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We investigate the effects of array geometry and flow orientation on transport of finite-sized
particles in ordered arrays using Stokesian dynamics simulations. We find that quiescent diffusion
is independent of array geometry over the range of volume fraction of the nanoposts examined.
Longitudinal dispersion under flow depends on the direction of incident flow relative to the array
lattice vectors. Taylor-Aris behavior is recovered for flow along the lattice directions, whereas
a non-monotonic dependence of the dispersion coefficient on the Péclet number is obtained for
flow orientations slightly perturbed from certain lattice vectors, owing to a competition between
directional locking and spatial velocity variations.

I. INTRODUCTION

Understanding the transport of nanoparticles through
geometrically complex porous media has implications
for many industrial and natural processes, including
oil recovery [1], drug delivery [2, 3], the dispersion
of nutrients, minerals, and contaminants through soils
[4–6], and separations using techniques such as gel
electrophoresis [7] and chromatography [8]. One key
aspect influencing nanoparticle transport is the nature
of their interactions with the surrounding medium,
which include steric repulsions, van der Waals and
depletion-induced attractions, and hydrodynamic and
electrostatic forces. The effects of these interactions
on transport behavior are strongly influenced by the
structure of the porous medium and become most
pronounced in strong confinement, when characteristic
length scales within the porous medium, such as the pore
or throat diameter, are comparable to the nanoparticle
size [9–17]. Improved understanding of how the structure
of the porous medium influences these interactions and,
hence, nanoparticle dispersion is critical to developing
strategies to control particle transport in a variety of
practical settings.

Although the finite size of nanoparticles likely
influences their transport in highly confined media,
theoretical and computational studies of pore-scale
transport have primarily focused on the transport of
infinitesimal tracers. Previous studies have examined
the effects of different physical factors, including flow
conditions [18–21], local packing geometry [18, 19], and
pore shape [21], on the dispersion of tracers. Because the
tracer particles in these studies are infinitesimally sized,
however, their physical interactions with the medium do
not play an important role in the dispersion. Thus, there
remains a need to understand the effect of these physical
interactions on the transport of finite-sized particles in
strongly confined porous media. Two seminal studies
used Stokesian dynamics (SD) simulations to investigate
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the effects of medium configuration and particle size on
transport through spatially periodic fibrous media at
low Péclet numbers (Pe) [9, 10]. The global transport
coefficients from the Stokesian dynamics simulations
were found to be in good agreement with predictions
from a less rigorous effective medium approach based
on the Brinkman equation. Nonetheless, the effects of
medium structure on particle dispersion have not been
systematically investigated over a broad range of flow
conditions and thus remain incompletely understood.

In our recent study [22], we performed SD simulations
to investigate the effects of steric and hydrodynamic
interactions and system dimensionality on particle
transport in square nanopost arrays. Whereas both
types of interactions hinder particle diffusion under
quiescent conditions, they were found to enhance
longitudinal particle dispersion under flow. We also
found that longitudinal dispersion is similar in two- and
three-dimensional models of nanopost arrays. Here, we
extend our previous work by employing SD to examine
the effects of array structure and flow orientation in
similar systems. Specifically, we compare particle
diffusion and dispersion in three-dimensional square and
hexagonal arrays over a broad range of flow rates and
orientations. We find that quiescent diffusion decreases
as the volume fraction of nanoposts is increased,
as expected, and is approximately independent of
array geometry for the systems examined. Dispersion
under flow depends on the direction of the incident
flow relative to the array lattice vectors. For flow
oriented along the lattice vectors, the longitudinal
dispersion coefficient approximately recovers Taylor-Aris
scaling behavior at high Pe. For other orientations,
however, the qualitative behavior of the longitudinal
dispersion coefficient depends on the nanopost volume
fraction and flow angle. Notably, at large nanopost
volume fractions (strong confinement), we observed
non-monotonic dependence of the longitudinal dispersion
coefficient on Pe when the flow orientation is slightly
perturbed from certain lattice vectors. This intriguing
behavior is found to arise from a competition between
the directional locking of particle trajectories onto single
lattice vectors caused by non-hydrodynamic interactions
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with the nanoposts [23], and increased spatial variations
in the fluid velocity at high Pe, which act to diminish
and enhance longitudinal dispersion, respectively.

