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Abstract

Given a set of a spatially distributed demand for a specific commodity, potential facility locations, and drones, an agency is
tasked with locating a pre-specified number of facilities and assigning drones to them to serve the demand while respecting
drone range constraints. The agency seeks to maximize the demand served while considering uncertainties in initial battery
availability and battery consumption. The facilities have a limited supply of the commodity being distributed and also act as a
launching site for drones. Drones undertake one-to-one trips (from located facility to demand location and back) until their
available battery energy is exhausted. This paper extends the work done by Chauhan et al. and presents an integer linear pro-
gramming formulation to maximize coverage using a robust optimization framework. The uncertainty in initial battery avail-
ability and battery consumption is modeled using a penalty-based approach and gamma robustness, respectively. A novel
robust three-stage heuristic (R3SH) is developed which provides objective values which are within 7% of the average solution
reported by MIP solver with a median reduction in computational time of 97% on average. Monte Carlo simulation based
testing is performed to assess the value of adding robustness to the deterministic problem. The robust model provides higher
and more reliable estimates of actual coverage under uncertainty. The average maximum coverage difference between the
robust optimization solution and the deterministic solution is 8.1% across all scenarios.

Drones are increasingly being considered for diverse
applications such as emergency response and disaster
management (/—3), agriculture (4-6), and commercial
package deliveries (7). Applications of drones and
unmanned aerial vehicles (UAVs) are expected to
increase over the next few decades as they can access
locations with limited or damaged roadway infrastruc-
ture. Moreover, technological advances in lighter frames
(8), control algorithms (9), batteries (/0), and removal of
existing flight regulations (//) is expected to expedite
large scale drone and UAYV adoption.

Drones have limited range restricted by battery capac-
ity. Often the maximum range decreases with the pay-
load. Therefore, drone launching facilities are required
to make deliveries in a large scale urban area. Recently,
Chauhan et al. (/2) developed a mixed-integer linear pro-
gram called maximum coverage facility location problem
with drones (MCFLPD) and an efficient three-stage
heuristic (3SH) to select a pre-specified number of drone
launching sites with resource capacities, allocation of a

pre-specified number of drones to each launching site to
make deliveries, and assignment of spatially distributed
demand locations to each launching site and drones. The
MCFLPD formulation assumed a deterministic battery
capacity and consumption rate. It is well known that the
battery capacity and consumption can vary significantly
based on weather—temperature and wind conditions—
which can constrain the maximum range. This paper
extends the MCFLPD problem by using a robust optimi-
zation framework to capture the uncertainty in battery
capacity and consumption. This paper develops a new
Robust MCFLPD (RMCFLPD) to capture uncertainty
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in battery capacity and consumption rate. An efficient
decomposition solution procedure called robust three-
stage heuristic (R3SH) is provided. Computational anal-
ysis is performed on a real-world case study in Portland,
OR which demonstrates the value of the heuristic and
the need for capturing battery capacity and consumption
rate uncertainty. The RMCFLPD model studied in this
work is the first to incorporate battery consumption and
capacity uncertainty in a framework which models drone
energy consumption with payload and distance in a max-
imum coverage location problem setting. We also pro-
vide an efficient decomposition-based solution heuristic
which exploits the problem structure.

The literature review is described next, followed by the
problem formulation and solution algorithm. Discussion
of computational analysis conducted on a real-world case
study in Portland, OR is then presented followed by the
conclusions and directions for future research.

Literature Review

Several researchers have focused on developing interest-
ing variants of the traveling salesman and vehicle routing
problems focusing on drone applications such as the fly-
ing sidekick traveling salesman problem where a drone
and truck make deliveries together (/3-22) to study a
variant of the vehicle routing problem with drones. In
general, incorporating drones into the existing fleet was
found to increase reliability and efficiency. In this paper,
we focus on drone-based deliveries only and do not con-
sider the integration of drones into a trucking fleet.
Dorling et al. (23) and Choi and Schonfeld (24) study the
effect of battery consumption and payload weight on sin-
gle depot drone-based delivery systems, looking at multi-
ple deliveries made by a drone in a single route from a
depot. In contrast, the model developed in this work
only considers multiple one-to-one deliveries from a pre-
specified depot. However, we do model multiple depots.
Chowdhury et al. (25), Golabi et al. (26), Pulver and
Wei (27), and Kim et al. (28) study facility location prob-
lems for drone delivery systems in the context of humani-
tarian logistics and medical supply delivery systems. The
RMCFLPD model and solution algorithm distinguish
from the works mentioned above in several aspects.
Chowdhury et al. (25) consider both trucks and drones,
whereas we focus on a pure drone-based delivery system.
Pulver and Wei (27) do not model capacity constraints at
facilities, energy consumption with payload, and assume
one trip per drone, whereas the RMCFLPD model con-
siders all of these aspects. Pulver and Wei (27) and Kim
et al. (28) use optimization solvers which may not scale
up well to larger instances, whereas this research pro-
vides a customized, efficient heuristic. None of the works
mentioned above consider the allocation of drones to

facilities. This research is an extension of the model and
solution algorithm proposed by Chauhan et al. (/2) by
using a robust optimization paradigm to model battery
consumption and battery capacity uncertainty.

Kim et al. (29) use a robust optimization approach to
study the effect of air temperature on uncertainty in
maximum flight duration. However, Kim et al. (29) do
not model variations in energy consumption with pay-
load, allocation of drones to facilities, or facility capac-
ity, and use CPLEX to solve the problem. Kim et al. (30)
develop a chance constraint formulation using an expo-
nential distribution to model the effect of battery uncer-
tainty on coverage of a location. Unlike Kim et al. (30),
the RMCFLPD adopts a robust optimization approach
where the battery consumption and capacity is assumed
to vary in a pre-specified range and is therefore distribu-
tion free.

