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ABSTRACT
With the continuing growth of voice-controlled devices, voice met-
rics have been widely used for user identification. However, voice
biometrics is vulnerable to replay attacks and ambient noise. We
identify that the fundamental vulnerability in voice biometrics is
rooted in its indirect sensing modality (e.g., microphone). In this
paper, we present VocalPrint, a resilient mmWave interrogation
system which directly captures and analyzes the vocal vibrations
for user authentication. Specifically, VocalPrint exploits the unique
disturbance of the skin-reflect radio frequency (RF) signals around
the near-throat region of the user, caused by the vocal vibrations
during communication. The complex ambient noise is isolated from
the RF signal using a novel resilience-aware clutter suppression
approach for preserving fine-grained vocal biometric properties.
Afterward, we extract the text-independent vocal tract and vocal
source features and input them to an ensemble classifier for user
authentication. VocalPrint is practical as it leverages a low-cost,
portable, and energy-efficient hardware allowing effortless transi-
tion to a smartphone while having sufficient usability as typical
voice authentication systems due to its non-contact nature. Our
experimental results from 41 participants with different interroga-
tion distances, orientations, and body motions show that VocalPrint
can achieve over 96% authentication accuracy even under unfa-
vorable conditions. We demonstrate the resilience of our system
against complex noise interference and spoof attacks of various
threat levels.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Security and privacy→ Biometrics.
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1 INTRODUCTION
Due to the growth of voice-controlled devices and services, the
use of vocal-based biometrics for user authentication has surged
[18, 37]. Voiceprint is a strong physiological and behavioral com-
bined biometrics, considered to be just as biologically unique in
individuals as a fingerprint [26]. There is a sizable literature on user
identification by analyzing voice, including speech [8] and non-
speech [61] vocal data. Commodity voice-controlled devices, such
as the Amazon Echo and Google Home, have integrated speaker
identification functions to secure the user information [29].

However, there are several major security limitations for adopt-
ing voice biometric technologies in real-world applications [63].
For example, fraudsters may eavesdrop the legitimate user’s speech
samples or utilize a variety of artificial intelligence technologies to
generate synthetic voice data [73], and then launch a “replay attack”
against voice-based authentication systems. How to defend against
the playback attack has a long and rich history, and is a core research
problem in biometric security [75]. Researchers have studied sets
of software-based solutions based on liveness distinction between
human and loudspeakers, including challenge-response protocols
[5], ultrasonic reflections of mouth motion [76], time-difference-
of-arrival (TDoA) of phenome sounds to two microphones [77],
sound field difference [71], etc. Although these approaches could
alleviate the security risk under some circumstances, they need
user’s active cooperation and also assume that replaying cannot
generate identical sound waves. We discover that the fundamental
vulnerability in voice biometrics is rooted in its indirect sensing
modality. Currently, voice biometric systems mainly employ a mi-
crophone sensor. When the user speaks, the vocal folds vibrate. The
generated sound propagates in the air media, and the air vibration
is captured by a microphone. This kind of indirect voice sensing
modality through a media creates an inevitable attack surface in
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Figure 1: A mmWave biometric interrogation system lever-
aging the vocal vibrations for accurate user authentication.

the physical world (e.g., replay attacks using a high-definition loud-
speaker or bionic loudspeaker arrays), which is hardly addressed
by software-based approaches. Moreover, indirect voice sensing
is prone to interference from ambient noises which decrease the
usability of voice biometric systems, as it leads to false positives
during authentication and is insensitive to minute alteration in fake
voice input during replay attacks.

It is a fact that voiced sound is determined by vocal fold vibration,
which is the root of voiceprint uniqueness [26]. On the basis of this
argument, we propose that the most secure and attack-resistant
voice sensing approach to user identification is to directly acquire
and analyze the user’s vocal fold vibration. Radio-frequency (RF)
signals, such as millimeter wave (mmWave), shows immense po-
tentials in sensing micron-level skin displacement [57, 68] due to
their directional beamforming and skin-reflectance properties. A
recent study demonstrated the feasibility of acquiring the vocal
vibrations that occur at the range of 2-3mm via mmWave radar
[33]. Motivated by these works, a non-contact and direct biomet-
ric mmWave interrogation system can be developed to capture the
unique vocal vibrations for secure user authentication.

To realize our system, we need to address the following chal-
lenges: (1) How to suppress the complex noise clutters arising from
static and dynamic objects in the environment and motion artifact
for preserving fine-grained voice biometric properties in received
mmWave response? (2) How to extract and identify the intrinsic
features that can perfectly capture the vocal tract and vocal source
information to maximize the system performance? (3) How to vali-
date the resilience of our system against spoof attacks?

To this end, we present our system, VocalPrint, to facilitate a
resilient mmWave interrogation system for secure and non-contact
voice authentication, illustrated in Figure 1. We leverage a low-cost,
portable, and high-resolution 77GHz Frequency Modulated Contin-
uous Wave (FMCW) radar to identify the user from the dynamic
environment and non-invasively sense the minute vocal vibrations.
The displacement in the vocal vibrations is inferred from the phase
shift of the peak corresponding to the human target in the inter-
mediate frequency (IF) signals. To help reserve fine-grained voice
biometric properties in the RF voice signals, we develop a resilient-
aware assembled clutter suppression scheme to isolate random
motion artifact and ambient noise clutter. Once the precise vocal
vibration signals are obtained, we extract text-independent vocal
source and vocal tract features, respectively, which closely relate to
the human speech articulation. Finally, these text-independent bio-
metric descriptors are fed into a fine-tuned feature selection module
and an ensemble classifier for user authentication. To intensively
evaluate our system, we recruit 41 volunteers with results showing
that VocalPrint can enable a reliable authentication with over 96%

accuracy. Furthermore, we validate the resilient security of Vocal-
Print against ambient interference (e.g., acoustic noise, dynamic
environment, human obstruction) and spoofing attacks (e.g., coun-
terfeit, mimicry, signal-based) to show its significant potential as
an enhancement to voice authentication in real-world applications.

The contribution of our work has three-fold:
• We perform the first study to identify that the fundamen-
tal vulnerability in voice biometrics is rooted in its indirect
sensing modality. We also explore a direct mmWave sens-
ing approach to acquire and analyze the user’s vocal fold
vibration in a secure and attack-resistant manner.
• We develop VocalPrint, an end-to-end biometric system to
facilitate resilient security of voice authentication. We first
design a novel resilience-aware clutter suppression model to
obtain precise vocal vibration data that reserves fine-grained
biometric properties, and then extract intrinsic features that
depict vocal source and vocal tract information for user iden-
tification.
• We demonstrate the effectiveness and robustness of Vocal-
Print through extensive experiments with results showing
superior authentication accuracy even under unfavorable
conditions. We conduct comprehensive studies to validate
the resilience of VocalPrint against complex noise interfer-
ence and spoof attacks of various threat levels.

