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ABSTRACT
Spatial extremes are common for climate data as the observations are usually referenced by geographic
locations and dependent when they are nearby. An important goal of extremes modeling is to estimate
the T-year return level. Among the methods suitable for modeling spatial extremes, perhaps the simplest
and fastest approach is the spatial generalized extreme value (GEV) distribution and the spatial generalized
Pareto distribution (GPD) that assume marginal independence and only account for dependence through
the parameters. Despite the simplicity, simulations have shown that return level estimation using the
spatial GEV and spatial GPD still provides satisfactory results compared to max-stable processes, which are
asymptotically justified models capable of representing spatial dependence among extremes. However,
the linear functions used to model the spatially varying coefficients are restrictive and may be violated. We
propose a flexible and fast approach based on the spatial GEV and spatial GPD by introducing fused lasso
and fused ridgepenalty for parameter regularization. This enables improved return level estimation for large
spatial extremes compared to the existing methods. Supplemental files for this article are available online.
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1. Introduction

Extreme value analysis is important because it allows us to assess
and quantify the extent to which a rare event could occur. This
is especially relevant in environmental sciences where extreme
natural events such as hurricanes, wild fires, tornadoes, and
floods can cause lasting human impacts. Classifying extreme
values is commonly done in two ways: block maxima and peaks
over threshold. The block maxima approach divides the dataset
into equal periods and chooses the maximum value from each
period. The generalized extreme value (GEV) distribution is
the limiting distribution of block maxima and is known to fit
accurately for large blocks (Fisher and Tippett 1928; Gumbel
1958; Coles 2001). The block maxima approach can be wasteful
as it only chooses one point from each period. In the peaks over
threshold approach, a threshold limit is chosen and all points
exceeding the limit are selected to form the extreme dataset.
For a high enough threshold, the generalized Pareto distribution
(GPD) arises as the limiting distribution to model data over the
threshold (Pickands 1975; Davison and Smith 1990).

An important goal of extremesmodeling is to estimate theT-
year return level, which is highly related to the marginal behav-
ior of extremes. The T-year return level is the value expected to
be exceeded on average once every T years. The estimation of
return level is essential in the study of environmental science.
For example, the return level estimation of sea levels is useful
for the management of coastal zones.

Extremes in environmental data are typically observed over
a spatial domain and thus the spatial variation and dependency
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of extremes are also exhibited in such data. Many techniques
for modeling environmental extreme data have been developed
that focus on either the site-wisemarginal behavior or the spatial
dependence of the extreme values. Characterizing the marginal
distribution is often done through latent variable models (Coles
and Casson 1998; Casson and Coles 1999; Cooley, Nychka,
and Naveau 2007; Sang and Gelfand 2009). Latent variable
models introduce spatial variation through Gaussian processes
of the parameters of the marginal distribution. This is often
accomplished via a hierarchical specification of the joint distri-
bution followed by Bayesian inference which is computationally
intensive and dependent on prior distributions. Besides latent
variable models, the spatial GEV and spatial GPD are perhaps
the simplest and fastest approach to modeling the spatial
variation of marginal distributions. These methods assume
marginal independence and only account for dependence
by allowing the parameters to vary spatially through linear
functions.

However, if the primary interest is in identifying how the val-
ues at each site are related to each other, the modeling of spatial
dependence will become the focus. Max-stable models (Smith
1990;Davis andResnik 1993; Schlather 2002) have been popular
choices for capturing the dependence structure. Recently, more
advances have emerged beyondmax-stablemodels (Wadsworth
and Tawn 2012; Huser, Opitz, and Thibaud 2017, 2021; Huser
and Wadsworth 2019; Castro Camilo and Huser 2020). For
instance, a new development proposes a flexible Bayesian
model that allows for varying spatial dependence (Bopp, Shaby,
and Huser 2021). For a more comprehensive review of recent
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research onmodeling spatial extremes, see Davison et al. (2012)
and Davison et al. (2019).

In this article, we develop computationally efficient yet flex-
ible fused spatial GEV and spatial GPD models through penal-
ized regression. Our fused spatial extremes models share the
advantage of the traditional spatial GEV and GPD models for
being applicable to large data sets, however, our models allow
for a nonparametric representation when describing the spatial
variability of the GEV and GPD parameters and thus largely
improves the return level estimation. Compared to max-stable
models that demand a dependency structure, our fused spatial
extremes models do not require such specifications but rather
regulates spatial variability through the penalties. Compared to
Bayesian implementation of max-stable models that are usu-
ally computationally intensive for handling large covariance
matrices, our methods dramatically improve the computational
efficiency. Furthermore, the proposed models require no sta-
tionarity assumption which is commonly made in modeling
spatial extremes.

2. Review of Spatial ExtremesModels

We begin by introducing the univariate GEV distribution. Let
Mn represent the maximum of a sequence of independent ran-
dom variables, X1, . . . ,Xn, which have common distribution F.
If there exists sequences of constants {an} > 0 and {bn} ∈ R

such that Mn−bn
an has a nondegenerate limiting distribution G

as n → ∞, then G must be a member of the GEV class with
distribution function

G(y) =
{
exp[−{1 + ξ

σ
(y − μ)}−1/ξ

+ ], if ξ �= 0
exp[−exp{−(y − μ)/σ }], if ξ = 0,

(1)

where μ ∈ R, σ > 0, ξ ∈ R represent the location, scale, and
shape parameters, respectively (Coles 2001). The GEV distribu-
tion is max-stable, which means the maximum of n indepen-
dent and identically GEV(μ, σ , ξ ) distributed variables follows a
GEV distribution with the same shape parameter ξ but different
location and scale parameters, that is,

Gn(any + bn) = G(y), y ∈ R, n ∈ N.

An alternative to modeling the block maxima is to model
the excesses above a high threshold using the GPD distribution.
For a large enough threshold u, the conditional distribution
function of the excesses Y = X − u|X > u is approximately

H(y) = P(X − u > y|X > u)

=
{
1 − (1 + ξy

σ̃
)−1/ξ , if ξ �= 0

1 − exp(− y
σ̃
), if ξ = 0.

(2)

The limiting model for threshold exceedances, Equation (2),
corresponds to fitting (1) to maxima with σ̃ = σ + ξ(u −
μ) and an identical ξ . Since our models are extensions of the
spatial GEV and spatial GPD, we will review those twomethods
in more detail. Review of an example of a max-stable model,
Schlather (2002), a Bayesian model called hierarchical kernel
extreme value process (HKEVP) (Reich and Shaby 2012), and
a latent variable model (Davison, Padoan, and Ribatet 2012) are
in Appendix A.

2.1. Spatial GEVModel

Let y(s1), . . . , y(sn) be the observed block maxima at locations
s1, . . . , sn over a spatial domain D. Assume the marginal dis-
tribution of y(s) is GEV with parameters μ(s), σ(s) and ξ(s).
When standardmaximum likelihood estimates are not available
due to an intractability of the full likelihood, a composite likeli-
hood is a natural alternative (Varin and Vidoni 2005; Sang and
Genton 2014). The spatial GEV model assumes marginal inde-
pendence given the GEV parameters and thus enables a com-
posite log-likelihood approximation to the full log-likelihood
(Lindsay 1988) given by

l{θ(s))} =
n∑

i=1
l{θ(si); y(si)}, (3)

where n denotes the number of sites, and l{θ(si); y(si)} is the
univariate GEV log-likelihood function at site si with parameter
vector θ(si).

When ξ(si) �= 0, we have l{θ(si); y(si)} in terms of
μ(si), σ(si), and ξ(si) as

l{μ(si), σ(si), ξ(si); y(si)}
= −m log{σ(si)} −

{
1 + 1

ξ(si)

}
×

m∑
t=1

log
[
1 + ξ(si)

{
yt(si) − μ(si)

σ (si)

}]

−
m∑
t=1

[
1 + ξ(si)

{
yt(si) − μ(si)

σ (si)

}]− 1
ξ(si)

, (4)

provided that 1 + ξ(si)
{
yt(si)−μ(si)

σ (si)

}
> 0 for t = 1, . . . ,m,

where m is the number of replicates for each site. At parameter
combinations for which at least one of the observed data falls
beyond the bounds of the distribution, the likelihood is zero and
the log-likelihood equals −∞. The case ξ(si) = 0 requires sep-
arate treatment using the Gumbel limit of the GEV distribution
and is defined on −∞ < yt(si) < ∞ for t = 1, . . . ,m.

