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In the online video game industry, a significant portion of the revenue is generated from microtransactions,
where a small amount of real-world currency is exchanged for virtual items to be used in the game. One
popular way to conduct microtransactions is via a loot box, which is a random allocation of virtual items
whose contents are not revealed until after purchase. In this work, we consider how to optimally price and
design loot boxes from the perspective of a revenue-maximizing video game company, and analyze customer
surplus under such selling strategies. Our paper provides the first formal treatment of loot boxes, with the
aim to provide customers, companies, and regulatory bodies with insights into this popular selling strategy.

We consider two types of loot boxes: a traditional one where customers can receive (unwanted) duplicates,
and a unique one where customers are guaranteed to never receive duplicates. We show that as the number
of virtual items grows large, the unique box strategy is asymptotically optimal among all possible strategies,
while the traditional box strategy only garners 36.7% of the optimal revenue. On the other hand, the unique
box strategy leaves almost zero customer surplus, while the traditional box strategy leaves positive surplus.
Further, when designing traditional and unique loot boxes, we show it is asymptotically optimal to allocate
the items uniformly, even when the item valuation distributions are heterogeneous. We also show that when
the seller purposely misrepresents the allocation probabilities, their revenue may increase significantly and
thus strict regulation is needed. Finally, we show that even if the seller allows customers to salvage unwanted

items, then the customer surplus can only increase by at most 1.4%.
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1. Introduction
With the recent explosion of online and mobile gaming over the last decade (Perez 2018),
the idea of games-as-a-service (GaaS) has been widely accepted as a way to provide video

game content as a continuing revenue stream. Recently, the video game industry standard



2 Chen, Elmachtoub, Hamilton, Lei: Loot Box Pricing and Design

has shifted towards the freemium model, where access to a game is freely given to cus-
tomers, and in-game virtual items can be acquired via microtransactions. In other words,
virtual items that help players in the game are purchased with in-game or real-world
currency. In many of these games, microtransactions are conducted via a randomized mech-
anism known in the video game industry as a loot box. A loot box is a random allocation
of virtual items, the contents of which are revealed after the purchase is complete. While
the concept of a loot box is not new — for instance, a pack of baseball cards is a form of
loot box — modern versions of loot boxes like in Fig. 1 have proliferated in online video
games on mobile, console, and PC platforms over the last decade. In online games such
as Dota 2, FIFA 20, PlayerUnknown’s Battlegrounds, and many others, loot box sales are
a core source of revenue. In these games, customers purchase loot boxes which contain a
random subset of virtual items such as character costumes, cosmetic upgrades, players,
virtual cards, etc. In 2018 alone, more than $30 billion dollars in sales were conducted via

loot boxes (Wright 2018).

Figure 1 Loot Box Example.

TREASURE OF THE
GRIMSNEER'S STASH

PURCHASE TREASURE $2.49

1! EACH TREASURE CONTAINS 1 OF THESE ITEMS

Note. Depicted is a loot box in the popular video game Dota 2, where it is also referred to as a “treasure”. The

customer may purchase the loot box for $2.49, after which they receive one of the five items depicted on the screen.

Despite its popularity in the gaming industry, the use of loot boxes has invited con-
troversy and criticism recently (Tassi 2018), with several development platforms enacting
specific regulations in response (Apple 2018, Google 2019). For instance, there have been
issues regarding the transparency of the contents and probability of outcomes from loot

boxes (Fingas 2018) which have led to regulatory investigations (Tassi 2017). Another issue
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is that loot boxes have been associated with gambling, both by the media (Webb 2017)
and academia (Drummond and Sauer 2018, Zendle and Cairns 2018). This led the United
States Congress to introduce a bill outlining new loot box regulations (Romm and Timberg
2019) and in August 2019 the Federal Trade Commission held a workshop on the matter
(Holt 2019), which included the presentation of an early version of this paper (Sinclair
2019).

In spite of this negative publicity, loot box selling remains as popular as ever (Batchelor
2017). In order to properly address the issues of transparency and gambling via regulation,
we believe that it is fundamental to understand the economic motivation behind loot box
selling. Why do video game companies prefer such a business strategy? How does it compare
to traditional strategies such as bundling or separate selling? What are the behavioral
considerations motivating customers to keep purchasing loot boxes? A rigorous framework
for the operations of loot boxes would provide valuable insights for customers, companies,
and regulators, which is precisely the focus of the work.