2 THEORY AND PRELIMINARIES
2.1 Voice Biometrics Rationale
Voice can be regarded as physiological and behavioral combined
biometrics, which contains unique and permanent information of
individuals [26]. Specifically, voice permanence is derived from the
fixed physical shape of individual’s lung, vocal cords, and vocal
tract. Voice uniqueness stems from the precise and coordinated
vibration of the vocal cords and vocal tract [17, 55]. When a per-
son speaks, the air flow is first expelled from the lungs and then
traverses through the vocal cords. The vocal cords with the glottis
constrict to block the air flow and the resulting vibrations in air
produce voiced signals. In contrast, when the vocal cords with the
glottis dilate, the air flow is allowed to pass through without heavy
vibrations, thereby generating unvoiced signals. Afterward, both
voiced and unvoiced signals are resonated and reshaped by the
vocal tract consisting of multiple articulatory organs (e.g., epiglot-
tis, corniculate cartilage, cuneiform cartilage, shown in Figure 2).
The movement of articulatory organs forms a path with specific
geometrical shapes (i.e., articulatory gesture) for the air flow [27],
which manipulates the amplitude and frequency of vocal vibrations.
Although different people may share the same type of articulatory
gesture when pronouncing the same phoneme, the movement speed
and intensity vary from person to person and contain distinctive
information. Moreover, the larynx modulates the tension on vocal
cords to produce fine-tuned vocal vibrations, which further adds
the uniqueness to an individual voice. Therefore, this uniqueness
of the human voice is intrinsically sourced in vocal vibrations.
2.2 A Preliminary Study
There is a significant growing interest in human sensing applica-
tions using RF sensing [30, 36, 65]. Specifically, WaveEar [69] is
one recent representative work on investigating speech recognition
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Figure 2: The vocal vibrations result from dynamics of ar-
ticulatory organs and can be sensed by the mmWave radar
from near-throat region.

using mmWave technologies. To examine the feasibility of acquir-
ing vocal biometric features in mmWave sensing, we conduct a
preliminary study using a mmWave-band FMCW probe.
Preliminary Data Collection. In the preliminary experiment, we
leverage a beamforming mmWave probe to sense the subject’s vocal
vibration and collect received mmWave signals. Specifically, two
subjects are asked to sit in the same position and pronounce the
sentence, “After class, he went home”. For the ease of analysis, we
align the mmWave probe in the direction of the subject’s throat.
The distance between the subject and the probe is 20cm.

Figure 3: Spectrogram of reconstructed voice.
Auditory Analysis in mmWave Sensing. Speech recognition
[60] and speaker identification [54] are both voice-based applica-
tions. However, underlying mechanisms and associated technolo-
gies are distinct. Speech recognition utilizes the temporal cues and
envelopes in voice data and it is critical to capture and parse coarse-
grained (e.g., hundreds of milliseconds to seconds) articulatory
features (e.g., up/down/back/forth movement). Speaker identifi-
cation exploits spectral information in voice data. For example,
fine-grained (e.g., tens of milliseconds) spectral envelopes contain
the resonance properties of vocal tracts and timber, which are the
pivotal features in speaker identification. We adopted the analytical
scheme in WaveEar [69] to reconstruct voice signals of both speak-
ers. As shown in Figure 3, both reconstructed voices have a similar
spectrum and envelope (with a segment of 100ms). The voice data
can be successfully processed by the commodity speech recognition
software kit [50]. However, as shown in Figure 4, the short-term

(10ms) spectral envelopes in both reconstructed voices have a low
resolution, and spectral poles in both spectrums are nearly the same.
Biometric traits are lost in the mmWave-reconstructed voice data.

Figure 4: Short-term spectral envelop.

Summary: A new analytical scheme in processing mmWave sig-
nals is investigated for speaker identification. Particularly, short-
term proprieties in vocal patterns need to be reserved and aug-
mented. In the following sections, wewill present (A) high-definition
mmWave interrogation, (B) a resilience-aware clutter removal scheme
using a novel assembled model, and (C) robust feature extraction
and matching methods.
3 VOCALPRINT SYSTEM OVERVIEW
In this paper, we introduce VocalPrint, a resilience-aware mmWave
biometric interrogation system. The end-to-end system overview
is shown in Figure 5.
VocalPrint Hardware: A high-resolution mmWave probe is lever-
aged to accurately sense the vocal vibrations in a non-contact man-
ner. Specifically, the probe first transmits a frequency modulated
continuous wave towards the throat of the user and then receives
the skin-reflect response signal which comprises sufficient informa-
tion of the vocal vibrations when the user is speaking. The received
signal is transmitted to a resilience-aware clutter suppressionmodel
for isolating the noise from the surrounding environment and even
the dynamic obstruction caused by multiple human subject inter-
ference.
VocalPrint Software: Once the precise vocal vibration data is ac-
quired, VocalPrint extracts optimal biometric features that depict
vocal source and vocal tract information. After that, the vocal bio-
metric descriptors are input to a fine-tuned authentication model
that consists of a feature selectionmodule and an ensemble classifier
for identifying the legitimate user against imposters.

4 MMWAVE INTERROGATIONOFVOCALVIBRA-
TIONS

4.1 mmWave Probe Design and Integration
The Continuous Wave (CW) is increasingly used in sensing various
vital signs, such as breathing and heartbeat, due to its ability to
capture near-field motion and displacement [34]. However, CW is
not accurate in range measurement because it lacks the timing mark
(the frequency is fixed). Besides, CW cannot differentiate between
two or more reflecting objects because the reflected signals and
clutters are all mixed up in both the time and frequency domains.
Therefore, we conclude that CW is not capable of authenticating a
person at the non-pre-known position in a complex environment.
In VocalPrint, we leverage FMCW, which can detect both accurate
range and minute displacement. Moreover, FMCW enables a low-
frequency received signal processing by the mixed IF signal, which
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Figure 5: The overview of VocalPrint mainly consisting of a mmWave interrogation module to sense the vocal vibrations,
a resilience-aware clutter suppression module to remove the complex noise, and an authentication module to identify the
legitimate user against imposters.

considerably reduces the loading of designing and realizing the
circuit. In the next part, we give the formal description of the con-
tinuous vocal vibration interrogation utilizing the FMCWmmWave.
Based on the interrogation theory, we give more discussion about
the mmWave probe parameters in Section 7.1.
4.2 Continuous Vocal Vibration Interrogation
To enable the continuous vocal vibration interrogation, FMCW
modulates a saw-tooth baseband (used as timing mark) to the high-
frequency mmWave carrier. Specifically, the periodic chirp signal
T (t) transmitted to the speaking person’s throat is defined as:

T (t) = exp
[
j

(
2π f0t +

∫ t

0
2πρt dt

)]
, (1)

where 0 < t < Tr , f0 is the carrier frequency, Tr is one chirp cycle,
B is the bandwidth of one chirp, and ρ = B/Tr is the chirp rate.
Assume that the distance between the radar and human throat is
X (t) = X0 + d(t), where X0 is the original distance, d(t) represents
the minute skin displacement caused by vocal vibration. With the
round trip delay td lagged behind the transmitted chirp signal, the
received signal consists of the clutter components Rclutter(t) and
the vocal component R(t) carrying the vocal vibration, which is:

R(t) = Γ exp[j(2π f0(t − td ) +
∫ t−td

0
2πρt dt)], (2)

where td < t < Tr + td , Γ denotes the amplitude normalized
to the transmitted chirp signal, and td =

2[X0+d (t )]
c . The clutter

suppression is studied further in Section 5.
For every chirp, the valid time period for mixing is (td ,Tr ), and

thereby the IF signal for a chirp after mixing can be obtained as:

H (t) = T (t) × R∗(t) ≈ Γ exp[j(2πρtd t + 2π f0td )], (3)

where ∗ represents a conjugate transpose operation, × is the mixer,
the mathematical term related to t2d is left out due to t2d << td t ,
td < t < Tr . From Eq. (3), we can see that the mixed IF signal is
directly related to the skin displacement caused by vocal vibration
d(t). Since d(t) is very small during one chirp, we track the IF signal
across a sequence ofM chirps. Substituting td =

2[X0+d (t )]
c , the IF

signal for them-th chirp period can be formulated as:

H (mTr + t) = Γ exp{j[4πρX0

c
t +

4π f0X0

c

+ (
4πρt

c
+
4π f0
c
)d(mTr )]},

(4)

where c denotes the light speed. Because of ρt << f0 (t ∈ (td ,Tr ))

in typical FMCW radars, 4π ρtc can be neglected. Then, H (mTr + t)
can be obtained as:

H (mTr + t) = Γ exp[j(wH t +ψm )],

wH =
4πρX0

c
, ψm =

4π f0X0 + 4π f0d(mTr )

c
.

(5)

Therefore, the vibration displacement during them-th chirp period
d(mTr ) can be calculated as:

d(mTr ) =
c

4π f0
∆ψm , (6)

where ∆ψm can be achieved by conducting Fast Fourier Transform
(FFT) on the IF signals for a sequence ofM chirps.
4.3 Body Motion Compensation
Random body motion from users is the main barrier in achieving
precise vocal vibration data. When the body motion amplitude is
more than half of the range profile resolution ∆RES (∆RES = c

2B ),
the range bins will be misaligned, and hardly calculate accurate
∆ψm . A conventional solution is to use a digital filter and compen-
sate for the body motion accordingly, but it may cause cumulative
errors over time. To address this issue, we develop a fine-grained
range bin alignment solution.

We define Sm (l) as them-th acquired range profile, wherem =
0, ...,M − 1, l = 0, ...,L − 1,M is the number of the acquired range
profiles (i.e., the number of chirps), and L is the number of range
bins. S̃m (l) is denoted as the aligned range profile, χm is denoted as
the range shift added to the Sm (l), and Sm (l − χm ) represents the
shifted range profile of Sm (l). We also define the reference range
profile that exploits the knowledge of the previously aligned range
profiles, formulated as:

Qm+1(l) =
m

m + 1
Qm (l) +

1

m + 1
|S̃m (l)|. (7)

In the beginning, we consider Qm (0) = S̃m (0) = Sm (0).
To align a sequence ofM range profiles Sm+1(l), we formulate

the envelope correlation function between the shifted range profile
and its corresponding reference range profile, denoted as:

Π(χm+1) =
L−1∑
l=0

|Qm+1(l)| · |Sm+1(l − χm+1)|. (8)

The maximum value of Π(χm+1) indicates the optimum alignment
between the (m + 1)-th shifted range profile Sm+1(l − χm+1) and
the (m + 1)-th reference range profile Qm+1(l). Therefore, we first
calculate the integer value of χm+1 (χm+1 ∈ [0, 1, ...,L − 1]) to
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maximize the value of Π(χm+1), and denote this value as χ0m+1.
Then, we deploy the Nelder-Mead algorithm [28] to explore opti-
mum range shift χoptm+1 for achieving local maximum, and χ0m+1 is
taken as an initial guess for the exploration. Finally, the (m + 1)-th
aligned range profile can be obtained as:

S̃m+1(l) = Sm+1(l − χ
opt
m+1)

= FFT{exp(j(2π χm+1
L
△)IFFT{Sm+1(l)}},

(9)

where △ is the vector [0, 1, ...,L − 1]⊤. After finishing this process,
we align the next range profile.
Preliminary Results: In our preliminary work, we collected the
data of the body motion artifacts from a mmWave hardware plat-
form and simulated the proposed method. The subject is asked to
sit in the direction of the mmWave probe and randomly wobble
his upper body when speaking. Other experiment settings are the
same as we mentioned in Section 2.2. Figure 6 shows the range-
Doppler-matrix (RDM) before (a) and after (b) body motion removal.
RDM is the result of the frequency domain analysis among multi-
ple range profiles, which can illustrate noises and signal-of-target.
It indicates that our proposed method can eliminate interference
from random body motion. Note that in this simulated study, the
clutter on the background still exists. Next, we will introduce the
resilience-aware clutter suppression approaches to enhance voice
features in RF voice data.

Figure 6: The RDM before (a) and after (b) the body motion
compensation.

5 RESILIENCE-AWARECLUTTERSUPPRESSION
Undesirable backscatters caused by static/dynamic surrounding
objects become barriers in precision voice acquisition that can
disturb short-term spectral properties. Therefore, we investigate a
resilience-aware clutter removal scheme using a novel assembled
model to preserve voice biometric features in RF streaming signals.
5.1 Background Clutter Isolation
The background clutter in reflected mmWave signals is more com-
plicated than that in conventional acoustic signals. Specifically, out-
door (e.g., snow and rain) and indoor (e.g., furniture and computer)
background are both able to reflect the high-frequency mmWave
whose coverage range reaches 100 m [2]. With different reflection
rate to mmWave and the multipath interference, these objects are
not able to be isolated by simply applying a threshold or training a
classifier (which also brings much more overhead). Therefore, we
regard the background clutter in VocalPrint as the accumulation of
the reflected signal by many small parts of the background, such as
table legs, chairs, and monitors. The amplitude and phase of these
reflections are random and its spectrum envelope a obeys to the
following Weibull distribution [46] about the clutter:

p(a) =
nan−1

µn
exp

[
−

(
a

µ

)n ]
, (10)

wheren and µ are the shape and scale parameters of the distribution,
respectively.