The composite log-likelihood models the site-wise marginal
behavior independently and the spatial variability is usually
imposed through theGEVparameters. TheGEVparameters are
commonly described through parsimonious regression models,
which may be functions of space, environmental and other
covariates, and random effects (Padoan, Ribatet, and Sisson
2010). For example, μ and σ may be assumed to be linearly
related to coordinates of locations while ξ is assumed to be a
constant (Coles and Tawn 1996), modeled as

μ(s) = βT
μXμ(s), log{σ(s)} = βT

σXσ (s),
ξ(s) = βξ0 , (5)

whereXμ(s) andXσ (s) are vectors of covariates with coefficients
βμ and βσ , respectively. Then maximum likelihood is used to
fit the model to the observed data by plugging (5) into Equation
(4) and optimizing with respect to θ = {βμ,βσ ,βξ0}. The
reason ξ is assumed to be a constant is due to the challenge
of its estimation and the sensitivity of the return level to this
parameter.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 3

Estimates of extreme quantiles of blockmaxima distributions
are given in terms of the parameters. By inverting (1) and letting
G(y) = 1 − 1

T , we have the T-year return level rT as

rT(si) =
⎧⎨⎩μ(si) − σ(si)

ξ(si)

[
1 −

{
− log(1 − 1

T )
}−ξ(si)

]
, if ξ(si) �= 0

μ(si) − σ(si) log{− log(1 − 1
T )}, if ξ(si) = 0,

given one fits a GEV to an annual maximum of a stationary
process. One needs to adjust T for different block sizes (Cao and
Li 2018).

2.2. Spatial GPDModel

One disadvantage of modeling block maxima in extreme value
analysis is that many extreme data are wasted simply because
they are not the block maxima. As a result, threshold models
have become a popular modeling alternative.

Having determined a threshold, the parameters of the GPD
can be estimated by maximum likelihood. Let spatial data
y1(si), . . . , yk(si)(si) be the k(si) excesses of a threshold u at
site si for i = 1, ..., n. The composite log-likelihood is again
given by Equation (3), where n denotes the number of sites and
l{θ(si); y(si)} is the univariate GPD log-likelihood function at
site si with parameter vector θ(si). When ξ(si) �= 0, we have
l{θ(si); y(si)} in terms of σ̃ (si) and ξ(si) as

l{σ̃ (si), ξ(si); y(si)} = −k(si) log{σ̃ (si)} −
{
1 + 1

ξ(si)

}

×
k(si)∑
t=1

log
{
1 + ξ(si)

yt(si)
σ̃ (si)

}
, (6)

provided {1 + ξ(si) yt(si)σ̃ (si) } > 0 for t = 1, . . . , k(si), otherwise
l{σ̃ (si), ξ(si); y(si)} = −∞. The case ξ(si) = 0 requires separate
treatment using the exponential limit of the GPD distribution
and is defined on 0 < yt(si) < ∞ for t = 1, . . . , k(si).

Similar to the spatial GEV model described in Section 2.1,
the spatial variability of the threshold excesses can be modeled
through the GPD parameters. A popular choice is to assume σ̃

is log-linearly related to spatial covariates and ξ is a constant
as defined in Equation (5). The m-observation return level rm,
provided m is sufficiently large to ensure that rm > u, can be
obtained by letting Equation (2) equal to 1/m. TheT-year return
level is the level expected to be exceeded once every T years.
If there are k observations per year, this corresponds to the m-
observation return level withm = Tk.

3. Fused Spatial GEV and GPDModels

Due to their computational efficiency, the spatial GEV and
spatial GPD can be applied to large spatial extremes data. Sur-
prisingly, the return level estimation based on spatial GEV is
shown to be comparable to various max-stable models (Cao
and Li 2018). However, if the spatial domain of observations
is vast, the constant shape parameter usually assumed in the
spatial GEV and GPD will likely be violated and this may cause
deteriorated return level estimation as return levels are very
sensitive to even a small perturbation of the shape parameter.
Furthermore, the location and scale parameters in those two

models may not simply follow a parametric relationship with
the available covariates.

In such cases, it would be more appropriate to account for
the spatial heterogeneity of the shape parameter, as well as to
allow for flexible forms of spatial variability in location and
scale parameters. Unlike Bayesian methods that assume a latent
Gaussian process for the parameters, we propose to regulate the
shape parameter using the fused lasso or fused ridge penalty. To
attain flexibility of other parameters that are usually restricted to
a parametric, often linear, form in the spatial GEV and spatial
GPD, we further propose to regulate all three parameters in
the spatial GEV or two parameters in the spatial GPD using
a fused lasso or fused ridge penalty. The fused penalty has
been used to model the clustering pattern or smoothness of
spatial data by penalizing differences in parameter estimations
of nearby locations (Tibshirani and Taylor 2011; Parker, Reich,
and Eidsvik 2016; Tansey et al. 2018; Li and Sang 2019). We will
proceed by outlining the methodology only for the fused spatial
GEVmodel, however, the fused spatial GPD can be analogously
developed by replacing the likelihood and parameters in the
spatial GEV with those from the spatial GPD.

3.1. Fused Penalties

To define the fused penalty in the context of spatial extremes,
consider an undirected graph G consisting of n vertices and
edge set E . Each vertex corresponds to one observed spatial
location, s. An edge (sp, sq) ∈ E means that location sp and sq
are neighbors. A weight function W assigns a weight to each
edge in an edge set. Let θ(s) = {μ(s), σ(s), ξ(s)}T , where
μ(s) = {μ(s1), . . . ,μ(sn)}, σ(s) = {σ(s1), . . . , σ(sn)}, and
ξ(s) = {ξ(s1), . . . , ξ(sn)}. Then we can regulate μ(s), σ(s), and
ξ(s) and estimate parameters by

θ̂(s) = argmin
θ(s)

n∑
i=1

−l{μ(si), σ(si), ξ(si); y(si)}

+ λμ

∑
(sp,sq)∈E

Wp,q | μ(sp) − μ(sq) |k

+ λσ

∑
(sp,sq)∈E

Wp,q | σ(sp) − σ(sq) |k

+ λξ

∑
(sp,sq)∈E

Wp,q | ξ(sp) − ξ(sq) |k, (7)

where λμ, λσ , and λξ are tuning parameters and Wp,q is a
weighted penalty factor that may depend on distances, for
example. More details on the tuning parameter selection and
weighted penalty factor are given in Section 3.3.

The fused penalty enforces spatial smoothness of param-
eters. Setting k = 1 represents the fused lasso penalty and
creates sparsity in the difference between parameter estimates.
Enforcing sparse differences results in clustered parameter esti-
mates, meaning sites that are close in proximity may have iden-
tical parameter estimates. The fused lasso penalty has been
used widely in regression models and an alternating direc-
tion method of multipliers (ADMM) algorithm was developed
to estimate the parameters under such penalty. Setting k =
2 represents the fused ridge penalty and promotes similar-
ity between parameter estimates. Unlike the fused lasso which
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creates grouped estimates, the fused ridge produces smoothly
varying parameter estimates.

3.2. Taylor Approximation for Optimization

The optimization in Equation (7) is difficult to solve because
the likelihood is nonconvex and the parameters μ(s), σ(s), and
ξ(s) are nonseparable in the likelihood. We are not aware of
any solution that is guaranteed to find the global minimum.
As a result we will use methods known to solve for the local
minimum and it has been shown that these estimations are a
good and efficient approximation (Tansey et al. 2018).

We begin by expanding l{μ(si), σ(si), ξ(si); y(si)} in a par-
tial second-order Taylor approximation at the current iterate
{zμ(si), zσ(si), zξ(si)}. Putting a full second-order Taylor approxi-
mation into quadratic form is extremely intricate, so we instead
estimate each parameter sequentially allowing us to avoid hav-
ing to compute cross derivatives in the Taylor series expansion.
Consider, for example, the estimation of the location parameter
μ(s), we assume σ(s) and ξ(s) are known and equal to the
current iterate zσ(si) and zξ(si), respectively. Then Equation (7)
can be expressed solely in terms of μ(s) and the Taylor expan-
sion turns Equation (7) into a fused regression problem. The
estimation ofμ(s), up to a constant termnot depending onμ(s),
becomes

argmin
μ(s)

[∇l{zμ(s); y(s)}]T{μ(s) − zμ(s)} + 1
2
{μ(s) − zμ(s)}T

× H{zμ(s); y(s)}{μ(s) − zμ(s)}
+ λμ

∑
(sp,sq)∈E

Wp,q | μ(sp) − μ(sq) |k, (8)

where ∇l{zμ(s); y(s)} and H{zμ(s); y(s)} are the gradient
and Hessian with respect to the negative log-likelihood,
−l{μ(s); y(s)}, evaluated at the current iterate zμ(s). Since
the true parameters are unknown, we will use the maximum
likelihood estimates from the spatial GEV model to initialize
the first iteration.

Ignoring terms that are constant in μ(s), the solution of
Equation (8) can be expressed as

μ̂(s) = argmin
μ(s)

n∑
i=1

{yi − xiμ(si)}2
2

+ λμ

∑
(sp,sq)∈E

Wp,q | μ(sp) − μ(sq) |k,

where

yi =
⎡⎢⎣zμ(si) −

∂ l{μ(si);y(si)}
∂μ(si)

∣∣∣
μ(si)=zμ(si)

∂2l{μ(si);y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

⎤⎥⎦
×
√

∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

xi =
√

∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

.

