®

Check for
updates

Graph InfoClust: Maximizing
Coarse-Grain Mutual Information
in Graphs

Costas Mavromatis®™) and George Karypis

Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455, USA
{mavro016 ,karypis}@umn.edu

Abstract. This work proposes a new unsupervised (or self-supervised)
node representation learning method that aims to leverage the coarse-
grain information that is available in most graphs. This extends previous
attempts that only leverage fine-grain information (similarities within
local neighborhoods) or global graph information (similarities across all
nodes). Intuitively, the proposed method identifies nodes that belong to
the same clusters and maximizes their mutual information. Thus, coarse-
grain (cluster-level) similarities that are shared between nodes are pre-
served in their representations. The core components of the proposed
method are (i) a jointly optimized clustering of nodes during learning
and (ii) an Infomax objective term that preserves the mutual informa-
tion among nodes of the same clusters. Our method is able to outper-
form competing state-of-art methods in various downstream tasks, such
as node classification, link prediction, and node clustering. Experiments
show that the average gain is between 0.2% and 6.1%, over the best
competing approach, over all tasks. Our code is publicly available at:
https://github.com/cmavro/Graph-InfoClust- GIC.

1 Introduction

Graph structured data naturally emerge in various real-world applications. Such
examples include social networks, citation networks, and biological networks.
The challenge, from a data representation perspective, is to encode the high-
dimensional, non-Euclidean information about the graph structure and the
attributes associated with the nodes and edges into a low dimensional embed-
ding space. The learned embeddings (a.k.a. representations) can then be used for
various tasks, e.g., node classification, link prediction, community detection, and
data visualization. In this paper, we focus on unsupervised (or self-supervised)
representation learning methods that estimate node embeddings without using
any labeled data but instead employ various self-supervision approaches. These
methods eliminate the need to develop task-specific graph representation models,
eliminate the cost of acquiring labeled data, and can lead to better representa-
tions by using large unlabeled datasets.

© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAT 12712, pp. 541-553, 2021.
https://doi.org/10.1007/978-3-030-75762-5_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75762-5_43&domain=pdf
https://github.com/cmavro/Graph-InfoClust-GIC
https://doi.org/10.1007/978-3-030-75762-5_43

542 C. Mavromatis and G. Karypis

Various approaches have been developed to self-supervise graph representa-
tion learning. Many of them optimize the embeddings based on a loss function
that ensures that pairs of nearby nodes are closer in the embedding space com-
pared to pairs of distant nodes, e.g., DeepWalk [16] and GraphSAGE [4]. A
key difference between such methods is whether they use graph neural network
(GNN) encoders to compute the embeddings. These encoders insert an addi-
tional inductive bias that nodes share similarities with their neighbors and lead
to significant performance gains.

Since GNN encoders already preserve similarities between neighboring nodes,
Deep Graph Infomax (DGI) [21] uses a different loss function as self-supervision.
This self-supervision encourages each node to be mindful of the global graph
properties, in addition to its local neighborhood properties. Specifically, DGI
maximizes the mutual information (MI) between the representation of each node
(fine-grain representations) and the global graph representation, which corre-
sponds to the summary of all node representations. DGI has shown to estimate
superior node representations and is considered to be among the best unsu-
pervised node representation learning approaches. However, in many graphs,
besides their global structure, there is additional structure that can be cap-
tured. For example, nodes tend to belong to (multiple) clusters that represent
topologically near-by nodes; or some nodes may share similar structural roles
with topologically distant nodes. In such cases, methods that simultaneously
preserve these coarse-grain interactions allow node representations to encode
richer structural information.

