


in battery capacity and consumption rate. An efficient

decomposition solution procedure called robust three-

stage heuristic (R3SH) is provided. Computational anal-

ysis is performed on a real-world case study in Portland,

OR which demonstrates the value of the heuristic and

the need for capturing battery capacity and consumption

rate uncertainty. The RMCFLPD model studied in this

work is the first to incorporate battery consumption and

capacity uncertainty in a framework which models drone

energy consumption with payload and distance in a max-

imum coverage location problem setting. We also pro-

vide an efficient decomposition-based solution heuristic

which exploits the problem structure.

The literature review is described next, followed by the

problem formulation and solution algorithm. Discussion

of computational analysis conducted on a real-world case

study in Portland, OR is then presented followed by the

conclusions and directions for future research.

Literature Review

Several researchers have focused on developing interest-

ing variants of the traveling salesman and vehicle routing

problems focusing on drone applications such as the fly-

ing sidekick traveling salesman problem where a drone

and truck make deliveries together (13–22) to study a

variant of the vehicle routing problem with drones. In

general, incorporating drones into the existing fleet was

found to increase reliability and efficiency. In this paper,

we focus on drone-based deliveries only and do not con-

sider the integration of drones into a trucking fleet.

Dorling et al. (23) and Choi and Schonfeld (24) study the

effect of battery consumption and payload weight on sin-

gle depot drone-based delivery systems, looking at multi-

ple deliveries made by a drone in a single route from a

depot. In contrast, the model developed in this work

only considers multiple one-to-one deliveries from a pre-

specified depot. However, we do model multiple depots.

Chowdhury et al. (25), Golabi et al. (26), Pulver and

Wei (27), and Kim et al. (28) study facility location prob-

lems for drone delivery systems in the context of humani-

tarian logistics and medical supply delivery systems. The

RMCFLPD model and solution algorithm distinguish

from the works mentioned above in several aspects.

Chowdhury et al. (25) consider both trucks and drones,

whereas we focus on a pure drone-based delivery system.

Pulver and Wei (27) do not model capacity constraints at

facilities, energy consumption with payload, and assume

one trip per drone, whereas the RMCFLPD model con-

siders all of these aspects. Pulver and Wei (27) and Kim

et al. (28) use optimization solvers which may not scale

up well to larger instances, whereas this research pro-

vides a customized, efficient heuristic. None of the works

mentioned above consider the allocation of drones to

facilities. This research is an extension of the model and

solution algorithm proposed by Chauhan et al. (12) by

using a robust optimization paradigm to model battery

consumption and battery capacity uncertainty.

Kim et al. (29) use a robust optimization approach to

study the effect of air temperature on uncertainty in

maximum flight duration. However, Kim et al. (29) do

not model variations in energy consumption with pay-

load, allocation of drones to facilities, or facility capac-

ity, and use CPLEX to solve the problem. Kim et al. (30)

develop a chance constraint formulation using an expo-

nential distribution to model the effect of battery uncer-

tainty on coverage of a location. Unlike Kim et al. (30),

the RMCFLPD adopts a robust optimization approach

where the battery consumption and capacity is assumed

to vary in a pre-specified range and is therefore distribu-

tion free.

Goodchild and Toy (31) and Figliozzi (32) evaluate

relative efficiency, energy consumption, and emissions

from UAVs relative to trucks. A detailed review of

optimization approaches in drone-based delivery systems

and applications is provided by Otto et al. (33).

Summarizing, this research presents a new robust optimi-

zation approach as well as a new efficient heuristic to

tackle the facility location problem with drones with bat-

tery consumption and capacity uncertainty.

Problem Description

This section describes a mixed-integer linear program-

ming formulation for the RMCFLPD. Consider a set of

locations I each having a demand di and set of location

sites J . At the beginning of the planning period, an

agency has to pick a maximum of p facilities from the

location set J to serve as drone launching sites. At each

open facility, resources of mass U are allocated to be dis-

tributed to the demand points. The planning agency also

has to distribute a set of K drones to the located facili-

ties. We assume that the cost of transporting the drones

and resources from a warehouse to each open facility is

constant. The drones make one-to-one delivery trips

(from the facility location to the demand points and

back) until the battery is exhausted. We do not consider

one-to-many vehicle routing type trips, which is consis-

tent with the initial applications of drone deliveries by

private companies. We also do not consider battery

recharging during the planning period and assume that

the drone battery is recharged between planning periods.

The length of the planning period is shorter (6 hours to a

day or 2 days) compared with the planning period for a

typical facility location problem.

We adopt a robust optimization framework to cap-

ture the uncertainty in battery consumption and initial

capacity. For each drone k 2 K, the battery capacity can
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take any value in the interval ½B� fk ,B�. To model the

robustness in initial battery availability, a penalty of Fk

is assigned per fractional reduction in the initial battery

availability. The conservativeness in battery capacity can

be controlled by adjusting the penalty. Higher values of

Fk lead to more conservative solutions concerning bat-

tery capacity. The battery consumption during one trip

between demand point i 2 I and facility location j 2 J is

assumed to be uncertain and can take any value in the

interval bij � b̂ij, bij + b̂ij

h i

where bij is the nominal value

and b̂ij is the maximum variation. We adopt the gamma

robustness paradigm originally proposed by Bertsimas

and Sim (34). In the gamma robustness framework, the

battery consumption during one trip between demand

point i 2 I and facility location j 2 J can take one of two

values, the nominal value bij or the worst-case value

bij + b̂ij. For each drone, we assume that at most Gjk

trips are at worst-case battery consumption with the

remaining trips at nominal battery consumption. The

nomenclature and mathematical programming formula-

tion are presented below.

Nomenclature

Problem Formulation

max
x, y, z, d

X

i2I

X

j2J

X

k2K

dixijk+
X

j2J

X

k2K

Fkdjk ð1Þ

X

j2J

X

k2K

xijkł 1 8 i 2 I ð2Þ

X

j2J

yjł p ð3Þ

max
g

X

i2I

(bij + gijkb̂ij)xijk

 !