II. METHODS

To investigate the effects of packing arrangement and
flow orientation on particle transport, we performed SD
simulations of three-dimensional square and hexagonal
arrays of nanoposts. For convenience, the model
systems and analyses are described by employing a set
of dimensionless units in which the diameter of the
transported particle dp and kBT are defined as the
fundamental measures of length and energy, respectively,
where kB is Boltzmann’s constant and T is temperature.
The diffusive time scale τd = 3πηd3

p/4kBT is used as the
measure of time, where η is the dynamic fluid viscosity.
Hence, dp = kBT = τd = 1 in the adopted units.

Each nanopost was modeled as an immobile chain of
20 tangential spheres of diameter dnp = 1. To construct
the arrays, the chains were arranged on periodic square
(Fig. 1(a)) and hexagonal (Fig. 1(b)) lattices in the x−y
plane, with their major axes aligned along the z-direction
of the simulation cell. The solid volume fraction φ
for square and hexagonal arrays is φ = πd2

np/6L2 and

φ = πd2
np/3
√

3L2, respectively, where L is the lattice
spacing. Similar nanopost models have been employed
in previous SD studies of confined particle transport
[9–12, 17, 22]. In our study, we used 3× 3 arrays, which
was found in our previous work [22] to be sufficiently large
to minimize well-known finite size effects associated with
the periodicity of the systems [17, 24–26].

Pressure-driven flow through the arrays was mimicked
by imposing a uniform suspension velocity V∞ =
V∞r|r|−1, where V∞ is the magnitude and r is a vector
specifying the direction of the flow. The flow orientation

θ = arccos
(

V∞·a
|V∞||a|

)
is defined relative to the lattice

vector a running parallel to the x-axis of the simulation
cell (Fig. 1). For clarity, we classify the relative
orientations based on the characteristic type of flow
pattern they produce. Lattice orientations θl correspond
to cases where r = n1a + n2b for ni∈Z such that it lies
along an integer linear combination of the lattice vectors
a and b. These orientations produce flow patterns
characterized by streamlines that have a periodicity
commensurate with an integer number of unit cells (Fig.
2). All other cases for r are classified as non-lattice
orientations θnl and generate flow patterns with aperiodic
streamlines (Fig. 2). In our simulations, we examined
a variety of lattice and non-lattice orientations ranging
from 0◦− 45◦ and 0◦− 30◦ for the square and hexagonal
array, respectively.

The simulations were conducted under dilute
conditions by considering the transport of a single
particle through the nanopost arrays. Particle
trajectories were propagated using the SD algorithm

described in our previous study [22], employing a
integration time step dt in the range of 10−7 − 10−5

depending on the value of V∞. For large V∞, an
appropriate time step was identified by choosing dt such
that displacements due to diffusion and advection were
on the same order (i.e.

√
2kBTdt/3πηdp ∼ V∞dt). In

each case, additional tests were performed to confirm
that computed transport properties were insensitive to
further reduction of dt (< 3% variation). Hydrodynamic
interactions between the diffusing particle and nanoposts
were rigorously modeled by including both far-field
and near-field components. Far-field hydrodynamic
interactions were treated using the Ewald summation
method [17, 24–26]. To prevent unphysical overlaps,
hard-sphere excluded volume interactions between the
diffusive particle and nanoposts were modeled using the
standard rejection scheme [12, 17]. All other details of
the SD simulations are identical to those reported in ref.
[22].

Transport properties were computed by averaging over
an ensemble of 100 independent particle trajectories,
and statistical uncertainties were estimated from
the standard error of the mean. Particle transport
under quiescent conditions was characterized by
computing the diffusivity from the long-time limit
of the ensemble-averaged, in-plane mean-square
displacement (MSD), Dq = lim∆t→∞

〈
∆r2(∆t)

〉
/4∆t.