Motivated by this observation, we developed Graph InfoClust (GIC), an
unsupervised representation learning method that extracts coarse-grain infor-
mation by identifying nodes that belong to the same clusters. Then, GIC learns
node representations by maximizing the mutual information of nodes and their
cluster-derived summaries, which preserves the coarse-grain information in the
embedding space. Furthermore, since the node representations can help identify
better clusters (both w.r.t. communities and also their role), we do not rely on an
a priori clustering solution. Instead, the cluster-level summaries are obtained and
jointly optimized by a differentiable K-means clustering [23] in an end-to-end
fashion. We evaluated GIC on seven standard datasets using node classification,
link prediction, and clustering as the downstream tasks. Our experiments show
that in eleven out of thirteen dataset-task combinations, GIC performs better
than the best competing approach and its average improvement over DGI is
0.9, 2.6, and 15.5% points for node classification, link prediction, and clustering,
respectively. These results demonstrate that by leveraging cluster summaries,
GIC is able to improve the quality of the estimated representations.

2 Notation, Definitions, and Problem Statement

Let G := {V,&} denote a graph with N nodes and |£| edges, where V :=
{v1,...,vn} is the set of nodes and £ is the set of edges. The connectivity is rep-
resented with the adjacency matrix A € RV*N with A; ; = 1if (v;,v;) € € and

Maximizing Coarse-Grain Mutual Information in Graphs 543

A; ; =0, otherwise. Let x; € R¥ be the feature vector associated with node v;
and X € RY*F be the matrix that stores these features across all nodes. Here,
we denote vectors by bold lower-case letters and matrices by bold upper-case
letters. We also use the terms representation and embedding interchangeably.
Let H := [hy,... ,hy] € R¥XP be the node embedding matriz of G, where
h; € RP is the node embedding vector for v; The goal of node representation
learning is to learn a function (encoder), f : RVXN x RVXF _, RNXD guch
that H = f(A,X). Once learned, H can be used as an input feature matrix to
downstream tasks such as node classification, link prediction, and clustering.

3 Graph InfoClust (GIC)

3.1 Motivation and Overview

Preliminaries, DGI Framework. DGI employs a loss function that encour-
ages node embeddings to contain information about the global graph properties.
It does so by training the GNN-encoder to maximize the mutual information
(MI) between the representation of each node h; (fine-grain representation) and
a summary representation s € R of the entire graph (global summary). Maxi-
mizing the precise value of mutual information is intractable; instead, DGI max-
imizes the Jensen-Shannon MI estimator that maximizes MI’s lower bound [6].
This estimator acts like a binary cross-entropy (BCE) loss, whose objective
maximizes the expected log-ratio of the samples from the joint distribution
(positive examples) and the product of marginal distributions (negative exam-
ples). The positive examples are pairings of s with h; of the real input graph
G := (A,X), but the negatives are pairings of s with h;, which are obtained
from a fake/corrupted input graph G := (A, X) (assuming the same number of
nodes). The graph summary s is obtained by averaging all nodes’ representations

followed by the logistic sigmoid nonlinearity o(:), as s = o (% Zszl hi). A dis-

criminator d : RP x RP — R is used to assign higher scores to the positive than
the negative examples. The Jensen-Shannon-based BCE objective is expressed
as

N N
L= Ex.a [log d(hi,s)} +Y Exa [1og (1- d(Bi,s))], (1)
i=1 i=1

which corresponds to a noise-contrastive objective between positive and negative
examples. This type of objective has been proven to effectively maximize mutual
information between h; and s [6,21].

GIC Framework. Optimizing the node representations based on Eq. (1)
encourages the encoder to preferentially encode information that is shared across
all nodes. Such approach ensures that the computed representations do not
encode the noise that may exist in some neighborhoods—the noise will be very
different from the global summary. However, for exactly the same reason, it will
also fail to encode information that is different from the global summary but
is over-represented in small parts of the graph (e.g., the neighborhoods of some

544 C. Mavromatis and G. Karypis

Fig. 1. GIC’s framework. (a) A fake input is created based on the real one. (b) Embed-
dings are computed for both inputs with a GNN-encoder. (¢) The global graph sum-
mary and the coarse-grain summaries are computed. (d) The goal is to discriminate
between real and fake samples based on the computed summaries.

nodes). Capturing such information can be important for downstream tasks like
link prediction and clustering.