ł (B� fkdjk)zjk 8 j 2 J , k 2 K

ð4Þ

X

i2I

X

k2K

dixijkłUyj 8 j 2 J ð5Þ

zjk ł yj 8 j 2 J , k 2 K ð6Þ
X

j2J

zjk ł 1 8 k 2 K ð7Þ

X

i2I

gijkłGjk 8 j 2 J , k 2 K ð8Þ

djk ł zjk 8 j 2 J , k 2 K ð9Þ

xijk 2 f0, 1g 8 i 2 I , j 2 J , k 2 K ð10Þ

yj 2 f0, 1g 8 j 2 J ð11Þ

zjk 2 f0, 1g 8 j 2 J , k 2 K ð12Þ

gijk 2 f0, 1g 8 i 2 I , j 2 J , k 2 K ð13Þ

djk ø 0 8 j 2 J , k 2 K ð14Þ

The goal of the objective function is to maximize the

sum of the demand served by the drones and the penalty

for initial battery availability. The penalty term promotes

reduction in the initial battery availability, thereby

improving robustness. Constraint 2 ensures that a

demand point is covered at most once. Constraints 3 and

5 ensure that at most p facilities are opened, and its cor-

responding capacity constraints are satisfied. Together,

Sets and indices
I Set of all demand points
J Set of all candidate facility locations
K Set of available drones
Indices
i 2 I
j 2 J
k 2 K
Parameters
h Power transfer efficiency of the drone
ns Lift-to-drag ratio of the drone
mt UAV tare mass, without battery and load
mb UAV battery mass
di Demand for resource at location i 2 I (units same as

UAV battery and tare mass)
cij Distance between demand location i 2 I and facility

location j 2 J
bij Nominal battery consumption during one trip

between demand point i 2 I and facility location j
b̂ij Variation in battery consumption during one trip

between demand point i and facility location j
B Maximum usable battery capacity of the drone
fk Maximum decrease in initial battery capacity for

drone k 2 K
Fk Penalty associated with decreasing initial battery

availability for drone k 2 K
p Maximum number facilities that can be opened
U Capacity of each located facility (units same as UAV

battery and tare mass)
Gjk Maximum number of trips from located facility j by

drone k that can achieve worst-case battery
consumption

(continued)

Decision variables
xijk 1, if demand location i is served by located facility j

using drone k; and 0, otherwise
yj 1, if candidate facility location j is opened; and 0,

otherwise
zjk 1, if located facility j employs drone k; and 0,

otherwise
gijk 1, if trip to demand location i from facility location j

by drone k assumes worst-case battery
consumption; and 0, otherwise

djk fraction of maximum decrease in initial battery
capacity (fk) of drone k employed by facility location
j (0ł djkł 1)
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constraints 6 and 7 ensure that drones are allocated to

open facilities, and each drone is assigned to at most one

facility only.

The nominal battery consumption in a delivery from

facility j 2 J to demand point i 2 I is given as (32):

bij =
mt +mb + di

nsh
cij +

mt +mb

nsh
cij 8 i 2 I , j 2 J ð15Þ

Constraint 4 enforces battery range constraints on all

the drones considering battery consumption robustness

and reduction in total available battery. Constraint 8

puts a limit on the total number of worst-case battery

consumption trips per drone at each facility according to

the gamma robustness principle (34). Constraint 9 makes

sure that the total battery availability penalty on the

drone k located at facility j is only applied if it is placed

there. Equations 10 to 14 are variable definition

constraints.

A common assumption in robust optimization is that

the uncertainty occurs in such a way that it worsens the

decision-maker’s objective (34, 35), that is, for a maximi-

zation problem, the uncertainty occurs in such a way

that it minimizes the objective value. The above formula-

tion cannot be solved directly as the maximization in 4 is

in direct conflict with overall objective in Equation 1, a

consequence of applying robust optimization. The pres-

ence of non-linear terms in Equation 4 further compli-

cates the problem. To remedy the conflicting objective

and non-linear terms gijkxijk, the optimization problem in

Equation 4, with relevant constraints 8 and 13, is dua-

lized. This inner optimization problem in the variable g

(SPjk) is given as:

SPjk = max
g

X

i2I

b̂ijxijkgijk ð16Þ

X

i2I

gijkłGjk ð17Þ

gijk 2 f0, 1g 8 i 2 I ð18Þ

In the above formulation, parameter Gjk is an integer.

In case of non-integer values, Gjk can be changed to bGjkc
to retain correctness. The above formulation provides an

integer optimal solution when the variable g is linearized.

Let, ujk and mijk be the dual variables associated with

Equation 17 and the upper bound of the Equation 18

respectively. The dual formulation of the above problem

(SPDjk), can then be written as:

SPDjk = min
m, u

X

i2I

mijk

 !

+Gjkujk ð19Þ

mijk+ ujk ø b̂ijxijk 8 i 2 I ð20Þ

mijkø 0 8 i 2 I ð21Þ

ujk ø 0 ð22Þ

Using strong duality, it can be shown at SPjk and

SPDjk have the same optimal value. The product djkzjk
(in Equation 4) can be simplified and written as only djk
because of the presence of constraint 9. Substituting the

above changes, the modified RMCFLPD formulation is

given as:

max
x, y, z, d,m, u

X

i2I

X

j2J

X

k2K

dixijk+
X

j2J

X

k2K

Fkdjk ð23Þ

X

j2J

X

k2K

xijkł 1 8 i 2 I ð24Þ

X

j2J

yjł p ð25Þ

X

i2I

bijxijk

 !

+
X

i2I

mijk

 !

+Gjkujk

+ fkdjk łBzjk 8 j 2 J , k 2 K

ð26Þ

mijk+ ujk � b̂ijxijkø 0 8 i 2 I , j 2 J , k 2 K ð27Þ
X

i2I

X

k2K

dixijkłUyj 8 j 2 J ð28Þ

zjk ł yj 8 j 2 J , k 2 K ð29Þ
X

j2J

zjk ł 1 8 k 2 K ð30Þ

djkł zjk 8 j 2 J , k 2 K ð31Þ

xijk 2 f0, 1g 8 i 2 I , j 2 J , k 2 K ð32Þ

yj 2 f0, 1g 8 j 2 J ð33Þ

zjk 2 f0, 1g 8 j 2 J , k 2 K ð34Þ

mijkø 0 8 i 2 I , j 2 J , k 2 K ð35Þ

ujkø 0 8 j 2 J , k 2 K ð36Þ

djkø 0 8 j 2 J , k 2 K ð37Þ

The sum
P

i2I mijk+Gjkujk

� �

, in Equation 26, repre-

sents the additional battery consumption because of

robustness consideration, and the term fkdjk is the reduc-

tion in the total available battery.