There are several salient features that distinguish the loot box mechanism and virtual
items from other traditional industries. First, the virtual items have zero marginal cost, can
be copied infinitely by the seller, and have no value outside the game. Second, customers
engage in repeated interactions with the seller, and may potentially buy a large number of
items sequentially. Third, the seller is fully aware of a customer’s current collection, and
has control over the loot box allocation rules. These unique features render the models
designed for other types of products inadequate and call for a new revenue management
framework to specifically analyze loot box strategies.

In this work, we provide a model to analyze the optimal pricing and design of loot boxes
for revenue-maximizing sellers. The model incorporates two types of commonly used loot
box strategies. A unique loot box allocates items to customers that they do not currently
own. A traditional loot box allocates items randomly to customers regardless of whether
they already own a copy, which may result in obtaining unwanted duplicates. In both
strategies, the seller may control the price, number of items allocated, allocation probabil-
ities, and salvage value of the loot boxes. To understand the advantages and disadvantages
of loot box strategies, we compare them to two traditional selling mechanisms: separate
selling, where every virtual item is sold separately for a known price, and grand bundle
selling, where customers pay a one-time fixed amount for access to all virtual items.

Next we provide a summary of our contributions and findings.
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. We propose the first mathematical modeling framework for selling loot boxes. Cus-
tomers are endowed with i.i.d. private valuations for all items, and sequentially pur-
chase loot boxes until their expected utility becomes negative. We show that almost
no dominance relations hold between any of the four selling strategies we consider.

. Motivated by the fact that the number of virtual items in a video game is often in
the hundreds or thousands, we turn our attention to the setting where the number of
items offered tends to infinity. In this asymptotic regime, both the grand bundle and
unique box strategies are optimal, while the traditional box strategy only generates
36.7% as much revenue. Surprisingly, we show that the expected number of purchases
from the traditional box strategy is roughly the same as the unique box strategy,
although the optimal price of the traditional box is lower. However, the unique box
strategy provides no customer surplus in this regime, in contrast to the traditional box
strategy which leaves a positive customer surplus. We then connect our asymptotic
results back to practice by conducting a numerical study to show that our findings
still hold when the catalog size is finite and moderately sized.

. Next, to accommodate the scenario that items may belong to classes with different
rarities and values in the game, we consider the case where the valuation distributions
are heterogeneous across items. When the number of items is large, we show that the
optimal allocation probabilities of a loot box is a random draw among all available
items, independent of how customers value items in any class. Thus under an optimal
price and allocation rule, a rare class is less likely to be drawn because there are less
items in the class, not because customers value it highly. We also show that the seller
may gain significant revenue if they can successfully deceive consumers into believing
a false set of allocation probabilities, even if such allocation probabilities are accurate
in expectation. We conclude that regulation is needed to protect consumers from such
a practice.

. Finally, we consider an additional design aspect where customers are allowed to sal-
vage, or return, unwanted items. We show that traditional box strategies may earn
more revenue with salvage systems and are guaranteed to dominate separate selling.
Surprisingly however, we show that introducing a salvage system in a traditional box

strategy can only increase customer surplus by at most 1.4%. On the other hand, as
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unique box strategies are already optimal, salvage systems cannot increase their rev-
enue. However such systems do allow sellers to trade-off between revenue and customer

surplus in a smooth fashion.

1.1. Literature Review

While loot box selling has not been previously studied in the revenue management literature
to the best of our knowledge, our work draws inspiration from and is related to several
areas across operations management, computer science, and economics.

In the operations management literature our work connects with the dual streams of
papers on opaque selling and bundle selling. Loot boxes are an example of opaque selling,
which is the practice of selling items where some features of the item are hidden from the
customer until after purchase. Recent works (Jiang 2007, Fay and Xie 2008, Elmachtoub
and Wei 2015, Elmachtoub and Hamilton 2017) have focused on opaque selling as a tool
to manage imbalanced customer demand or induce opportunities for price discrimination.
Our loot box framework diverges from the standard opaque selling models in a number of
key ways. First, we consider the performance of loot boxes in isolation, as opposed to many
models in which the opaque option is sold in conjunction/in competition with traditional
sales channels (Shapiro and Shi (2008), Jerath et al. (2010), Chen et al. (2014), Huang
et al. (2017))). Second, we model complex, repeated interactions between the loot box seller
and a customer interested in obtaining a catalog of items as opposed to prior work which
has focused on customers who want at most one item. Third, in our loot box model we do
not have finite inventories, which diverges from the literature on using opaque products
to balance inventory (Gallego and Phillips (2004), Gallego et al. (2004), Xiao and Chen
(2014), Elmachtoub et al. (2019)).

