interpretation of the spiral super-elevation and balance speed are provided to
better understand their variation within the spiral. To this end, three different curves which
have fundamentally different geometries are considered. The first is a super-elevated con-
stant-curvature curve with zero twist and zero vertical-elevation. The second is a vertically-
elevated helix curve with constant curvature and twist, and zero bank angle. The third is a
spiral curve with non-constant curvature, twist, super-elevation, and vertical-elevation.

3. The curve equations are developed using the Euler-angle sequence used by the industry to
describe the track geometry. Because the three Euler angles used to describe the space curve
geometry are not independent, the spiral geometry can be completely defined in terms of
two track angles only, the horizontal-curvature and the vertical-development angles; and con-
sequently, the Frenet bank angle ¢ can be written in terms of these two angles using an alge-
braic equation.

4. The significance of the bank-angle variation within the spiral is further explained by outlin-
ing a procedure for evaluating the direction of the centrifugal force. The direction of the cen-
trifugal force is defined by the direction of the unit normal to the motion-trajectory curve.

5. In view of the closed-form equations presented in this paper, the numerical results obtained
explain the problems associated with using independent linear interpolation of the bank
angle if such an angle is interpreted as the bank angle ¢ that enters into the definition of the
curve geometry used to determine the direction of the centrifugal force.

3. Inertia force and curve geometry

When a surface is super-elevated, the direction of the centrifugal force of a mass on the surface
remains in the horizontal plane if the mass is constrained to strictly trace a circular curve that
lies in a plane parallel to the horizontal plane. Nonetheless, such a scenario of constrained motion
is difficult to achieve in practice, particularly when a vehicle negotiates a spiral segment of the
track. In order to develop an accurate definition of the balance speed, it is necessary to properly
define the direction of the centrifugal force. To this end, one needs to distinguish between the
surface and motion-trajectory curve super-elevations, and their bank angles. A space curve is
defined using one parameter, which can be selected to be the arc length parameter s. The position
of an arbitrary point on the curve in a global fixed coordinate system XYZ can be written in
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terms of the curve parameter as r = r(s). A mass that traces this curve has the absolute velocity
I = 1(s) = 5, where a denotes the time derivative of a with respect to time ¢, and r, = 9r/0s is
the unit vector tangent to the curve.

3.1. Normal vector and inertia force

The track super-elevation is designed to create a gravity force component that balances the lateral
component of the centrifugal force resulting from curve negotiations. Discontinuities of the bank
angle at the spiral transitions lead to discontinuities in the direction of the centrifugal force.

When a mass negotiates a curve, the absolute acceleration vector is written as ¥ = ¥(s) =

r.(5)> + 1, where r is the curvature vector. This equation can be written as ¥(s) = xn($)> +
r.$; where k(s) = |ri| = 1/R(s) is the curve curvature defined as the norm of the curvature vector

Iss, R is the radius of curvature, and n is the unit vector normal to the curve. The vector 1(s) =

xn(5)> + 1 has two components along two orthogonal vectors; the unit tangent vector r, and
the unit normal vector n. The inertia force of the mass m can then be written as

F; = mi = —F, + Fy = m(xn(5)* + 1.5) 1)

where F;, = —xmn(5)> = —(m(5)>/R)n is the centrifugal inertia force vector, and Fj = mr is
the inertia force vector in the tangential direction. If the vehicle is negotiating the curve with a
constant forward velocity § = V, § =0, and consequently, the tangential component of the iner-
tia force is identically equal to zero. That is, F;; = 0.

The simple analysis presented in this section demonstrates that the centrifugal force is along
the direction of the normal to the motion-trajectory curve. A motion-trajectory curve defined on
a super-elevated surface can have a normal vector with direction that is independent of the sur-
face inclination. For example, the motion of a mass can be constrained to trace a horizontal cir-
cular path on a curved and super-elevated surface, and in this case, the centrifugal force remains
in the horizontal plane regardless of the curvature and the super-elevation of the surface. For this
reason, distinction is made in this paper between the super-elevation of a surface and the super-
elevation or bank angle of a curve on the surface. The super-elevation of the curve is measured
by the direction of the unit vector normal to the curve, which defines the direction of the centri-
fugal force.

3.2. Euler-angle representation

Unit vectors tangent and normal to the curve can be expressed in terms of Euler angles. The
sequence of Euler angles used in the railroad literature to describe the track geometry is Z, —
Y, — X. The three Euler angles used in this sequence are, respectively, the horizontal-curvature
angle , the vertical-development angle 0, and the bank angle ¢ (Klauder 2012; Klauder,
Chrismer and Elkins 2002; Shabana, Zaazaa and Sugiyama 2008; Shabana 2021). Because of using
this sequence in which the bank angle represents the last rotation, addition and interpolation of
the bank angle is allowed. The unit tangent and unit normal vectors can be written, respectively,
in terms of the three Euler angles as (Ling and Shabana 2020; Shabana and Ling 2019)

cos i cos —sin cos ¢ + cos i sin O sin ¢
r= | sinyycosf |, n= | cosycos¢ + siny sin0Osin P (2)
sin 0 —cosOsin ¢

The three Euler angles can be written in terms of the curvature x and torsion 7 of the curve
using the differential relationships (Ling and Shabana 2020)
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Y =kcosp/cosl, 0 =—xsing, ¢ =rxtanOcosp—1 (3)

In this equation, @' = Ja/0s. The above differential equations can be obtained by differentiating
the unit tangent with respect to the arc length and equating the results to the columns of the
Euler-angle transformation matrix (Shabana, Zaazaa and Sugiyama 2008; Shabana 2021). It is
important to point out that rigid rotations are not governed by these differential equations. The
inverse relationships are

k=1"cospcosO—0sing, 1=y sin0— ¢ (4)
Using these differential relationships, one can show that the curvature vector can be written as
—y/ sinyy cos 0 — 0’ cos iy sin 0 —siny — cos i sin 0
ro = | Y cosycosO— 0 sinyysingd | =y cosO| cosyy | + 6| —sinysin0 (5)
0’ cos 0 0 cos 0