Graph InfoClust (GIC) is specifically designed to address this problem. It
postulates that the nodes belong to multiple clusters and learns node repre-
sentations by simultaneously maximizing the MI between a node’s (fine-grain)
representation with that of the global graph summary and a coarse-grain sum-
mary derived from the clusters that it belongs to. Since this approach takes
advantages of multiple entities within the graph, it leverages significantly more
information that is present across the nodes and across different levels of the
graph.

As Fig. 1 illustrates, GIC uses a GNN-based encoder to compute fine-grain
node representations, which are then used to derive (i) the global summary, and
(ii) the cluster-based summaries via a differentiable k-means clustering algo-
rithm. These summaries are used in a contrastive-loss setting to define whether
a node representation comes from the real or a fake graph. Specifically, GIC
introduces a coarse-grain Lo loss to discriminate between real and fake samples
based on the cluster-based summaries and uses the global-level £; loss for the
global summary, accordingly. GIC’s overall objective is given by

L=al+(1-a)lc, (2)

where « € [0,1] controls the relative importance of each component. The opti-
mization of this objective leads to the maximization of the mutual information
that is present in both fine-grain and coarse-grain levels as well as the global
level of the graph.

3.2 Coarse-Grain Loss

Suppose we have computed a coarse-grain/cluster-derived summary z; € RP
that is associated with v; (described later in Sect. 3.3). Then, we can simply

Maximizing Coarse-Grain Mutual Information in Graphs 545

maximize the mutual information between z; and h; in a similar manner with
DGI. The new coarse-grain-based objective term is

Lo = iE(X,A) [IOgg(hiazi)} + iE(X,A) {log (1- g(fli,zi)}, (3)

i=1 i=1

where positive examples are pairings of h; with z; and negatives are pairings h;
with z;. A discriminator g : RP x RP — R is used to facilitate the optimization,
as before, by assigning higher scores to the positive examples.

3.3 Coarse-Grain Summaries

Coarse-grain summaries summarize the information that is present in the corre-
sponding (coarse-grain) clusters of nodes within the graph. Because nodes may
belong to multiple clusters, and thus, may be present in multiple coarse-grain
groups of the graph, it is advantageous to perform a soft-assignment to these
clusters. Then, the coarse-grain summary z; can be computed as a weighted
average of the cluster centroids that node v; belongs to.

Since the representations of the nodes can help identify better clusters (both
w.r.t. communities and also their role), we optimize the clusters in an end-to-end
fashion along with the node representations. Specifically, the cluster centroids
pr € RP with k = 1,..., K (suppose K clusters) are obtained by a layer that
implements a differentiable version of K-means clustering, as in ClusterNet [23],
as follows. The clusters are updated by optimizing Eq. (3) via an iterative process
by alternately setting

> iy
== k=1,....K 4
1225 Zi o)) (4)
and

T S exp(—Beos(hy,)

where cos(+,) denotes the cosine similarity between two instances and (8 is an
inverse-temperature hyperparameter; 0 — oo gives a binary value for each clus-
ter assignment. The gradients propagate only to the last iteration of the forward-
pass updates in order to ensure convergence [23]. Finally, the cluster-derived
summary, i.e., coarse-grain summary, associated with v; in Eq. (3) is given by

Z;, =0 (Zle rikuk), where 7; is the degree that v; is assigned to cluster k and
py; is the centroid of the kth cluster, as described before, followed by a sigmoid

nonlinearity.
3.4 Fake Input and Discriminators

When the input is a single graph, we opt to corrupt the graph by row-shuffling the
original features X as X := shuffle([x1,x2,...,xy]) and A := A (see Fig. 1a).

546 C. Mavromatis and G. Karypis

In the case of multiple input graphs, it may be useful to randomly sample a
different graph from the training set as negative examples.