Our work also resembles and references the work on bundling. As in the bundling lit-
erature, the loot box is a way to sell products to markets of customers with demand for
many items. In particular, we compare our loot box selling mechanisms explicitly with the
grand bundle mechanisms studied in the seminal work of Bakos and Brynjolfsson (1999),
who show that pure bundling extracts almost all of the consumer surplus asymptotically.
By leveraging results from the theory of random walks, we show that the unique box strat-
egy (allocating one item at a time without replacement) can achieve a similar revenue to
grand bundle selling without forcing the customer to choose between purchasing the whole

catalog or nothing. This property allows loot boxes to circumvent many of the issues that
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plague bundle selling in practice (c.f. Section 5.2 for a detailed discussion). From a tech-
nical stand point, this is a stark divergence from the typical techniques in the bundling
literature which rely on concentration results to induce a single purchase of the entire
catalog of items.

Mixed bundle strategies, strategies that allow customers to purchase the items from a
menu offering both the grand bundle and the items individually, and randomized strate-
gies, strategies that offer lotteries over possible allocations of items, have been considered
recently in a stream of work on optimal mechanisms for selling items to additive buyers
(Babaioff et al. (2014), Hart and Nisan (2014), Hart and Reny (2015), Briest et al. (2015),
Abdallah et al. (2017), Abdallah (2018)). A loot box can be thought of as a particularly
simple type of randomized bundle strategy where only a single lottery over all the items is
offered, and from which a single item is allocated. A similar type of mechanism is consid-
ered in Briest and Roglin (2010). They study the optimal pricing of menus of unit-demand
bundles under stylized valuation assumptions, while we study repeated interactions with a
customer which is the main driver of loot box revenues. Moreover, the focus of their work
is on the computational hardness of computing the prices for menus of such bundles. In
contrast, our loot box mechanism is dynamic and computationally simple. Ma and Simchi-
Levi (2015) considers bundle selling with return options in the presence of production
costs, while our paper considers loot boxes with return options and no production costs.

Closest to our paper, in the sense that an individual customer dynamically purchases
multiple items from the seller, is the work of Ferreira and Goh (2018). There the authors
consider whether or not to offer the products in sequence or all at once, but do not consider
any form of randomized selling strategies such as a loot box. The focus of their paper
is on understanding the value of concealment in the context of fast fashion, whereas our
loot box model does not conceal any part of the catalog, and the focus is on the choice of
randomized strategy. There has also been a line of work where a customer makes decisions
in multiple stages when faced with an assortment from the seller, although only at most
one unit is purchased (Wang and Sahin 2017, Gallego et al. 2019, Golrezaei et al. 2018).

Finally, our work contributes to the emerging literature on operations management in
video games. Chen et al. (2017) and Huang et al. (2018) investigate the problem of max-
imizing a player’s engagement in video games. Ryan et al. (2016) considers the problem

of incentivizing actions in freemium games. Jiao et al. (2020) considers whether the seller
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should disclose an opponent’s skill level when selling in-game items that can increase the
win rate. Our work is the first to investigate the popular practice of loot box selling via

mathematical modeling.

2. Model and Preliminaries

We consider a revenue-maximizing monopolist selling a catalog of N distinct, non-
perishable, virtual items. A random customer’s valuation for the items are described by
non-negative i.i.d. random variables {V;}¥ |, where each V; is drawn from a distribution F.
The mean and variance of V; are denoted by p and o2, respectively, and are assumed to be
finite. The assumption of i.i.d. valuations is reasonable when the items are cosmetic (such
as character skins and customizations) or when items are of similar importance, both of
which are common in many games that deploy loot boxes. In Section 4.2, we extend our
model to address the case where items are vertically differentiated and can naturally be
categorized into multiple classes based on their values or rarities.

We suppose that each customer is aware of all available items in the seller’s catalog
as well as their own realized valuations for the items v; for i € [N], where [N] is used
to represent the index set {1,...,N}. Each newly obtained item i gives the customer a
one-time utility of v;, which can be thought of as the lifetime value of the item in the
game, and is assumed to be independent of the period in which it is received. Further,
no customer values having duplicates of an item, meaning a customer’s valuation for a
second unit of each item ¢ is 0. For example, a character skin or cosmetic upgrade for the
players avatar, once obtained, can be enjoyed for as long as the player engages with the
game, and a second copy offers no additional value to the player. In some games, the seller
provides a salvage mechanism through which the customer can obtain value from duplicate
items by trading them in for (in-game or real-world) currency. We discuss this extension
in Section 4.4.