That is, the curvature vector has a component y/'cos along the unit vector vj, =
. T . .
[— sinyy  cosy 0] defined on the horizontal plane, and a component ' along the unit vector

v, = [—costﬁsinf) — sin s sin 0 cosH]T which is normal to vj,. For this reason, y is called
the horizontal-curvature angle and 0 the vertical-development angle. In railroad vehicle systems,
the horizontal curvature is defined as Cy =)'/ cos0), and the vertical curvature is defined as
Cy = 0’ (Shabana, Zaazaa and Sugiyama 2008; Shabana 2021). The curve curvature can be written
in terms of the curvature components as

K= \/(CH cos20)” + (0 = \/(W cos 0)2 + (Cy)? (6)

The curvature of the curve enters into the definition of the centrifugal inertia forces and the bal-
ance speed. Because a curve can be twisted while the angle ¢ is zero, ¢ is not called in this paper
the twist angle despite the fact that it enters into the definition of the curve torsion (twist). It is
also important to note that the normal vector n and the centrifugal force F;; remain in the hori-
zontal plane if the bank angle ¢ is zero.

4. Balance speed and implementation issues

In this section, a general expression for the balance speed applicable to the spiral geometry is pre-
sented. It is important to note that in practice the balance speed is defined based on the assump-
tion that the vehicle negotiates a constant curve that lies in a plane parallel to the horizontal
plane. The track super-elevation is designed in order to balance the lateral component of the cen-
trifugal force using the lateral component of the gravity force. In a realistic motion scenario, how-
ever, the vehicle motion trajectory deviates from the horizontal curve, and consequently, the
actual direction and magnitude of the centrifugal forces differ from those used in the definition
of the balance speed. Therefore, the balance speed used in practice can be viewed as an approxi-
mation that can be justified since the actual motion trajectories are not a priori known. This fact
explains the need for the computer simulations that can be used to provide explanation of the
root causes of derailments.

4.1. Balance speed

C . T
The super-elevation is used to create a component of the gravity force Fy = [0 0 —mg]" that
balances the lateral component of the centrifugal force vector F;. which acts in a direction along
the normal to the motion-trajectory curve, where g is the gravity constant. Equation 2, however,
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shows that if the bank angle ¢ is zero, the curve normal remains in the horizontal plane regard-
less of the value of the vertical-development angle 6. That is, a curve, such as the helix, can be
vertically elevated and twisted, but not super-elevated. Twisting a curve can lead to vertical curva-
ture Cy and vertical-development angle 0, but not necessarily to a bank angle. Equation 4 shows
that non-zero torsion does not imply non-zero bank angle.

In general, the super-elevation and force equilibrium along the normal to the curve are used
to define the balance speed that ensures a safe operation of the vehicle. Therefore, the balance
speed, in its most general form, can be determined from the equilibrium relationship (an)n +

F,. = 0; which leads to m(5;)?/R = mg cos 0sin ¢, where §, is the balance speed. This equation
leads to

$p = +/gRcos Osin ¢ (7)

In this definition of the balance speed, the motion-trajectory curve Frenet bank angle ¢ is used
and not the track super-elevation angle ¢,. It is clear that if ¢ =0, the balance speed is zero,
regardless of the value of the vertical-development angle 0. In the case of the spiral, the vertical-
development angle 6 is not zero in general. The preceding equation also demonstrates the funda-
mental difference between the general concept underlying the development of this equation and
the concept used in practice to define the balance speed, as will be further discussed in this paper.
Using the preceding equation, the centrifugal force, and not only its lateral component, can be
entirely balanced by the component of the gravity force along the normal to curve.

4.2. Important implementation issue

The parametric-form equation of the spiral r = r(s) leads to dr = r(s)ds. That is, given the tan-
gent vector r; in terms of Euler angles, the differential equation dr = r(s)ds can be integrated to
determine the position coordinates of an arbitrary point on the spiral curve. It is important to

note that the unit tangent vector r; = [coszﬁcosé) sin s cos 0 siné)]T in Eq. 2 does not
depend on the bank angle. That is, the position coordinates of an arbitrary point on the spiral
and its geometry are completely defined in terms of the angles i and 0 only using the equation

d@:n+j

s

rds =1, + J [ cosycosf sinycosf sin 0] T ds (8)
S

where r, is the position of the origin of the curve coordinates system. This definition of the pos-
ition coordinates is consistent with the fact that the curve geometry can be described in terms of
two independent Euler angles only (Ling and Shabana 2020; Shabana and Ling 2019); and is con-
sistent with the differential-geometry theory of curves that a curve is completely defined by its
curvature and torsion (Do Carmo 1976; Goetz 1970; Kreyszig 1991). This important observation
implies that the Frenet bank angle cannot be considered as an independent geometric variable.

4.3. Track super-elevation

In order to understand the significance of the observation made in this section, we consider a
tangent and curve segments connected by a spiral segment. The flanges of the wheels ensure that
the motion trajectories of the wheelsets remain within a limit. The definition of the balance speed
used in practice is based on the assumption that the vehicle negotiates curves that lie in planes
parallel to the horizontal plane, and consequently, the lateral displacement and its effect on the
actual motion trajectories are not considered. This is equivalent to using the assumption ¢ = 0.
In order to super-elevate the track with the rigid rotation ¢, required to define the balance
speed in practice, the end of the spiral at its connection with the curve is elevated as well.
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Because the spiral can be twisted, the amount of vertical-elevation and super-elevation at the spi-
ral ends need to be quantified in order to understand the discontinuities at the spiral joints. Due
to the fact that the tangent vector is not function of ¢, the track bank angle ¢, can be used to
define the coordinates of the spiral endpoint (Ling and Shabana 2020). The vertical coordinate of
the spiral at its two ends with the tangent and curve segments can be used to define the vertical-
elevation (grade). Using this vertical-elevation and the assumption of constant vertical curvature
Cy, the vertical-development angle 0 can be determined from the integration of the third compo-
nent of Eq. 8 (Ling and Shabana 2020). Knowing 0 = 0(s) and the curvature angle ¥ = ¥/(s), the
spiral geometry can be completely defined. Furthermore, knowing the angles 0 and , the Frenet
bank angle ¢ can be determined using the first two equations of Eq. 3 as (Ling and Shabana
2020)

¢ = tan_l(—Cv/CH cosZH) 9

This algebraic equation will allow quantifying the discontinuities and will explain the abrupt
change in the direction of the normal at the spiral intersections. This abrupt change can lead to
significant increase in the lateral forces when a vehicle enters, negotiates, and leaves the spiral.