Replacing μ(s) with σ(s) or ξ(s) will provide estimates for the
scale or shape parameter, respectively, the details and derivatives
of which are shown in Appendix B.

When the support of the density depends on unknown
parameters, as in Equations (4) and (6), MLEs do not satisfy
the classical regularity conditions. See Smith (1985) for more
details. It is known that the maximum likelihood estimation
of multi-parameter distributions can break down because the
likelihood is unbounded (Cheng and Amin 1983), which can
lead to issues of parameter divergence. Tomitigate rare instances
of divergence in parameter estimation in the proposed models,
conservative bounds can be specified and if a parameter is
estimated outside those bounds it will be re-initialized and re-
estimated.

3.3. Implementation of FusedModels

To select the set of edges, E , we use a minimum spanning
tree (MST) to define neighboring sites (Li and Sang 2019). A
MST is a graph that connects all of the sites together, without
any cycles and with the minimum possible total edge length.
Using a MST removes redundant pairs and allows for faster
computation when working with large datasets. We then apply
an inverse distance penalty factor Wp,q = 1/||sp − sq|| to
the neighboring sites. This enforces more similarity between
sites that are closer in distance and allows flexibility when the
sites are farther apart. The choice of Wp,q is not unique and
there is no known optimality on how to make a choice. Since
the strength of dependency of spatial data often depends on
distance, we simply chose the inverse distance weighting that
has been one of the most popular choice for interpolating geo-
graphic data (Burrough and McDonnell 1998; Longley et al.
2001). The connecting edges can be written as a matrix D, that
is of dimension (n − 1) × n. Without loss of generality, we
add a row to D but set its corresponding penalty factor equal
to zero simply for the purpose of transforming D to full rank.
This allows for an easy bijective transformation from the vector
of parameters θ(s) into a vector of parameter differences such
that the fused models can be implemented using the “glmnet”
package in R.

The choice of λ in the fused lasso and fused ridge penalties
is important because too small of a λ will result in overfitting
and too large of a λ will result in oversmoothing and loss of
spatial structure. In practice, the optimal λ can be determined
via some data-dependent model selection criteria (Li and Sang
2019), such as generalized cross-validation (Golub, Heath, and
Wahba 1979), Akaike information criterion (AIC), Bayesian
information criterion (BIC) (Schwarz 1978), and the compos-
ite likelihood information criterion (CLIC) (Varin and Vidoni
2005). We fit our model using the “glmnet” package in R which
uses the deviance for the cross-validationmetric. For a Gaussian
model, this deviance is the sum of squared errors (SSE).

The GEV parameters, {μ(s), σ(s), ξ(s)}, can be estimated
either sequentially or independently. Sequential parameter esti-
mation means that the first parameter is initialized using the
spatial GEV and the remaining parameter estimations are ini-
tialized with the prior parameter iteration results. There are
six different combinations for estimating sequentially: {μ →
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σ → ξ ;μ → ξ → σ ; ξ → μ → σ ; ξ → σ →
μ; σ → ξ → μ; σ → μ → ξ} with (s) suppressed
from the notation. Independent parameter estimation means
that the estimation of each parameter is initialized using the
spatial GEV, and not reliant on the other parameter estimation
results. In order to demonstrate the difference between these two
estimation schemes, we compared parameter estimates com-
puted both independently and sequentially through simulations
in Appendix E. The simulation results in Appendix E showed
that the sequential estimation results were best when σ(s) is
estimated prior to ξ(s). The estimation of μ(s) has minimal
impact on the estimation of the other parameters. Because the
accuracy of the Taylor approximation is dependent on the values
chosen to expand about, the closer the value is to the true value
the more accurate the results, it is expected that the average root
mean squared error (RMSE) for the parameters would increase
when estimated independently compared to being estimated
sequentially. Following this notion, for the simulation study in
Section 4 we choose to estimate the parameters in the order
of σ(s) → ξ(s) → μ(s), because σ(s) shows the greatest
improvement over the Spatial GEV allowing for better initial-
ization when estimating ξ(s), and so forth. However, the results
in Appendix E also show that for the fused ridge model estimat-
ing parameters independently is still an improvement over the
spatial GEVmodel, and only a relatively small change compared
to the sequential estimationmaking it a reasonable alternative in
applications where sequential estimation is not practical.

3.4. Bootstrap to Quantify Uncertainty

The deltamethod, profile likelihood, and bootstrap are common
methods to estimate the CI for return levels. The delta method
(Coles 2001) is a classical means to compute CI by assuming the
asymptotic normality of return level estimates. The profile likeli-
hood is computationally efficient, however, it is only available for
univariate GEV and may fail to keep the spatial smoothness of
spatial extremes. For return levels of spatial extremes, the boot-
strap (Davison andHinkley 1997) is considered a popular choice
to compute their CIs. The accuracy of a parametric bootstrap CI
depends on how well the fitted parametric model approximates
the true underlying model. The nonparametric block bootstrap
has the advantage of preserving the spatial dependence structure
of extremes by bootstrapping only in the time dimension. If the
fittedmodel cannot approximate the true dependence structure,
then the nonparametric block bootstrap is preferred (Cao and Li
2018).

We will use block bootstrap to quantify uncertainty. This is
performed by subsampling spatial ‘’blocks” in time. The return
level estimate from each bootstrapped data constitutes a random
sample drawn from the distribution of the return level estimator,
and thus, the α/2th and (1-α/2)th quantiles of the bootstrap
estimates offer a bootstrap CI at the significance level α. The
uncertainty estimation for our simulation studies are shown in
Appendix G.

4. Monte Carlo Studies for Model Comparison

We conduct simulation studies using both stationary and non-
stationary data to assess the performance of parameter and

return level estimation using our fused spatial GEV and spatial
GPD compared to the five methods introduced in Section 2 and
Appendix A.

4.1. Simulation Settings

We first simulate data from a stationary max-stable field using
the Schlather model with marginal GEV parameters mimicking
estimates from observed annual maximum daily precipitation
across Colorado’s Front Range (Tye and Cooley 2015). Spatial
locations, s = {s1, . . . , sn}, are randomly generated from the
uniform distribution over a [0, 20] × [0, 20] spatial domain, D.
The number of spatial locations is chosen to be n = 200, and
the number of replicates is set to be m = 50 for the spatial
GEV andm = 500 for the spatial GPD.We spatially smooth the
90th percentile at each site using a Gaussian kernel to select the
threshold, and then collect exceedances when fitting the GPD.

Spatially varying GEV parameters, θ(s) = {μ(s),
σ(s), ξ(s)}T , are sampled from stationary and isotropic Gaus-
sian processesGP{m(s),�}withmean functionsm(s) : D → R

and powered exponential covariances � : D2 → [0,∞).
The parameter choices follow Tye and Cooley (2015). Shape
parameters are resampled until ξ(s) > 0 for all s, to ensure data
are heavy-tailed (Hewitt et al. 2019). Further details of themodel
generating configurations are specified in Table C1 of Appendix
C. We use the generated GEV parameters to transform the
marginal distribution of the max-stable process from a unit
Fréchet distribution to a more general GEV distribution.

Nonstationary data will be generated by deforming loca-
tions of a stationary max-stable field. Spatial locations, s =
{s1, . . . , sn}, are again randomly generated from the uniform
distribution but now over a [0, 1] × [0, 1] spatial domain. Once
the stationary data is generated we transform it into nonstation-
ary data by squaring the spatial locations, {s21, . . . , s2n} and treat-
ing the squared locations as the actual locations for simulated
data. This creates stronger dependence in the north and east
than in the south and west. The domain is set to [0, 1] × [0, 1]
to ensure the domain of the warped locations remains the same.
Correspondingly, in the data generation the scale parameters are
also scaled by a factor of 20 to provide equivalent analysis, as
specified in Table C2 of Appendix C.

4.2. Spatial ExtremesWith GEVMarginals

We compare our fused spatial GEV models under either ridge
penalty or lasso penalty to the spatial GEV, Schlather, Bayesian
HKEVP, and latent variable model (LVM). For the spatial GEV,
Schlather, and LVM Gaussian process we model their marginal
parameters as in Equation (5) with covariates Xμ(s) = (1, sx)
and Xσ (s) = (1, sy), where sx and sy represent the longitude
and latitude coordinates, respectively. The Schlather model uses
pairwise likelihoods. For Bayesian HKEVP, we place knots at
each location of observations. The parameters of the fused
spatial models were initialized at the spatial GEV estimates and
estimated with four iterations. The number of iterations was
chosen through trial and error. For each method we run the
simulation 200 times and use the RMSE of parameter and return
level estimation to compare performance.
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Figure 1. Boxplots of logarithmic RMSE for the GEV parameters and return level estimates with stationary spatial extremes and sixmodels: Spatial GEV, Schlather, Bayesian
HKEVP, Latent Variable, Fused spatial GEV under Ridge and Lasso penalty.