To isolate the background clutter, we arrange the range profiles
S̃m , (m = 1, 2, · · · ,M) that are obtained in Eq. (9) to a matrix (M
rows × L columns) and perform the second FFT chirp-wise (slow-
time FFT) to get the range-Doppler-matrix (RDM). Then target
searching (isolation) is performed on the log-normalized RDM to
isolate the background clutter. Here, we define a resilient matrixu as
u = C(R), where R represents the RDM. Because of the complexity
of the background clutter, the resilient function C is anM×Lmatrix
of functions in which each element can be formulated as:

ci j =
ln |Ri j | − Ê(a)

stda
, (11)

where stda = π
n
√
6
. Ê(a) is the unbiased estimation of the E(a) [70],

which can be calculated by:

Ê(a) =
1

10
(

i+12, j+3∑
i−12, j−3

|Ri j | −

i+10, j+2∑
i−10, j−2

|Ri j |), (12)

where 12, 3, 10, 2 are empirical value. Finally, we set a resilient
threshold u0 to isolate the background clutter and update the RDM
asR ← sgn (u − u0 J )◦R, where J is amatrix of ones, ◦ is Hadamard
product [20], and sgn (·) is the sign function which gives 1 when
input > 0 and gives 0 for other cases. According to the Eqs. (10) and
(11), we can formulate the clutter isolation rate pc as:

pc = exp
[
−exp π

√
6
u0 − γ

]
, (13)

where γ is the Euler-Mascheroni constant. The above equation
indicates that the clutter isolation rate depends on the resilient
threshold only, which is a constant false alarm rate (CFAR). Here
we set pc to 10−6 and u0 to 2.5 in the VocalPrint accordingly.
5.2 Dynamic Clutter Removal
The moving objects, such as passersby and vehicles, can cause
dynamic clutter that could not be removed by applying the resilient
threshold on RDM. The reason is that its amplitude of spectrum
envelop does not obey the aforementioned Weibull distribution.
In this part, we leverage the information across multiple RDMs
to remove the dynamic clutter. Specifically, considering that the
first FFT performed on each chirp gives the range information
(profile) and the second chirp-wise FFT gives the speed information,
we utilize the movement of the object to detect and remove the
dynamic clutter by making an element-wise comparison among D
consecutive RDMs Ri (i ∈ [1,D]). If ∃i, j,k : Rijk = 0 is true, the
R1jk should be regarded as the clutter and we update R1jk ← 0. The
required number of RDMs to detect themoving objects with velocity
vi is formulated as:MTr

1
D
∑D
i vi ≥ ∆RES , whereM ,Tr , and ∆RES

are the numbers of range profiles in one RDM, the chirp cycle time,
and the range resolution as aforementioned, respectively. Given
D = 16, the moving objects with average speed 1

D
∑D
i vi = 0.11

m/s that is much slower than the walking speed could be removed.
5.3 Near-body Clutter Mitigation
With the removal of background clutter and dynamic clutter re-
flected by the moving objects, the mmWave signal mainly includes
vocal fold biometric information. However, the mmWave reflected
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by the near-body object will still interfere with the phase estimation
formulated in Eq. (5) because the reflected clutter is within the same
range bin of the vocal vibration.

To mitigate the near-body clutter, we denote the composite am-
plitude and the initial phase of all the near-body clutter as A0 and
θ0, respectively. Then, the phasor scatters on the complex phasor
diagram can be formulated by the IF signal:

H (mTr + nTs ) = A0exp(jθ0) +
K∑
k=1

Akm,nexp(jθkm,n ), (14)

where Ts is the sampling time interval, Akm,n and θkm,n represent
the amplitude and the initial phase of the k-th tone in the vocal
vibration atmTr + nTs . Considering that the chirp cycle time Tr is
far less than the duration of one phoneme, we can rewrite Eq. (14)
as:

H (mTr + nTs ) = A0exp(jθ0) + Āexp(jθm ). (15)
We estimate the phasor amplitude Ãm bymaximizing the likelihood:

Ãm = |
1

N

N−1∑
n=0

H (mTr + nTs )exp(−jωHnTs )|. (16)

According to Eq. (15), the phasor scatter set S = {Ãm∠ψm }, (m =
1, 2, · · · ,M) in the phasor diagram satisfies:

∥Ãm∠ψm −A0∠θ0∥2 = Ā. (17)

Finding the composite amplitude A0 and initial phase θ0 of the
clutter is equivalent to solving the following optimization problem:

min
A0,∠ψ0,Ā

M∑
m=0
{∥Ãm∠ψm −A0∠θ0∥

2
2 − Ā

2}. (18)

By denotingy as [2A0 cosθ0, 2A0 sinθ0, Ā
2−oo⊤], the closed-form

solution to the above minimization problem can be written as
y = (G⊤G)−1G⊤d , where G⊤ = [дm ] is a 3 ×M matrix with each
column дm = [am cosψm ,am sinψm , 1]

⊤, and d = [∥Ãm∠ψm ∥22 ],
m ∈ [1,M].

Finally, the near-body clutter mitigation is performed by remov-
ing the component A0e

jθ0 from Eq. (14) and updating theψm as:

ψm = arctan
am sinψm −A0 sinθ0
am cosψm −A0 cosθ0

. (19)

Preliminary Results: In our preliminary experiment, we collect
RF voice data that contains both static and dynamic clutters and
verify our proposed model-centric clutter suppression scheme. Two
subjects are asked to sit towards mmWave probe in an uncontrolled
outdoor environment with moving backgrounds (e.g., vehicles, and
passersby), and pronounce “Ahhh" for around 5 seconds. Other
experiment settings are the same as we mentioned in Section 2.2.
• RDM analysis: Figure 7 shows the RDMs before and after lever-
aging clutter suppression scheme, and we observe that the dy-
namic and background clutters shown in Figure 7(a) are all re-
moved in Figure 7(b). Note that, since near-body clutter is within
the same range bin of target vocal vibration signal, the mitigation
effect cannot be observed from RDM. The results indicate that
our proposed model-centric signal processing scheme is able to
mitigate the impact of clutters in RF streaming and obtain precise
vocal vibration data.

• Spectral features analysis:We further extract spectral centroid
and crest from precise vocal vibration signals. The spectral cen-
troid is the indication of the center of gravity of the spectrum, so
it can locate large peaks corresponding to approximate formants’
positions and pitch frequencies. The spectral crest represents the
peakiness of the spectrum that can be used for quantifying the
tonality of the signal. They are both typical spectral descriptors
that can discriminate between different speakers. As shown in
Figure 8, we observe that both spectral centroid and crest possess
a great difference between these two subjects in terms of local
extremum, mean value, and variation trend. The results indicate
that fine-grained spectral proprieties in vocal patterns are well
preserved in RF voice data with the help of clutter suppression
and can be used for identification.

Figure 7: The RDM before (a) and after (b) leveraging clutter
suppression scheme.

Figure 8: Spectral centroid and crest that are extracted from
two subjects’ vocal vibration data after clutter suppression.

6 VOCAL AUTHENTICATION
In this section, we explore and identify the optimal biometric fea-
tures that characterize vocal source and vocal tract information
(shown in Figure 9) and input them to an ensemble classifier for
robust user authentication.

6.1 Vocal Biometric Features Extraction
Vocal Source Features: The vocal source signal characterizes the
muscle structure and tension of the vocal cords, and the related
glottal pulse parameters, e.g., closing instants rate, opening duration,
and opening degree of the glottis [17]. The vibration pattern of the
vocal cords not only provides a voicing source for speech production
but also characterizes unique nonlinear flow patterns. The resulting
periodic pulse-like epoch shape varies among speakers. Therefore,
features derived from the vocal source provide unique physiological
information for user identification.