In the following three sections, three different curves with three different geometries are con-
sidered in order to shed light on the effect of the geometry on the balance speed. The first is a
circular curve with zero vertical elevation and twist. The second is a vertically-elevated helix curve
with constant curvature and twist, and zero Frenet bank angle. The third is a curved, twisted,
super-elevated, and vertically-elevated spiral.

5. Circular curve

Regardless of the amount of the track super-elevation defined by a bank angle ¢,, the motion-
trajectory curve traced by a vehicle can have a geometry that does not depend on the track
super-elevation. For example, as shown in Fig. 3a, a track can be super-elevated by the bank angle
¢, while a vehicle traces a circular curve that lies in a plane parallel to the horizontal plane. The
horizontal circular curve has a Frenet bank angle ¢ that is identically zero. Therefore, distinction
must be made between the track super-elevation and the Frenet bank angle of the motion-trajec-
tory curves. This distinction is of fundamental importance in understanding the discontinuities at
the track transitions and also in understanding the problems associated with interpreting the
Frenet bank angle ¢ as an independent angle that enters into the definition of the spiral space-
curve geometry. The bank angle ¢, of the track can be used to only define the vertical elevation

mgsing

mgsing,

a\'a\\c\ o

\ane P plane

P ;
oscu\a\\ﬂg

(b)

Figure 3. Super-elevation and centrifugal forces (V = 5); (a) Horizontal- curve negotiation with zero Frenet bank angle, ¢ = 0;
(b) Motion-trajectory-curve with nonzero Frenet bank angle, ¢ # 0. (Vectors in this figure are not drawn to scale.)
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of the spiral at the spiral/curve transition, as described in this paper; and it is also used with a
linear interpolation to define the track frames at the nodes to properly account for the track
super-elevation in the spiral section. The spiral vertical elevation at the intersection can be used
to define the vertical-development angle 0. Knowing the horizontal curvature Cpy, which is
assumed to vary linearly within the spiral, the horizontal-curvature angle ¥ can be determined.
The two angles iy and 0 can be used to define the spiral Frenet bank angle ¢.

Furthermore, in defining the direction of the centrifugal force, distinction is made between the
super-elevation of a surface and the Frenet bank angles of and direction of the normal to the
curves on the surface. On a super-elevated track, the motion of the vehicle can be constrained to
trace a circular curve that lies in a horizontal-plane, regardless of the amount of curvature and
super-elevation of the surface. This strict condition of negotiating a horizontal curve cannot
always be met in practice because of the lateral oscillations. Because the direction of the centrifu-
gal force is always along the unit vector normal to the motion-trajectory curve, one needs to dis-
tinguish between the super-elevations of the surface and the motion plane formed by the tangent
and normal vectors of the motion-trajectory curve in order to be able to accurately define the bal-
ance speed.

5.1. Horizontal-plane curve

. . . . T
The equation of a planar circular curve can be written as r(s) = [Rsinyy —Rcosy z| ,
where R is the radius of curvature of the curve, ¥ is the horizontal curvature angle, and z, is a
constant that defines the curve vertical translation. The unit tangent to the curve is defined as

r(s) = y/'R[ cosyy siny O]T. Because Y =s/R, Yy'R=1, and one can show that ry(s) =
[cosy siny 0] " is indeed a unit vector. The curvature vector of the circular curve is ry(s) =
t//[—sintp cos s O]T. In this case, the curvature of the curve is defined as x =/ = 1/R,

and the unit normal vector is n = [— sinyy cosy O ] T 1t is clear in this special case of a hori-
zontal-plane circular curve that the centrifugal force is in the horizontal plane and in the case of
zero Frenet bank angle ¢ such a centrifugal force cannot be entirely balanced by the gravity force
since Fng = 0. That is, the gravity force has no component along the curve normal that defines

the direction of the centrifugal force. For this reason, the track super-elevation by an angle ¢,
creates a gravity force component that balances the lateral component of the centrifugal force.

5.2. Super-elevated track

As previously mentioned, a vehicle can negotiate a horizontal curve on a super-elevated track. In
this case, the axis of rotation remains vertical and the normal to the motion-trajectory curve and
the centrifugal force remain in the horizontal plane. That is, the super-elevation does not lead to
a change in the Frenet bank angle of the curve. However, in the case of the spiral curve, ¢ varies
with the arc length and cannot be assumed zero, and therefore, the direction of the normal to the
curve varies along the curve and the curve normal and centrifugal force do not remain in the
horizontal plane. Therefore, in the case of a track super-elevated by a constant angle ¢,, there
are two motion scenarios that can be considered; in the first scenario discussed in this subsection,
the vehicle mass center negotiates a horizontal-plane curve; while in the second scenario, dis-
cussed in the following subsection, the vehicle negotiates a curve on the super-elevated surface,
which has a Frenet bank angle ¢ = ¢(s) that defines the direction of the normal to the curve;
this second scenario cannot be ignored because it represents the spiral geometry and also repre-
sents the actual motion-trajectory curve if motion in the horizontal plane cannot be ensured.
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In the first scenario of a horizontal-plane curve defined on a super-elevated track, shown in
Fig. 3a, the normal to the curve remains in the horizontal plane and takes the form n =

[—sint// cos s O]T as previously discussed in this section. In this case, ¢ =0 and ¢, # 0.
The centrifugal force in this case is along the normal to the curve. If the vehicle strictly traces
this horizontal curve and the lateral constraint force is assumed to be zero, one has the lateral
force equilibrium condition mgsin ¢, = (m(5,)°/R) cos ¢,, which defines the balance speed as
$p = y/Rgtan ¢,. In this case, the balance speed is defined in terms of ¢, and not in terms of ¢.
Furthermore, the equilibrium condition used to obtain this balance speed, which is based on the
predefined track geometry and not on the actual-motion trajectory curve, does not entirely bal-
ance the centrifugal force. To mathematically ensure that the vertical and lateral displacements
are always zero such that the lateral force equilibrium is strictly satisfied, Lagrange-D’Alembert’s
principle and the embedding technique must be used to systematically reduce the number of
coordinates to one coordinate that describes the forward motion of the vehicle. In this case of
one-degree-of-freedom system, the normal reaction force acting on the super-elevated track plane
is equal to N, = mgcos ¢, + (m(5)*/R) sin ¢,, where N, is the constraint force normal to the
super-elevated plane; that is the centrifugal force contributes to the axle load on the super-ele-
vated track. Using the lateral force equilibrium, the reaction force on the super-elevated plane
can be written as N; = mgsin ¢, — (m(5,)*/R) cos ¢,, where Nj is the constraint force in the lat-
eral direction.