A loot box can be formally defined as a random allocation of a single item to the
customer, chosen according to a probability distribution over all N items. We note that
the probability distribution is decided by the seller, and may or may not depend on the
customer’s current inventory. There are also cases where multiple items are allocated in
one loot box, which is an extension we consider in Section 4.1. Moreover, we assume that

the customer always knows the actual allocation probabilities (that is, the probabilities of
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receiving each item). This is consistent with industry practice, as sellers are often forced
to announce the allocation probabilities, either by government issued customer protection
regulations (Tassi 2017) or by edict of the games distributor (Apple 2018, Google 2019).
In Section 4.3, we consider extensions where the seller may misrepresent the allocation
probabilities.

We now describe the sequence of events in our loot box model, which capture a single
customer repeatedly interacting with the seller. Before the arrival of the customer, the
seller announces the price and allocation probabilities of the loot box. We consider each
purchasing event to be a discrete period and emphasize that periods do not necessarily
correspond to any particular unit of time, i.e. periods can be thought of as occurring in
rapid succession (for a player eager to complete their collection) or occurring with long
gaps between purchases (for a more judicious player). In each period ¢, we let S; C [N]
denote the index set of distinct items that the customer owns before opening the loot box
in period ¢. Thus, S; = (). Based on the price, allocation probabilities, and the customer’s
private valuations for items in [N]\S;, the customer decides whether or not to purchase the
loot box. We assume customers are utility-maximizing and will purchase if their expected
utility from purchasing is non-negative, otherwise the customer will not purchase further
loot boxes (they may however continue to play the game). We discuss the customer
behavior in greater detail in Section 2.1.

We now formally describe the two forms of loot box selling that we focus on as well as

two benchmark strategies known as grand bundle selling and separate selling.

1) Unique Box (UB): In the unique box strategy, the seller offers a loot box for a fixed
price p in each period, with the guarantee that each purchase yields a new item that the

customer does not yet own. Formally, the probability of receiving an item is 0 if ¢ € .S;, and

WI\SA for i € [N]\S;, i.e., uniform over all the items not currently owned by the customer.

Fig. 2a shows an example of a unique box in practice. We let Ry (p) be the normalized

revenue of a unique box strategy that uses price p, i.e.,

_ p x E[# of Unique Box Purchases|

Rus(p): N

and let Ryp :=max, Rygs(p).
2) Traditional Box (TB): In the traditional box strategy, the seller offers a loot box for a

fixed price p in each period, with the guarantee that each purchase yields an item selected
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uniformly at random from [N], regardless of what the customer owns in S;. Traditional
boxes lead to the possibility of duplicate items during a customer’s purchasing process.
Fig. 2b shows an example of a traditional box in practice. We let Rrp(p) be the normalized

revenue of a traditional box strategy that uses a fixed price p, i.e.,

_ px E[# of Traditional Box Purchases]
N N

Rrs (p) :
and let Rpp :=max, Rrz(p).

Figure 2 Loot Boxes in Online G
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(a) Unique Box (b) Traditional Box

Note. The left panel shows a unique loot box in the popular online game Dota 2. The red square highlights that
it is a unique box as the loot box always allocates a unique item. The right panel shows an implementation of a

traditional loot box in the online game PlayerUnknown’s Battlegrounds.

We emphasize that, at first glance, it is not clear which loot box strategy generates
more revenue. Intuitively, customers have higher valuations for unique boxes since they
are guaranteed not to receive duplicates (recall we assume the utility derived from the
second copy of any item is 0), which allows sellers to charge higher prices. On the other
hand, although the seller may have to charge lower prices for traditional boxes, the selling
volume may end up being higher because customers need to make more purchases in order
to obtain new items. Indeed, for finite /N, we provide instances where either strategy may
dominate the other in Table 1.

Further, in both loot box strategies we assume the allocation probabilities are uniform
over the remaining items/all items. We note that such allocation rules may not be optimal
even though valuations for items are i.i.d. (see Example EC.1). In Section 4.2, we provide

results on the asymptotic optimality of uniform allocation rules.
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We shall compare and contrast these loot box models against two classic selling models:
grand bundle selling and separate selling.
3) Grand Bundle (GB): In the grand bundle strategy, the seller offers a single bundle
containing all N items for price Np. Customers no longer make dynamic decisions when
a grand bundle is offered, but rather just make a single decision to purchase or not. The

normalized revenue of a grand bundle strategy with price Np is

NpP (Zf\il V> Np)

Reap(p) == 7 :

and the optimal normalized revenue is denoted by R¢p := max, Rap(p). Fig. 3a shows an
example of a grand bundle in practice.