Robust Three-Stage Heuristic for Solving

RMCFLPD

The robust three-stage heuristic (R3SH) solves the

RMCFLPD in three stages. This method is an extension

of the 3SH heuristic proposed in Chauhan et al. (12).

The first stage is a facility location problem for deciding
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which facilities to open and matching them with demand

points. The second stage is solving the robust knapsack

problem, including battery consumption uncertainty and

initial battery availability penalty, to allocate drones to

open facilities. The final stage is an r -exchange heuristic

to replace r worst-performing facilities to improve the

solution quality.

Facility Location and Demand Allocation

In this stage, a facility location problem is solved to

determine the facilities to be opened and matching

demand points to the located facilities. Let �Ji denote the

set of potential facility locations that are within the range

of the drone for each demand location i, that is,
�Ji = fj 2 J jbijłBg. Also let �Ij denote the set of demand

points i 2 I that are within the range of the drone for

each facility location j 2 J , that is, �Ij = fi 2 I jbijłBg.
The sets �Ji and �Ij ensure that the demand points and

facilities are within the flying range of each other. The

decision variables for the formulation are: (i) x̂ij which

takes values 1 if demand point i 2 I is assigned to facility

j 2 J and 0 otherwise, and (ii) ŷj which takes value 1 if

facility j 2 J is opened and 0 otherwise.

max
x̂, ŷ

X

i2I

X

j2�J i

di

bij
x̂ij ð38Þ

X

j2�J i

x̂ijł 1 8 i 2 I ð39Þ

X

j2J

ŷjł p ð40Þ

X

i2�I j

dix̂ijłUyj 8 j 2 J ð41Þ

x̂ij, ŷj 2 f0, 1g 8 i 2 �Ij, j 2 J ð42Þ

The objective of the formulation, Equation 38, is to

maximize the weight of assigned demand points.

Constraint 39 makes sure that the demand point is cov-

ered by at most one facility. Constraint 40 ensures that

no more than p facilities are opened. Constraint 41

enforces the sum of demand assigned to a facility to be

less than its capacity.

Repeated Application of Robust Knapsack Problems

Let Ĵ be the set of facilities opened and Îj the set of

demand points matched to open facilities, as obtained

from the first stage of R3SH. That is, Ĵ = fj 2 J j ŷj = 1g,
and Îj = fi 2 I j x̂ij= 1g. In this stage, the drones are allo-

cated to opened facilities to serve demand points by sol-

ving a maximum profit robust knapsack problem. For

any facility j 2 Ĵ and drone k 2 K. the max profit robust

knapsack problem is defined as follows:

Cj = max
x0,w0

X

i2Î j

dix
0
i

0

@

1

A+Fkw
0
jk ð43Þ

X

i2Î j

bijx
0
i

0

@

1

A+ max
fi2S jS�Î j, jSjłGjkg

b̂ijx
0
i

 !

+ fkw
0
jk łB

ð44Þ

x0i 2 f0, 1g 8 i 2 Îj ð45Þ

w0
jk 2 f0, 1g ð46Þ

In the above formulation, the variables x0i take the

value 1 if demand point i is served by drone k from facil-

ity j and 0 otherwise. The variable w0
jk takes the value 1 if

the penalty is applied completely to the initial battery

availability, and 0 if the penalty is not applied at all.

Constraint 44 makes sure that only the demand points

satisfying the drone battery constraint are served. Cj rep-

resents the maximum value of the 0–1 maximum profit

robust knapsack problem. The above problem is solved

by solving jÎjj � Gjk + 1 ordinary 0–1 knapsack prob-

lems, as shown in Lee et al. (36). Let, g0i be 1 if i 2 S and

0 if i 2 ÎjnS. Then, the determination of the non-binary

value of the penalty is done in the following manner:

d0jk =
1 ; if w0

jk = 1
B�
P

i2Î j
(bij + g0 ib̂ij)x

0
i

fk
; if w0

jk = 0

(

ð47Þ

The final objective function value, CF
j , is then deter-

mined as follows:

CF
j =

Cj ; if d0jk =1

Cj +Fkd
0
jk ; if d0jk\1

�

ð48Þ

CF
j represents the maximum value of the sum of

demand satisfaction and the penalty possible from facil-

ity j and its corresponding demand locations Îj. The steps

involved in R3SH are given as follows:

� The best facility for the allocation of the first

drone is determined by solving jĴ jmaximum profit

robust knapsack problems, once for each j 2 Ĵ .

Let j0 be the facility with a maximum value of CF
j .

Allot the first drone to j0 and remove the demand

points served by the first drone from the set Îj0 .

Assign penalty variable d0j0k to the first drone.
� Solve the maximum profit robust knapsack prob-

lem for j0 using the updated Îj0 , and determine the

new value for CF
j0 . Now let j00 be the facility with

the maximum value of CF
j . Allot the second drone

to j00 and remove the demand points served by the

Chauhan et al 29



second drone from the set Îj00 . Assign penalty vari-

able d0j00k to the second drone.
� Repeat the above step until all the drones are used

or all demand points are satisfied. This would

result in a maximum of jKj � 1 repetitions. If no

more demand points can be satisfied, then, assign

the remaining drones to the facility with a maxi-

mum CF
j value and set the corresponding d0jk val-

ues to 1.

R-Exchange Heuristic

In the third stage, a local exchange heuristic is employed

to improve solutions. Set Ĵ0 = Ĵ , and determine the sum

of demand served and penalty for each open facility. The

r facilities with least sum of demand served and penalty

are selected to be closed and are removed from Ĵ . Ĵ is

then updated by adding r facilities randomly chosen

from the jJ j � p+ r facilities that are currently closed.