5.3. Super-elevated motion plane

The horizontal-plane circular curve can be defined as the curve resulting from the intersection of
a horizontal plane and the super-elevated track plane. This condition is not met in the case of
the spiral geometry in which ¢ = ¢(s) varies along the twisted curve; nor in the case of more
general motion-trajectory curve entirely defined in the track plane and not in the horizontal
plane. In this case, the direction of the centrifugal force, shown in Fig. 3b, is different from the
case of the horizontal-plane curve. It is important to reiterate that in Fig. 3b, the angle ¢ = ¢(s)
defines the direction of the normal to the motion-trajectory curve and not the track super-eleva-
tion defined by the rigid-rotation angle ¢,. That is, the osculating plane is super-elevated by the
angle ¢ = ¢(s), and as previously mentioned, while the motion-trajectory curve lies in the track
plane, the osculating-plane and the track-plane bank angles differ by ¢, — ¢, as discussed further
in the appendix.

5.4. More general displacement

Figure 3 explains the use of the super-elevation to balance the centrifugal force by the gravity
force component along the normal to the circular curve in the two different cases discussed
above. The figure depicts two different scenarios that depend on the trajectory of the center of
mass of the vehicle when negotiating a super-elevated track. In Fig. 3b, the vehicle center of mass
is assumed to follow a curve which has a normal that does not lie in the horizontal plane and the
balance speed in the case of zero vertical-development angle is defined by the equation §, =

\/gRsin ¢, as previously discussed, where ¢ = ¢(s) defines the direction of the normal to the
motion-trajectory curve. In case of negotiating a horizontal circle, the unit normal to the curve
lies in the horizontal plane and the direction of the centrifugal force is as shown in Fig. 3a. Using
a force balance in the lateral direction as previously discussed, one has (mV?/R)cos ¢, =
mg sin ¢,, which defines the balance speed as §, = y/Rgtan ¢,. In most practical railroad applica-
tions, the definitions of the balance speeds in the two different scenarios shown in Fig. 3 should
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not deviate significantly. Furthermore, as previously mentioned, the track (displacement-velocity)
plane and the osculating (velocity-acceleration) plane share the vector tangent to the motion-tra-
jectory curve, and therefore, the instantaneous difference between them is the difference between
their bank angles.

6. Centrifugal force of helix curves

In order to better understand the spiral geometry, its geometric discontinuities, the role of the
Frenet bank angle, and the effect of the orientation of the curve normal vector; another simple,
yet extreme, example, a helix curve, is considered in this section. The helix curve has a constant
curvature and constant twist, it is vertically-elevated, but not super-elevated and has zero Frenet
bank angle, that is, ¢ = ¢, = 0. The parametric equation of a circular helix curve, as the one
shown in Fig. 4, is defined as

r(s) = [acoso asina boc]T (10)

where o = s/va? + b2, s is the arc length parameter, a is the helix radius, and b/a is the slope of
the helix. Using the preceding equation, it can be shown that the curvature x and torsion 7 are
constant and defined, respectively, as x = |a|/(a® + b*) and t = b/(a* + b*). Using these equa-
tions, Cy and 6 can be written in terms of a and b, respectively, as Cy = *=1/a and tanf =
+b/a. While this helix curve is not a planar curve, the vertical curvature Cy = 0, the Frenet
bank angle ¢ =0, and the vertical-development angle 0 is constant. It is important to note that
the Frenet bank angle ¢ is zero despite the fact that the curve is twisted.

The unit tangent vector of the helix curve is 9r/0s = (1/r)[ —asin(s/r) acos(s/r) b}T,
where r = +/a? 4+ b?. Using this tangent vector, the curvature vector can be evaluated as ry =
&r/0s* = —(a/r*)] cos (s/r) sin(s/r) O]T, which defines the unit normal to the curve as n =

—[ cos (s/r) sin(s/r) O]T. If a mass traces the helix curve with a constant forward velocity s,

the vehicle absolute acceleration is a = r.$® = kns® = —(a/r?)s*[ cos(s/r) sin(s/r) O}T
d
_b ‘_
=
=
a

| D |
| |

Figure 4. Helix curve. a = (D — d)/2, b = pitch/2m, D is the outer diameter, d is wire diameter.
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Clearly, for the vertically-elevated, curved, and twisted helix the normal and acceleration vectors lie in
the horizontal plane and the centrifugal force has no component along the vertical axis.

7. Spiral geometry and discontinuities

The spiral segment has a geometry that is fundamentally different from the geometry of the curve
and helix examples discussed in the preceding two sections. The spiral segment is curved, twisted,
vertically-elevated, and super-elevated. For a spiral segment that connects a tangent segment,
which is not vertically elevated, to a curve segment; the Frenet bank angle ¢ that enters into the
definition of the spiral space curve is a field variable, that is, ¢ = ¢(s). If the curve segment is a
horizontal curve on a super-elevated track, ¢, # 0 for this section of the track, while ¢ =0 for
the circular horizontal curve if the effect of the cant is not taken into consideration. Because ¢,
defines the vertical elevation of the spiral at the transition point, the vertical-development angle 0
can be determined and used with the horizontal-curvature angle \ to define the spiral bank
angle ¢ = ¢(s).