Goodchild and Toy (3/) and Figliozzi (32) evaluate
relative efficiency, energy consumption, and emissions
from UAVs relative to trucks. A detailed review of
optimization approaches in drone-based delivery systems
and applications is provided by Otto et al. (33).
Summarizing, this research presents a new robust optimi-
zation approach as well as a new efficient heuristic to
tackle the facility location problem with drones with bat-
tery consumption and capacity uncertainty.

Problem Description

This section describes a mixed-integer linear program-
ming formulation for the RMCFLPD. Consider a set of
locations / each having a demand d; and set of location
sites J. At the beginning of the planning period, an
agency has to pick a maximum of p facilities from the
location set J to serve as drone launching sites. At each
open facility, resources of mass U are allocated to be dis-
tributed to the demand points. The planning agency also
has to distribute a set of K drones to the located facili-
ties. We assume that the cost of transporting the drones
and resources from a warehouse to each open facility is
constant. The drones make one-to-one delivery trips
(from the facility location to the demand points and
back) until the battery is exhausted. We do not consider
one-to-many vehicle routing type trips, which is consis-
tent with the initial applications of drone deliveries by
private companies. We also do not consider battery
recharging during the planning period and assume that
the drone battery is recharged between planning periods.
The length of the planning period is shorter (6 hours to a
day or 2 days) compared with the planning period for a
typical facility location problem.

We adopt a robust optimization framework to cap-
ture the uncertainty in battery consumption and initial
capacity. For each drone k € K, the battery capacity can
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take any value in the interval [B — f, B]. To model the
robustness in initial battery availability, a penalty of Fj
is assigned per fractional reduction in the initial battery
availability. The conservativeness in battery capacity can
be controlled by adjusting the penalty. Higher values of
F} lead to more conservative solutions concerning bat-
tery capacity. The battery consumption during one trip
between demand point i € [ and facility location j € J is
assumed to be uncertain_and can take any value in the
interval {b,-j — 13,,, by + ISU} where b;; is the nominal value
and 13,-1 is the maximum variation. We adopt the gamma
robustness paradigm originally proposed by Bertsimas
and Sim (34). In the gamma robustness framework, the
battery consumption during one trip between demand
point i € I and facility location j € J can take one of two
Value§, the nominal value b; or the worst-case value
bj + b;. For each drone, we assume that at most I'y
trips are at worst-case battery consumption with the
remaining trips at nominal battery consumption. The
nomenclature and mathematical programming formula-
tion are presented below.

Nomenclature

Sets and indices

) Set of all demand points

J Set of all candidate facility locations

K Set of available drones

Indices

iel

i€l

keK

Parameters

M Power transfer efficiency of the drone

Vg Lift-to-drag ratio of the drone

m UAV tare mass, without battery and load

my UAV battery mass

d; Demand for resource at location i € I (units same as
UAV battery and tare mass)

Gj Distance between demand location i € [ and facility
location j € J

by Nominal battery consumption during one trip

. between demand point i € I and facility location j

by Variation in battery consumption during one trip
between demand point i and facility location j

B Maximum usable battery capacity of the drone

fx Maximum decrease in initial battery capacity for
drone k € K

Fx Penalty associated with decreasing initial battery
availability for drone k € K

p Maximum number facilities that can be opened

U Capacity of each located facility (units same as UAV
battery and tare mass)

Ly Maximum number of trips from located facility j by

drone k that can achieve worst-case battery
consumption

(continued)
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Decision variables

Xik I, if demand location i is served by located facility j
using drone k; and 0, otherwise

¥i I, if candidate facility location j is opened; and 0,
otherwise

Zjk I, if located facility j employs drone k; and 0,
otherwise

Yiik |, if trip to demand location i from facility location j

by drone k assumes worst-case battery
consumption; and 0, otherwise

Sjk fraction of maximum decrease in initial battery
capacity (fi) of drone k employed by facility location
jo=g=1)

Problem Formulation

max Z Z Z dixijc + Z Z Fidp (1)
X2 G 5T ke JjeJ kek
ST =<1 Vier (2)
jeJ kek
ZJ’/SP (3)
jeJ
(mvax;(bij + ’Yijkbij)xijk> (@)
<(B —ﬂajk)ij VjeldJ, kek
i€l kekK
<y VjeJkeK (6)
> k<1 Vkek (7)
=
Z'Yiijij VieJ.kek (8)
iel
Sp<zi VjeJkek 9)
X €{0,1} VieljeJkek (10)
yie{0,1} VjeJ (11)
zr€{0,1} VjeJ kek (12)
Vik €{0.1} VieljeJkekK (13)
3 =0 VjeJkekK (14)

The goal of the objective function is to maximize the
sum of the demand served by the drones and the penalty
for initial battery availability. The penalty term promotes
reduction in the initial battery availability, thereby
improving robustness. Constraint 2 ensures that a
demand point is covered at most once. Constraints 3 and
5 ensure that at most p facilities are opened, and its cor-
responding capacity constraints are satisfied. Together,
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constraints 6 and 7 ensure that drones are allocated to
open facilities, and each drone is assigned to at most one
facility only.

The nominal battery consumption in a delivery from
facility j € J to demand point i € [ is given as (32):

m; + myp + d; m; + my
bij = C','j Cij
VM VM

VieljeJ (15)

Constraint 4 enforces battery range constraints on all
the drones considering battery consumption robustness
and reduction in total available battery. Constraint 8
puts a limit on the total number of worst-case battery
consumption trips per drone at each facility according to
the gamma robustness principle (34). Constraint 9 makes
sure that the total battery availability penalty on the
drone k located at facility j is only applied if it is placed
there. Equations 10 to 14 are variable definition
constraints.