4.2.1. Stationary Spatial Extremes
We simulate stationary spatial extremes as specified in Sec-
tion 4.1. The LVM and HKEVP model runs 7500 iterations
with a 5000 burn-in. Figure 1 shows the logarithmic RMSE
for the parameter and return level estimates of the 200 sim-
ulations. A summary of the average RMSE for the parameter
and return level estimates of the six models is provided in
Appendix D. It is seen from Figure 1 that overall the LVM
and HKEVP models perform best at the expense of a larger
computation time of on average 345.15 and 15,694 sec, respec-
tively. In contrast, the fused ridge and fused lasso computation
times were on average 4.32 sec and 1.90 sec, respectively. The
spatial GEV took on average 1.79 sec and the Schlather model
took on average 61.11 sec. Latent variable models are known
to model the marginal distribution of spatial extremes well, so
it is not surprising that this model performed best (Davison,
Padoan, and Ribatet 2012). However, unpublished simulation
results showed that the advantage of the LVM over the fused
models diminishes as the spatial extremes process becomes
smoother. Because the HKEVP model uses Gaussian processes
as priors for the parameters which is conducive to the simu-
lated parameters, it is not surprising that this model performs
well.

The shape parameter which is generally difficult to esti-
mate, is captured best by the LVM and fused ridge model.
The shape parameter estimation has an increasing impact on
return level as the return period increases. As a result, the
gap between the HKEVP and fused ridge model decreases as

Table 1. The average computation time in seconds of 10 simulations for the Latent
Variable, Fused ridge, and Fused lasso GEV models.

LVM Fused ridge Fused lasso

200 Sites 345.15 4.32 1.90
400 Sites 2,362.70 17.00 6.83
800 Sites 18,933.80 89.26 36.67

the return level period increases. While the fused lasso model
performs relatively similar to the spatial GEV and Schlather
model, the fused ridgemodel outperforms both the spatial GEV
and Schlather in every aspect except for the location parameter.
This is likely because the simulated parameters are smoothly
varying favoring the fused ridge, which provides smoothly vary-
ing estimates, over the fused lasso, which provides clustered
estimates. The improvement in return level estimation of the
fused ridge and fused lasso leads them to be appealing options
for modeling large datasets when computational efficiency is
desired.

While the latent variablemodel performs the best overall, it is
not always practical for large datasets due to the computational
burden. To demonstrate how the computation time increases as
the number of sites considered increases, we conduct 10 sample
simulations of 200, 400, and 800 sites and record the average
computation time. The computation time of the LVM is only
for 7500 iterations and a 5000 burn-in. Further studies would
need to be conducted to ensure convergence in real applications.
Table 1 shows the computational advantage our model has in
large datasets.
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Figure 2. Boxplots of the logarithmic RMSE for the GEV parameters and return level estimates with nonstationary spatial extremes and six models: Spatial GEV, Schlather,
Bayesian HKEVP, Latent Variable, Fused spatial GEV under Ridge and Lasso penalty.

A caveat in fitting the fused ridge and fused lasso model
should be mentioned. If the second derivative of a site in the
Taylor approximation is negative, then that site cannot be used
due to being incompatible with the fused regression. The num-
ber of site failures is dependent on the initial parameters used in
the Taylor approximation. Therefore, initial parameters should
be chosen such that a majority, if not all, of the sites are retained.
From experience, this can generally be accomplished by setting
the initial location parameters to be a constant minimum or
maximum of the data.

4.2.2. Nonstationary Spatial Extremes
The simulation study in Section 4.2.1 is based on stationary data
with parameters from a Gaussian process. However, in reality,
not all spatial extremes follow this ideal data structure. This sec-
tion compares the model performance with nonstationary data
that is generated by deforming locations of a stationary max-
stable field. The LVM and HKEVP model runs 7500 iterations
with a 5000 burn-in.

Figure 2 provides boxplots of the logarithmic RMSE for
the parameter and return level estimates. The corresponding
averages are provided in Table D2 of Appendix D. With the
nonstationary data simulated in this section, the LVM and fused
ridge model have the best shape parameter and return level
estimates. The LVM is again superior in terms of return level
estimation. The HKEVP model performs similarly to the fused
ridge in the 20-year return level, however the HKEVP model
performs significantly worse as the return level period increases

due to its larger error in the shape parameter estimation. Perhaps
evenmore importantly, the fused ridge has an average computa-
tion time of 4.79 sec compared to the LVM and HKEVPmodels
which have average computation times of 346.98 and 15,551 sec,
respectively. The spatial GEV, Schlather, and fused lasso model
all perform similarly with average computation times of 1.97,
77.50, and 2.15 sec, respectively.

4.3. Spatial ExtremesWith GPDMarginals

For peaks over threshold, we again compare the model perfor-
mance with both stationary and nonstationary data. The basic
settings for locations and replicates of the simulated data are
already described in Section 4.1. To calculate the threshold for
each site, we first choose the 90th quantile at each site and then
spatially smooth the values using a Gaussian kernel known as
the Nadaraya-Watson smoother (Nadaraya 1964, 1989; Watson
1964). In practice, choosing a threshold is a delicate procedure
weighing the bias versus precision tradeoff and is usually done
using diagnostic plots showing how quantities, such as themean
residual life, vary as the threshold changes (Coles 2001; Cooley,
Nychka, and Naveau 2007). The shape parameter of the GPD
remains the same as in the GEV, and the true scale parameter
of the GPD can be calculated based on its relationship with
the parameters in the GEV and threshold as described right
below (2). We compare our fused spatial GPD with ridge or
lasso penalty only to the spatial GPD and LVM, as the Bayesian
HKEVP did not address the situation with GPD marginals.
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Figure 3. Boxplots of the logarithmic RMSE for the GPD parameters and return level estimates with stationary spatial extremes and four models: Spatial GPD, Latent
Variable, Fused spatial GPD under Ridge and Lasso penalty.

Figure 4. Boxplots of the logarithmic RMSE for the GPD parameters and return level estimates in the nonstationary spatial extremes and four models: Spatial GPD, Latent
Variable, Fused spatial GPD under Ridge and Lasso penalty.

For spatial GPD, the scale parameters are modeled as σ̃ (s) =
βT

σ̃Xσ̃ (s), where Xσ̃ (s) = (1, sx, sy) and sx and sy represent the
longitude and latitude coordinates, respectively.

The parameters of the fused models were initialized at the
spatial GPD estimates and estimated with six iterations for the
fused ridge and one iteration for the fused lasso. The number
of iterations was chosen through trial and error. Similar to
the simulations with block maxima, when some locations have
a negative second derivative in the Taylor approximation, the
choice of initial values should be tweaked such that a majority,
if not all, of the sites are retained. The number of iterations
was chosen through trial and error. For each method, we run
the simulation 200 times and use the RMSE of return level
estimation to compare performance.

4.3.1. Stationary Data
Figure 3 provides boxplots of logarithmic RMSEs for the param-
eter and return level estimates of the four models. The cor-
responding averages and computation times are provided in
TableD3 of AppendixD. The fused ridge and fused lassomodels
perform similarly and both outperform the spatial GPD in the
scale parameter and return level estimation. The RMSE of the
shape parameterswith both fusedmodels is higher thanwith the
spatial GPD. Further investigation shows that the fused models
actually capture the spatial variability of the shape parameters
well; however the fused models tend to overestimate the shape
parameters while the spatial GPD fails to capture the variation
in the shape parameters. While the fused models outperform
the LVM in terms of the shape parameter estimation, the LVM
performs better in terms of return level estimation. The LVM
was run with 15,000 iterations and a 5000 burn-in. LVMs are

known to capture the marginal distribution well. However, the
computation time was on average 635.36 sec compared to the
fused ridge and fused lasso computation times of 13.80 and
0.86 Sec, respectively.

4.3.2. Nonstationary Data
Figure 4 summarizes the parameter and return level estimates
of the four models using 200 simulations. Table D4 in Appendix
D provides the corresponding average RMSE and computation
times. The results for the nonstationary data are very similar to
that of the stationary data in Section 4.3.1. The fused ridge has
an average computation time of 14.49 sec compared to the LVM
model which has an average computation times of 620.83 sec.

5. Application to Spatial Weather Extremes

5.1. Return Level Estimation for Precipitation Data

We analyze climate model output on annual maximum daily
precipitation over historical (1969–2000) and future conditions
(2039–2070) for 2622 sites across the continental United States.
These data were provided by the North American Regional
Climate Change Assessment Program (NARCCAP) and can
be downloaded from the website http://www.narccap.ucar.edu/
index.html. The NARCCAP chose the A2 emissions scenario,
which is described in Nakicenvoic et al. (2000). The output data
were produced using the Geophysical Fluid Dynamics Labora-
tory’s AM2.1 climate model with 50km resolution. NARCCAP
provides eight 3-hr precipitation rates each day, andwe compute
the daily total by summing these eight values and multiplying
by three. We then analyze the annual maximum of the daily

http://www.narccap.ucar.edu/index.html
http://www.narccap.ucar.edu/index.html
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Figure 5. Estimated GEV parameters, 20-, and 100-year return level for the historical simulation using the fused ridge model. The spatially varying return levels are shown
at time t=1 (year 1969) and the time varying return levels are shown for site 1481, located at the black dot. All units are mm/h.

precipitation totals from the two time-slices separately using the
fused spatial GEV model under either ridge or lasso penalty.