The super-elevation and curvature within the spiral are not constant, and therefore, a constant
balance speed cannot, in general, be defined when the vehicle negotiates the spiral sections of the
track. Furthermore, the assumption made in the literature of linearly-varying bank angle cannot,
in general, be applied to the Frenet bank angle because the use of such an assumption is not con-
sistent with the theory of curves (Klauder, Chrismer and Elkins 2002; Shabana, Zaazaa and
Sugiyama 2008; Shabana 2021). That is a curve cannot be defined using three independent geo-
metric parameters. The spiral geometry is governed by the general equations presented in Section
3. These equations can be used to shed light on the degree of discontinuities at the spiral/tangent
and spiral/curve intersections. Because of the lack of approaches for characterizing and quantify-
ing these discontinuities and lack of understanding the variation of the super-elevation and verti-
cal-elevation within the spiral segments, developing credible operation and safety guidelines to
avoid serious accidents and derailments is not possible.

The numerical results presented in this section are obtained using the tangent-spiral-curve-
assembly track data presented in Table 1 (Ling and Shabana 2020). These results show high
degree of discontinuities and should be interpreted qualitatively because the geometric analysis
developed in this paper does not account for some practical considerations used in the actual lay-
out of the track.

7.1. Spiral vertical- and super-elevations

When a spiral is used to connect tangent and curve segments, for example; the curvature, twist,
super-elevation, and vertical-elevation at the tangent/spiral intersection are assumed zeros. On the
other hand, the track at the spiral/curve intersection has non-zero curvature, zero twist, zero ver-
tical-elevation, and nonzero super-elevation as defined by the angle ¢,. Because of the super-ele-
vation of the track by a rigid rotation ¢, which does not affect the curve geometry, the position
coordinates of the spiral/curve intersection point can be determined using simple kinematics. The
position coordinates of the point of the spiral/tangent intersection are also assumed to be known.
Knowing these position coordinates at the two intersection points and using the assumption of
constant vertical curvature Cy within the spiral, the vertical-elevation angle 0 can be determined

Table 1. Track data.

Arc length (m) Horizontal curvature (m~") Super-elevation (m) Vertical development angle 0 (rad)
s = 0.0 0 0 0
s; = 30.48 0 0 0

s; =45.72 0.00286 0.0381 0.005
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using the equation Cy = ¢/, which yields 0 = 0, + Cy(s —s,), where 0, and s,, are, respectively,
the elevation angle and the arc length distance at the first end of the spiral. Knowing the horizon-
tal curvature Cy at the intersection points and assuming linear variation of Cy within the spiral
segment, the curvature angle  can be determined from the equation Cy = v’/ cos 0 as described
in the literature (Shabana, Zaazaa and Sugiyama 2008; Shabana 2021).

Recall from Eq. 8 that the position coordinates of the spiral are determined using the integral

r(s) =1, + [rds=r1,+ [ [ cosycosO sinycos® sin0] T ds. Knowing the expressions for the
angles Y and 0, the position coordinates of an arbitrary point on the spiral can be determined
without the need for the Frenet bank angle ¢. This is consistent with the differential-geometry
theory that the curve geometry is completely defined by only two geometric invariants; the curva-
ture and twist. Nonetheless, ¢ can be defined in terms of  and 0 as previously discussed as ¢ =
tan ! (—Cy/Cpy cos?6), and consequently, the Frenet bank angle that enters into the definition
of the spiral geometry cannot be considered as an independent geometric parameter.

7.2. Spiral-intersection discontinuities

The tangent-spiral-curve track model defined in Table 1 is used as an example to quantify the
degree of discontinuity at the tangent/spiral and spiral/curve intersections. Figure 5 shows the
curvature, vertical-development (elevation), and Frenet bank angles, y, 0, and ¢, respectively, as
functions of the arc length. The results presented in this figure show significant cant discontinuity
of the spiral, approximately 7/2, at its intersection with the tangent segment. It is important to
point out that the surface of a rail can be further canted to remedy the discontinuity with or
without twisting the space curve. In this example, ¢ for the circular curve segment is assumed to
be zero (no canting), while ¢, is nonzero and has the value that reflects the track super-elevation.
The rail surface orientation, which is different from the orientation of the spiral-curve Frenet
frame, is used in the definition of the wheel/rail contact forces. Euler angles at the nodal points
defined by the track preprocessor using the bank angle ¢, and/or the spline data that define the
rail profile can be adjusted in order to ensure proper representation of the track geometry. This
geometric representation can be conveniently described using the interpolation of the fully-para-
meterized absolute nodal coordinate formulation (ANCF) finite elements which allow for describ-
ing the geometry of curves and surfaces (Shabana 2021). Because of the use of more than one
position-gradient vector, the ANCF geometric description allows using three independent Euler
angles to consistently describe the track geometry and account for the track super-elevation angle
based on the linear interpolation of the bank angle. That is, such an ANCF geometric representa-
tion, which is based on a surface or volume description, eliminates the inconsistency that results
from using three independent angles to describe the curve geometry. Figure 6 shows the horizon-
tal and vertical curvatures Cy and Cy, respectively, as function of the arc length. The results pre-
sented in this figure show the discontinuity in the vertical curvature Cy as the result of the spiral
twist and vertical elevation. Figure 7 shows the derivative of the track angles with respect to the
arc length. For the tangent segment, the derivatives of all angles are zero; and for the curve seg-
ments, the derivatives are zero except for the curvature angle 1/, which has constant derivative
equal to the horizontal curvature of the curve segment. The results of the torsion along the track,
shown in Fig. 8, are consistent with the results of the bank angle previously presented.

The severe discontinuity at the tangent intersection in ¢ shown in Fig. 5 is attributed to the
discontinuity of the vertical curvature at this point. A tangent segment has zero vertical curvature,
while the spiral has non-zero value. The bank angle algebraic equation ¢ =
tan ! (—Cy/Cp cos?6) explains the source of this discontinuity and the need for developing a
better understanding of and a more effective approach for the numerical representation of the
track geometry in the computer simulations.
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Figure 5. Track angles as functions of the arc length. (—A— Curvature angle \, —@®— Vertical-development angle 6, —Hl—
Bank angle ¢).