As the discriminator function d in £1, we use a bilinear scoring function,
followed by a logistic sigmoid nonlinearity, which converts scores into probabil-
ities, as d(h;,s) = o(h] Ws), where W is a learnable scoring matrix. We use
an inner product similarity, followed by o(:), as the discriminator function g in
Lc, g(hy,z;) = o(hTz;). Here, we replace the bilinear scoring function used for
g by an inner product, since it dramatically reduces the memory requirements
and worked better in our case.

4 Related Work

Many unsupervised/self-supervised graph representation learning approaches
follow a contrastive learning paradigm. Their objective is to give a higher
score to positive examples and a lower to negative examples, which acts as a
binary classification between positives and negatives. Based on the selection of
positive/negative examples, methods are able to capture fine-grain similarities
(DeepWalk [16], node2vec [3], GraphSAGE [4], GAE/VGAE [9], ARGVA [13],
GMI [15]) or global similarities (DGI [21], MVGRL [5]) that are shared between
nodes.

For example, in DeepWalk, node2vec and GraphSAGE, positive examples are
representations of node pairs that co-occur in short random walks while nega-
tives are representations of distant nodes. In GAE/VGAE and ARGVA, positive
examples are representations of incident nodes and negatives are representations
of random pairs of nodes. ARGVA uses additional positive/negative pairs as it
discriminates at the same time whether a latent node representation comes from
the prior (positive) or the graph encoder (negative). GMI has two types of pos-
itive/negative examples: First, by pairing a node representation with its input
structure and attributes (positive) and with the input of a random node (nega-
tive), and second, by obtaining them as in GAE. MVGRL [5] works in a same
manner with DGI, but it augments the real graph to get two additional versions
of the graph (real and fake), which doubles the pairs of positive/negative exam-
ples. Methods that capture additional global properties (like DGI and MVGRL)
are shown to estimate superior node representations.

5 Experimental Methodology and Results

5.1 Methodology and Configuration

Datasets. We evaluated the performance of GIC using seven commonly used
benchmarks (Table 1). CORA, CiteSeer, and PubMed [25] are three citation net-
works, CoauthorCS and CoauthorPhysics are co-authorship graphs, and Ama-
zonComputer and AmazonPhoto [18] are segments of the Amazon co-purchase
graph.

Maximizing Coarse-Grain Mutual Information in Graphs 547

Table 1. Datasets statistics of the entire graph and the largest connected component
(LCC) of the graph.

Classes|Features|Nodes |[Edges |Label rate|Nodes LCC|Edges LCC|Label rate LCC
CORA 7 1,433 2,708 6,632/0.0517 2,485 5,069 0.0563
CiteSeer 6 3,703 3,327 4,614/0.0324 2,110 3,668 0.0569
PubMed 3 500 19,717| 44,324|0.0030 19,717 44,324 0.0030
CoauthorCS 15 6,805 18,333| 81,894/0.0164 18,333 81,894 0.0164
CoauthorPhysics | 5 8,415 34,493|247,962|0.0029 34,493 247,962 0.0029
AmazonComputer|10 767 13,752/287,209/0.0145 13,381 245,778 0.0149
AmazonPhoto 8 745 7,650|143,663|0.0209 7,487 119,043 0.0214

Label rate is the fraction of nodes in the training set for node classification tasks

Hyper-parameter Tuning and Model Selection. As the encoder function
fonn we use the graph convolution network (GCN) [8] with the propagation
rule at layer : HU+D = PReLU(]f)_%A]f)_%H(l)G), where A = A + Iy is
the adjacency matrix with self-loops, D is the diagonal degree matrix of A,
® € RIFXP is a learnable matrix, PReLU denotes the nonlinear parametric
rectified linear unit, and H(® = X,

We use an one-layer GCN-encoder (I = 1) and iterate the cluster updates
in Eq. (4) and (5) for 10 times. Since GIC’s cluster updates are performed in
the unit sphere (cosine similarity), we row-normalize the embeddings before the
downstream task.