Update the sets �Ji = fj 2 Ĵ jbijłBg, 8 i 2 I and
�Ij = fi 2 I jbijłBg, 8 j 2 Ĵ . The demand points are then

matched to the open facilities by solving the following

problem:

max
x̂

X

i2I

X

j2�J i

di

bij
x̂ij ð49Þ

X

j2�J i

x̂ijł 1 8 i 2 I ð50Þ

X

i2�I j

dix̂ijłUŷj 8 j 2 Ĵ ð51Þ

x̂ij 2 f0, 1g 8 i 2 �Ij, j 2 Ĵ ð52Þ

where ŷj = 1, 8 j 2 Ĵ and 0 otherwise, and is not a deci-

sion variable in the above formulation. Once the above

demand allocation problem is solved, the second stage of

solving jĴ j+ jKj � 1 maximum profit robust knapsack

problems is repeated. If the sum of total demand served

and battery capacity penalty is found to be better than

the previous best solution, then Ĵ0 is updated to the cur-

rent set of open facilities. If there was no improvement,

then the previous best solution and the set of open facili-

ties Ĵ0 is adopted, and new r facilities are chosen ran-

domly. This r -exchange heuristic is repeated for a pre-

specified number of times.

Proposition 1: The solution generated at the end of

stage 2 of R3SH (i.e., repeated application of robust

knapsack problems) is a feasible lower bound of

RMCFLPD.

Proof: In stage 2, the variable x̂ij (from stage 1) helps

determine Îj, a set of demand points that can be

served from facility j only. If a demand point is served

by the drone, it is removed from the set Îj. Therefore,

the following inequality is valid:

X

k2K

xijkł x̂ij 8 i 2 I , j 2 J ð53Þ

Now, consider the stage 1 problem (Equations 38 to

42). Using valid inequality 53, if Equations 39 to 41 are

satisfied in R3SH, the corresponding RMCFLPD

Equations 24, 25, and 28, respectively, are also satisfied.

Additionally, a preliminary precaution is taken that x̂ij
can assume the value 1 only if bijłB. This ensures that

only plausible deliveries are considered. Therefore, stage

1 solution provides feasible facility locations and demand

allocation to facilities.

Stage 2 of R3SH tries to allot a drone to a facility and

allocate demand points that would be served by the

drone. The maximum profit robust knapsack problem

(Equations 43 to 46) considers a drone alloted to facility

j and determines the maximum sum of demand and bat-

tery availability penalty that can be achieved. Constraint

44 is equivalent to constraint 4 (or the set of constraints

26 and 27 in RMCFLPD). The robust knapsack problem

considered here was first introduced in Bertsimas and

Sim (37). The solution algorithm to solve the robust

knapsack problem is proposed by Lee et al. (36), who

also prove that the algorithm ensures optimality.

Therefore, allocation of demand points to a drone

located at j is always feasible. Also, it is easy to notice

that value of d0jk found in Equation 47 always lies in the

range [0,1] such that constraint 4 (or equivalently con-

straints 26 and 27 in RMCFLPD) always remain valid.

As a drone is always allotted only to one of the open

facilities represented by the set Ĵ , Equations 30 and 31 in

RMCFLPD are also satisfied.

As all the constraints in RMCFLPD are satisfied by

R3SH at the end of Stage 2, the generated solution is fea-

sible, and therefore, a valid lower bound of RMCFLPD.

Corollary 1: The solution generated at the end of

stage 3 of R3SH (i.e., r -exchange heuristic) is at least

as good as the solution generated in stage 2.

Proof: The optimization problem in stage 3 of R3SH,

is essentially the stage 1 problem with variables ŷ

fixed. This is followed by repeated application of

robust knapsacks, that is, stage 2 of R3SH.

Therefore, following Proposition 1, the solution

obtained at the end of stage 3 is feasible.

Now, if the solution found at the end of reiterated

stage 2 is worse than the previous best, it is discarded

and previous best solution is used again for stage 3. If

the solution is better than the previous best solution,

then the previous best is updated. Therefore, the solution
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obtained at the completion of stage 3 is at least as good

as the one obtained at the end of stage 2.

Numerical Analysis

Computational analysis on the effect of drone battery

consumption and capacity uncertainty on drone-based

deliveries for short-term planning periods is performed

on a case study based in the Portland Metropolitan area

(12). The Portland Metropolitan area spans a total of

five counties in the state of Oregon (Clackamas,

Columbia, Multnomah, Washington, and Yamhill) and

two counties in the state of Washington (Clark and

Skamania). The centroids of the ZIP Code Tabulated

Areas (ZCTAs) in these seven counties are considered to

be the demand locations for the study. The community

centers across the Portland Metro are considered as the

potential facility locations, as they provide enough space

for storing resources and launching drones. There are

122 demand locations and 104 candidate facility location

sites in the case study; none of them overlap with

another. The demand locations and the candidate facility

locations are shown in Figure 1. The resource require-

ment at demand locations varies uniformly between 1 kg

and 5 kg in intervals of 0.25 kg. The values chosen here

are the same as in Chauhan et al. (12), and the total

demand is 366.5 kg. The facilities are assumed to operate

at an average of 80% capacity efficiency. The capacities

can then be generated as in Pirkul and Schilling (38):

U =

P

i2I di

0:8p

where, the numerator denotes the total demand for the

resource, and p denotes the maximum number of facili-

ties that can be located. In the case study, p takes values

from 5 to 30 in multiples of 5. The distance between the

demand locations and candidate facility locations is

assumed to be the planar Euclidean distance between

them, as drones usually travel in straight lines. Currently,

the effect of tall buildings, mountains, ‘‘no-drone zones’’

(11), and other obstacles on drone trajectory is not con-

sidered, and it can be a possible future extension. The

nominal battery consumption (bij) for a trip to demand

location i from a facility location j is a function of the

distance between them and the demand for the resource

at location i and can be calculated using Equation 15.

The variation in battery consumption (b̂ij) is assumed to

be strongly and positively correlated to nominal battery

consumption (bij) and is an integer chosen randomly in

the interval ½0:1bij, 0:3bij� (currently chosen values of b̂ij
have a correlation of 0.8855 with bij). The specifications

of drone parameters are as follows (32):

� Sum of drone tare and battery mass: 10.1 kg

� Total battery capacity: 777 Wh
� Payload capacity: 5 kg
� Lift-to-drag ratio: 3.5
� Total power transfer efficiency: 0.66
� Battery Safety Buffer: 20% of total battery capac-

ity (Maximum usable battery availability (B) =

Total battery � Battery Safety Buffer = 621 Wh)
� Maximum reduction in initial battery availability

(fk): 25% of total battery capacity = 194 Wh
� Penalty associated with maximum reduction in ini-

tial battery availability (Fk): 2.5 kg
� Maximum number of trips per drone that can

assume worst-case battery consumption (Gjk): 1

Chauhan et al. (12) found that the 1 facility exchange

in the third stage of their proposed 3SH heuristic works

best when p= 5, 2 facility exchange works best when

p= 10, and 3 facility exchange works best for p values

greater than 10. As R3SH, in this study, is an extension

of 3SH, the above-mentioned values of facility exchange

are used in the r -exchange heuristic stage of the R3SH.