As previously mentioned, treating the three Euler angles as independent geometric variables is
not consistent with the theory of curves. That is, using an independent linear interpolation of the
Frenet bank angle ¢ does not define a space curve; and therefore, it is necessary to distinguish
between ¢ and ¢,; the latter is used to define the orientation of the nodal track frames to prop-
erly account for the track super-elevation, this is with the understanding that ¢, is not the Frenet
bank angle of the spiral space curve. Figure 8 also shows the torsion 7 predicted using a linear
interpolation of the bank angle ¢. This linear interpolation, which is not consistent with the the-
ory of curves and cannot be mathematically justified, is based on using ¢ = 0 at the tangent/spi-
ral intersection and ¢ = ¢, at the spiral/curve intersection. The limitations of the theory of
curves in defining the canting and orientation of the rail surfaces that enter into the wheel/rail
contact formulation demonstrate again the need for using ANCEF finite elements which allow for
changing the orientation of the surfaces without changing the space curve geometric properties
(Shabana 2021). Fully-parameterized ANCEF finite elements employ three gradient vectors; while a
curve has only one gradient vector, making it difficult to have a realistic representation of the
track geometry. Furthermore, during the dynamic simulations, the continuity of the ANCF pos-
ition gradients, including the longitudinal gradient of the space curves, is ensured.

7.3. Normal vector and balance speed

Using the spiral geometric description outlined in this section and using the definition of the
curvature vector given by Eq. 5, one can show that the spiral normal vector can be written as

C 29 —siny — cosysinf
n—-HO 7 cos s +=¥ —siny sin 0 (11)
K K
0 cosf

This equation shows that the if the vehicle strictly traces the spiral curve, the centrifugal force
can be entirely balanced by the component of the gravity force Fng = —(Cy/Kk)mgcos 0. Using

Eq. 3, which shows that ¢ = Cy = —ksin¢, one has an = mgsin ¢ cos . Equating this
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Figure 6. Horizontal and vertical curvatures. (—A— Horizontal curvature Cy;, —®— Vertical curvature Cy).
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Figure 7. Derivatives of the track angles. (—A— Curvature angle \y, —®— Vertical-development angle 0§, —M— Bank
angle ¢).

expression with the magnitude of the centrifugal force m3s”/R, one obtains the balance speed

within the spiral as §, = \/gRcosOsin ¢ = \/(gcosOsin §)/k, which is the same as previously
presented in this paper. This equation for the balance speed shows dependence on 0 and ¢ as
well as the curvature x; all vary within the spiral segment because of the varying curvature and
twist, and therefore, the balance speed is not, in general, constant as in the case of the circular
curve segment.
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Figure 8. Torsion as function of the arc length. (—A— algebraically determined bank angle, —®— Linearly interpolated
bank angle).
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Figure 9. Scaled balance speed f(s). (—A— algebraically determined bank angle, —®— Linearly interpolated bank angle).

In order to quantify the variation of the balance speed within the spiral, the tangent-spiral-
curve track example used in a previous study (Ling and Shabana 2020) is considered again. The

results of f(s) =3,/,/g8 = 1/(cosOsin$)/k, shown in Fig. 9, demonstrate that the balance speed
within the spiral does not remain constant. The discontinuities in the balance speed at the spiral
intersection with the tangent and curve segments are clear in this figure. However, in Fig. 9, the
portion of the linearly-interpolated bank angle that corresponds to the circular curve is taken as
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Figure 10. Z component of normal vector as function of arc length. (—A— algebraically determined bank angle, —@®—
Linearly interpolated bank angle).

¢, to show the continuity if this angle is used. Figure 9 also shows the scaled balance speed f
when ¢ is linearly interpolated and treated as an independent variable. Figure 10 shows the verti-
cal component of the normal vector when ¢ is treated as dependent and independent parameters.
This vertical component shows the deviation from a completely horizontal centrifugal force.

8. Summary and conclusions

The pre-defined track geometry is used to define the balance speed because the actual motion-trajec-
tory curves are not a priori known. Because of the small value of the super-elevation angle, the ana-
lysis presented in this paper can be used to demonstrate that such an approximation of the balance
speed is acceptable in most practical railroad vehicle system applications (Schupp 2003). However,
because of the lack of a geometric approach that can be used to characterize and quantify the railroad
track-transition discontinuities and lack of understanding of the variation of the bank angle and verti-
cal-elevation within the spiral segments, it is not possible to develop a science-based technique for
determining the balance speed, smoothing the transition discontinuities, and/or developing credible
operation and safety guidelines for avoiding serious accidents and derailments. For this reason, this
study builds on a previous investigation by the authors (Ling and Shabana 2020) by developing a
new approach for the characterization and quantification of the spiral-intersection discontinuities as
well as developing a more accurate definition of the balance speed. In order to develop understanding
of the geometry, three different curves which have fundamentally different geometries are considered;
a super-elevated constant-curvature curve with zero twist and zero vertical elevation, a vertically-ele-
vated helix curve with a constant curvature and twist and zero bank angle, and a spiral curve with
non-zero varying-curvature, twist, bank angle, and vertical elevation. The curve equations are devel-
oped in terms of Euler angles used by the rail industry to describe the track geometry in the com-
puter simulations. As discussed in this paper, the spiral geometry can be completely defined in terms
of the horizontal-curvature and the vertical-development angles only. Therefore, the Frenet bank angle,
which is written in terms of these two angles, cannot be treated as an independent variable. The
results obtained in this investigation demonstrate that, when the spiral is twisted and elevated, the
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super-elevation discontinuities can be large at the intersections if no smoothing measures are taken.
The numerical results obtained demonstrate the problem of interpreting independent linear interpol-
ation of the bank angle used in the railroad computer algorithms as the Frenet bank angle that enters
into the definition of the geometry of the spiral space curve. These results, which show high degree
of transition discontinuities, should be used in a qualitative assessment because a purely geometric
analysis does not take into account practical considerations used in the actual layout of the track and
because the discontinuities of the space curves can be different from discontinuities at the rail surfaces
whose geometries enter into the definitions of the wheel/rail contact forces. Future investigations will
be focused on demonstrating the significance of the concepts discussed in this paper using multibody
system (MBS) simulation techniques (Fisette et al. 2002; Shabana 2021).
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Appendix A

Super-elevation and centrifugal forces

A surface, including the rail track plane, is parametrized using two coordinates. As shown in this paper, the abso-
lute acceleration vector of a mass that traces a curve has two components, one along the tangent vector and the
other along the vector normal to the curve; that is, the absolute acceleration vector always lies in the osculating
plane. In general, the orientation of the osculating plane changes during the course of motion. In this appendix,
two cases are considered in order to demonstrate the procedure for determining the centrifugal forces.