In the parameter initialization, we basically follow the esti-
mates from the spatial GEV but tweak them slightly to ensure a
majority of the sites are retained in the estimation. The nature of
the fused penalty in our fused spatial GEV restricts the param-
eter estimates and thus the return level estimates to only site-
wise locations. In order to estimate the return level at unknown
locations, we interpolate using ordinary kriging. Kriging is a
traditional approach for spatial data interpolation that exploits
the spatial correlation between observations. Cao and Li (2018)
showed that kriging interpolated return levels performed qual-
itatively similar as the return level estimation based on max-
stable models when data follow a max-stable model.

Given the long time period considered, it is unlikely that
the data is stationary across time. To account for the non-
stationarity, we incorporate a simple linear time trend into the
location parameter. We model μ(s, t) = α(s) + β(s)t, where
α(s) is the spatially varying location parameter, β(s) is the
spatially varying coefficient associated with the time trend, and
t = 1 for years 1969 and 2039, up to t = 32 for years 2000 and
2070. Then in Equation (3), we replaceμ(s)with α(s) and β(s),
and optimize these parameters sequentially. The computation
time for the fused ridge was 11,801 seconds for the historical
simulation and 13,882 seconds for the future simulation. The
computation time is based on an i7 core processor with 4 Gb of
RAM.

Figure 5 shows the estimated GEV parameters, 20-, and
100-year return level for the historical simulation using the
fused ridge model. Since we model the location parameter as
a function of time, the return level is also a function of time.
For illustration purposes, we plot the 20- and 100-year return
level map at time, t = 1, and the time varying return level for a
single site, s = 1481. The results for the fused lasso model are
very close to those of the fused ridge so we omit the fused lasso
plots. The estimated location and scale parameters are highest
in the midwest. There is a positive trend in the northwest and
the largest negative trend is in Virginia. The generally positive
shape parameter indicates a heavy tailed distribution with no
upper bound. The 20-year return level tends to mimic the high
and low estimates of the location and scale parameters. The
100-year return level shows an increased precipitation in Ohio

and Kentucky heavily influenced by the larger shape parameter.
However, the negative trend in Ohio and Kentucky suggests the
return level will decrease when estimated at a later time, for
example at t = 32. The corresponding standard errors of the
estimates in Figure 5 using 200 bootstrap samples are provided
in Figure F1 of Appendix F. We use the nonparametric block
bootstrap to quantify uncertainty.

The estimated change in the GEV parameters, 20-, and 100-
year return level estimates from the historical simulation to
the future conditions simulation for the fused ridge model are
shown in Appendix F along with the corresponding block boot-
strap standard errors. Again, the plots for the fused lasso model
are very similar so we omit the results. In the future conditions
simulation there is a relatively small increase in all parameter
estimations, except the trend. The largest location and scale
changes are in the northeast. The shape parameter shows sig-
nificant increases outside of the southeast. These increases were
most impactful on the return levels in the midwest and north-
east.

A subset of this data was modeled in Reich and Shaby (2012)
using the HKEVP, which included the 697 stations east of −90
degrees longitude. Our fused model results are similar to the
HKEVP model for the historical simulation in that the shape
parameter is generally positive and largest in Florida, however
our shape parameters are more moderate. The estimated scale
parameters have a similar range, the main difference being the
HKEVP estimates the largest scale parameters in the southeast
where our fused model estimates the largest scale parameters in
the midwest. The estimated return levels are very comparable
in the north. In the south our estimates are less volatile than
the HKEVP model, which can be attributed to the larger scale
and shape parameters in the HKEVP model. When comparing
the historical and future scenarios both our fused model and
the HKEVP model estimates an increase in return level for the
majority of the spatial domain.

5.2. Annual MaximumTemperature Change

To demonstrate the ability of the fused models to handle even
larger datasets, we analyze annual maximum temperature data
for 8,125 sites across the continental US for the years 1898–
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1997. The data were provided by the National Corporation for
Atmospheric Research (NCAR) and is available upon request
from Dr. Douglas Nychka. Observed data at each station was
used when available and any missing station values were filled
in using spatial statistics to produce a complete dataset (Johns
et al. 2003). Amore detailed description of the data can be found
at https://www.image.ucar.edu/Data/US.monthly.met/. We split
the data into two equal time periods of 50 years and estimate
the return levels for each time period separately.

In the parameter initialization, we follow the estimates from
the spatial GEV with minor adjustments to ensure a majority of
the sites are retained in the estimation. Estimates are interpo-
lated over the whole spatial domain using ordinary kriging and
standard errors are computed using 200 nonparametric block
bootstrap samples. The standard error plots are available in
Appendix F. Given the long time period, we model the location
parameter as in Section 5.1 to account for nonstationarity, where
t = 1 represents years 1898 and 1948, up to t = 50 for years
1947 and 1997. The results shown are for the fused ridge model,
the fused lasso model had very similar results so we omit the
fused lasso plots. The computation time for the fused ridge
was approximately 13.53 hr for each simulation. This computa-
tion time could be further reduced by one third by estimating
the parameters independently and in parallel for comparable
results.

The return level estimates in the top row of Figure 6 suggest
the hottest maxima temperatures are in the southwest while the
lowest maxima temperatures are along the rocky mountains in
Colorado and Wyoming. Lower return levels are also expected
in the northeast and along the Washington coastline. This fol-
lows the intuition of what one generally expects when thinking
of historical temperatures across the United States.

It is known that average temperatures in the United States
since 1900 have warmed on average, however it is less clear
whether maximum temperatures have changed during this
period (Lee, Li, and Lund 2014). The bottom row of Figure 6
shows the change in return level estimates between the two time
periods at time t=1, 1898 and 1948. From the plots we can see
the temperature has the largest increases in the midwest. At
time t = 1, 3,178 of the 8125 stations had a decrease in annual
maximum temperature for the 100-year return level. Compared

to time t = 50, 6264 of the 8125 stations had a decrease in
annual maximum temperature. The GEV parameter plots are
provided in Appendix F to show the predominantly negative
time trend. However, none of the changes are statistically
significant at the 95% confidence level. The decreases may
seem surprising, however a ’warming hole’ in the eastern
United States has been previously noted (Lund, Seymour, and
Kafadar 2001). Lee et al. (2014) also found when analyzing
maximum temperature trends over the years 1890–2010
across the United States that 583 of 923 stations had negative
trends.

6. Discussion

In order to improve the return level estimation for large spatial
extremes datasets, we propose fused spatial GEV and fused spa-
tial GPDmodelswith varying coefficients under either a ridge or
lasso penalty. Our proposedmodels are flexible in parameteriza-
tion and thus are able to capture the spatial variability of the data
better than the spatial GEV and spatial GPD with parametric
parameter specifications. Our models require no assumption of
stationarity and are significantly more computationally efficient
compared to Bayesian models. The simulation study showed
that the proposed models outperform spatial GEV, spatial GPD,
and max-stable models when the marginal GEV and GPD vary
spatially. Our models also outperform Bayesian models when
the spatial extremes process is smooth or when the spatial
extremes data show nonstationary dependence. While in gen-
eral Bayesian models yield the most accurate return level esti-
mation, their extensive computation may discourage users. The
nonrestrictive parameter estimates from the proposed fused
models could be used as initial values to accelerate the conver-
gence when fitting a complicated and time-consuming Bayesian
model. The fused spatial models with ridge penalty are obvi-
ously suitable for smoothly varying marginal behavior, while if
the marginal GEV or GPD distribution of the spatial extremes
is spatially clustered, then the fused lasso models are expected
to be more appropriate. The data applications demonstrate the
ability of the fused spatial extremes models to produce practical
return level maps for large datasets.

Figure 6. Top: estimated 20- and 100-year return level for the years 1898–1947 using the fused ridge model. Bottom: estimated change in 20- and 100-year return level
between the years 1898–1947 and 1948–1997 using the fused ridge model. The spatially varying return levels are shown at time t = 1 (1898 and 1948) and the time
varying return levels are shown for site 2570, located at the black dot. All units are in degrees Celsius.

https://www.image.ucar.edu/Data/US.monthly.met/
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The undirected edges used to define neighboring sites could
be determined by other methods such as king neighbors for
gridded data rather than a minimum spanning tree, but addi-
tional work may be solicited to remove the redundant edges to
allow for invertibility of D. One restriction of the fused models
is that the model fitting only estimates parameters and return
levels at observed locations but not in a continuous domain. We
addressed this issue by interpolating estimated parameters over
thewhole domain using kriging in the data application. Another
limitation of the fused models lies in its implementation being
dependent on the initialized values. It could be of interest to
further explore the robustness of the initialized values and con-
sistency of the estimation.