That is:

r=

1 ; if p= 5

2 ; if p= 10

3 ; if p= 15, 20, 25, 30

8

<

:

The computational analyses for the robust formula-

tions are performed on a Windows 10 desktop with Intel

i7-7700K processor with CPU specifications of 3.6 GHz,

4 cores, 8 logical processors, and 32 GB of RAM. The

computational analysis on the deterministic formulation

of MCFLPD which does not consider battery initial

capacity or consumption rate uncertainty (12) is per-

formed on a Windows 10 desktop with Intel i7-8700 pro-

cessor with CPU specifications of 3.2 GHz, 4 cores, 8

logical processors, and 32 GB of RAM. The determinis-

tic formulation is solved to evaluate the value of consid-

ering uncertainty.

Computational Efficiency

Computational efficiency for solving RMCFLPD would

determine the extent of its application in real life. As the

model is developed for short-term applications, faster

convergence is desired for quicker implementation of

drone delivery in the region and faster global reoptimiza-

tion is desired to tackle changes in demand for resources.

The RMCFLPD for the Portland Metro case study is

solved using two methods:

� Gurobi solver in Python interface. The model is

run for a maximum of 3,600 s, or a solution within

the tolerance limit is obtained. Gurobi default

parameters are used for the model.
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� Robust three-stage heuristic (R3SH). The facility

location problem in stage 1 and the nominal knap-

sack problems in stage 2 are solved using Gurobi.

The r -exchange heuristic is repeated 100 times.

The first set of computational runs aim to measure the

performance of Gurobi solver versus R3SH. The Gurobi

runs are performed once for each combination of p (max-

imum number of opened facilities) and jKj (Maximum

number of drones); its results can be found in Table 1.

As random exchange of facilities is involved in R3SH, 30

runs are performed for each p - jKj combination and the

minimum, average, and maximum values are reported.

The objective values achieved by R3SH are 93.2% of

Gurobi objective values on average (minimum is 88.2%

of Gurobi objective value for the case where p is 15 and

jKj is 60; maximum is 97.5% of Gurobi objective value

for the case where p is 30 and jKj is 60). R3SH outper-

forms Gurobi in terms of run times, achieving a median

reduction of 97.5%. The first solution to RMCFLPD is

generated by R3SH when it completes its second stage

(the repeated application of robust knapsack problems)

for the first time. This is referred to as S2 in Table 1. At

S2, R3SH achieves objective value, which is 88.5% of the

Gurobi objective on average, utilizing a maximum of 3.6

s. On average, the third stage of R3SH improves the S2

objective value by 5% (minimum improvement is 0% for

three unique p - jKj combinations; maximum improve-

ment is 10.8% for the case when p is 25 and jKj is 50)

and adds 105 s to the computational time. To compare

Gurobi and R3SH at equivalent performance, the times

taken by Gurobi to achieve R3SH ‘S2’ and ‘Ave’ objec-

tive values are noted in Table 2. At this equivalent per-

formance, R3SH is computationally faster than Gurobi,

achieving a median reduction in computational time of

98.7% for ‘S2’ solution, and 44% for ‘Ave’ solution.

Value of Adding Robustness

This section shows the value of adding robustness to the

deterministic model, thereby providing a comparison

between the robust formulation presented in this paper

and the deterministic formulation presented in Chauhan

et al. (12). The deterministic formulation is solved exactly

using Gurobi with a maximum computational time of

3,600 s. The robust formulation is solved using R3SH, as

in the previous section.

To get a clearer idea of the value of considering

robustness and uncertainty, we use Monte Carlo simula-

tion to generate scenarios. In each scenario, we generate

Figure 1. Demand locations and potential facility locations in the Portland metro area (12).
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Table 1. Comparison of Gurobi Solver and R3SH

Gurobi R3SH

Time (s) Objective (kg)

p jKj Time to 1st solution (s) Time (s) Gap (%) Objective (kg) S2 Min Ave Max S2 Min Ave Max

5 20 21 3600 2.8 216.3 2.3 99.2 112.9 132.9 194.0 194.1 200.5 203.7
5 25 36 3600 4.4 246.1 2.5 112.4 127.4 152.9 220.4 221.4 226.0 230.0
5 30 55 3600 5.9 270.3 2.7 125.6 140.7 167.3 243.1 243.3 247.0 252.8
5 35 69 3600 7.6 289.9 3.0 165.4 175.3 190.8 263.3 263.3 265.0 267.0
5 40 106 3600 11.5 304.0 3.6 190.0 210.1 227.4 281.9 281.9 282.7 283.3
10 20 25 3600 2.1 247.9 2.6 106.6 125.6 215.2 226.9 227.9 230.5 233.2
10 30 50 3600 4.1 303.5 2.9 134.0 146.3 164.3 270.6 274.0 278.8 283.7
10 40 148 3600 4.8 351.4 3.2 138.9 169.7 187.6 301.6 312.2 319.9 325.5
15 30 40 3600 3.8 323.7 2.7 101.1 110.5 123.0 295.4 295.4 299.4 304.3
15 45 264 3600 5.0 394.4 2.5 104.5 117.9 128.9 344.5 359.3 364.5 372.3
15 60 504 3600 6.0 448.3 2.2 92.4 106.8 120.9 382.0 395.2 405.4 419.2
20 20 19 3600 0.5 276.4 1.8 60.0 62.8 65.8 249.7 252.9 258.8 262.1
20 40 146 3600 4.2 388.3 1.8 71.9 78.6 82.9 345.6 355.4 360.2 364.5
20 60 340 3600 4.2 461.2 1.8 72.7 83.4 88.9 395.6 416.3 425.0 431.3
20 80 410 3600 3.2 516.5 1.8 72.9 82.6 89.0 445.6 466.3 475.0 481.3
25 25 24 3600 1.3 315.0 1.5 54.5 59.5 66.0 281.6 285.6 290.7 296.9
25 50 193 3600 3.5 438.0 1.6 73.5 78.2 84.6 381.3 409.2 417.7 422.6
25 75 343 3600 2.2 509.5 1.6 72.9 78.5 89.1 443.8 472.0 484.1 491.1
25 100 264 3600 1.5 574.5 1.6 74.3 79.4 87.3 506.3 534.5 546.6 553.6
30 30 30 3600 2.5 350.2 1.7 57.2 59.4 64.7 313.6 318.4 323.1 326.9
30 60 202 3600 2.0 474.2 1.7 71.5 75.3 78.2 420.1 446.2 455.8 462.2
30 90 307 3600 1.1 552.3 1.7 71.6 75.9 78.9 495.1 521.2 530.8 537.2