To extract glottal flow cepstrum coefficients (GFCC) that repre-
sent the spectral magnitude characteristics of a speaker’s glottal ex-
citation pattern, we use the iterative adaptive inverse filtering (IAIF)
method to estimate the glottal waveform of speech signal and then
perform mel-spaced cepstral analysis [49]. We also derive residual
phase Cepstrum coefficients (RPCC) [66] to characterize the phase
information of the underlying excitation waveform. Moreover, to
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measure the underlying energy required for speech production, we
compute the Teager phase cepstrum coefficients (TPCC) [47] that
capture phase characteristics of the Teager nonlinear energy model
of the speech production [14]. The process for the extraction is
two-stepped. First, we apply the Teager-Kaiser energy operator to
a band-pass filtered speech signal for calculating excitation energy
contour and perform the Hilbert transformation to acquire a fine
energy structure. Second, the cepstrum of the fine energy structure
is computed and warped to the Mel frequency scale followed by a
log and discrete cosine transform (DCT) operation to obtain TPCC.
Vocal Tract Features: Vocal tract system that consists of multiple
articulatory organs (e.g., epiglottis, corniculate cartilage, cuneiform
cartilage) works as a filter to resonate and reshape vocal source
signals. The motion of relevant articulatory organs generates asso-
ciated articulatory gestures for the flow, but the movement speed
and intensity vary from person to person. Therefore, we extract
vocal tract features for speaker identification.

We first derive some spectral features, i.e., centroid, band energy,
crest, flatness, entropy as the descriptors of the short-term spectral
envelope [21], which are the acoustic correlate of timbre. Since
coefficients on a linear/nonlinear Mel-scale of frequency can char-
acterize the spectral envelope of a quasi-stationary signal segment,
we further extract Mel frequency cepstral coefficients (MFCC) [42]
to reflect the resonance properties of the vocal tract system. Specif-
ically, we first convert pre-processed RF vocal biometric signals
into a set of mel-frequency spectrums and then employ Triangular
band-pass filters to make the signals adhere to the attenuation char-
acteristics of the Mel scale. After the logarithmic compression and
DCT, 12-dimensional MFCCs is acquired. To complement MFCCs,
linear predictive coefficients (LPC) [53] is selected to characterize
formants, i.e., a resonance frequency of the vocal tract. We adopt
linear prediction methods to infer the filter coefficients equivalent
to the vocal tract by minimizing the mean square error between
the input vocal signals and estimated vocal signals. Based on the
extracted LPC, we deduce linear predictive cepstral coefficients
(LPCC) [31] by performing Cepstral analysis on LPC calculated
spectral envelope. We also derive line spectral frequencies (LSF)
[40] from LPC, since it can characterize bandwidths and resonance
locations and emphasize the spectral peak location.

Figure 9: Biometric vocal features and interpretation.

6.2 Fine-tuned Authentication
Biometric feature selection: In practice, not all extracted features
are unique enough to distinguish different speakers. Therefore, we
use the Fisher Score [56] to select features that are more distinct
between classes and consistent within one class. As conventional
Fisher Score based selection method processes features individually,
and therebymissing high-score feature subsets, we employ a cutting
plane algorithm [25] to select a subset of features simultaneously. In
each iteration, multivariate ridge regression and projected gradient
descent are adopted alternatively to solve a multiple kernel learning
problem [52]. After the feature selection, the initial vocal biometric
feature vector is reduced to 39 descriptors and then fed to the
classification model.
Classifiers Fusion: As the first exploratory study to derive vo-
cal biometric traits from skin-reflected mmWave, we employ the
following widely used speaker identification classifiers:
• Gaussian Mixture Model-Universal Background Model
(GMM-UBM): The use of GMM for modeling speaker identity
is because the Gaussian components approximate spectral fea-
tures and Gaussian mixtures can model arbitrary densities [43].
To guarantee reliable system performance without increasing
model complexity, we further introduce UBM to help develop the
speaker identification model [39]. The UBMmodel is trained with
expectation-maximization (EM) algorithm on a large amount of
data gathered from the background population (i.e., the NIST 2001
one-speaker detection database [38]), then the target speaker
model is adapted from the UBM model utilizing training data
based on maximum a posteriori (MAP) principle [39]. We calcu-
late the difference of log-likelihood between the target speaker
model and the UBM model to determine whether selected fea-
tures are originated from the genuine speaker or not.
• Support Vector Machine (SVM): It is a classification and re-
gression method based on statistical learning theory [13]. We
adopt SVM in speaker identification because it can achieve supe-
rior generalization performance in classifying unseen data [9].
With the help of kernel functions, the SVM optimizer can find
a maximum-margin hyperplane that separates training samples
from the genuine speaker and impostor subjects.
• Hidden Markov Model (HMM): It is a statistical tool that de-
scribes a Markov process with unobserved states. We select HMM
for speaker identification because the states of an HMM charac-
terize the vocal configuration of a speaker and the changes of
vocal configuration may duplicate in pronunciation [16]. We use
the Baum-Welch algorithm [3] to determine the parameters of
an HMM. Then, speaker identification is performed by a Viterbi
algorithm to compute likelihood scores for each signal [15].
Finally, we combine the output scores of these three classifiers

by weighted sum and optimize the fusion weights based on logistic
regression. The BOSARIS Toolkit [6] is employed for implementing
fusion and determining the genuine speaker.

7 SYSTEMIMPLEMENTATIONANDEVALUATION
SETUP

7.1 System Implementation
The selection criteria for mmWave probe hardware depends upon
the desired waveform characteristics that take two major factors
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into consideration. First, the chirps and frames generated by the
probe should be able to capture the high-resolution vocal vibration
from the target user. Second, the mmWave probe should guaran-
tee the minimum signal-to-noise ratio (SNR) so that the proposed
data processing techniques can distinguish among vocal vibrations
and the clutter. Therefore, we carefully design the mmWave wave-
form configuration as shown in Table 1. This configuration enables
the range resolution of 3.75 cm, displacement resolution around
1 mm [57], which satisfies the requirements for sensing the vocal
vibrations. Our design of the mmWave waveform can be generated
effortlessly by any off-the-shelf mmWave probe [44, 45] or cus-
tomized hardware [19], thereby facilitating affordability (less than
$70), portability (100g) and energy-efficiency (135mW) in real-world
setups. In our work, we leverage a Texas Instruments AWR1642
mmWave probe (TX Power=12.5 dBm, RX Gain=30 dB) [62] to emit
the signal and capture the data. The range profiles are generated
on-board and then transferred to the laptop for further processing.