Supplementary Material

Appendices: Appendix A provides review of a max-stable model, hierarchi-
cal kernel Bayesianmodel, and a latent variablemodel. Appendix B contains
the derivation of the Taylor approximation as well as the first and second
derivatives of the GEV and GPD distributions. Appendix C contains model
generating configurations for the simulation studies. Appendix D contains
tables of the average RMSE and computation times for the simulation
studies conducted in Section 4. Appendix E contains results of an additional
simulation study comparing parameter estimation procedure. Appendix F
contains additional results for the data applications in Section 5. Appendix
G contains the results of the bootstrap simulation study.
R Code: This file contains the code used for Sections 4 and 5. A README
file describes the contents.
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Appendix A

A.1. SchlatherModel

A max-stable model has the GEV as its marginal distribution while
accounting for the spatial dependence.Wewill use the Schlather (2002)
model as an example to illustrate max-stable models because it is the
model we chose to generate simulated data from in Section 4.

Let Z(s) be a max-stable process, then due to de Haan (1984) any
max-stable process can be described through the spectral represen-
tation, that is, Z(s) = max

j≥1
ζjWj(s), where ζj are points of a Poisson

process on (0,∞)with intensity measure dζ/ζ 2 and {Wj} are indepen-
dent copies of a stochastic process W with continuous sample paths
satisfying E[W(s)+] = 1. Different choices of the spectral process
Wj(s) leads to different max-stable models. In the Schlather model,
Wj(s) are stationary Gaussian processes with correlation function ρ(s),
scaled such that E[W(s)+] = 1. One example for correlation function
is the powered exponential function ρ(h) = (1 − η)exp{−(h/λ)v},
where η ∈ [0, 1), v ∈ (0, 2], and λ > 0 are the nugget, smooth,

and range parameter, respectively, which need to be estimated (Sebille,
Fougeres, and Mercadier 2016).

Max-stable models generally rely on pairwise likelihood functions,
since the joint likelihood of spatial extremes is typically not available.
The bivariate cdf of Z(s) at a pair of sites si and sj is given by P(Z(si) ≤
zi,Z(sj) ≤ zj) = exp{−V(zi, zj)}, where V(zi, zj) = 1

2 ( 1zi +
1
zj )

(
1 +

√
1 − 2 {ρ(h)+1}zizj

(zi+zj)2

)
is the exponent function that quantifies

the spatial dependency, and h is the Euclidean distance between sites si
and sj.

A.2. BayesianModel

We use the hierarchical kernel extreme value process (HKEVP) pro-
posed by Reich and Shaby (2012) as an example to illustrate Bayesian
models. Suppose y(s) ∼GEV(μ(s), σ(s), ξ(s)) andZ(s) ∼GEV(1, 1, 1)
is the associated simplemax-stable process. The spatial processZ(s) can
be constructed as the product of two independent processes, Z(s) =
U(s)θ(s). The nugget,U(s), is spatially independent GEV(1,α,α)with
the parameter α ∈ (0, 1) controlling the relative contribution of the
nugget effect. The residual spatial process θ(s) is defined based on a
linear combination of L kernel basis functions wl(s) ≥ 0 satisfying∑L

l=1 wl(s) = 1. Specifically, θ(s) = {∑L
l=1 Alwl(s)1/α}α whereAi are

the basis function coefficients satisfying Al
iid∼ PS(α), a positive stable

distribution with characteristic exponent α, ensuringmax-stability and
unit Fréchet marginals of Z(s).

The hierarchical model is given by

Y(si)|A1, ...,AL,μ, σ , ξ ,α ∼ GEV{μ∗(si), σ∗(si), ξ∗(si)}
Al

iid∼ PS(α)

where μ∗(s) = μ(s) + σ(s)
ξ(s)

{
θ(s)ξ(s) − 1

}
, σ∗(s) = ασ(s)θ(s)ξ(s),

and ξ∗(s) = αξ(s). MCMC sampling is performed with a Metropolis-
within-Gibbs algorithm, and implementation of this model can be
performed using the ’HKEVP’ package in R.

A.3. Latent VariableModel

We use the latent variable model proposed by Davison et al. (2012) as
an example to illustrate latent variablemodels for theGEVdistribution.
Davison et al. (2012) introduced a simple hierarchical structure, where
the response variables Y(s) are assumed to be independent condition-
ally on latent processes that describe the GEV parameters.

The hierarchical model is given by

Y(s)|μ, σ , ξ iid∼ GEV{μ(s), σ(s), ξ(s)},
μ(s) = βT

μX(s) + εμ(s),

σ(s) = βT
σX(s) + εσ (s),

ξ(s) = ξ0,

where the mean function of μ(s) and σ(s) are linear combinations
of covariates X(s) with coefficients βμ and βσ , respectively. Further,
εμ(s) and εσ (s) are stationary zero-mean Gaussian processes with
correlation function ρεμ(h) = αεμexp(−||h||/λεμ) and ρεσ (h) =
αεσ exp(−||h||/λεσ ), respectively, and unknown sill and range param-
eters αεμ , αεσ , λεμ and λεσ (Sebille, Fougeres, and Mercadier 2016).

Using the same principals we adapt a simple latentGaussian variable
model as an example to illustrate latent variable models for the GPD
distribution. The excesses above a threshold u(s), Y(s) = X(s) −
u(s)|X(s) > u(s), are assumed to be conditionally independent given
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latent processes that describe the GPD parameters. The hierarchical
model is given by

Y(s)|σ̃ , ξ indep∼ GPD{σ̃ (s), ξ(s)},
log{σ̃ (s)} = βT

σ̃
X(s) + εσ̃ (s),

ξ(s) = ξ0,

where the mean function of log{σ̃ (s)} are linear combinations of
covariates X(s) with coefficients β σ̃ and εσ̃ is a spatial Gaussian
process, as for the GEV model.

Appendix B

A Taylor series is an expansion of a function into an infinite series
of a variable or a finite series plus a remainder term. The coefficients
of the expansion of the series involves taking successive derivatives of
the function. The goal of Section 3.2 is to create an approximation of
l{μ(si), σ(si), ξ(si); y(si)} that is quadratic with separable parameters.
Putting a full second-order Taylor approximation with three param-
eters into quadratic form is extremely intricate, so we instead choose
to estimate each parameter sequentially and focus on the likelihood
approximation of each parameter separately. Consider the parameter
μ(s), the second-order Taylor approximation about the current iterate
{zμ(si), zσ(si), zξ(si)} can be defined as:

l{μ(si); y(si)} ≈ l{zμ(si), zσ(si), zξ(si)}

+∂ l{μ(si); y(si)}
∂μ(si)

∣∣∣
μ(si)=zμ(si)

{μ(si) − zμ(si)}

+∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

{μ(si) − zμ(si)}2
2

.

We can ignore terms that are constant given {zμ(si), zσ(si), zξ(si)} as
they are irrelevant in minimization. Expand and simplify the relevant
part of the likelihood:

∂ l{μ(si); y(si)}
∂μ(si)

∣∣∣
μ(si)=zμ(si)

· {μ(si) − zμ(si)}

+∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

· {μ(si) − zμ(si)}2
2

= ∂ l{μ(si); y(si)}
∂μ(si)

∣∣∣
μ(si)=zμ(si)

· μ(si)

−∂ l{μ(si); y(si)}
∂μ(si)

∣∣∣
μ(si)=zμ(si)

· zμ(si)

+∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

· μ(si)2

2

−∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

· μ(si)zμ(si)

+∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

·
z2
μ(si)
2

= ∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

· μ(si)2

2

−
{

∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

· zμ(si)

+∂ l{μ(si); y(si)}
∂μ(si)

∣∣∣
μ(si)=zμ(si)

}
μ(si) + constant.

Now the approximation can be written in quadratic form in terms
of μ(si) by completing the square

= 1
2

[√
∂2l{μ(si); y(si)}

∂μ(si)2
∣∣∣
μ(si)=zμ(si)

×

⎧⎪⎪⎨⎪⎪⎩zμ(si) −
∂ l{μ(si);y(si)}

∂μ(si)

∣∣∣
μ(si)=zμ(si)

∂2l{μ(si);y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

⎫⎪⎪⎬⎪⎪⎭
−
√

∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

· μ(si)
]2

+ constant

Then in the least-square approximation, we can put

y =
√

∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

×

⎧⎪⎪⎨⎪⎪⎩zμ(si) −
∂ l{μ(si);y(si)}

∂μ(si)

∣∣∣
μ(si)=zμ(si)

∂2l{μ(si);y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

⎫⎪⎪⎬⎪⎪⎭ and

x =
√

∂2l{μ(si); y(si)}
∂μ(si)2

∣∣∣
μ(si)=zμ(si)

.