Note: S2 = after stage 2 of R3SH.

Table 2. Comparison of Gurobi Solver and R3SH at Equivalent Performance

3SH objective (kg) 3SH time (s) Gurobi time (s)

p jKj S2 Ave S2 Ave S2 Ave

5 20 194 200.5 2.3 112.9 34 88
5 25 220.4 226 2.5 127.4 135 192
5 30 243.1 247 2.7 140.7 122 184
5 35 263.3 265 3 175.3 384 384
5 40 281.9 282.7 3.6 210.1 149 149
10 20 226.9 230.5 2.6 125.6 53 53
10 30 270.6 278.8 2.9 146.3 70 73
10 40 301.6 319.9 3.2 169.7 186 186
15 30 295.4 299.4 2.7 110.5 68 68
15 45 344.5 364.5 2.5 117.9 549 549
15 60 382 405.4 2.2 106.8 984 984
20 20 249.7 258.8 1.8 62.8 34 35
20 40 345.6 360.2 1.8 78.6 189 198
20 60 395.6 425 1.8 83.4 340 735
20 80 445.6 475 1.8 82.6 410 494
25 25 281.6 290.7 1.5 59.5 39 43
25 50 381.3 417.7 1.6 78.2 202 462
25 75 443.8 1 1.6 78.5 343 753
25 100 506.3 546.6 1.6 79.4 264 595
30 30 313.6 323.1 1.7 59.4 46 57
30 60 420.1 455.8 1.7 75.3 202 235
30 90 495.1 530.8 1.7 75.9 307 443

Notes: S2 = after stage 2 of R3SH; Ave = average solution obtained by R3SH.
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new battery consumption as: ~bij 2 Uniform(bij � b̂ij,

bij + b̂ij) 8 i 2 I , j 2 J and new fraction of reduction ini-

tial battery availability as: ~djk 2 Uniform(0, 1) 8 j 2
J , k 2 K. The solutions obtained from the robust optimi-

zation formulation and deterministic formulation are

compared for the new values of ~bij 8 i 2 I , j 2 J and
~djk 8 j 2 J , k 2 K. The key comparison statistics of inter-

est are the percentage of times a drone delivery schematic

needs to be recalculated (because of battery capacity con-

straint violation) and actual demand met. The procedure

for conducting the Monte Carlo simulation is detailed in

algorithm 1. The drone delivery schemes obtained using

deterministic and the robust model are shown in Figures

2 and 3, respectively. For both the models, the case with

parameters p= 5 and jKj= 35 is shown using the same

simulated values of ~bij and ~djk . It can be noted that for

the robust solution the number of drone deliveries out of

an open facility is less, and the drone trip lengths are

smaller, compared with the deterministic solution. This is

expected as the robust model is solving for a reduced bat-

tery capacity and potentially higher battery consumption

rate. As a result, there are a very few infeasible deliveries

in the robust case, whereas in the deterministic case,

almost half of the deliveries proposed were infeasible.

The probability that the delivery schematic for a

drone needs to be reevaluated (CVP) is given as the ratio

of total violations and total constraints, as calculated

from algorithm 1. Coverage is calculated as the ratio of

total demand met to the total demand (366.5 kg). The

probability values along with minimum, average, and

maximum values of coverage for the deterministic and

robust model is detailed in Table 3.

The CVP value for the robust formulation is signifi-

cantly lower than that for the deterministic formulation.

The CVP values for the deterministic formulation is par-

ticularly high for lower values of p. The high values of

CVP should result in a greater drop in actual coverage

from the coverage reported by the objective function of

the model. On average the solution obtained from the

deterministic formulation has a CVP of 60.7% across all

p - K combinations tested whereas the corresponding

CVP value for the robust solution was 3.6%. This corre-

sponds to a drop in the actual coverage and erroneous

optimistic estimate of the actual coverage when the deter-

ministic model is used. The deterministic model coverage

is estimated to be an average of 81.6% across all p - K

combinations. When the deterministic solution is evalu-

ated under battery consumption and battery capacity

Figure 2. Drone delivery scheme using deterministic model with p= 5 and jKj= 35 for a simulated value of ~b and ~d.
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Figure 3. Drone delivery scheme using robust model with p= 5 and jKj= 35 for a simulated value of ~b and ~d.

Table 3. Value of Adding Robustness

Deterministic Robust

Actual coverage (%) Actual coverage (%)