Similarly, particle transport under flow conditions was
characterized by computing the asymptotic longitudinal
dispersion coefficient (dispersion in the direction of flow)
DL [27, 28]:

DL ≡ lim
t→∞

1

2

dσ2
L(t)

dt
, (1)

where σ2
L(t) =

〈
(∆rL(t)− 〈VL〉t)2

〉
is the particle MSD

evaluated in the frame of reference of the average
longitudinal velocity 〈VL〉. The velocity 〈VL〉 was
estimated from a linear fit to the average particle
displacements over time. We normalize Dq and DL

by the diffusivity of the freely-diffusive particle D0 =
kBT/3πηdp.

III. RESULTS AND DISCUSSION

We first examined the particle diffusivity under
quiescent conditions in both array types as a function of
the solid volume fraction φ (Fig. 3). As expected, the
normalized diffusivity Dq/D0 decreases monotonically
with increasing φ, dropping to approximately 50%
of the free diffusivity D0 as φ is increased from
0 to 0.058. This behavior reflects the slowing of
particle dynamics due to increasing steric hindrance and
hydrodynamic drag from the nanoposts as the solid
volume fraction is increased. The particle diffusivities
in the square and hexagonal arrays with the same φ are
nearly indistinguishable, indicating that the quiescent
dynamics are insensitive to the differences in array
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FIG. 1. Two-dimensional orthographic projection of the (a)
square and (b) hexagonal nanopost arrays in the x− y plane
of the simulation cell. (c) Three dimensional perspective view
of a section of a hexagonal nanopost array. The spheres
representing the nanoposts (grey, np) and the diffusing
particle (red, p) have the same diameter (i.e., dnp = dp).

FIG. 2. Streamlines for (a) lattice (θl = 45◦) and (b)
non-lattice (θnl = 20◦) flow orientations in square arrays with
φ = 0.028.

geometry for the two types of systems considered here.
These findings are consistent with previous smooth
particle hydrodynamics simulations, which show that the
diffusivity of infinitesimal tracers is nearly independent of
geometry in spatially periodic porous media with φ = 0.4
(porosity of 0.6) [29]. Thus, for both finite-sized particle
and tracers, simulations suggest that φ, which determines
the effective degree of confinement, is the dominant factor
controlling particle transport under quiescent conditions.

Particle transport under flow conditions was
investigated by simulating systems with φ = 0.028
and 0.058 for each array geometry. The behavior
of the normalized average particle velocity 〈VL〉/V∞
as a function of flow orientation θ (Fig. 4) depends
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FIG. 3. Normalized in-plane diffusion coefficients Dq/D0 as
functions of nanopost volume fraction φ in square (circles)
and hexagonal (triangles) arrays. Estimated uncertainties are
smaller than the symbol sizes.

on the relative importance of advective and diffusive
particle transport characterized by the dimensionless
Péclet number Pe = 〈VL〉dp/D0. For uniform flow
velocity V∞ = 5 (Pe . 10), advective and diffusive
particle transport mechanisms compete. In this case,
〈VL〉/V∞ attains a maximum for the lattice orientation
θl = 0◦ and then gradually decreases and becomes
almost constant as θ increases. As V∞ and hence Pe
increase, advection becomes dominant and the behavior
of 〈VL〉/V∞ becomes increasingly sensitive to changes
in θ. For V∞ > 5 (Pe > 10), 〈VL〉/V∞ exhibits local
maxima for lattice orientations θl that yield periodic
flow patterns (Fig. 4(a),(b)). The particle velocity
decreases as the incident flow is perturbed away from
these orientations. In particular, slight deviations from
orientations along one of the primitive lattice vectors
{a,b} lead to precipitous drops in 〈VL〉/V∞ that become
more prominent as V∞ increases. Increasing the solid
volume fraction from φ = 0.028 to 0.058 also markedly
enhances the sensitivity of 〈VL〉/V∞ to changes in θ (Fig.
4 (c),(d)). The local maxima of the average velocity for
lattice orientations θl at large flow rates is in agreement
with earlier Brownian dynamics simulations of DNA
electrophoresis through tilted hexagonal post arrays
[30] and molecular dynamics simulations of finite-sized
particles through a regular lattice of cylindrical obstacles
[31].