A common assumption in robust optimization is that
the uncertainty occurs in such a way that it worsens the
decision-maker’s objective (34, 35), that is, for a maximi-
zation problem, the uncertainty occurs in such a way
that it minimizes the objective value. The above formula-
tion cannot be solved directly as the maximization in 4 is
in direct conflict with overall objective in Equation 1, a
consequence of applying robust optimization. The pres-
ence of non-linear terms in Equation 4 further compli-
cates the problem. To remedy the conflicting objective
and non-linear terms v;jcXijk, the optimization problem in
Equation 4, with relevant constraints 8 and 13, is dua-
lized. This inner optimization problem in the variable
(SPj) is given as:

SPj, = mvax Z l;ijxijk%jk (16)
i€l
E ik =< Dix (17)
iel
Y€ {01} Viel (%)

In the above formulation, parameter 'y is an integer.
In case of non-integer values, I'j; can be changed to [I';|
to retain correctness. The above formulation provides an
integer optimal solution when the variable vy is linearized.
Let, 6; and pj be the dual variables associated with
Equation 17 and the upper bound of the Equation 18
respectively. The dual formulation of the above problem
(SPDj), can then be written as:

SPDjc = min (Z Mijk) + by (19)

iel

Wik + O = byxipe Viel (20)

Bk =0 (22)

Using strong duality, it can be shown at SPj and
SPDj; have the same optimal value. The product 8;zj
(in Equation 4) can be simplified and written as only 8
because of the presence of constraint 9. Substituting the
above changes, the modified RMCFLPD formulation is
given as:

max Z Z Z dixijx + Z Z Fidje  (23)

R =y Y A =T jeJ kek
jeJ kek
Z Visp (25)
T
szjxijk> + ( M“k) + LB

+fk6jk$Bij VjEJ,kEK

Hijk+6jk_bijxijk>0 Viel,jeJ,kekK (27)

Y dwpsUy VjeJ (28)
iel kek

zr<y; VjeJ kek (29)

Y zxs1 Vkek (30)
jeJ

Sps<zp VjeJ kek (31)
xik € {0,1} VieljeJ kekK (32)
v, €{0,1} VjeJ (33)

zx €{0,1} VjeJ kek (34)
(35)

(36)

(37)

37

Mg =0 Vieljel,kek
0:,=0 VjeJkek
;=0 VjeJ keck

The sum (Zia ik T ijij), in Equation 26, repre-
sents the additional battery consumption because of

robustness consideration, and the term ;3 is the reduc-
tion in the total available battery.

Robust Three-Stage Heuristic for Solving
RMCFLPD

The robust three-stage heuristic (R3SH) solves the
RMCFLPD in three stages. This method is an extension
of the 3SH heuristic proposed in Chauhan et al. (/2).
The first stage is a facility location problem for deciding
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which facilities to open and matching them with demand
points. The second stage is solving the robust knapsack
problem, including battery consumption uncertainty and
initial battery availability penalty, to allocate drones to
open facilities. The final stage is an » -exchange heuristic
to replace r worst-performing facilities to improve the
solution quality.

Facility Location and Demand Allocation

In this stage, a facility location problem is solved to
determine the facilities to be opened and matching
demand points to the located facilities. Let J; denote the
set of potential facility locations that are within the range
of the drone for each demand location i, that is,
J; = {j € J|b;y<B}. Also let I; denote the set of demand
points i € [ that are within the range of the drone for
each facility location j € J, that is, I; = {i € I|b; < B}.
The sets J; and /; ensure that the demand points and
facilities are within the flying range of each other. The
decision variables for the formulation are: (i) X; which
takes values 1 if demand point i € [ is assigned to facility
J €J and 0 otherwise, and (ii) ; which takes value 1 if
facility j € J is opened and 0 otherwise.

di .
w22, Y

i€l jeJ;
Y k<1 Viel (39)
Jjedi
> yisp (40)
jet
D dky<Uy VjeJd (41)
i€l;
%9, €{0,1} Viel,jeJ (42)

The objective of the formulation, Equation 38, is to
maximize the weight of assigned demand points.
Constraint 39 makes sure that the demand point is cov-
ered by at most one facility. Constraint 40 ensures that
no more than p facilities are opened. Constraint 41
enforces the sum of demand assigned to a facility to be
less than its capacity.

Repeated Application of Robust Knapsack Problems

Let J be the set of facilities opened and I; the set of
demand points matched to open facilities, as obtained
from the first stage of R3SH. Thatis,J = {j € J |3, = 1},
and [; = {i € I|x; = 1}. In this stage, the drones are allo-
cated to opened facilities to serve demand points by sol-
ving a maximum profit robust knapsack problem. For

any facility j € J and drone k € K. the max profit robust
knapsack problem is defined as follows:

G = max

xX,w

Z dix/i + Fij/k (43)

i€l;

Z b,—,—x'l- + max Bijx'i
' ' (44)

icl; {ieS|SC;, IS| <Tu}
+fkwljk <B
X, €{0,1} Viel (45)

In the above formulation, the variables x; take the
value 1 if demand point i is served by drone k£ from facil-
ity j and 0 otherwise. The variable w, takes the value 1 if
the penalty is applied completely to the initial battery
availability, and 0 if the penalty is not applied at all.
Constraint 44 makes sure that only the demand points
satisfying the drone battery constraint are served. C; rep-
resents the maximum value of the 0—1 maximum profit
robust knapsack problem. The above problem is solved
by solving ﬁj| —I'jx + 1 ordinary 0-1 knapsack prob-
lems, as shown in Lee et al. (36). Let, v} be 1 if i € S and
0 if i € I)\S. Then, the determination of the non-binary
value of the penalty is done in the following manner:

) if lek =1

1
& = {BZ@, (by + by (47)

7 ; if W/jk =0

The final objective function value, CJF , 1s then deter-
mined as follows:
Fo_ q 3 lf S/jk = 1
Cf { G + Fkﬁljk i if Sljk <1 (48)
CjF represents the maximum value of the sum of
demand satisfaction and the penalty possible from facil-
ity j and its corresponding demand locations /;. The steps
involved in R3SH are given as follows:

o The best facility for the allocation of the first
drone is determined by solving |.J| maximum profit
robust knapsack problems, once for each j € J.
Let j/ be the facility with a maximum value of CJF.
Allot the first drone to j/ and remove the demand
points served by the first drone from the set fj/.
Assign penalty variable 8]’.,,C to the first drone.

e Solve the maximum profit robust knapsack prob-
lem for j/ using the updated fj/, and determine the
new value for ij . Now let j” be the facility with
the maximum value of CjF . Allot the second drone
to j” and remove the demand points served by the
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second drone from the set 2/,,_ Assign penalty vari-
able 8/, to the second drone.

e Repeat the above step until all the drones are used
or all demand points are satisfied. This would
result in a maximum of |K| — 1 repetitions. If no
more demand points can be satisfied, then, assign
the remaining drones to the facility with a maxi-
mum CJF value and set the corresponding S;k val-
ues to 1.