Table 1: mmWave waveform design.
Frequency Slope 71.5 MHz/µs Bandwidth 4 GHz
ADC Samples/Second 5000K Idle Time 10 µs
Chirp Cycle Time 65.8 µs Chirps/Frame 128
Frame Periodicity 9 ms Samples/Chirp 256

7.2 Evaluation setup
Experiment preparation.We conduct extensive experiments to
confirm the capability of VocalPrint for user authentication. Fig-
ure 10 shows the experimental setup. A subject is asked to sit in a
chair. We align the customized mmWave probe in the direction of
the subject’s throat, i.e. the subject orientation is 0◦ with respect
to the probe. The distance between the subject and the probe is
20cm. All subjects are required to sit in the same position unless
specified in the evaluation. The mmWave probe connects to a 5.0
V power supply, and the working current is 2A. We deploy two
laptops with the Windows 10 operating system. One is used for
collecting the signals from the receiving terminal of a mmWave
probe, using the network interface card. The other is employed to
display the reading materials. The training processes are done by a
workstation equipped with an Intel Xeon E5-1620 v4 @ 3.50GHz.
Data collection. Our biometric study is approved by IRB. 41 sub-
jects (21 males and 20 females) are asked to read The North wind
and the sun passage (113 words) and the first two sentences of The
Grandfather Passage (37 words) following a prompter to guarantee
the same reading time. On average, each subject takes around 51
seconds for The North wind and the sun and 14.6 seconds for the
first two sentences of The Grandfather Passage. The collected data
are anonymous and stored locally to protect the subject’s privacy.
Partition. To evaluate the performance with text-independent fea-
tures, we use the received signals corresponding to The north wind
and the sun for training and The Grandfather Passage for testing.
The received signals are segmented evenly with a 50% overlapping
rate and then filtered by an efficient speech detection mechanism
based on the Zero Cross Rate and Root Mean Square in time do-
main [35] to isolate non-speech segments. The segment lengths are
varied as 5ms, 10ms, 15ms, 20ms, 25ms, and 30 ms, respectively, for
performance analysis. Based on segment length, we finally collect
111720–672000 samples and use 71400–428400 samples for training
and the rest for testing. Among the overall 41 subjects, each acts as a

genuine user once while the remaining 40 subjects act as imposters
to access the system. Therefore, the genuine subjects and imposters
ratio is 1:40 for every authentication trial.
Evaluation metrics. We introduce F-score, balanced accuracy
(BAC), receiver operating characteristics (ROC) curve, equal error
rate (EER) as metrics in our evaluation since these are non-sensitive
to class distribution for evaluating authentication systems [34, 80].

Figure 10: The evaluation setup: (a) subject’s sitting position;
(b) in a lab environment; (c) mmWave probe architecture.

8 PERFORMANCE EVALUATION
In this section, we evaluate the performance and robustness of
VocalPrint for authentication. All the results are obtained after the
body motion compensation except the one specified as “before body
motion compensation" in the evaluation of subjects in motion.

8.1 Overall System Performance
To maximize the applicability of VocalPrint in real-world scenarios,
it is important that the system can not only differentiate between
the legitimate users and imposters but also perform the authentica-
tion in a timely fashion. The authentication time is defined as the
total time elapsed to make a final prediction and is dependent on
the segment length needed to authenticate users. To determine an
optimal segment length of mmWave signal for precise authentica-
tion, we evaluate the system performance with segment lengths as
5ms, 10ms, 15ms, 20ms, 25ms, 30ms, respectively.

Figure 11: The overall performance of VocalPrint with dif-
ferent segment lengths.

Figure 11 illustrates the F-score and BAC measure for 41 subjects
with different segment lengths. We observe that when the segment
length is less than 15ms, it does not contain sufficient information
for accurate authentication, indicated by the low BAC and F-score,
and high standard deviation (STD). The performance is improved
when the length of the segment is increased, however, the improve-
ment in F-score and BAC is not significant after the segment length
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is increased from 20ms to 30ms. Specifically, BAC achieves 98.52%,
98.58%, and 98.85% with the STD of 0.37%, 0.37% and 0.38% for 20ms,
25ms and 30ms, respectively. F-score reaches 96.27%, 96.18%, and
96.46% with the STD of 0.41%, 0.4% and 0.4% for 20ms, 25ms and
30ms.

For a more concrete analysis, we also plot the ROC curves and
calculate the corresponding area-under-curve (AUC) with different
segment lengths, as shown in Figure 12. Although the 30ms segment
achieves the best performance, the performance is not improved
significantly compared with the 20ms segment. The corresponding
EER are given as 9.91%, 10.18%, 9.08%, 4.97%, 4.99%, and 4.92%,
respectively. These results are consistent with BAC and F-score.

Based on the above observations, we conclude that the segment
length of 20ms is most appropriate for training and testing. With
such a segment length, the total time needed to verify a user is
340ms. The results also demonstrate the effectiveness of VocalPrint
for reliable user authentication. For the remainder of this paper, we
use the segment length of 20ms during the performance analysis.

Figure 12: TheROC and EERwith different segment lengths.

8.2 Robustness Analysis

Impact of variant distances and orientations. To maximize the
user experience in real practice, VocalPrint should be tolerant to
variations in the sensing position. As a result, we study whether
the performance of VocalPrint will be affected by changeable dis-
tances and orientations. In the experiment, the subjects are asked
to read the first two sentences of The Grandfather Passage while the
orientation and sensing distance between the subject’s throat and
mmWave probe is varied from 0◦ to 60◦ and 0.2m to 2m, respec-
tively. The results are shown in Figure 13. We observe that the BAC
reaches up to 96% when the sensing distance is less than 150 cm
and human orientation is within 45◦. Within 0.5m, the VocalPrint
can still achieve above 96% as human orientation expands to 60◦.

Due to mmWave attenuation, the VocalPrint performance drops
as the sensing distance increases. Therefore, we want to further
explore VocalPrint can work in what kind of application scenar-
ios and at which level of authentication accuracy, when extending
the distance. Specifically, we evaluate VocalPrint performance in
subdivided daily-life scenarios: 1) body field (0-0.5m): communi-
cation with smartphone and wearable device; 2) social distancing
field (0.5m-2m): interaction with car and desktop device; 3) local
field (2m-5m): interaction with the smart home appliance. Figure 14
shows that VocalPrint can achieve over 98% BAC in the body field

Figure 13: The performance of VocalPrint under different
sensing distances and human orientations.

and over 95% BAC in the social distancing field. As the distance
increases to 460 cm, the authentication accuracy is around 91.7%.

Figure 14: The performance of VocalPrint in the body field,
social distancing field, and local field.
Impact of body posture and motion. To enhance usability, Vo-
calPrint should facilitate accurate user authentication at all times,
without requiring users to stop their ongoing activities (e.g., driv-
ing) or put down any object held in their other hand. Therefore,
we investigate the performance of VocalPrint under the effect of
body posture and motion. Specifically, we study (1) posture and
motion that may shelter the near-throat skin surface frommmWave
sensing; (2) periodic body posture and motions. In our experiment,
while reading the first two sentences of The Grandfather Passage,
each subject is asked to continuously perform four common daily-
life activities, including rhythmic movements during listening to
music, combing hair, mimic driving, and writing, thereby exhibiting
minute to large-scale body motion.

Figure 15: The BAC comparison with and without body mo-
tion compensation.