The variation of average velocity with flow orientation
at large V∞ arises from changes in the frequency of
particle collisions with the nanoposts, which slow the
motion of the particles. The mean collision frequency
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FIG. 4. Normalized average particle velocities 〈VL〉/V∞ as
functions of flow orientation θ in (a,c) square and (b,d)
hexagonal arrays with φ = 0.028 (top row) and φ = 0.058
(bottom row). The lattice orientations θl are indicated on
the top y-axis in panels (a, b).

〈C〉 (the average number of collisions per unit distance
travelled) decreases with increasing V∞ for lattice flow
orientations θl (not shown), leading to faster transport
through the nanopost array [30]. By contrast, the
collision frequency increases or remains nearly constant
with increasing V∞ for non-lattice flow orientations θnl,
leading to a decrease in 〈VL〉/V∞ [30].

The most pronounced decreases in 〈VL〉/V∞ occur
when the flow is slightly perturbed from θl orientations
along the primitive lattice vectors ({0◦, 45◦} and
{0◦, 30◦} for square and hexagonal array, respectively)
(Fig. 4). These abrupt decreases arise due to directional
locking, in which particle dynamics become dominated
by advection along a specific vector over a finite range
of θ [23]. To visualize this directional locking behavior,
we computed the log-probability density distribution of
the particle positions in the x− y plane log10 P (x, y) for
selected flow orientations θ at V∞ = 1000 (Figs. 5 and
6). When the flow is oriented along a or b, particles
are able to advect along unobstructed paths through
the void spaces between the rows of nanoposts. When
the flow direction is slightly perturbed from either of
these directions (e.g., {1.25◦, 43.75◦} and {1.25◦, 28.75◦}
for square and hexagonal arrays, respectively), however,
the particle trajectories become locked along one of the
lattice vectors, resulting in frequent (periodic) collisions
with the nanoposts that decrease their velocity. Indeed,
for a flow orientation of θnl = 1.25◦ in square and
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FIG. 5. Log-probability density distributions of particle positions log10 P (x, y) for different flow orientations θ in square
arrays at V∞ = 1000 for φ = 0.028 (top row) and φ = 0.058 (bottom row). The intense blue color corresponds to the value
log10 P (x, y) < −3.

FIG. 6. Log-probability density distributions of particle positions log10 P (x, y) for different flow orientations θ in hexagonal
arrays at V∞ = 1000 for φ = 0.028 (top row) and φ = 0.058 (bottom row). The intense blue color corresponds to the value
log10 P (x, y) < −3.

hexagonal arrays with φ = 0.058, we observe “perfect”
directional locking, in which all particles move closely
along the lattice vector a (See Movies S1 and S2 in
Supplemental Material [32]). In this case, the particles
advect towards the centers of nanoposts, leading to
frequent, direct collisions and a concomitant decrease in
〈VL〉/V∞ as V∞ increases (Fig. 4(c),(d)).

We also examined the normalized longitudinal

dispersion coefficient DL/D0 (along the direction of flow)
as a function of flow angle θ for different values of the
imposed uniform fluid velocity V∞ (Fig. 7). For V∞ = 5,
DL/D0 is maximum at θl = 0◦, but decreases slightly
(by less than an order of magnitude) with increasing
θ. As advection becomes increasingly dominant at
larger V∞, however, the sensitivity of DL/D0 to flow
orientation increases markedly, varying by as much as
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4 orders of magnitude with θ at the largest velocity
(V∞ = 5000) examined. In the advection dominated
regime (V∞ > 5, Pe > 10), DL/D0 exhibits local
maxima for lattice flow orientations θl (Fig. 7 (a),(b)) and
decreases as θ is perturbed away from these orientations.
Similar general trends are observed at both solid volume
fractions examined, except for the appearance of new
local extrema for V∞ > 80 at flow orientations slightly
perturbed from θl orientations along a or b in the systems
with φ = 0.058 (Fig. 7 (c),(d); near {1.25◦, 43.75◦}
and {1.25◦, 28.75◦} for square and hexagonal arrays,
respectively). The strong dependence of the longitudinal
dispersion coefficient on flow orientation at large V∞ is in
contrast with an earlier simulation study of the transport
of infinitesimal tracers through two-dimensional square
nanopost arrays at Pe = 102, which reported a sharp
decrease in DL upon increasing θ over the range 0− 10◦

and a wide plateau region for θ = 15− 45◦ [33].