GIC’s learnable parameters are initialized with Glorot [2] and the objective
is optimized using the Adam [7] with a learning rate of 0.001. We train for
a maximum of 2k epochs, but the training is early terminated if the training
loss does not improve in 20 or 50 consecutive epochs. The model state is reset
to the one with the best (lowest) training loss. For each dataset-task pair, we
perform model selection based on the validation set of the corresponding task
(except for clustering, in which we use the link prediction task, instead). We set
a € {0.25,0.5,0.75} (regularization of the two objective terms), 5 = {10,100}
(softness of the cluster assignments) and K € {32,128} (number of clusters) to
train the model, and keep the parameters’ triplet that achieved the best result
on the validation set. We determine these parameters once for each dataset-task
pair, so that the corresponding results are reported based on the same triplet.

Competing Approaches and Implementation. We compare the perfor-
mance of GIC against seventeen unsupervised and six semi-supervised meth-
ods and variants. The results for all the competing methods, except DGI and
sometimes GMI and MVGRL, were obtained directly from [5,13,15,18]. We
name VGAE-best and ARGVA-best the best performing variant of VGAE and
ARGVA methods, respectively. We implemented GIC using the Deep Graph
Library (DGL) [22] and PyTorch [14], as well by modifying DGI’s original
implementation (https://github.com/cmavro/Graph-InfoClust- GIC). All exper-
iments were performed on a Nvidia Geforce RTX-2070 GPU on a i5-8400 CPU
and 32 GB RAM machine.

https://github.com/cmavro/Graph-InfoClust-GIC

548 C. Mavromatis and G. Karypis

Table 2. Mean node classification accuracy (with standard deviations) in % over 20
runs and for two different train/val sets: balanced and imbalanced. The datasets are
randomly split in each run.

Train/Val. Unsupervised Semi-supervised
GIC DGI Best ‘ Worst
Imbalanced | Balanced | Imbalanced | Balanced | Balanced
CORA 81.7(1.5) |80.7(1.1) |80.2(1.8) 80.0(1.3) | 81.8(1.3) | 76.6(1.9)
CiteSeer 71.9(1.4) |70.8(2.0) | 71.5(1.3) 70.5(1.2) | 71.9(1.9) | 67.5(2.3)
PubMed 77.3(1.9) 77.4(1.9) | 76.2(2.0) 76.8(2.3) | 78.7(2.3) | 76.1(2.3)
CoauthorCS | 89.4(0.4) |89.3(0.7) |89.0(0.4) 88.7(0.8) 1 91.3(2.3) | 85.0(1.1)
Coauth.Phys | 93.1(0.7) |92.4(0.9) |92.7(0.8) 91.8(1.0) | 93.0(0.8) | 90.3(1.2)
Am.Comp. |81.5(1.0) |79.5(1.4) |79.0(1.7) 77.9(1.8) | 83.5(2.2) | 78.0(19.0)
Am.Photo 90.4(1.0) |89.0(1.6) |88.2(1.7) 86.8(1.7) 1 91.4(1.3) | 85.7(20.3)

Results are reported on the largest connected component (LCC) of the graph.
Semi-supervised methods: GCN [8], GAT [20], GraphSAGE [4], and MoNet [12].

5.2 Results

Node Classification. In unsupervised methods, the learned node embeddings
are passed to a downstream classifier that is based on logistic regression. Follow-
ing [18], we set the embedding dimensions to D = 64, unless otherwise stated.
Also, we sample 20 x#classes nodes as the train set, 30x#classes nodes as the
validation set, the remaining nodes are the test set for the classifier. The sets
are either uniformly drawn from each class (balanced sets) or randomly sam-
pled (imbalanced sets). In the Planetoid split [25], 1,000 nodes of the remaining
nodes are only used for testing. We use a logistic regression classifier, which is
trained with a learning rate of 0.01 for 300 or 1k epochs with Adam optimizer
and Glorot initialization.