R-Exchange Heuristic

In the third stage, a local exchange heuristic is employed
to improve solutions. Set Jo = J, and determine the sum
of demand served and penalty for each open facility. The
r facilities with least sum of demand served and penalty
are selected to be closed and are removed from J. J is
then updated by adding r facilities randomly chosen
from the |J| — p + r facilities that are currently closed.
Update the sets J;=1{j ej|b,»j <B},Viel and
I, = {i € I|bj<B}, Vj € J. The demand points are then
matched to the open facilities by solving the following
problem:

max Z Z Z—’fcy (49)

iel je]i y
d k<1 Viel (50)
Jjed;
> diy<Uy VjeJ (51)
=
€{0,1} Viel,jelJ (52)

where y; = 1, Vj € J and 0 otherwise, and is not a deci-
sion variable in the above formulation. Once the above
demand allocation problem is solved, the second stage of
solving |J| + |[K| — 1 maximum profit robust knapsack
problems is repeated. If the sum of total demand served
and battery capacity penalty is found to be better than
the previous best solution, then J, is updated to the cur-
rent set of open facilities. If there was no improvement,
then the previous best solution and the set of open facili-
ties Jy is adopted, and new r facilitics are chosen ran-
domly. This r -exchange heuristic is repeated for a pre-
specified number of times.

Proposition 1: The solution generated at the end of
stage 2 of R3SH (i.e., repeated application of robust
knapsack problems) is a feasible lower bound of
RMCFLPD.

Proof: In stage 2, the variable X;; (from stage 1) helps
determine [;, a set of demand points that can be
served from facility j only. If a demand point is served

by the drone, it is removed from the set i, Therefore,
the following inequality is valid:

> xigsiy VieljeJ (53)
kek

Now, consider the stage 1 problem (Equations 38 to
42). Using valid inequality 53, if Equations 39 to 41 are
satisfied in R3SH, the corresponding RMCFLPD
Equations 24, 25, and 28, respectively, are also satisfied.
Additionally, a preliminary precaution is taken that X;
can assume the value 1 only if b; < B. This ensures that
only plausible deliveries are considered. Therefore, stage
1 solution provides feasible facility locations and demand
allocation to facilities.

Stage 2 of R3SH tries to allot a drone to a facility and
allocate demand points that would be served by the
drone. The maximum profit robust knapsack problem
(Equations 43 to 46) considers a drone alloted to facility
j and determines the maximum sum of demand and bat-
tery availability penalty that can be achieved. Constraint
44 is equivalent to constraint 4 (or the set of constraints
26 and 27 in RMCFLPD). The robust knapsack problem
considered here was first introduced in Bertsimas and
Sim (37). The solution algorithm to solve the robust
knapsack problem is proposed by Lee et al. (36), who
also prove that the algorithm ensures optimality.
Therefore, allocation of demand points to a drone
located at j is always feasible. Also, it is easy to notice
that value of S;k found in Equation 47 always lies in the
range [0,1] such that constraint 4 (or equivalently con-
straints 26 and 27 in RMCFLPD) always remain valid.
As a drone is always allotted only to one of the open
facilities represented by the set J, Equations 30 and 31 in
RMCFLPD are also satisfied.

As all the constraints in RMCFLPD are satisfied by
R3SH at the end of Stage 2, the generated solution is fea-
sible, and therefore, a valid lower bound of RMCFLPD.

Corollary 1: The solution generated at the end of
stage 3 of R3SH (i.e., r -exchange heuristic) is at least
as good as the solution generated in stage 2.

Proof: The optimization problem in stage 3 of R3SH,
is essentially the stage 1 problem with variables y
fixed. This is followed by repeated application of
robust knapsacks, that is, stage 2 of R3SH.
Therefore, following Proposition 1, the solution
obtained at the end of stage 3 is feasible.

Now, if the solution found at the end of reiterated
stage 2 is worse than the previous best, it is discarded
and previous best solution is used again for stage 3. If
the solution is better than the previous best solution,
then the previous best is updated. Therefore, the solution
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obtained at the completion of stage 3 is at least as good
as the one obtained at the end of stage 2.

Numerical Analysis

Computational analysis on the effect of drone battery
consumption and capacity uncertainty on drone-based
deliveries for short-term planning periods is performed
on a case study based in the Portland Metropolitan area
(12). The Portland Metropolitan area spans a total of
five counties in the state of Oregon (Clackamas,
Columbia, Multnomah, Washington, and Yamhill) and
two counties in the state of Washington (Clark and
Skamania). The centroids of the ZIP Code Tabulated
Areas (ZCTAs) in these seven counties are considered to
be the demand locations for the study. The community
centers across the Portland Metro are considered as the
potential facility locations, as they provide enough space
for storing resources and launching drones. There are
122 demand locations and 104 candidate facility location
sites in the case study; none of them overlap with
another. The demand locations and the candidate facility
locations are shown in Figure 1. The resource require-
ment at demand locations varies uniformly between 1 kg
and 5 kg in intervals of 0.25 kg. The values chosen here
are the same as in Chauhan et al. (/2), and the total
demand is 366.5 kg. The facilities are assumed to operate
at an average of 80% capacity efficiency. The capacities
can then be generated as in Pirkul and Schilling (38):