The sensitivity of DL/D0 to flow angles at large V∞
arises due to the interplay between flow streamlines and
particle collisions with the nanoposts. For lattice flow
orientations θl, periodicity of the streamlines results
in channel-like flow between the rows of nanoposts on
sufficiently large length scales. With the emergence of
channel-like flow, the longitudinal dispersion coefficient
is expected to increase rapidly with increasing V∞
and eventually recover Taylor-Aris dispersion behavior
at sufficiently high flow velocities. For non-lattice
orientations θnl, however, the flow streamlines are
aperiodic and direct particles to collide more frequently
with the nanoposts, leading to slower dynamics. As a
result, DL/D0 increases more slowly with increasing V∞
for θnl compared to periodic flow orientations θl.

Consistent with these expectations, the correlation
between DL/D0 and the normalized (dimensionless)
mean collision frequency 〈C〉 dp exhibits distinct trends
for the two types of flow orientations (Fig. 8). For
θl, the collision frequency decreases and longitudinal
dispersion increases sharply with increasing V∞. By
contrast, for θnl, the collision frequency increases
or remains approximately constant and longitudinal
dispersion increases more slowly with V∞.

Particle dispersion arises from a combination of
advection and diffusion at the pore scale [34]. Thus, we
also examined the behavior of DL/D0 with its natural
dimensionless scaling variable, the Péclet number Pe.
For θl orientations along a or b in square arrays with
φ = 0.028, DL/D0 exhibits a gradual initial increase and
then crosses over to ∝Pen scaling with n ≈ 2 at Pe∼ 10.
(Fig. 9(a)). The recovery of Taylor-Aris behavior (i.e.,
quadratic scaling with Pe) at Pe> 10, where advection
is the dominant transport mechanism, is in accord with
earlier theoretical [20] and simulation [18, 19, 33] studies
of tracer dispersion in periodic ordered media. For other
lattice orientations θl, Taylor-Aris behavior is observed at
high Pe, but the crossover to quadratic scaling is delayed
to Pe≈ 500 (Fig. 9(a)). Similar qualitative behavior is
also observed in the square arrays with φ = 0.058, but
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the magnitude of DL/D0 is decreased (Fig. 9(c)). This
behavior arises because the distribution of streamlines
that are sterically accessible to the center of the particles
becomes increasingly narrow with increasing φ [22].

By contrast, qualitatively different trends are observed
for the non-lattice flow orientations θnl. Notably, for the
arrays with φ = 0.028, DL/D0 exhibits an intermediate
regime with ∝Pen scaling with 1 < n < 2 before
turning down at Pe& 103 (Fig. 9(b)). For θnl = {1.25◦,
43.75◦}, which are slightly perturbed from orientations
along the primitive lattice vectors {a,b}, increasing φ
from 0.028 to 0.058 shifts the downturn to lower Pe
and results in the emergence of non-monotonic behavior
and a second power-law regime at Pe> 5 × 103 (Fig.
9(b),(d)). This non-monotonic behavior results from
two competing effects. As Pe increases, directional
locking becomes increasingly pronounced for these flow
orientations, narrowing the distributions of streamlines
sampled by the particles, which acts to decrease particle
dispersion. Increasing Pe, however, also leads to
larger spatial variations of the fluid velocity throughout
the nanopost arrays, which enhances dispersion. The
latter effect ultimately dominates, leading to a second
power-law regime at sufficiently high Pe.