With the current experimental setting, the BAC results before
and after body motion compensation are shown in Figure 15. With
the body motion compensation model, we observe that the BAC
corresponding to the subject performing a rhythmical movement
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and combing hair during authentication reaches above 98%, while
the BAC for sheltering motions (i.e., writing and mimic driving)
varies between 96% and 98%. The results demonstrate that body
motion resulting in sheltering of the near-throat skin surface from
mmWave sensing can affect system performance to some extent.
This is due to the limited penetration capability of 77GHz mmWave
that is leveraged in this work [74]. Meanwhile, without the body
motion compensation method proposed in our work, the BAC gets
reduced to an average performance of 73%. Regardless of body
motion, VocalPrint shows a reliable performance in user authenti-
cation.
Impact of wearable accessories. In our daily life, it is common
for users to wear accessories around the throat. Therefore, we are
motivated to examine whether the authentication performance will
be affected by the wearable accessories which are made of different
materials (e.g., metal, cotton, wool, plastic) and pose partial or full
occlusion to the throat. Specifically, the subjects are asked to wear
necklaces, shirt collar, scarf, and earbuds, respectively while reading
the first two sentences of The Grandfather Passage. Figure 16 shows
that VocalPrint achieves more than 98% BAC with necklace, shirt
collar, and wool scarf around neck, and 97.7% BAC with earbuds.
Therefore, VocalPrint is robust to wearable accessories.

Figure 16: The performance of VocalPrint with different
wearable accessories.
Impact of speaking content and speed.We also conduct exper-
iments to test the impact of speaking content and speed on the
VocalPrint performance. To set different speaking speed, we ask
10 subjects to read the same sentences (37 words) for the test in a
slow (completion time is around 20s), normal (completion time is
around 15s), fast speed (completion time is around 10s), respectively.
Figure 17 (a) shows that the average BAC values are between 98.1%
and 98.6% when the speaking speed varies. To evaluate the impact
of speech content, the subjects are asked to read three different
sentences from“The Rainbow Passage”, “Comma Gets a Cure”, and
“Arthur the Rat” at a normal speed for the test. As illustrated in
Figure 17 (b), vocalPrint can achieve around 98.5% BAC with differ-
ent reading materials. The results indicate that VocalPrint is robust
to speaking speed and content because we extract intrinsic vocal
source and tract information for the training model.
Longitudinal Study. For any biometric method, permanence is
a critical factor. We examine the permanence of vocal vibrations
to show the potential of VocalPrint as an enhancement to voice
authentication. 20 subjects (10 males and 10 females) participate
in the long-term study lasting 30 days. In every period of three
days, each subject reads the first two sentences of The Grandfather
Passage, and mmWave signals are obtained. The training set is
generated based on the collected mmWave signals on the first day
of enrollment. As Figure 18 shown, the average values of BAC are

Figure 17: The performance of VocalPrint with different
speaking speed and content.

between 98% and 99%, and the STDs are between 0.37 and 0.39
in the 30-day duration. We can conclude that there is no notable
decreasing and ascending tendency on average BAC results, which
indicates that VocalPrint is robust to the time change.

Figure 18: A 30-day longitudinal study.

9 AMBIENT RESILIENCE STUDY
9.1 Acoustic Noise
In practice, there are two primary types of acoustic noise with
different spectral characteristics: pop music and presentation. To
evaluate the authentication performance in presence of acoustic
noise, a loudspeaker is placed next to the user and plays the recorded
music and presentation sound at different decibel levels (i.e., volume
varies as 0, 25%, 50% and, 75%). At the same time, each subject reads
the first two sentences of The Grandfather Passage. With the current
experiment setting, we obtain the BAC and F-score under different
volumes of music and presentation sound, as shown in Figure 19.
We observe that the authentication accuracy does not exhibit much
difference under music and presentation sound. Even when the
loudspeaker volume increases from 0 to 75%, the values of BAC and
F-score remain stable. To be specific, the BAC values are between
98% and 99%, and the F-score values are between 96% and 97%.
These results validate that VocalPrint is immune from different
types and volumes of acoustic noises. This is consistent with the
fact that VocalPrint employs an electromagnetic channel that is not
affected by acoustic noise in the ambient environment.

Figure 19: Performance under acoustic noise.

9.2 Environmental Dynamics
It is a known fact that variations in the sensing environment can
significantly affect the quality of the received signal, increasing
the false acceptance rate of the authentication system. Specifically,
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mmWave signals may be affected by the stationary and moving
objects in the environment. To evaluate the capability of our pro-
posed resilience-aware suppression model, we select three ambient
conditions: (1) snowy outdoor with environmental temperature as
−5◦C (23◦F) and no human obstruction; (2) student lounge with
environmental temperature as 20◦C (68◦F) and periodic human
obstruction; (3) three people continuously walking around the mm-
Wave probe within 2m distance, depicting constant human obstruc-
tion. The subjects are asked to read the first two sentences of The
Grandfather Passage in different ambient conditions as mentioned
above. Figure 20 shows the authentication results. In each ambi-
ent condition, the BAC reaches over 98% with around 0.4% STD,
and the F-score values are more than 96% with approximately 0.4%
STD. These results indicate that the resilience-aware clutter supp-
ression approach can effectively remove the clutters in the usual
authentication scenarios. Therefore, VocalPrint is resilient against
environmental dynamics and can be applied in real-world scenarios.

Figure 20: Performance under environmental dynamics.

10 SPOOFING RESILIENCE STUDY
10.1 Counterfeit Attack
Weassume that the attacker (1) knows that the uniqueness of human
voice is intrinsically sourced in vocal vibration; (2) observes that
when a person speaks, vocal cord vibrations caused by air pressure
are propagated through the vocal tract and can be measured on the
skin surface. Based on this knowledge, the attacker may forge the
target’s vocal vibration to spoof VocalPrint. To verify if a human’s
vocal vibration can be simulated, we construct a counterfeit attack
model, as shown in Figure 21(a). We place an audio transducer
inside a throat model to replay a pre-recorded passphrase of the
target user. As illustrated in Figure 21(b), the transducer is used to
simulate the vocal source excitation signal (i.e., vocal cord vibrations
caused by air pressure). When the audio signal passes the coil of the
transducer, a dynamic electro-magnetic field is generated, which
makes the actuator vibrate the throat model. The supralaryngeal
vocal tract in our throat model acts as reshaping the source signal,
as shown in Figure 21(d). Finally, the forged vocal vibration is
reflected by a readily available bionic skin material (i.e., Silicone
[12]) covering the throat model (see Figure 21(c)).

To overcome this counterfeit attack, we implement a body mo-
tion detector in the random motion compensation module (see
Section 4.3) to judge whether the reflected vocal vibration is origi-
nated from a live user or a model. Specifically, the detector examines
the value of range shift χm in Eq. (8) when the envelop correlation
function reaches maximum. If χm = 0, it implies that the range bins
misalignment issue does not exist, i.e., there is no random body mo-
tion. To evaluate the effectiveness, we place the forged throat model

Figure 21: Counterfeit attack experiment setup. The adver-
sary counterfeits vocal vibrations using an audio transducer
and 1:1 throat model.

at a distance of 20cm to VocalPrint, and try 200 trials. Compared
with CaField [71] that shows 0.82% (under loudspeaker-based im-
posters) and 1.87% (under human imposters) false acceptance rate
(FAR), VocalPrint achieves 1.5% FAR under forged throat attacks.

We also consider a challenging scenario where the audio trans-
ducer (i.e., vibration part) is stuck to the actual human throat. We
launch 200 attacks, only 9 (4.5%) forged models are misclassified
as legitimate users. To summarize, experiment results indicate that
VocalPrint can combat this counterfeit attack.