A.1. Super-elevation

In this section, a simple example is used to explain the difference between the super-elevation of a surface and the
direction of the centrifugal force which is along the normal to the motion-trajectory curve on the surface. Figure
11 shows a surface which makes an angle ¢, with the horizontal plane. The figure shows a circular curve C that
lies on a plane parallel to the horizontal plane; that is, this circular curve is the intersection of the surface and a
horizontal planar surface. As previously mentioned, if a mass strictly follows this horizontal circular curve, the cen-
trifugal force remains in the horizontal plane along the vector n¢ normal to curve. If the mass, on the other hand,
moves laterally with a displacement y along the axis Y; in addition to the forward motion on the surface, the mass
traces another curve D, shown in the figure. This lateral displacement y, which can represent hunting oscillations,
sliding toward the low rail, and/or lateral wheel climb displacements in railroad vehicle systems; is measured with
respect to the circle C. The actual motion plane at an arbitrary point on curve D, which is the osculating plane
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formed by the tangent vector tp and the normal vector np, is shown in the figure. The analysis presented in this
section shows that this motion plane is, in general, different from the plane tangent to the surface, that is the nor-
mal vector np does not in general lie on the tangent plane of the surface which has the curve D. Using Fig. 11,
one can show that the global position vector of a point that traces the curve D can be written as

Rsiny cos ¢, sinyy (R—ycos¢,)siny
r= | —Rcosyy | +y| cosp,cosiy | = | —(R— ycos¢,)cosiy (A1)
Zc —cos ¢, Zc — ysin¢,

where Z¢ is a constant that defines the elevation of the horizontal circle C, R is the radius of the curve, y = S/R
is the curvature angle of the circle C, and S is the arc length of the circle. If s is the arc length of the motion-tra-
jectory curve D, one can define the unit tangent vector to this curve as
V(R —ycos¢,) cosyy — yscos ¢, sinyy
== Y (R — ycos¢,)sinyy + y cos ¢, cos s (A2)
—y,sin ¢,

where a; = 9a/0s. The fact that the tangent vector r; in the preceding equation is a unit vector can be used to
define the following relationship between ¥/, and y;:

() (R—ycos )’ + (rs)* =1 (A3)

This equation shows that

l//sslps(R — ycos ¢t)2 + YssYs = (lps)zyf cos ¢t(R — ycos ¢t) (A4)
The curvature vector which defines the direction of the centrifugal force is defined as

Pr (Vs cosyy — () sinyy) (R — y cos ) — 2,5 08 §, cos Y — y cos by sin Y
T =55 = | (Wysiny + ()" cos ) (R = ycos ;) — 2,y cos ¢, sinf + yss cos ¢, cos Y (A5)
—¥ss Sin ¢,
The norm of this curvature vector defines the curvature x = 1/Rp of the motion trajectory curve, where Rp =
Rp(s) is the radius of curvature of the curve D. The unit normal to the curve D is defined as n = (1/k)ry, and
the magnitude of the centrifugal force along this normal is §?/Rp. It is clear from this equation and the preceding
equation that the curvature vector has non-zero vertical component —y;, sin ¢),/x, which depends on the geometric
properties of the curve D as well as the super-elevation of the surface. Increasing the surface super-elevation and
yss makes the direction of the centrifugal force further deviates from the horizontal plane.
On the other hand, if the arc length S of the horizontal circle is considered as the curve parameter, one has

Ys(R— ycos ¢,) cosyy — yscos ¢, sinyy
t =158 = | Yg(R— ycos¢,)sinyy + yscos ¢, cosy | § (A.6)
—yssin ¢,

where in this equation ag = 0a/0S. The norm of the vector rg is

B=Irs| = \/(Ws (R — ycos ,)* + (rs)? (A8)

It is clear from this equation that if y =0, f#=1. The relationship between the actual arc length of the motion
trajectory curve s and the arc length of the horizontal circle S is ds = fdS, that is, ds/dS = 8 and § = f5S. It fol-
lows that s = S + S. One can also write

$=(p—3p)/p (A.9)
Using these definitions, it is clear that y; = (9y/dS)/f and

= (7) LBV () st =t (a10)

B
As an example, consider the case in which y = Y, sinaS, where Y, and « are constants. It follows that
=1/R, =0,
vs / Yss . (A1)
ys =aY,cosaS, yss = —o"Y,sinaS

In this case, one has
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Figure 11. Motion trajectories.

B=lrs| = \/((R — Y, sin ocScosd)t)/R)2 + (oY, cos aS)* (A.12)

Using this definition, one can write

§=pS= (\/((R — Y, sin aScos¢)t)/R)2 + (aY, cos ocS)2>S (A.13)

It is clear from the preceding equations that if the frequency « is large, § can vary significantly from § and the
direction of the centrifugal force deviates from the horizontal plane. Furthermore, using the analysis presented in
this paper, the Frenet bank angle ¢ of the curve can be determined by equating the expression of the normal
vector obtained in this section to the general expression previously presented in this paper as n=
[ (—sinycos ¢ + cosysinOsing) cosycosp + sinysinOsing — cosOsin } T Assuming that s is the same
for both descriptions; one, by equating the expressions of the normal vectors, can define the vertical-elevation and
Frenet bank angles 0 and ¢, respectively. For example, one has the following relationship by equating the vertical
components of the two normal vectors: y, sin ¢, = cos 0sin ¢.