Table 2 shows the performance of GIC compared to DGI and semi-
supervised methods. Leveraging cluster information benefits datasets as CORA
and PubMed, where GIC achieves a mean classification accuracy gain of more
than 1% over DGI. In CiteSeer, CoauthorCS and CoauthorPhysics, the gain
is slightly lower, but still more than 0.4%, since the abundant attributes of
each node makes the cluster extraction more challenging. In AmazonComputers
and AmazonPhoto, GIC performs significantly better than DGI with a gain of
more than 2%, on average. Due to the large edge density of these datasets, the
GNN-encoder aggregates information from multiple other nodes leading to rep-
resentations very similar to the global summary. In such cases, GIC’s objective
term is responsible for making the representations to contain different aspects
of information. In all cases, GIC performs better than the worst performing
semi-supervised method with a gain of more than 1.5% and as high as 4.3%.

Table 3 further illustrates the performance of GIC compared to recently
developed unsupervised methods based on MI maximization. The table shows

Maximizing Coarse-Grain Mutual Information in Graphs 549

Table 3. Mean node classification accuracy (with standard deviations) for the Plane-
toid split.

GIC DGI GMI MVGRL
Dx D =64 |Dx D =64 |Dx D =64 |Dx D =64
CORA |83.2(0.4)|81.4(0.5) |82.3(0.6) | 79.2(0.7) |83.0(0.3) | 77.7(0.4) | — 76.9(0.4)

CiteSeer | 73.4(0.4) | 71.6(0.6) | 71.8(0.7) |69.0(0.9) | 73.0(0.3) | 68.4(0.9) | 73.3(0.5) | 70.8(0.7)

PubMed | 80.3(0.6) | 78.3(1.3) | 76.8(0.6) | 77.5(1.2) |80.1(0.2) | OOM 80.1(0.7) | 78.5(0.8)
D=x: Results obtained by the corresponding papers. For GIC, Dx = 300, 400, 150.
“O0OM”: out of GPU memory. “—”: Results were not reported for the Planetoid split.

Table 4. Link prediction scores: Mean area Under Curve (AUC) score [1] and average
Precision (AP) score [19] with standard deviations over 10 runs (in %). Top: D = 16,
Bottom: Dx.

CORA CiteSeer PubMed

AUC AP AUC AP AUC AP
DeepWalk [16] 83.1 85.0 80.5 83.6 84.4 84.1
VGAE-best [9] 91.4 £0.01/92.6 £0.01/90.8 £0.02|92.0 £ 0.0296.4 £ 0.00 | 96.5 £ 0.00
ARGVA-best [13]]92.4 93.2 924 93.0 96.8 97.1
DGI [21] 89.8+0.8 [89.74+1.0 |955£1.0 [95.7+1.0 |91.24+0.6 [92.2+0.5
GIC 93.5+0.6 |93.3+0.7 |97.0 £ 0.5 |96.8+0.5 |93.74+0.3 |93.5+0.3
DGI 94.8+0.7 |95.24+0.8 |985+0.4 [98.4+0.3 |93.94+04 93.9+0.4
GMI [15] 95.1£0.3 95.6£0.2 97.8£0.1 |97.4+0.2 | OOM OOM
GIC 96.0 £ 0.2 |96.1 +0.4 |98.9+0.2 |99.0+0.1 |95.54+0.1 [95.6 0.2

For DGI only, we set D = 32 which greatly improves its results compared to D = 16.

that leveraging additional coarse-grain information (GIC, MVGRL) helps better
than leveraging extra fine-grain information (GMI). Moreover, GIC is the only
method that consistently performs better than DGI across all datasets with
varying embedding size D. The performance improvement for other methods
(GIC, MVGRL) is evident only for large D, e.g., D = 512 in the papers.

Link Prediction. In link prediction, some edges are hidden in the input graph
and the goal is to predict the existence of these edges based on the computed
embeddings. The probability of an edge between nodes ¢ and j is given by
U(hiThj), where o is the logistic sigmoid function. We follow the setup described
in [9]: 5% of edges and negative edges as validation set, 10% of edges and negative
edges as test set.