The same applies to σ(si) and ξ(si) of the GEV distribution and σ̃ (si)
and ξ(si) of the GPD distribution.

We can define the likelihood, first, and second derivatives of the
GEV distribution as follows:

l(μ, σ , ξ) = −m log(σ ) −
(
1 + 1

ξ

) m∑
j=1

log
{
1 + ξ

(
yt − μ

σ

)}

−
m∑
t=1

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ

∂ l(μ, σ , ξ)

∂μ
=

(
1 + 1

ξ

) m∑
t=1

{
ξ

σ + ξ(yt − μ)

}

−
m∑
t=1

1
σ

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−1

∂2l(μ, σ , ξ)

∂μ2 =
(
1 + 1

ξ

) m∑
t=1

[
ξ2

{σ + ξ(yt − μ)}2
]

−1 + ξ

σ 2

m∑
t=1

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−2

∂ l(μ, σ , ξ)

∂σ
= −m

σ
+ (1 + ξ)

m∑
t=1

[
yt − μ

σ {σ + ξ(yt − μ)}
]

−
m∑
t=1

yt − μ

σ 2

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−1

∂2l(μ, σ , ξ)

∂σ 2 = m
σ 2 − (1 + ξ)

m∑
t=1

[
yt − μ

σ {σ + ξ(yt − μ)}2
]

− (1 + ξ)

m∑
t=1

[
yt − μ

σ 2{σ + ξ(yt − μ)}2
]

− (1 + ξ)

m∑
t=1

(
yt − μ

σ 2

)2 {
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−2

+ 2
m∑
t=1

yt − μ

σ 3

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−1

,
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∂ l(μ, σ , ξ)

∂ξ
= −

(
1 + 1

ξ

) m∑
t=1

[
yt − μ

{σ + ξ(yt − μ)}
]

+ 1
ξ

m∑
t=1

(
yt − μ

σ

){
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−1

+ 1
ξ2

m∑
t=1

log
{
1 + ξ

(
yt − μ

σ

)}

×
[
1 −

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ

]
,

∂2l(μ, σ , ξ)

∂ξ2
=

m∑
t=1

2(yt − μ)

ξ2{σ + ξ(yt − μ)} +
(
1 + 1

ξ

)

×
m∑
t=1

(yt − μ)2

{σ + ξ(yt − μ)}2

− 2
ξ3

m∑
t=1

log
{
1 + ξ

(
yt − μ

σ

)}

−
m∑
t=1

yt − μ

ξ2{σ + ξ(yt − μ)}
{
1 + ξ

(
yt − μ

σ

)}−1/ξ

+ 2
ξ3

m∑
t=1

log
{
1 + ξ

(
yt − μ

σ

)}{
1 + ξ

(
yt − μ

σ

)}− 1
ξ

− 1
ξ4

m∑
t=1

[
log

{
1 + ξ

(
yt − μ

σ

)}]2

×
{
1 + ξ

(
yt − μ

σ

)}− 1
ξ

+
m∑
t=1

2(yt − μ)

σξ3
log

{
1 + ξ

(
yt − μ

σ

)}

×
{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−1

−
(
1 + 1

ξ

) m∑
t=1

(yt − μ)2

σ 2ξ

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−2

−
m∑
t=1

yt − μ

σξ2

{
1 + ξ

(
yt − μ

σ

)}− 1
ξ
−1

.

We can define the likelihood, first, and second derivatives of the
GPD distribution as follows:

l(σ̃ , ξ) = −k log σ̃ −
(
1 + 1

ξ

) k∑
t=1

log
(
1 + ξ

yt
σ̃

)
,

∂ l(σ̃ , ξ)

∂σ̃
= k

σ̃ ξ
−
(
1 + 1

ξ

) k∑
t=1

1
σ̃ + ξyt

,

∂2l(σ̃ , ξ)

∂σ̃ 2 = − k
σ̃ 2ξ

+
(
1 + 1

ξ

) k∑
t=1

1
(σ̃ + ξyt)2

,

∂ l(σ̃ , ξ)

∂ξ
= − k

ξ2
(1 + log σ̃ ) − k

ξ

+ 1
ξ2

k∑
t=1

log(σ̃ + ξyt) +
(
1 + 1

ξ

)
σ̃

ξ

k∑
t=1

1
σ̃ + ξyt

,

∂2l(σ̃ , ξ)

∂ξ2
= 2k

ξ3
(1.5 + log σ̃ ) + k

ξ2

− 2
ξ3

k∑
t=1

log(σ̃ + ξyt) − σ̃ (ξ + 3)
ξ3

k∑
t=1

1
σ̃ + ξyt

− σ̃

ξ

(
1 + 1

ξ

) k∑
t=1

yt
(σ̃ + ξyt)2

.

Appendix C

Table C1 and C2 show the model generating configurations for the
stationary and nonstationary data, respectively. The max-stable field
is generated using the Schlather model. The GEV parameters and
covariance function in Table C2 are scaled by a factor of 20 to adjust for
the scaled spatial domainD = [0, 1]2, providing equivalent parameters
to those in Table C1.

Appendix D

The following tables provide supplementary information for the simu-
lation studies conducted in Section 4. This includes the average RMSE
for the parameter and return level estimates, as well as the average
computation time for the 200 simulations in each simulation study.

TableC1. Generatingmodel configurationsused to simulate stationarydata for the
model comparisons in Sections 4.2.1 and 4.3.1.

Spatial sample size N ∈ 200 sites sampled uniformly onD = [0, 20]2
Temporal sample size T ∈ (50, 500) for GEV and GPD respectively

Max-stable field settings Covariance =Whittle-Matern
Range = 1
Smoothness = .5
Nugget = 0

Distributions for Covariance function
GEV parameters θ(s) ρ(σ0,λ0,ν0)(s1, s2) = σ0exp{−(||s1 − s2||/λ0)ν0 }

Gaussian processes
μ(s) ∼ GP{26 + [.5 0]T s, ρ(4,20,1)}
log{σ(s)} ∼ GP{log(10) + [0 .05]T s, ρ(.4,5,1)}
ξ(s) ∼ GP{.12, ρ(.0012,10,1)}

Table C2. Generating model configurations used to simulate nonstationary data
for the model comparisons in Sections 4.2.2 and 4.3.2.

Spatial sample size N ∈ 200 sites sampled uniformly onD = [0, 1]2
Temporal sample size T ∈ (50, 500) for GEV and GPD respectively

Max-stable field settings Covariance =Whittle-Matern
Range = 1
Smoothness = .5
Nugget = 0

Distributions for Covariance function
GEV parameters θ(s) ρ(σ0,λ0,ν0)(s1, s2) = σ0exp{−(||s1 − s2||/λ0)ν0 }

Gaussian processes
μ(s) ∼ GP{26 + [10 0]T s, ρ(4,1,1)}
log{σ(s)} ∼ GP{log(10) + [0 1]T s, ρ(.4,.25,1)}
ξ(s) ∼ GP{.12, ρ(.0012,.5,1)}

NOTE: The GEV parameters and covariance function are scaled by a factor of 20
compared to Table C1 to provide equivalent parameters with the scaled spatial
domainD = [0, 1]2.
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Table D1. The average RMSE for GEV parameter and return level estimates in the
stationary simulation study in Section 4.2.1.

Spatial GEV Schlather HKEVP LVM Fused ridge Fused lasso

Location 2.111 2.079 1.364 1.432 2.475 3.606
Scale 14.298 13.474 2.951 3.246 8.903 10.716
Shape 0.1050 0.0955 0.1068 0.0581 0.0693 0.0905
20-year RL 48.146 45.578 19.270 14.926 35.609 42.418
50-year RL 66.874 63.217 34.704 23.156 51.512 60.867
100-year RL 82.787 78.194 51.539 31.102 65.670 77.253
Comp. time 1.79 61.11 15, 693.71 345.15 4.32 1.90

Note: The computation time is displayed in seconds.

Table D2. The average RMSE for GEV parameter and return level estimates in the
nonstationary simulation study in Section 4.2.2.

Spatial GEV Schlather HKEVP LVM Fused ridge Fused lasso

Location 2.669 2.442 1.858 2.126 3.150 3.973
Scale 13.151 13.730 5.471 3.558 8.781 10.203
Shape 0.1136 0.0960 0.1476 0.0845 0.0915 0.1132
20-year RL 45.651 46.469 36.309 17.764 36.779 42.200
50-year RL 64.126 64.520 65.147 28.116 53.887 61.659
100-year RL 80.063 79.844 98.178 38.246 69.370 79.503
Comp. time 1.96 77.87 15, 549.65 346.74 4.77 2.15

Note: The computation time is displayed in seconds.

Table D3. The average RMSE for GPD parameter and return level estimates in the
stationary simulation study in Section 4.3.1.