10.2 Mimicry Attack

Some attackers may intend to compromise the VocalPrint by mim-
icking the speaker. To verify whether VocalPrint can defend against
mimicry attack, 10 volunteers are invited tomimic the target speaker.
These volunteers are face-to-face with the target speaker and ob-
serve how they pronounce speech. After the volunteers repeatedly
practice pronunciation by mimicking 1) the articulatory movement
of upper and lower lips, tongue and jaw; 2) speaking speed, into-
nation, rhythm, conversation-level characteristics (e.g., “uh-huh”,
“oh yeah”, etc.) of the speaker, they initiate the mimicry attacks in
front of the VocalPrint. Each volunteer mimics 5 target speakers for
10 trials. In all, 500 mimicry attacks are launched to VocalPrint but
every attack fails. The results are as expected because the human
voice is individually unique and cannot be entirely mimicked.

10.3 Signal Replay Attack

We assume that the attacker knows the details of the mmWave
probe used to sense the vocal vibration. Understanding this fact,
the attacker can first eavesdrop on the communication between the
speaker and VocalPrint to record the skin-reflected signals. After the
eavesdropping process, the attacker can deploy devices to absorb
emitted mmWave signals, and then replay the pre-recorded skin-
reflected signals to spoof VocalPrint. To defend this signal replay
attack, every time to emit mmWave signals, VocalPrint randomly
selects three chirps and alters chirp rates, thereby the frequency
shift value of the range profile will change after performing FFT on
IF signals. In this case, when an attacker replays pre-recorded sig-
nals in a new time, such signals can be easily refused by comparing
the frequency shift value. To examine the effectiveness, we record
the reflected signals from different speakers and use a mmWave
signal generator to send the imitation signals to VocalPrint. The
results show that VocalPrint can recognize all the imitation signals.
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Table 2: A comparison of voice-based authentication methods.

System Liveness Detection
Principle

Sensing
Mechanism

Sensing
Orientation

Acoustic Noise
Sensitivity

User
Cooperation Test Distance

VAuth [18] Body vibration Bone conduction N/A Resistive Yes Contact
Chen et al. [10] Magnetic field Magnetic Directional Resistive Yes <10 cm
CaField [71] Sound field Acoustic Directional Sensitive Yes <50 cm
VoicePop [67] Pop noise Acoustic Non-directional Sensitive Yes <10 cm

VoiceLive [77] TDoA of
phenome sounds Acoustic Non-directional Sensitive Yes <50 cm

VoiceGesture [76] Mouth motion Acoustic (ultrasonic) Non-directional Sensitive Yes <50 cm
WiVo [41] Mouth motion Radio frequency Directional Resistive No <50 cm
VocalPrint Vocal vibration Radio frequency Directional Resistive No 0 - 200 cm

11 RELATED WORK
Voice authentication. Voice authentication is a historical topic in
biometrics and has been studied well [4, 41]. Existing studies show
that most voice authentication solutions are vulnerable against sp-
oofing attacks [22, 51]. To defense attacks, many liveness detection
approaches have been proposed based on the distinction between
human and loudspeaker [58, 59]. For example, mouth motion in
speaking is distinct from the manner that the loudspeaker vibrates
the diaphragm. Based on it, some studies leveraged RF reflections
[41] and ultrasonic reflections [76] of the mouth motion for liveness
detection, but mouth motion is observable and can be mimicked
potentially. Other studies exploited characteristics exclusive to hu-
man speakers or loudspeakers, such as magnetic field emitted from
the loudspeaker [10], pop music in human utterances [67], time-
difference-of-arrival from two microphones [77], and sound field
[71]. However, these microphone-based solutions are intrinsically
sensitive to ambient noise and also assume that replaying cannot
generate identical sound waves. By introducing a non-sound based
sensingmodality, VocalPrint can protect the system even if attackers
generate identical sound waves. Other solutions leveraged contact-
based sensors for voice authentication, such as VAuth [18], Vocal
Resonance [35] which can immune ambient noise. However, these
bone-conduction solutions require skin-contact and sacrifice us-
ability. According to the literature (see Table 2), no solution exists
in addressing all these issues in voice authentication.
mmWave-based human sensing. Recent advances have demon-
strated that mmWave accurately detects minute variations caused
by a human without body contact [1, 24]. Some works leverage mm-
Wave into activity recognition [23, 32, 79] and emotion recognition
[78]. Some other works focus on the detection of biometrics [72, 78].
For example, Petkie et al. [48] employed a 228 GHz heterodyne radar
to measure the respiration and heart rates at a distance of 10 meters.
Lin and Song et al. [34] implemented Cardiac Scan, a non-contact
and continuous sensing system for user authentication. Recent
workS [33, 69] leverage mmWave to sense voice-related informa-
tion to facilitate voice-user interface. Compared with these works,
our work explores vocal vibration as a continuous and non-contact
biometric identification and captures anti-spoofing features (i.e.,
throat physiological intrinsic) to defend against malicious attacks.

12 LIMITATION
Long sensing distance. As the distance increases, velocity resolu-
tion of the range profile will correspondingly degrade, thereby the

performance of background clutter isolation will be affected and
finally lead to decreased authentication accuracy. To extend effec-
tive sensing distance for remote voice biometric-based application,
we can increase the bandwidth of IF signals in mmWave waveform
design [11].
Sensing orientation. VocalPrint’s performance is affected by the
user orientation especially in long-distance scenarios. To enhance
the robustness of VocalPrint, one possible solution is to collect user’s
vocal vibration from different orientations with respect to the probe
in the enrollment phase, because vocal sounds travel through the
bone and the resulting vibration on the neck surface (besides the
throat region) is also valuable for authentication [35]. This is similar
to the enrollment phase of FaceID which requires the user to move
his/her head slowly to complete a circle [7].
Compatibility with IoT Devices. VocalPrint employs a high sam-
pling rate to capture fine-grained vocal vibration, but such a high
sampling ratewill producemassive data samples. The futuremmWave-
enabled smart device is possible to implement signal processing
based resilience-aware clutter suppression and vocal authentication
in a real-time fashion with the help of the high-speed DSP [64].

13 CONCLUSION

Existing voice authentication systems are vulnerable to noise in-
terference and spoof attacks. In this paper, we introduce a novel
biometric system, VocalPrint, for resilient security of voice authen-
tication. Specifically, VocalPrint is on the basis of a 77GHz FMCW
probe to sense the minute vocal vibrations in near-throat region
of users and leverage the skin-reflect mmWave signals. A novel
resilience-aware clutter suppression approach is proposed to isolate
the complex ambient noise and body motion from the mmWave
signals and allow further extraction of unique vocal tract and vocal
source features. Extensive experiments indicate that the authenti-
cation accuracy of VocalPrint exceeds 96% even under unfavorable
conditions.We also show the ambient resilience and spoof resilience
of VocalPrint to show its practicality in real-world setups. In future
work, we plan to evaluate VocalPrint with more people suffering
from speech disorders and improve system accuracy.
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