Table 4 illustrates the benefits of GIC for link prediction tasks. GIC out-
performs DGI in all three datasets, since GIC’s clustering is able to preserve
and reveal useful interactions between nodes which may hint the existence of
links between them. GIC also outperforms VGAE and ARGVA, in CORA and
CiteSeer by 1%-2% and 4.5%5.5%, respectively, even though these methods
are specifically designed for link prediction tasks. In PubMed, which has fewer
attributes to exploit, the performance of GIC is slightly worse than that of VGAE

550 C. Mavromatis and G. Karypis

Table 5. Clustering results with respect to the true labels.

CORA CiteSeer PubMed

Acc | NMI | ARI | Acc |NMI | ARI | Acc |NMI | ARI
K-means 49.2 | 31.1 |23.0 | 54.0 |30.5 [27.9 |139.8 | 0.1 | 0.2
DeepWalk [16] 484 132.7 |24.3 133.7 | 88 | 9.2 /684 |27.9 |29.9
TADW [24] 56.0 |44.1 [33.2 |45.5 [29.1 |22.8 1354 | 0.1 | 0.1

VGAE-best [9] 60.9 [43.6 |34.7 140.8 |17.6 |12.4 |67.2 |27.7 |27.9
ARGVA-best [13] | 71.1 |52.6 |49.5 |58.1 |33.8 |30.1 | 69.0 30.5 |30.6
DGI [21] 59.0 138.6 |33.6 |57.9 |30.9 |27.9 |49.9 |15.1 |14.5

GIC 72.5|53.7|50.8/69.6 45.3 46.5 67.3 | 31.9 29.1
Acc: accuracy, NMI [11]: normalized mutual information, ARI [11]: average
rand index in percents (%).

and ARGVA. It is noteworthy, that GIC’s proposed objective term works bet-
ter than GMI which combines a mutual information objective term with a link
prediction term.

Clustering. In clustering, the goal is to cluster together related nodes (e.g.,
nodes that belong to the same class) without any label information. The com-
puted embeddings are clustered into K = #classes clusters with K-means. We
set D = 32 and the evaluation is provided by external labels, the same used for
node classification.

Table 5 illustrates GIC’s performance for clustering. GIC performs better
than other unsupervised methods in two out of three datasets (CORA and Cite-
Seer), and performs almost equally with ARGVA in PubMed. The gain over DGI
is significantly large in all datasets, and can be as high as 15% to 18.5% for the
NMI metric. Due to its interactive clustering, GIC can be considered an efficient
method when the downstream task is clustering.

Ablation and Parameter Study

Effect of the Loss Function. We provide results w.r.t. silhouette score (SIL) [17],
which is a clustering evaluation metric, of the learned representation after their
t-SNE 2D projection [10]. Table 6 illustrates that using the novel objective term
Le (a # 1) outperforms the baseline DGI objective £; in all experiments. Pri-
marily, using a single global vector to optimize the node representations may
lead to certain pitfalls, especially when the embedding size and thus, the global
vector’s capacity, is low (Table 6a). Moreover, accounting for both cluster-level
and graph-level information leads to better representations, while ignoring some
of this information (« = 0 or a = 1) worsens the quality of the representa-
tions. This is also true when hyperparameters 8 and K are not optimized (Avg
vs. Max in Table 6b), since the soft assignment of the clusters and their joint
optimization during learning alleviates this need.

Maximizing Coarse-Grain Mutual Information in Graphs 551

Table 6. SIL scores with varying embedding size D for CORA.

(b) Performance gain percentage (in %) w.r.t. SIL over
DGI: 3 € {10,100}, K € {#classes, 32, 128}.
(a) SIL scores with varying embedding CORA CiteSeer PubMed
size D for CORA.
D=16 D=32 D=512

Avg Max Avg Max Avg Max

a= 33 183 7.8 193 158 221
a=.25 220 325 13.8 22.0 214 324
a=.5 27.8 38.2 12.0 214 43.1 494
a=.75 25.7 309 7.5 10.3 47.2 62.3

a =05 (GIC) 0.195 0.229 0.257
a=1(DGI) -0.121 —0.012 0.222

“x”: Global graph summary Colors: Labels
“e”: Cluster summaries SIL: Silhouette score

K =32 K =128 K=17 K =32 K =128
.o » a3 . ot &

N

o

SIL=0.248 SIL=0.250 SIL=0.264 SIL=0.224 SIL=0.234 SIL=0.245
(a) =10.5,8=10 (b) @ =0.5,8 =100

Fig. 2. t-SNE plots for CORA dataset and the corresponding silhouette scores (SIL).
SIL score for a =1 is 0.212.