4) Separate Selling (SS): In the separate selling strategy, the seller offers all items
individually at the same price p. Since we assume the valuations V; are i.i.d, the normalized

revenue of a separate selling strategy with price p is

NpP (V, >
Rs(p) ;:¥7

and the optimal normalized revenue is denoted by Rgs := max, Rgs(p). Fig. 3b shows an

example of separate selling with uniform prices in practice.

Figure 3 Traditional Selling Strategies in Online Games.

IASE MAMMOTH COINS

Mammoth Coins are used to purchase special items such as character skins and taunts from the Mallhalla store.

(a) Grand Bundle (b) Separate Selling

Note. The left panel shows an implementation of grand bundle selling in the online game Brawlhalla. All items can
be unlocked for a one-time payment of $19.99 via the All Legends Pack. The right panel shows an implementation of
separate selling in the online game Arena of Valor. In this game each item (character) can be individually unlocked

with uniform prices.

While there are many ways to sell virtual items, we restrict our attention to these

four as we believe they capture the spirit of almost all strategies observed in practice.
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Among them, the grand bundle and separate selling strategies provide two important
benchmarks. Separate selling is the most common selling strategy in e-commerce. Grand
bundle selling is also common for digital goods such as music and television, and has been
shown to be able to fully extract the maximum possible revenue when N tends to infinity
(Bakos and Brynjolfsson 1999). However, unlike the other three strategies, under the grand
bundle strategy a customer must commit to purchasing all of the items or none of the
items. In practice, this large upfront financial commitment may impair the grand bundle’s
performance. In contrast, separate selling and loot box strategies are more friendly to
customers that prefer smaller purchases or have a smaller budget. Although the grand
bundle selling may be prohibitive in practice, it serves as a useful theoretical benchmark

since it is asymptotically revenue-optimal (see Section 5.2 for a detailed discussion).

2.1. Customer Behavior

We next describe how customers value loot boxes and make purchase decisions. We assume
that customers are risk-neutral, and their valuation of a loot box is simply the expectation,
over the allocation probabilities, of the valuation of the random item they will receive.
Let U, be the expected utility of opening a loot box in period t for a price p. Since the
allocation probabilities are uniform, U, has the following form:

(Unique Box) U, = %ﬁ% —p,  (Traditional Box) U, =
- t

Naturally, to maximize the expected utility, customers would purchase the t* loot box

Zie[N]\St Vi
N

if U; > 0. However, it is sometimes rational for a customer to purchase even if U, <0
for the prospect of higher utilities in future periods. The following example demonstrates
that myopic behavior (purchasing if and only if U; > 0) is not necessarily optimal for the
customer.

ExXAMPLE 1. Let N =2 and consider the unique box strategy. Let the price of each loot
box be p=1.6. Consider a customer whose valuations of the two products are (vy,vy) =

(1,2). If the customer is myopic, then they will not buy a single unique box since the

expected utility from the first loot box purchase is % — 1.6 < 0. However, it can be shown
by enumeration that the following purchasing strategy is optimal: buy a loot box in the
first period. If the obtained item is product 2 where v, = 2, then stop purchasing. Otherwise
purchase a second loot box, which is guaranteed to contain product 2. The expected net
utility of this strategy is %(2 —-1.6)+ %(1 +2—-1.6x2)=0.1> 0. Thus, behaving myopically

is strictly worse than the optimal strategy. [
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In Example EC.2 we generalize Example 1 and show that not only is the myopic strategy
sub-optimal, but so is any policy that considers only a finite number of future states.
Thus, in each period t, a perfectly rational customer needs to solve a high-dimensional
and complex optimal stopping problem to decide whether or not to purchase. However,
we believe it is both impractical and unrealistic for customers to find the the optimal
purchasing strategy, as the state space of the corresponding optimal stopping problem
increases exponentially in the number of items. Instead, we make the natural modeling
assumption that customers are indeed myopic, i.e., they purchase if and only if their
expected net utility for the next loot box Uy is non-negative. Theorem 1 shows that myopic
behavior is asymptotically optimal for a customer facing unique box selling as the catalog
of items grows large. Moreover, we show in Theorem 1 that myopic behavior is always
optimal for a customer facing traditional boxes, lending additional support to our myopic

assumption for customers facing loot boxes.

THEOREM 1 (Myopic Purchasing Behavior is Asymptotically Optimal).
a) For unique box selling, the average net utility under the myopic strategy converges to

the average net utility of the optimal strateqy as N — oo.

b) For traditional box selling, the myopic purchasing strategy is optimal for all customers.