Longitudinal dispersion in the hexagonal arrays is
qualitatively similar (Fig. 10) to that in the square
arrays, including the presence of non-monotonic behavior
(or pronounced plateaus) at φ = 0.058 for orientations
θnl = {1.25◦, 28.75◦} that are slightly perturbed from the
lattice vectors {a,b}, where strong directional locking is
observed. At the same φ and Pe for θl = 0◦, however,
DL/D0 is slightly larger in the square arrays. This small
disparity is due to the fact that the spacing between
rows in the square arrays is slightly larger, allowing the
centers of the particles to access a broader distribution
of streamlines.

Our findings are at odds with an earlier theoretical
study of tracers in periodic ordered arrays [20], which
predicted thatDL/D0 is independent of Pe for non-lattice
flow orientations. The presence of a downturn followed
by a second power-law regime for φ = 0.058 and θnl =
{1.25◦, 43.75◦} is consistent with the behavior observed
in a computational study of tracer transport through
two-dimensional square arrays [18]. In that study,
however, the qualitative behavior of DL/D0 was found to
be insensitive to θ for several flow orientations between 0
and 45◦ and no non-monotonic behavior was observed.
Additionally, we observe that dispersion decreases in
both array types as φ increases, whereas previous studies
report the opposite behavior for tracers in square arrays
[19]. Although the cause for the discrepancy between
our results and those reported in these previous studies
[18–20] is unclear, we posit that it may be due to the use
of finite-sized particles rather than tracers in our study.
This hypothesis is supported by simulations showing that
DL/D0 increases monotonically with Pe for particles of
a smaller relative size (dp = dnp/5 at the same φ = 0.058
and flow orientation θnl = 1.25◦, not shown). This
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FIG. 9. Normalized longitudinal dispersion coefficients
DL/D0 as functions of Péclet number Pe in square arrays
with φ = 0.028 (top row) and φ = 0.058 (bottom row) for
(a,c) θl and (b,d) θnl flow orientations.

result is qualitatively consistent with the previous study
of infinitesimal tracers [18], but additional studies are
needed to fully understand the effects of particle size on
dispersion behavior.

IV. CONCLUSIONS

We performed Stokesian dynamics simulations to
study the effects of array geometry and flow orientation
on the transport on finite-sized particles through
square and hexagonal nanopost arrays. Under
quiescent conditions, the particle diffusivity D0 decays
monotonically upon increasing the nanopost volume
fraction φ due to enhanced steric hindrance and
hydrodynamic drag in strong confinement, but is
independent of the array geometry over the range of φ
investigated. Under flow, the behavior of the normalized
longitudinal dispersion coefficient DL/D0 depends on
the direction of incident flow relative to the lattice
vectors. For lattice flow orientations θl, DL/D0 exhibits
asymptotic scaling behavior (i.e., quadratic scaling) at
large Pe consistent with Taylor-Aris dispersion. For
non-lattice flow orientations θnl, however, the scaling
behavior of DL/D0 is strongly influenced by both φ and
flow direction. Specifically, we observe non-monotonic
dependence of DL/D0 on Pe for flow angles slightly
perturbed away from the primitive lattice vectors {a,b}
for large φ owing to the competition between directional
locking and spatial variations in fluid velocity.
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DL/D0 as functions of Péclet number Pe in hexagonal arrays
with φ = 0.028 (top row) and φ = 0.058 (bottom row) for
(a,c) θl and (b,d) θnl flow orientations.

The simulations in this study provide insights into
the effects of array geometry and flow direction on

the transport of finite-size particles in ordered arrays,
similar to those used in separations techniques such
as deterministic lateral displacement [35, 36] and
hydrodynamic chromatography [37–39]. Although we
only included purely repulsive steric interactions between
the particles and nanoposts in our models, other types
of interactions including van der Waals, electrostatic,
and depletion forces may also be present in many
applied settings. Additionally, there may be variability
in nanopost size and spacing in experimental systems,
resulting in deviations from the perfectly ordered arrays
considered here. Nonetheless, the effects of different
types of particle-nanopost interactions and structural
defects on particle dispersion through nanopost arrays
remain incompletely understood. We anticipate that the
computational techniques and models employed in this
study can be adapted to address these open questions in
future work.
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