_ Zie[ di
0.8p

where, the numerator denotes the total demand for the
resource, and p denotes the maximum number of facili-
ties that can be located. In the case study, p takes values
from 5 to 30 in multiples of 5. The distance between the
demand locations and candidate facility locations is
assumed to be the planar Euclidean distance between
them, as drones usually travel in straight lines. Currently,
the effect of tall buildings, mountains, “no-drone zones”
(11), and other obstacles on drone trajectory is not con-
sidered, and it can be a possible future extension. The
nominal battery consumption (b;) for a trip to demand
location i from a facility location j is a function of the
distance between them and the demand for the resource
at location i and can be calculated using Equation 15.
The variation in battery consumption (13,;,-) is assumed to
be strongly and positively correlated to nominal battery
consumption (b;) and is an integer chosen randomly in
the interval [0.15;,0.3b;] (currently chosen values of by
have a correlation of 0.8855 with b;;). The specifications
of drone parameters are as follows (32):

e Sum of drone tare and battery mass: 10.1 kg

Total battery capacity: 777 Wh

Payload capacity: 5 kg

Lift-to-drag ratio: 3.5

Total power transfer efficiency: 0.66

Battery Safety Buffer: 20% of total battery capac-

ity (Maximum usable battery availability (B) =

Total battery — Battery Safety Buffer = 621 Wh)

e Maximum reduction in initial battery availability
(f1): 25% of total battery capacity = 194 Wh

e Penalty associated with maximum reduction in ini-
tial battery availability (F): 2.5 kg

e Maximum number of trips per drone that can

assume worst-case battery consumption (I'y): 1

Chauhan et al. (/2) found that the 1 facility exchange
in the third stage of their proposed 3SH heuristic works
best when p = 5, 2 facility exchange works best when
p = 10, and 3 facility exchange works best for p values
greater than 10. As R3SH, in this study, is an extension
of 3SH, the above-mentioned values of facility exchange
are used in the r -exchange heuristic stage of the R3SH.
That is:

1 ;ifp=5
r=<¢2 ;ifp=10
3 ; if p = 15,20,25,30

The computational analyses for the robust formula-
tions are performed on a Windows 10 desktop with Intel
17-7700K processor with CPU specifications of 3.6 GHz,
4 cores, 8 logical processors, and 32 GB of RAM. The
computational analysis on the deterministic formulation
of MCFLPD which does not consider battery initial
capacity or consumption rate uncertainty (/2) is per-
formed on a Windows 10 desktop with Intel i7-8700 pro-
cessor with CPU specifications of 3.2 GHz, 4 cores, 8
logical processors, and 32 GB of RAM. The determinis-
tic formulation is solved to evaluate the value of consid-
ering uncertainty.

Computational Efficiency

Computational efficiency for solving RMCFLPD would
determine the extent of its application in real life. As the
model is developed for short-term applications, faster
convergence is desired for quicker implementation of
drone delivery in the region and faster global reoptimiza-
tion is desired to tackle changes in demand for resources.
The RMCFLPD for the Portland Metro case study is
solved using two methods:

®  Gurobi solver in Python interface. The model is
run for a maximum of 3,600 s, or a solution within
the tolerance limit is obtained. Gurobi default
parameters are used for the model.
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N Legend

Demand Locations
* Potential Facility Locations

Figure I. Demand locations and potential facility locations in the Portland metro area (/2).

e Robust three-stage heuristic (R3SH). The facility
location problem in stage 1 and the nominal knap-
sack problems in stage 2 are solved using Gurobi.
The r -exchange heuristic is repeated 100 times.

The first set of computational runs aim to measure the
performance of Gurobi solver versus R3SH. The Gurobi
runs are performed once for each combination of p (max-
imum number of opened facilities) and |K| (Maximum
number of drones); its results can be found in Table 1.
As random exchange of facilities is involved in R3SH, 30
runs are performed for each p - |K| combination and the
minimum, average, and maximum values are reported.

The objective values achieved by R3SH are 93.2% of
Gurobi objective values on average (minimum is 88.2%
of Gurobi objective value for the case where p is 15 and
|K| is 60; maximum is 97.5% of Gurobi objective value
for the case where p is 30 and |K] is 60). R3SH outper-
forms Gurobi in terms of run times, achieving a median
reduction of 97.5%. The first solution to RMCFLPD is
generated by R3SH when it completes its second stage
(the repeated application of robust knapsack problems)
for the first time. This is referred to as S2 in Table 1. At
S2, R3SH achieves objective value, which is 88.5% of the
Gurobi objective on average, utilizing a maximum of 3.6

s. On average, the third stage of R3SH improves the S2
objective value by 5% (minimum improvement is 0% for
three unique p - |K| combinations; maximum improve-
ment is 10.8% for the case when p is 25 and |K]| is 50)
and adds 105 s to the computational time. To compare
Gurobi and R3SH at equivalent performance, the times
taken by Gurobi to achieve R3SH ‘S2’ and ‘Ave’ objec-
tive values are noted in Table 2. At this equivalent per-
formance, R3SH is computationally faster than Gurobi,
achieving a median reduction in computational time of
98.7% for ‘S2’ solution, and 44% for ‘Ave’ solution.

Value of Adding Robustness

This section shows the value of adding robustness to the
deterministic model, thereby providing a comparison
between the robust formulation presented in this paper
and the deterministic formulation presented in Chauhan
et al. (/2). The deterministic formulation is solved exactly
using Gurobi with a maximum computational time of
3,600 s. The robust formulation is solved using R3SH, as
in the previous section.