Spatial GPD LVM Fused ridge Fused lasso

Scale 14.553 5.699 8.394 13.167
Shape 0.1320 0.1660 0.0915 0.1834
20-year RL 14.321 4.517 6.618 9.547
50-year RL 27.795 8.505 14.966 21.841
100-year RL 40.369 13.718 22.184 32.091
Comp. time 1.32 635.36 13.80 0.86

Note: The computation time is displayed in seconds.

Table D4. The average RMSE for GPD parameter and return level estimates in the
nonstationary simulation study in Section 4.3.2.

Spatial GPD LVM Fused ridge Fused lasso

Scale 14.902 6.110 8.835 13.158
Shape 0.1331 0.1649 0.0953 0.1805
20-year RL 14.723 4.721 6.871 9.590
50-year RL 28.941 8.878 15.894 22.243
100-year RL 42.528 14.181 23.897 33.158
Comp. time 2.09 620.83 14.49 1.20

Note: The computation time is displayed in seconds.

Appendix E

We conduct a simulation study comparing independent parameter
estimates and sequential parameter estimates. Figure E1 shows that
for the fused ridge and fused lasso model, the average RMSE is very
similar when parameters are estimated sequentially or independently.
The sequential estimation appears to be best when σ(s) is estimated
before ξ(s). Based on the results, any estimation technique for the fused
ridge model results in an improvement over the Spatial GEV. The fused
lasso model produces very similar results to the Spatial GEV. Since the
parameters we generated for the data is not in the form of clusters, it is
not surprising that the fused ridge performs better than the fused lasso.

Because the accuracy of the Taylor approximation is dependent on
the values chosen to expand about, the closer the value is to the true
value themore accurate the results, it is expected that the average RMSE
for the parameters would increase when estimated independently com-
pared to being estimated sequentially. Following this notion, for the
simulation study in Section 4, we choose to estimate parameters in

the order of σ(s) → ξ(s) → μ(s), because σ(s) shows the greatest
improvement over the Spatial GEV allowing for better initialization
when estimating ξ(s), and so forth. However, the results also show
that for the fused ridge model estimating parameters independently is
still a significant improvement over the spatial GEV model, and only a
relatively small change compared to the sequential estimation making
it a reasonable alternative in applications where sequential estimation
is not practical.

Appendix F

The following figures provide supplementary information to the two
data applications conducted in Section 5. Figure F1 contains the cor-
responding standard errors to the estimated GEV parameters, 20-,
and 100-year return level for the historical simulations in Figure 5
of Section 5.1. The change in estimated parameters and return levels
between the historical simulation and future conditions simulation are
in Figure F2 and the standard errors for those estimates are in Figure F3.
While the standard errors in the 100-year return level may appear
large, our block bootstrap simulation study in Appendix G shows that
the bootstrap procedure actually tends to underestimate the actual
uncertainty if the true coefficient surfaces are nonsmooth and captures
the actual uncertainty if the true coefficient surfaces are smooth.

Finally, Figure F4 provides the nonparametric block bootstrap stan-
dard errors for the temperature estimates in Figure 6 of Section 5.2. The
corresponding parameter estimates with their standard errors and the
changes in parameter estimates with their standard errors are in F5 and
F6.

Appendix G

We use block bootstrap to construct a 95% confidence interval for
the parameters, 20-, 50-, and 100-year return level with our fused
ridge and fused lasso model using both stationary and nonstationary
data and compare the results to the LVM coverage. We also compare
the empirical coverage probability (ECP) of the 95-percent confidence
intervals to its nominal level. If the ECP is close to 95-percent, then the
uncertainty of the estimation is appropriately quantified.

Figure G1 shows the ECP for the GEV parameters and 20-, 50-, and
100-year return levels of 200 simulations with 200 bootstrap samples.
The data is generated using the simulation settings in Appendix C for
stationary and nonstationary GEV data. Figure G1 shows the fused
models have better coverage for the location and shape parameter
while the LVM model has better coverage for the scale parameter. The
LVMmodel for stationary data performs better in terms of return level
coverage compared to the fused models, however the fused models are
closer to the nominal level with nonstationary data.

The fused models have undercoverage for the scale parameter
because the generated true scale parameter surface is not as smooth
as the other two parameters, and the fused penalties impose smooth
estimates. To demonstrate the coverage of the fused models when the
true parameter surfaces are smooth functions of space, we modify
the data generation in Appendix C such that the covariance function
of log{σ(s)} is ρ(.4,15,1) for the stationary data and ρ(.4,.75,1) for the
nonstationary data (compared to ρ(.4,5,1) and ρ(.4,.25,1), respectively).
Figure G2 shows the resulting ECP for the LVM and fused models
under a smoothly generated scale parameter. The resulting scale
parameter coverage is now significantly closer to the nominal level
and the return level coverage is at the nominal level for both stationary
and nonstationary data using our fusedmodels. The LVMmodel shows
undercoverage for both the parameters and return levels with results
very similar to Figure G1.
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Figure E1. Boxplots of logarithmic RMSE for the GEV parameters and return level estimates with stationary spatial extremes and eight models.

Figure F1. Standard error of the GEV parameters, 20-, and 100-year return level for the historical simulation using the fused ridge model. Since the return level is time
varying, the spatially varying return level is shown at time t=1 (year 1969) and the standard error for site 1481, located at the black dot, demonstrates how the return level
varies over time. All units are mm/h.

Figure F2. Estimated change from historical to future conditions simulation for the fused ridge model. All units are mm/h.
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Figure F3. Estimated standard error of the change from historical to future conditions simulation for the fused ridge model. All units are mm/h.

Figure F4. Top: Standard error of the 20- and 100-year return level for the years 1898–1947 using the fused ridge model. Bottom: Standard error of the change in 20- and
100-year return level between the years 1898–1947 and 1948–1997 using the fused ridgemodel. The spatially varying return levels are shown at time t=1 (1898 and 1948)
and the time varying return levels are shown for site 2570, located at the black dot. All units are in degrees Celsius.

Figure F5. Top: Estimated GEV parameters for the years 1898–1947 using the fused ridge model. Bottom: Standard error of the GEV parameter for the years 1898-1947
using the fused ridge model. All units are in degrees Fahrenheit. Return levels were converted to degrees Celsius after estimation.

The simulation study shows that for our fusedmodels this bootstrap
procedure has empirical coverage near the nominal level when the true
parameter surfaces are smooth functions of space, but undercoverage
when the true parameter surfaces are not sufficiently smooth. The
simulation also shows that in both cases the LVM has undercoverage.

Figures G3 and G4 demonstrates the GPD parameters, 20-, 50-, and
100-year return level coverage of 200 simulations with 200 bootstrap
samples for stationary and nonstationary GPD spatial extremes. Fig-
ure G3 uses the data-generation settings from Appendix C while Fig-
ure G4 uses themodified scale parameter.We cannot use the smoothed

threshold for the bootstrap study due to an incompatibility with the
“smoothr” package and our computing cluster, however we hope to
show that the smoothed σ̃ parameter also helps to ease the under-
coverage of CIs with a GPD model. The overcoverage of the fused
ridge in Figure G3 and G4 may be alleviated when the smoothed
threshold is applied. A small simulation with a smoothed threshold
showed that ECP of return levels with fused ridge and fused lasso are
both slightly below the nominal level when the σ̃ parameter is not
sufficiently smooth. The coverage of the shape parameter in the GPD
model seems unsatisfactory compared to that of the return levels. Even
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Figure F6. Top: Estimated change in GEV parameters between the years 1898–1947 and 1948–1997 using the fused ridgemodel. Bottom: Standard error of the change in
GEV parameter estimates between the years 1898–1947 and 1948–1997 using the fused ridge model. All units are in degrees Fahrenheit. Return levels were converted to
degrees Celsius after estimation.

Figure G1. Empirical coverage probability (ECP) of the 95% confidence interval for stationary and nonstationary spatial extremes using three GEVmodels: Latent Variable,
Fused spatial GEV under Ridge and Lasso penalty. The data are generated using the settings in Appendix C. The solid line represents the nominal level of 95%.

Figure G2. ECP of the 95-percent confidence interval for stationary and nonstationary spatial extremes using three GEV models: Latent Variable, Fused spatial GEV under
Ridge and Lasso penalty. The data generation is modified such that the true parameters are smooth functions of space. The solid line represents the nominal level of 95%.
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Figure G3. ECP of the 95-percent confidence interval for stationary and nonstationary spatial extremes using three GPDmodels: Latent Variable, Fused spatial GEV under
Ridge and Lasso penalty. The data are generated using the settings in Appendix C. The solid line represents the nominal level of 95%.

Figure G4. ECP of the 95% confidence interval for stationary and nonstationary spatial extremes using three GPDmodels: Latent Variable, Fused spatial GEV under Ridge
and Lasso penalty. The data generation is modified such that the true parameters are smooth functions of space. The solid line represents the nominal level of 95%.

the LVM shows no advantage over the fused ridgemodels in improving
the coverage of the shape parameter. Further investigation is needed to
determine the reason in order to propose a remedial approach for this
issue.
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