p jKj CVP (%) OC (%) Min Ave Max CVP (%) OC (%) Min Ave Max

5 20 84 56.3 40.8 44.8 49.9 2.8 46.6 42.4 46 46.6
5 25 77.2 61.9 42 47.8 53.4 2.4 51.7 47.1 51.1 51.7
5 30 73.6 66.3 43 49.5 55 2.4 55.2 51.5 54.4 55.2
5 35 77.3 70.2 46.4 51.3 57.4 2.3 57.4 52.7 56.6 57.4
5 40 76.8 72.1 44.6 50.8 58.2 2.9 58.7 54.1 57.7 58.7
10 20 76.2 64.3 48.8 52.7 57.6 7.4 56.3 52.3 55.1 56.3
10 30 73.5 75.2 53 58.3 64.6 6.1 65.8 60.9 64.4 65.8
10 40 69.7 83.5 56.8 62.9 68.4 2.8 70.9 66.1 69.8 70.9
15 30 68 80 59.3 64.6 70.5 4.3 70.8 66.1 69.9 70.8
15 45 63.7 90.2 63.7 70.9 77.4 4.5 81.1 74.1 79.5 81.1
15 60 53.5 92.8 63.3 71.3 78.3 1.7 84.2 78.9 83.2 84.2
20 20 70.1 71.4 58.7 62.2 66.5 9.5 64.7 60 63.4 64.7
20 40 58.1 90.5 68.6 74.8 81.2 3.9 82 76.7 80.7 82
20 60 57.3 93.8 63.4 71.8 79.9 1.3 87.3 82.6 86.5 87.3
20 80 37.5 93.8 65.3 73.7 81.4 2.3 89.9 83.2 88 89.9
25 25 57.8 79.6 65.1 69.6 74.6 8 72 67.9 70.7 72
25 50 60.6 93.8 68.1 74.8 83.1 1.8 87.7 83.8 86.7 87.7
25 75 40.3 93.8 64.1 71.7 79.8 1.7 91.3 86.1 90.1 91.3
25 100 25.9 93.8 67.1 75.1 82.8 0.6 90.5 87.5 89.9 90.5
30 30 54.2 85.7 70.3 75.1 80.1 8.4 78.9 73.9 77.1 78.9
30 60 50.3 93.8 68.6 74.5 82.1 1.2 90 86.2 89.3 90
30 90 31.6 93.8 66.2 73.4 80.6 1.1 91.3 88 90.5 91.3

Notes: CVP = probability that the delivery schematic for a drone needs to be reevaluated; OC = coverage calculated using the demand met from the

objective function of the optimization model.
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uncertainty, the actual coverage drops to 64.6% across

all p - K combinations. The robust model provides a

more conservative estimate of coverage of 73.8% across

all p - K combinations tested from the optimization

model. However, when the robust optimization solution

is evaluated using simulation, the actual average cover-

age is 72.75% across all p - K combinations. Thus the

robust model provides a higher and more reliable esti-

mate of actual coverage under uncertainty. The differ-

ence between actual coverage of the robust optimization

solution and deterministic solution is higher than 5%

when the number of drones is greater than 30 with the

difference being as high as 18.4% for the case when p is

25 and jKj is 75.

Algorithm 1 Monte Carlo simulation for testing the

robustness of solutions

Solve the model and determine the optimum values of

decision variables: x� and z�

Generate new battery consumption as: ~bij 2 Uniform

(bij � b̂ij, bij + b̂ij) 8 i 2 I , j 2 J

Generate a new fraction of reduction initial battery avail-

ability as: ~djk 2 Uniform(0, 1) 8 j 2 J , k 2 K

total constraints= 0; total violations= 0

current iter = 0; MCSim iter = 1000

total demand met=zeros(MCSim iter)

while current iter\MCSim iter do

for j 2 J , k 2 K do

if ẑjk = = 1 then

total constraints + = 1

if
P

i2I
~bijx̂ijk.(B� fk~djk) then

total violations + = 1

Solve a nominal max profit knapsack problem

to determine maximum demand that can be

met by the drone. The value of the item is given

by di, the weight of the item is given by ~bij, and

the knapsack capacity is (B� fk~djk).

total demand met½current iter�+ = max

profit knapsack objective value

else

total demand met½current iter�+ =
P

i2I dix̂ijk
end if

end if

end for

current iter+ =1

end while

Sensitivity to Changes in Maximum Penalty Value

This section studies the effect of changes in the maximum

penalty value (Fk) on the robustness of the solutions. The

computational runs for this sensitivity analysis are

performed using R3SH and Fk values as 2 kg, 2.5 kg,

and 3 kg. R3SH is run 30 times to provide representative

solutions. The robustness of solutions is calculated in the

same way as described in the previous section (using

algorithm 1). The minimum, average, and maximum val-

ues for the probability that the delivery schematic for a

drone needs to be reevaluated (CVP) and the coverage is

given in Table 4.

The CVP values decrease with an increase in the num-

ber of available drones for a constant value of p and Fk ,

and the CVP values decrease with increase in the Fk

value for a constant value of p and the number of avail-

able drones. As the number of drones increases for a

constant value of p and Fk , the chances of the penalty

being accounted in the delivery scheme increase as most

locations with high demand are already satisfied by pre-

vious drones and, therefore, CVP should decrease. As

the value of Fk (penalty) increases, the chances of it being

favored instead of satisfying the demand points increases

and, therefore, CVP should decrease. The increase in the

Fk value from 2 kg to 2.5 kg leads to a 4.2 percentage

point reduction in CVP on average. An increase in Fk

value from 2.5 kg to 3 kg leads to a further decrease in

CVP value by 2 percentage points.

As the number of drones and the number of open

facilities increase, the coverage should increase as there

are more resources available. As the value of Fk

increases, there are two counteracting events: the cover-

age should decrease as the chances of the penalty being

favored increase resulting in reduced demand met; and

the coverage should increase as the CVP value decreases

resulting in reduced infeasible demand assignments. In

the current case study, the average actual coverage

obtained using an Fk value of 2.5 kg is always better than

the average actual coverage obtained using an Fk value

of 3 kg (except for the case when p= 5 and jKj= 40).

The average actual coverage obtained using an Fk value

of 2 kg is better than that of an Fk value of 2.5 kg when

a smaller number of drones are employed (less than 50

drones). The Fk value of 2.5 kg, therefore, works best for

the case study as it reasonably hedges against the infeasi-

ble demand assignments while providing superior cover-

age values.

Conclusions

This paper extends the maximum coverage facility loca-

tion problem with drones (MCFLPD) proposed by

Chauhan et al. (12) by incorporating uncertainty in bat-

tery availability and consumption of drones. The uncer-

tainty in initial battery availability is modeled using a

penalty-based approach. The higher the penalty, the

greater the conservativeness of the solution in protecting

against a reduction in initial battery capacity. The
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uncertainty in the battery consumption rate is modeled

using gamma robustness principles (34). A mixed-integer

linear programming formulation is provided which is

solved using Gurobi. As the Gurobi solution time is

high, we propose an efficient robust three-stage heuristic

(R3SH). The first two stages of the R3SH heuristic

obtain a solution which is, on average, within 11% of

the Gurobi solution at 3,600 s using an average compu-

tational time of 2.1 s. On average the R3SH solution is

93% of the Gurobi solution with a median computa-

tional time reduction of 97%.