A.2. Conical surface

The cone example used to draw a similarity with the super-elevated curved track is used in this section to shed
light on some fundamental geometric issues in the definition of the inertia forces. The cone surface is defined as
a surface of revolution generated by rotating an inclined line in the vertical plane about the vertical axis. The
angles used to generate the cone geometry do not follow the same sequence of rotations as the sequence used to
define the super-elevated track geometry, and therefore, the inclination of the cone surface needs to be properly
interpreted. Figure 12 shows a vector that makes an angle ¢, with the vertical axis Z. This angle ¢, which is
assumed constant, is half the cone angle and is equal to ¢, = (n/2) — ¢, where ¢ is the angle of rotation about
the —X axis as shown in the figure. If y is defined to be the coordinate of a point along the vector shown in
the figure, one can define the Cartesian coordinates of this point as v. =y[0 —sin¢, cos qbc]T. To generate
the cone surface, the vector v, is rotated by angle i about the Z axis. This rotation defines the cone surface in
terms of the two parameters y and /. The position and velocity vectors of an arbitrary point on the cone surface
are defined as

sin sin ¢, siny sin ¢, cos i sin ¢,
r=y|—cosysing, |, F=yp|—cosysing, |+ yl‘ﬁ sin sin ¢, (A.14)
cos ¢, cos ¢, 0

These vectors can be written as
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Figure 12. Cone surface.

siny ]
r=R/| —cosy |,
1/t
- / and)[: (A.15)
sin cos R.cosy sin .
F=R.| —cosy | +Ry | siny | = | Resingy —cosy {l//:|
| 1/tan ¢, | 0 0 1/ tan ¢, ¢
where R, = ysin ¢.. The unit normal to the cone surface is
n=[sinycos¢, —cosycosg, —sinep,] r (A.16)
For a given circle on the cone surface, one has s, = iy sin ¢, which leads to 5, = (Yry + yy) sin ¢, = R} + R
One can then write
. . R, cos sin i sin .
D1 T o (] [Reosy smvsngc ]
il o sing " |, E=|Rgsiny —cosysing, ] (A.17)
sin
¢ I 0 cos ¢, 4
The acceleration vector is defined as
siny sin ¢, cos i sin ¢, —siny sin ¢,
f=y|—cosysing, | + (Zylﬁ + yl#) sinysing, | + y¢2 cos i sin ¢, (A.18)
cos ¢, 0 0
Or alternatively,
sin cos s —siny
F=R.| —cosy | + (zizc{p + REI,L) siny | + R,'-l/.lz cos (A.19)
1/tan ¢, 0 0

Balancing the inertia force in the lateral direction requires accurate interpretation of the inertia forces that appear
in the preceding equation. For this reason, the correct definition of the centrifugal force based on the motion-tra-
jectory curve is developed in the following section.

A.3. Motion-trajectory curves

The centrifugal force is defined along the unit vector normal to a motion-trajectory curve. In order to properly
define such a curve on a surface, the two surface parameters need to be written in terms of one parameter. In this
section, the cone surface is used as an example to demonstrate how the direction of the centrifugal force is defined.



MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES . 25

To this end, the surface parameters  and y are written, respectively, in terms of the arc length s of the motion-
trajectory curve as ¥ = Y(s) and y = y(s). In this case, one has

(i 5] = lowsos ayos]'s = [u, »]"s (4.20)

Using this equation, the equation of the curve on the cone surface and the velocity vector can be written, respect-
ively, as

sin sin ¢, yssiny sin ¢, + yp cos  sin ¢,
r=y|—cosysing, [, = |—ycosysing, +yp,sinysing, |s=r (A.21)
cos ¢c Js cos d)c

where the vector r; is the unit tangent to the curve defined as
yssiny sin ¢, + yy, cos Y sin ¢,
r,=—= | —yscosysind, + yy sinysin @, (A.22)
ys cos P,

This vector, which defines in the case of railroad vehicle systems the direction of motion and traction forces, always lies
on tangent plane to the surface. One can show that this vector is a linear combination of the two vectors tangent to the
surface. The fact that the vector r; is a unit vector shows that a curve on the cone surface must satisfy the equation

2+ y*lsin?p, = 1 (A.23)

The curvature vector can be obtained by differentiating the unit tangent vector with respect to the arc length. This
leads to

(yss = y¥7) sinyrsin ¢, + (295, + y,) cos Y sin ¢,

or, 5 . ) ]
Iy = 55 = —(yss - yl//s) cosysin . + (2ys, + y,) sinyp sin ¢,

Yss €08 P (A.24)

siny sin ¢, siny cosy

=ys| —cosysing, | — Ry? | —cosyy | + (2, + p) sin g, | sinyy

cos ¢, 0 0
The norm of this vector defines the curve curvature « as

Kk=1/R= \/(Kh sin ¢, )* + (e, cos ¢, ) (A.25)

where R is the radius of curvature of the curve, k), = \/ (s — Y2V + yah, + yb,)% and x, = y,. The unit nor-
mal vector is then defined as n = (1/k)rs, or more explicitly as

()’SS - )"//f) siny sin ¢, + (2ys¥, + y,) cos i sin ¢,
n == | =0y —y0) cosysin . + 2y + y) sinf sin (A.26)
Yss €OS

Unlike the tangent vector, it is clear that this normal vector does not always lie on the tangent plane of the cone
surface. From the definition of the inertia force vector F; = ir, 4 (5%/R)n, it is clear that the centrifugal force is
not in the horizontal plane, unless y, = 0. In railroad system applications, there is no guarantee that y, is small in
the case of hunting oscillations which can happen at high frequencies, particularly in the case of wheel flange
impacts with the rail. As previously mentioned with reference to Fig. 2, the variation of the curvature angle y of a
circular curve on the cone surface with respect to the arc length s of the motion-trajectory curve will always be
smaller than the variation of the same angle with respect to the arc length of the circle. That is, if s. is the arc
length of a horizontal circle on the cone surface, one always has i, = OY/0s < Y, = O/0Os.. Furthermore, in
most railroad system applications, the radius of curvature of the curve segment is assumed large, and therefore,
is small. As y, decreases by using a larger radius of curvature and as the hunting frequency increases, the domin-
ant component of the normal vector and the centrifugal force vector will lie in a plane closer to the tangent plane
of the surface and will shift away from the horizontal plane.
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