To get a clearer idea of the value of considering
robustness and uncertainty, we use Monte Carlo simula-
tion to generate scenarios. In each scenario, we generate
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Table I. Comparison of Gurobi Solver and R3SH
Gurobi R3SH
Time (s) Objective (kg)
p |K| Time to Istsolution (s) Time(s) Gap (%) Objective (kg S2 Min  Ave Max S2 Min  Ave  Max
5 20 21 3600 28 216.3 23 992 1129 1329 1940 194.1 2005 2037
5 25 36 3600 44 246.1 25 1124 1274 1529 2204 2214 2260 2300
5 30 55 3600 5.9 2703 2.7 1256 140.7 1673 243.1 2433 2470 2528
5 35 69 3600 7.6 289.9 30 1654 1753 1908 2633 2633 2650 267.0
5 40 106 3600 1.5 304.0 3.6 190.0 210.1 2274 2819 2819 2827 2833
10 20 25 3600 2.1 2479 26 1066 1256 2152 2269 2279 2305 2332
10 30 50 3600 4.1 3035 29 1340 1463 1643 2706 2740 2788 2837
10 40 148 3600 48 351.4 32 1389 1697 1876 301.6 3122 3199 3255
I5 30 40 3600 38 3237 27 10l.1 1105 123.0 2954 12954 2994 3043
I5 45 264 3600 5.0 3944 25 1045 1179 1289 3445 3593 3645 3723
I5 60 504 3600 6.0 448.3 22 924 1068 1209 3820 3952 4054 419.2
20 20 19 3600 0.5 276.4 1.8 600 628 658 249.7 2529 2588 262.1
20 40 146 3600 42 388.3 1.8 719 786 829 345.6 3554 3602 3645
20 60 340 3600 42 461.2 1.8 727 834 889 3956 4163 4250 4313
20 80 410 3600 32 516.5 1.8 729 826 89.0 445.6 4663 4750 4813
25 25 24 3600 1.3 315.0 I.5 545 595 660 128l.6 2856 290.7 2969
25 50 193 3600 35 438.0 1.6 735 782 846 38l.3 4092 4177 4226
25 75 343 3600 22 509.5 1.6 729 785 89.1 4438 4720 484.1 491.1
25 100 264 3600 1.5 5745 1.6 743 794 873 5063 5345 546.6 553.6
30 30 30 3600 25 350.2 1.7 572 594 647 3136 3184 323.1 3269
30 60 202 3600 20 474.2 1.7 715 753 782 420. 4462 4558 4622
30 90 307 3600 1.1 5523 1.7 716 759 789 495.1 5212 5308 5372
Note: S2 = after stage 2 of R3SH.
Table 2. Comparison of Gurobi Solver and R3SH at Equivalent Performance
3SH objective (kg) 3SH time (s) Gurobi time (s)
p K| S2 Ave S2 Ave S2 Ave
5 20 194 200.5 23 112.9 34 88
5 25 2204 226 25 127 .4 135 192
5 30 243.1 247 27 140.7 122 184
5 35 2633 265 3 175.3 384 384
5 40 281.9 282.7 3.6 210.1 149 149
10 20 226.9 230.5 2.6 125.6 53 53
10 30 270.6 278.8 29 146.3 70 73
10 40 301.6 3199 32 169.7 186 186
I5 30 295.4 299.4 27 110.5 68 68
I5 45 344.5 364.5 25 117.9 549 549
15 60 382 405.4 22 106.8 984 984
20 20 249.7 258.8 1.8 62.8 34 35
20 40 345.6 360.2 1.8 78.6 189 198
20 60 395.6 425 1.8 834 340 735
20 80 445.6 475 1.8 82.6 410 494
25 25 281.6 290.7 1.5 59.5 39 43
25 50 381.3 417.7 1.6 782 202 462
25 75 443.8 | 1.6 78.5 343 753
25 100 506.3 546.6 1.6 794 264 595
30 30 313.6 323.1 1.7 594 46 57
30 60 420.1 455.8 1.7 75.3 202 235
30 90 495.1 530.8 1.7 75.9 307 443

Notes: S2 = after stage 2 of R3SH; Ave = average solution obtained by R3SH.
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Figure 2. Drone delivery scheme using deterministic model with p = 5 and |K| = 35 for a simulated value of b and 5.

new battery consumption as: b € Uniform(b; — by,
bj + by) Vi€ l,je€J and new fraction of reduction ini-
tial battery availability as: 8; € Uniform(0,1) Vj €
J,k € K. The solutions obtained from the robust optimi-
zation formulation and deterministic formulation are
compared for the new values of bjViel,jeJ and
8y Vj € J,k € K. The key comparison statistics of inter-
est are the percentage of times a drone delivery schematic
needs to be recalculated (because of battery capacity con-
straint violation) and actual demand met. The procedure
for conducting the Monte Carlo simulation is detailed in
algorithm 1. The drone delivery schemes obtained using
deterministic and the robust model are shown in Figures
2 and 3, respectively. For both the models, the case with
parameters p = 5 and |K| = 35 is shown using the same
simulated values of b; and 8. It can be noted that for
the robust solution the number of drone deliveries out of
an open facility is less, and the drone trip lengths are
smaller, compared with the deterministic solution. This is
expected as the robust model is solving for a reduced bat-
tery capacity and potentially higher battery consumption
rate. As a result, there are a very few infeasible deliveries
in the robust case, whereas in the deterministic case,
almost half of the deliveries proposed were infeasible.

The probability that the delivery schematic for a
drone needs to be reevaluated (CVP) is given as the ratio
of total_violations and total_constraints, as calculated
from algorithm 1. Coverage is calculated as the ratio of
total_demand_met to the total demand (366.5 kg). The
probability values along with minimum, average, and
maximum values of coverage for the deterministic and
robust model is detailed in Table 3.