The robust model provides a higher and more reliable

estimate of actual coverage under uncertainty. The aver-

age difference between actual coverage of the robust opti-

mization solution and the deterministic solution is 8.1%

across all p - K (facilities-drones) combinations. The dif-

ference is higher than 5% when the number of drones K

is greater than 30 with the difference being as high as

18.4% for the case when the number of facilities is 25

and the number of drones is 75. Incorporating robustness

into the deterministic model provides a conservative but

reliable coverage estimate, which results in increased

actual coverage and a reduced number of infeasible drone

trips. Also, the probability that the delivery schematic

generated by the robust model requires reevaluation on

the field is substantially lower than for the deterministic

model, truly highlighting the value of considering robust-

ness in decision making.

This work could be extended in multiple directions.

One potential extension is the incorporation of one-to-

many deliveries where a drone can make multiple deliv-

eries in a single route. The optimization formulation

was developed from a coverage maximization perspec-

tive which is suitable for disaster relief and other similar

applications. Incorporation of sustainability, emissions,

and technology (battery replacement) costs could make

the model more suitable for urban logistics applica-

tions. The methodology proposed here to incorporate

uncertainty in battery availability and consumption

could also be used in drone-based applications in facil-

ity location modeling (39, 40) and routing-based appli-

cations (15, 23, 41). A key potential application of

drone-based delivery systems is on-demand or real-time

dynamic delivery systems. In this case, the number of

drones allocated to each facility varies with each time

period depending on the dynamic demand. A rolling

horizon framework could be used where drone alloca-

tions could be made based on current and near-future

forecasted demand which could be updated as we

receive more information.

Table 4. Sensitivity to Maximum Penalty Value

Fk = 2 kg Fk = 2:5 kg Fk = 3 kg

CVP (%) Coverage (%) CVP (%) Coverage (%) CVP (%) Coverage (%)

p jKj Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max

5 20 25.0 33.1 42.0 37.9 44.4 50.1 20.2 26.6 34.4 37.2 43.6 49.0 15.1 22.1 28.4 37.0 43.3 48.8
5 25 19.1 28.2 36.3 40.5 48.1 54.2 18.8 23.5 28.1 39.4 47.6 53.5 13.0 18.8 21.7 41.1 47.0 52.6
5 30 16.7 21.6 29.5 43.3 50.5 56.6 15.9 19.6 25.7 44.0 50.3 56.0 13.3 16.4 19.0 43.9 50.1 55.6
5 35 15.6 20.1 24.2 43.5 52.3 59.4 14.8 17.0 20.0 44.8 51.5 56.5 11.8 13.4 16.2 45.8 51.4 58.1
5 40 16.2 18.0 21.9 46.0 54.0 60.3 14.3 14.9 15.3 48.1 53.6 58.5 11.7 12.6 13.6 48.4 54.0 60.1
10 20 21.9 30.0 37.4 46.6 52.2 57.6 14.7 20.1 31.7 46.3 51.4 55.9 11.8 16.6 26.0 46.1 51.0 54.6
10 30 17.1 22.0 28.7 52.4 59.4 65.1 9.6 17.1 21.2 52.3 58.6 63.2 5.1 11.9 15.2 51.9 58.2 61.9
10 40 13.8 17.0 21.4 56.6 64.1 70.6 10.1 14.1 17.5 56.7 63.6 69.4 7.6 10.6 14.1 56.8 63.2 68.2
15 30 12.7 17.8 24.8 59.5 65.2 70.7 5.3 10.6 15.4 58.7 64.1 67.5 4.5 7.4 11.1 58.7 63.3 66.0
15 45 9.5 14.8 18.4 64.5 72.5 78.2 6.9 10.1 13.8 64.7 72.0 77.4 4.6 7.5 10.7 65.1 71.8 77.3
15 60 7.8 11.4 14.2 64.3 73.4 80.6 6.1 8.4 10.1 66.1 73.5 80.6 1.2 6.2 9.0 66.7 73.5 80.2
20 20 8.6 17.3 25.5 54.9 59.4 64.3 2.0 9.6 13.8 54.9 58.5 61.0 2.4 8.0 13.2 54.2 57.9 61.0
20 40 7.3 11.2 13.9 67.6 74.4 78.9 3.1 6.8 9.9 68.1 73.5 76.9 2.0 5.3 7.5 67.9 73.2 76.7
20 60 5.2 8.0 12.8 70.5 77.3 82.7 1.9 4.9 7.9 71.6 78.2 84.8 1.4 4.2 7.0 71.0 77.7 83.5
20 80 4.0 6.1 9.8 69.2 77.2 82.8 1.4 3.7 6.0 70.9 78.1 84.8 1.1 3.2 5.3 69.8 77.7 83.5
25 25 5.2 10.5 15.7 59.4 64.1 68.3 2.0 3.8 6.3 58.7 63.0 65.2 1.1 3.6 6.9 59.1 63.0 65.2
25 50 5.0 7.2 10.2 75.4 82.2 86.7 2.2 3.5 5.6 75.7 82.2 85.3 1.7 3.1 6.5 75.7 81.5 84.5
25 75 2.9 5.0 7.4 74.9 82.4 87.9 1.4 2.6 4.5 75.9 83.3 87.7 1.2 2.5 4.3 75.3 82.3 87.4
25 100 2.1 3.7 5.6 75.7 82.4 87.9 1.0 1.9 3.5 75.0 83.3 87.7 0.9 1.9 3.2 75.5 82.4 87.4
30 30 5.4 9.2 12.7 65.5 70.3 74.6 1.6 4.8 6.7 65.3 69.1 71.6 0.8 4.1 8.5 65.3 69.0 72.0
30 60 2.9 5.0 7.8 78.2 85.2 89.2 0.8 2.5 4.4 79.2 85.7 89.2 0.8 2.4 4.3 78.7 84.7 88.5
30 90 2.0 3.3 5.1 76.9 85.2 89.2 0.5 1.7 3.0 79.3 85.7 89.2 0.5 1.6 2.8 77.8 84.8 88.5

Note: The numbers have been rounded to nearest tenths for better readability.

CVP = probability that the delivery schematic for a drone needs to be reevaluated.
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