Visualization of the Clusters. In Fig. 2, we plot the t-SNE 2D projection of the
learned node representations (D = 64) for the CORA dataset. A large 3, e.g.,
B =100 in Fig. 2b (K = 128), makes the distances between the cluster centers
larger compared to a smaller one, e.g., § = 10 in Fig. 2a (K = 128). Increasing K
generally helps, e.g., Fig. 2a (K = 128) compared to Fig. 2a (K = 7), however,
that does not mean that all clusters will be distinct.

6 Conclusion

We have presented Graph InfoClust (GIC), an unsupervised graph representa-
tion learning method which relies on leveraging cluster-level content. GIC iden-
tifies nodes with similar representations, clusters them together, and maximizes
their mutual information. This enables us to improve the quality of node repre-
sentations with richer content and obtain better results than existing approaches
for tasks like node classification, link prediction, clustering, and data visualiza-
tion.

Acknowledgements. This work was supported in part by NSF (1447788, 1704074,
1757916, 1834251), Army Research Office (W911NF1810344), Intel Corp, and the Dig-
ital Technology Center at the University of Minnesota. Access to research and com-
puting facilities was provided by the Digital Technology Center and the Minnesota
Supercomputing Institute.

552

C. Mavromatis and G. Karypis

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine

learning algorithms (1997)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (2010)

Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2016)

. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large

graphs. In: Advances in Neural Information Processing Systems (2017)

Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: Proceedings of International Conference on Machine Learning (2020)
Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. In: International Conference on Learning Representations
(2019)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on
Bayesian Deep Learning (2016)

Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
(2008)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval
(2008)

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model CNNs. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5115-5124 (2017)

Pan, S., Hu, R., Fung, S.F., Long, G., Jiang, J., Zhang, C.: Learning graph embed-
ding with adversarial training methods. IEEE Trans. Cybern. (2019)

Paszke, A., et al.: Automatic differentiation in pytorch (2017)

Peng, 7., et al.: Graph representation learning via graphical mutual information
maximization. In: Proceedings of the Web Conference (2020)

Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014)

Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987)

Shchur, O., Mumme, M., Bojchevski, A., Glinnemann, S.: Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868 (2018)

Su, W., Yuan, Y., Zhu, M.: A relationship between the average precision and the
area under the ROC curve. In: Proceedings of the 2015 International Conference
on the Theory of Information Retrieval (2015)

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

Velickovié, P., Fedus, W., Hamilton, W.L., Lio, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. In: International Conference on Learning Representations (2019)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1811.05868

22.

23.

24.

25.

Maximizing Coarse-Grain Mutual Information in Graphs 553

Wang, M., et al.: Deep graph library: towards efficient and scalable deep learning
on graphs. In: ICLR Workshop (2019)

Wilder, B., Ewing, E., Dilkina, B., Tambe, M.: End to end learning and opti-
mization on graphs. In: Advances in Neural and Information Processing Systems
(2019)

Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning
with rich text information. In: Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015)

Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning
with graph embeddings. In: Proceedings of the 33rd International Conference on
International Conference on Machine Learning (2016)

	Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs
	1 Introduction
	2 Notation, Definitions, and Problem Statement
	3 Graph InfoClust (GIC)
	3.1 Motivation and Overview
	3.2 Coarse-Grain Loss
	3.3 Coarse-Grain Summaries
	3.4 Fake Input and Discriminators

	4 Related Work
	5 Experimental Methodology and Results
	5.1 Methodology and Configuration
	5.2 Results

	6 Conclusion
	References