Due to the apparent complexity and impracticality of computing the customer’s optimal
purchasing policy and the fact that a myopic purchasing rule is near-optimal, we believe
restricting to myopic purchasing behavior does not degrade the power of our models.
Further, we note that in cases where the optimal purchasing strategy differs from the
myopic strategy (i.e. unique boxes), the customer purchases strictly more loot boxes under
the optimal behavior. To see this, note that a myopic customer will stop purchasing as
soon a loot box gives negative utility, while an optimal customer may continue purchasing
due to a positive expected future reward. Thus the revenue of a loot box strategy under the
assumption of myopic behavior is a lower bound on the revenue when customers purchase
optimally.

For the remainder of this paper, we shall assume customer behavior is myopic.

2.2. Comparing the Strategies for Finite N

In this section, we aim to understand the relations between the four strategies when N

is finite. Specifically, we would like to establish dominance relations between the optimal
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revenues of (UB), (TB), (SS), and (GB). In Proposition 1, we show that the normalized
revenue of any of the strategies is always at most u, and that the unique box strategy can

never exceed the revenue of a grand bundle strategy.

ProroSITION 1. For any N and valuation distribution F', the following statements hold:
(a) p > max{Rgp,Rss,Rup,Rre}, i-e., u is a global upper bound on the normalized
revenue.

(b) Ras > Rus, i.e., grand bundle selling weakly dominates unique box selling.

Proof. (a) For any strategy, the customer only makes a purchase when their expected
utility is non-negative. Thus, the expected customer surplus is always non-negative. On the
other hand, the total normalized expected welfare is always at most E[>_,c v Vi]/N = p.
Together, these facts imply that the normalized revenue for any strategy is at most pu.

(b) Let p* be the optimal price of the unique box strategy. An upper bound on Ryp
is then Np*. For a customer to purchase the very first unique box, we must have that
ZT” > p*. Under the same condition, the customer would buy the grand bundle at price
Np* since ), v; > Np*. Similarly, if > .v; < Np*, the customer would not buy the first
unique box nor the grand bundle at price Np*. Therefore, the revenue from an optimal
grand bundle strategy is at least as much as the optimal unique box strategy. [

Unfortunately, outside of Proposition 1, there does not exist any other dominance rela-
tionships among the four selling strategies. In particular, the same argument in Proposi-
tion 1(b) does not extend to the comparison of grand bundle selling and traditional box
selling. Although the condition for purchasing the first traditional box remains the same,
a customer may end up buying strictly more than N boxes overall due to the possibility of
duplicates. In Table 1 we give simple examples for which all of the 11 remaining possible
relationships between the four selling strategies occur.

From Table 1, we can see that it is impossible to theoretically compare the selling
strategies when N is small without imposing significant additional assumptions. Therefore,
in the rest of the paper we focus on an asymptotic analysis where the number of items
N tends to infinity. Fortunately, this is also well-motivated in the gaming industry where
N, the number of items sold in a video game, is often in the hundreds or thousands. For
example, in the popular online games Dota 2 and Overwatch, the number of cosmetic items
sold through loot boxes exceeds 3500. As we shall see, dominance relations among the four

strategies naturally emerge in the asymptotic regime.
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Table 1  Possible Relations Between (UB), (I'B), (GB) and (SS).

Relations N Valuation Distribution

GB>UB,GB>TB,GB>SS| 3 |P(V;=0.98) =1/2,P(V; =2.02) = 1/6,P(V; =3.01) = 1/3

UB>SS,UB>TB,S5>TB |10 P(V;=1)=0.8,P(V;=5)=0.2
TB>UB,TB> SS 3 |P(V;=1.01)=1/2,P(V; =1.98) =1/6,P(V; =3.03) = 1/3
$S>GB,TB>GB 2 P(V; =1) =P(V; = 100) = 1/2

SS>UB 4 P(V; =1) =3/10, P(V; = 10) = 7/10

3. Asymptotic Analysis of Loot Box Strategies

In this section, we study the revenue of optimally priced loot box strategies as the number
of items N in the catalog tends to infinity. Given the incomparablility of the various selling
strategies shown in Section 2.2 and the fact that N is often quite large in practice, this
asymptotic analysis is quite natural. In this asymptotic regime, we shall show that an
optimal unique box strategy earns a normalized revenue of u per item (c.f. Theorem 2),
whereas the optimal traditional box strategy earns a normalized revenue of only £ ~
0.367p (c.f. Theorem 3). Since the expected normalized revenue of any selling strategy
cannot exceed the mean valuation p by Proposition 1, this result proves that unique box
and traditional box strategies are asymptotically optimal and sub-optimal, respectively.
Additionally, we can directly compare the performance of these two loot box strategies
with grand bundle selling and separate selling in this regime. Using the strong law of large
numbers, it is well known that the grand bundle also obtains a normalized revenue of p (see
Bakos and Brynjolfsson (1999) for a detailed discussion). On the other hand, the revenue
of separate selling strategies depends explicitly on the distribution of customer valuations,

and can earn anywhere between 0% and 100% of the normalized revenue.