The CVP value for the robust formulation is signifi-
cantly lower than that for the deterministic formulation.
The CVP values for the deterministic formulation is par-
ticularly high for lower values of p. The high values of
CVP should result in a greater drop in actual coverage
from the coverage reported by the objective function of
the model. On average the solution obtained from the
deterministic formulation has a CVP of 60.7% across all
p - K combinations tested whereas the corresponding
CVP value for the robust solution was 3.6%. This corre-
sponds to a drop in the actual coverage and erroneous
optimistic estimate of the actual coverage when the deter-
ministic model is used. The deterministic model coverage
is estimated to be an average of 81.6% across all p - K
combinations. When the deterministic solution is evalu-
ated under battery consumption and battery capacity
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Figure 3. Drone delivery scheme using robust model with p = 5 and |K| = 35 for a simulated value of b and 3.
Table 3. Value of Adding Robustness
Deterministic Robust
Actual coverage (%) Actual coverage (%)
p K| CVP (%) OC (%) Min Ave Max CVP (%) OC (%) Min Ave Max
5 20 84 56.3 40.8 44.8 49.9 2.8 46.6 424 46 46.6
5 25 772 61.9 42 47.8 53.4 2.4 51.7 47.1 51.1 51.7
5 30 73.6 66.3 43 49.5 55 2.4 55.2 51.5 54.4 55.2
5 35 77.3 70.2 46.4 51.3 574 23 574 52.7 56.6 574
5 40 76.8 72.1 44.6 50.8 582 29 58.7 54.1 57.7 58.7
10 20 76.2 64.3 48.8 52.7 57.6 7.4 56.3 523 55.1 56.3
10 30 73.5 75.2 53 58.3 64.6 6.1 65.8 60.9 64.4 65.8
10 40 69.7 83.5 56.8 62.9 68.4 2.8 70.9 66.1 69.8 70.9
I5 30 68 80 59.3 64.6 70.5 43 70.8 66.1 69.9 70.8
I5 45 63.7 90.2 63.7 70.9 774 45 8l.1 74.1 79.5 8l.1
15 60 53.5 92.8 63.3 713 783 1.7 84.2 789 83.2 84.2
20 20 70.1 71.4 58.7 62.2 66.5 9.5 64.7 60 63.4 64.7
20 40 58.1 90.5 68.6 74.8 8l1.2 3.9 82 76.7 80.7 82
20 60 57.3 93.8 63.4 71.8 79.9 1.3 87.3 82.6 86.5 87.3
20 80 375 93.8 65.3 737 8l.4 23 89.9 83.2 88 89.9
25 25 57.8 79.6 65.1 69.6 74.6 8 72 67.9 70.7 72
25 50 60.6 93.8 68.1 748 83.1 1.8 87.7 83.8 86.7 87.7
25 75 40.3 93.8 64.1 71.7 79.8 1.7 91.3 86.1 90.1 91.3
25 100 25.9 93.8 67.1 75.1 82.8 0.6 90.5 87.5 89.9 90.5
30 30 54.2 85.7 703 75.1 80.1 84 78.9 739 77.1 78.9
30 60 50.3 93.8 68.6 74.5 82.1 1.2 90 86.2 89.3 90
30 90 31.6 93.8 66.2 734 80.6 1.1 91.3 88 90.5 91.3

Notes: CVP = probability that the delivery schematic for a drone needs to be reevaluated; OC = coverage calculated using the demand met from the
objective function of the optimization model.
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uncertainty, the actual coverage drops to 64.6% across
all p - K combinations. The robust model provides a
more conservative estimate of coverage of 73.8% across
all p - K combinations tested from the optimization
model. However, when the robust optimization solution
is evaluated using simulation, the actual average cover-
age is 72.75% across all p - K combinations. Thus the
robust model provides a higher and more reliable esti-
mate of actual coverage under uncertainty. The differ-
ence between actual coverage of the robust optimization
solution and deterministic solution is higher than 5%
when the number of drones is greater than 30 with the
difference being as high as 18.4% for the case when p is
25 and |K|is 75.

Algorithm 1 Monte Carlo simulation for testing the
robustness of solutions

Solve the model and determine the optimum values of
decision variables: x* and z*
Generate new battery consumption as: Eij € Uniform
(bij_bijybij + bU) Vie [,] eJ
Generate a new fraction of reduction initial battery avail-
ability as: 5 € Uniform(0,1) Vj € J,k € K
total_constraints = 0; total_violations = 0
current_iter = 0; MCSim_iter = 1000
total_demand_met = zeros(MCSim._iter)
while current_iter < MCSim _iter do

forjcJ, ke Kdo

ifzz = =1 then
total_cor}straints + =1
if Zie[ bij)ACijk>(B —kajk) then
total_violations + = 1

Solve a nominal max profit knapsack problem
to determine maximum demand that can be
met by the drone. The value of the item is given
by d;, the weight of the item is given by Bi,-, and
the knapsack capacity is (B — kajk).
total_demand_met[current_iter] + = max
profit knapsack objective value
else
total_demand_met[current_iter] + =
Dier 9k
end if
end if
end for
current_iter + =1
end while

Sensitivity to Changes in Maximum Penalty Value

This section studies the effect of changes in the maximum
penalty value (F}) on the robustness of the solutions. The
computational runs for this sensitivity analysis are

performed using R3SH and Fy values as 2 kg, 2.5 kg,
and 3 kg. R3SH is run 30 times to provide representative
solutions. The robustness of solutions is calculated in the
same way as described in the previous section (using
algorithm 1). The minimum, average, and maximum val-
ues for the probability that the delivery schematic for a
drone needs to be reevaluated (CVP) and the coverage is
given in Table 4.

The CVP values decrease with an increase in the num-
ber of available drones for a constant value of p and Fy,
and the CVP values decrease with increase in the Fj
value for a constant value of p and the number of avail-
able drones. As the number of drones increases for a
constant value of p and Fj, the chances of the penalty
being accounted in the delivery scheme increase as most
locations with high demand are already satisfied by pre-
vious drones and, therefore, CVP should decrease. As
the value of F; (penalty) increases, the chances of it being
favored instead of satisfying the demand points increases
and, therefore, CVP should decrease. The increase in the
Fy value from 2 kg to 2.5 kg leads to a 4.2 percentage
point reduction in CVP on average. An increase in Fj
value from 2.5 kg to 3 kg leads to a further decrease in
CVP value by 2 percentage points.