THEOREM 2 (Asymptotic Revenue and Convergence Rate of UB). The unique

box strateqy is gquaranteed to earn

2 2 2 4 2 4

Moreover,

i, R =
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The proof of Theorem 2 follows by modeling the customer behavior dynamically as a
random walk and explicitly constructing a sequence of prices that lead to the lower bound
on the revenue. Specifically, we consider a random walk that captures the total utility a
customer collects in each period and bound the number of purchases made. Unfortunately,
the time a customer stops purchasing is not a stopping time since it depends on all of
the customer’s valuations, which are not known to the seller. Thankfully we are able to
approximate the time that the customer stops purchasing by a true stopping time, and
then leverage standard machinery to bound the total number of purchases. Finally, we

show that setting a price of p= (1 — 7 ) leads to the desired result.

THEOREM 3 (Asymptotic Revenue and Convergence Rate of TB). The tradi-

tional box strateqy is guaranteed to earn

1 1—N-35)o2log N
- 2 SRTBS K 1 +( )1 g
1, % el=v(1—-N73) N3
E+ N

K log
e

Y

where (n = sz\il % —log (N) —~, and ~ is the Euler-Mascheroni constant. Moreover,
lim RTB = H
N—oo e

To prove Theorem 3, we construct a ‘backwards’ random walk that captures the total
valuation collected by a customer, starting from the very last item they would purchase.
We show that in our constructed random walk, the number of unique items collected corre-
sponds to a stopping time, and again leverage standard machinery to bound the stopping
time. Since duplicates are allowed, we must also account for the number of purchases
required to a collect a unique item, which depends on the number of items collected so far.

Theorems 2 and 3 highlight an important design aspect of loot boxes: the ability to
monitor a customer’s current inventory and appropriately control the allocations. With
full information of a customer’s inventory, a seller can implement unique boxes which
are asymptotically revenue-optimal. Without this information, the seller is restricted to
traditional loot boxes which garner only % fraction of the optimal revenue. Note that this
is not a lower bound, but rather an exact asymptotic limit of traditional loot box selling
revenue. Moreover, both of these results hold for any underlying valuation distribution

(with bounded first and second moments).
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Next, we investigate the properties of optimal unique and traditional box strategies and
study the limiting optimal price, sales volume, and customer surplus. We present these
results in Theorem 4 and note that it provides several seemingly counter-intuitive insights
into the differences between unique and traditional box strategies. For instance, one would
expect that since unique boxes never leave customers empty-handed, they are preferred by
customers. In addition, one may also expect that since traditional boxes yield duplicates,
customers may tend to buy strictly more of them than unique boxes. Surprisingly, when

optimally priced both of these intuitions are false.

THEOREM 4 (Insights into Loot Box Strategies).

(a) For the unique box strategy, as N — 0o, the optimal price converges to p. Further, the
expected fraction of unique items collected by the customer converges to 1, the expected
normalized number of loot boxes purchased converges to 1, and the expected normalized
customer surplus converges to 0.

(b) For the traditional box strategy, as N — oo, the optimal price converges to &. Fur-
ther, the expected fraction of unique items collected converges to 1 — é, the expected
normalized number loot boxes purchased converges to 1, and the expected normalized

customer surplus converges to (1 — %) .

Theorem 4(a) states that the optimal price for unique boxes as N tends to infinity is
approximately p, and that customers purchase approximately the entire catalog. Since
their average valuation is u, this leaves them with no consumer surplus. On the other hand,
Theorem 4(b) states that the optimal price for traditional boxes as N tends to infinity
is approximately £, and that customers purchase approximately N boxes obtaining 1 — %
fraction of the catalog of items. Although the consumers do not acquire the entire catalog,
they are left with a positive normalized consumer surplus of approximately (1 — %)u To
summarize, under both strategies the customer purchases approximately N loot boxes.
However, the price is lower for traditional boxes, resulting in less revenue for the seller
and more surplus for the consumer. Surprisingly, consumers are therefore better off with
traditional boxes when duplicate allocations are allowed, since unique boxes lead to higher
prices and vanishing customer surplus.