As the number of drones and the number of open
facilities increase, the coverage should increase as there
are more resources available. As the value of Fj
increases, there are two counteracting events: the cover-
age should decrease as the chances of the penalty being
favored increase resulting in reduced demand met; and
the coverage should increase as the CVP value decreases
resulting in reduced infeasible demand assignments. In
the current case study, the average actual coverage
obtained using an F} value of 2.5 kg is always better than
the average actual coverage obtained using an Fj value
of 3 kg (except for the case when p = 5 and |K| = 40).
The average actual coverage obtained using an F value
of 2 kg is better than that of an F value of 2.5 kg when
a smaller number of drones are employed (less than 50
drones). The F}, value of 2.5 kg, therefore, works best for
the case study as it reasonably hedges against the infeasi-
ble demand assignments while providing superior cover-
age values.

Conclusions

This paper extends the maximum coverage facility loca-
tion problem with drones (MCFLPD) proposed by
Chauhan et al. (/2) by incorporating uncertainty in bat-
tery availability and consumption of drones. The uncer-
tainty in initial battery availability is modeled using a
penalty-based approach. The higher the penalty, the
greater the conservativeness of the solution in protecting
against a reduction in initial battery capacity. The
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Table 4. Sensitivity to Maximum Penalty Value

Fe =2kg Fe =25kg F« = 3 kg
CVP (%) Coverage (%) CVP (%) Coverage (%) CVP (%) Coverage (%)
p |Kl Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max
5 20 250 33.1 420 379 444 50.1 202 266 344 372 436 490 I51 221 284 370 433 488
5 25 19.1 282 363 405 481 542 188 235 281 394 476 535 3.0 188 21.7 4l.1 470 526
5 30 167 21.6 295 433 505 566 159 196 257 440 503 560 133 164 190 439 50.1 556
5 35 156 20.I 242 435 523 594 148 170 200 448 515 565 118 134 162 458 514 58.1
5 40 162 180 219 460 540 603 143 149 153 48 536 585 117 126 136 484 540 60.l
10 20 219 300 374 466 522 576 147 20.1 317 463 514 559 118 166 260 46.1 51.0 546
10 30 171 220 287 524 594 651 9.6 7.1 212 523 586 632 51 119 152 519 582 619
10 40 138 170 214 56,6 64.1 706 10.1 141 175 567 636 694 76 106 141 568 632 682
I5 30 127 178 248 595 652 707 53 106 154 587 641 675 45 74 11.1 587 633 660
I5 45 95 148 184 645 725 782 69 101 138 647 720 774 46 75 107 651 718 773
I5 60 78 114 142 643 734 806 6.1 84 101 66.1 735 806 12 62 90 667 735 802
20 20 86 173 255 549 594 643 20 96 138 549 585 610 24 80 132 542 579 610
20 40 73 112 139 676 744 789 31 68 99 681 735 769 20 53 75 679 732 767
20 60 52 80 128 705 773 827 19 49 79 716 782 848 14 42 70 710 777 835
20 8 40 6.1 98 692 772 828 14 37 60 709 781 848 |1 32 53 698 777 835
25 25 52 105 157 594 641 683 20 38 63 587 630 652 I.1 36 69 591 630 652
25 50 50 72 102 754 822 8.7 22 35 56 757 822 853 1.7 31 65 757 8l5 845
25 75 29 50 74 749 824 879 14 26 45 759 833 877 12 25 43 753 823 874
25 100 2.1 37 56 757 84 879 10 19 35 750 833 877 09 19 32 755 824 874
30 30 54 92 127 655 703 746 1.6 48 67 653 69.1 716 08 41 85 653 690 720
30 60 29 50 78 782 852 892 08 25 44 792 857 892 08 24 43 787 847 885
30 9 20 33 51 769 8.2 892 05 1.7 30 793 857 82 05 16 28 778 848 885

Note: The numbers have been rounded to nearest tenths for better readability.
CVP = probability that the delivery schematic for a drone needs to be reevaluated.

uncertainty in the battery consumption rate is modeled
using gamma robustness principles (34). A mixed-integer
linear programming formulation is provided which is
solved using Gurobi. As the Gurobi solution time is
high, we propose an efficient robust three-stage heuristic
(R3SH). The first two stages of the R3SH heuristic
obtain a solution which is, on average, within 11% of
the Gurobi solution at 3,600 s using an average compu-
tational time of 2.1 s. On average the R3SH solution is
93% of the Gurobi solution with a median computa-
tional time reduction of 97%.

The robust model provides a higher and more reliable
estimate of actual coverage under uncertainty. The aver-
age difference between actual coverage of the robust opti-
mization solution and the deterministic solution is 8.1%
across all p - K (facilities-drones) combinations. The dif-
ference is higher than 5% when the number of drones K
is greater than 30 with the difference being as high as
18.4% for the case when the number of facilities is 25
and the number of drones is 75. Incorporating robustness
into the deterministic model provides a conservative but
reliable coverage estimate, which results in increased
actual coverage and a reduced number of infeasible drone
trips. Also, the probability that the delivery schematic
generated by the robust model requires reevaluation on

the field is substantially lower than for the deterministic
model, truly highlighting the value of considering robust-
ness in decision making.

This work could be extended in multiple directions.
One potential extension is the incorporation of one-to-
many deliveries where a drone can make multiple deliv-
eries in a single route. The optimization formulation
was developed from a coverage maximization perspec-
tive which is suitable for disaster relief and other similar
applications. Incorporation of sustainability, emissions,
and technology (battery replacement) costs could make
the model more suitable for urban logistics applica-
tions. The methodology proposed here to incorporate
uncertainty in battery availability and consumption
could also be used in drone-based applications in facil-
ity location modeling (39, 40) and routing-based appli-
cations (15, 23, 41). A key potential application of
drone-based delivery systems is on-demand or real-time
dynamic delivery systems. In this case, the number of
drones allocated to each facility varies with each time
period depending on the dynamic demand. A rolling
horizon framework could be used where drone alloca-
tions could be made based on current and near-future
forecasted demand which could be updated as we
receive more information.
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