In light of Theorem 3, it is worthwhile to discuss why traditional boxes are popular

among sellers in practice, given their substantially lower expected revenue in our model.
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We posit three possible explanations. First, traditional boxes have existed well before the
digital age in the form of Gachapon or as packs of Pokemon cards, and the practice may
continue as a hold over from those times. Second, there is long-term value in making sure
consumers are left with positive surplus (c.f. Theorem 4), which is not explicitly included
as an objective of the seller in our model. Third, the presence of a salvage system (resale
market) may increase the revenue of a traditional box strategy since loot boxes can be sold

at a higher price. We study this idea in detail in Section 4.4.

4. Loot Box Design

In this section, we extend the results of the previous section to handle various practical
considerations and design aspects beyond the choice of unique versus traditional boxes.
Recall that our basic model assumes that each loot box allocates one random item, that
the valuations for all items are i.i.d., that the allocation distribution is uniformly random,
and that customers obtain no value from duplicate items. In practice, these assumptions
may sometimes be violated and thus we address them here. In Section 4.1, we discuss
an extension where each loot box allocates multiple items. In Section 4.2, we discuss the
case where there are multiple classes of items, and characterize the optimal allocation
probabilities for potentially vertically differentiated items. In Section 4.3, we explore the
regulatory concern when the seller deviates from the announced allocation probabilities.
Finally, in Section 4.4, we consider the situation where the seller offers a salvage system
(resale market), in which unwanted items can be salvaged by the customer for some return

value.

4.1. Multi-item Loot Boxes
Although many games allocate one item at a time from their loot boxes, it is also a common
practice to allocate multiple items at once (see Fig. EC.1 for an example). A classic example
of loot boxes containing multiple items are Pokemon or Baseball cards, which are sold
in packs of ten or twelve. In practice, sellers may use a size-j loot box when the mean
valuation of a single item p is very low (e.g., less than $0.10). In this case, selling multiple
items in one box allows the seller to set a higher price, which helps reduce the number
of transactions for the customer and allows prices to conform to market norms (e.g., the
phenomenon of pricing at $0.99).

In this section, we show that Theorems 2 and 3 can be extended to the case where loot

boxes are of fixed size j > 1. We use R}, and R}, to denote the optimal revenue of the
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size-j unique box and traditional box strategies, respectively. Proposition 2 shows that
when j is fixed and N tends to infinity , the unique box strategy is still optimal and the

traditional box strategy still only earns 36.7% as much.
PROPOSITION 2 (Multi-Item Loot Boxes). For size-j loot boxes,

lim RY, . = d lim RL. ="
am Ryp=p and  Im R, ="

The proof uses a coupling argument. Specifically, we show that in the last period that a
customer is willing to purchase a size-j box, they would have purchased a size-1 box as
well. This reduces the total number of items purchased to the case studied in the previous
section. In the case of the traditional box strategy, the seller needs to slightly decrease the
price of the traditional size-j box as its value is now lower on average than a size-1 box,

due to the possibility of more duplicates in a single box.

4.2. Optimizing Allocation Probabilities for Multiple Classes of Items

In previous sections, we assumed that valuations for all items are i.i.d., and that each item
(unowned item in the case of unique boxes) was equally likely to be allocated by the loot
box. In practice, these assumptions may not always hold. Often in online games, the items
are explicitly grouped based on rarity or effectiveness. For instance, in the popular online
game PlayerUnknown’s Battlegrounds, customers may receive Mythic, Legendary, Epic, or
Rare items from a loot box (see Fig. EC.2 for an example).

To model this phenomenon, suppose there are M different classes of items, and that
each item i € [N] belongs to a specific class m € [M]. Denote G,, C [N] as the index set of
items in class m and denote (3,, as the proportion of the items belonging to class m, i.e.,
Bm = |Gm|/N and Zme[M] B = 1. For each class of items m, the valuations for the items
in that class are sampled i.i.d. from distribution F,,. We denote the mean and standard
deviation of the valuations for items in class m by u,, and ,,. Let 11 := 2%21 Bmim be the
expected valuation of a random item. For different classes, the distribution F, may vary
arbitrarily.

For asymptotic results, we shall suppose the number of items in each class grows pro-
portionally with N, i.e., there are (,,N items belonging to class m as N increases. The
introduction of multiple item classes allows for some items to be significantly more valu-

able than others, and thus it is reasonable to consider non-uniform allocation probabilities
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of the items. A loot box strategy is now characterized by a price p and the allocation
probabilities of each item, which may depend on its class. Our goal is to characterize
the revenue-optimal combination of price and allocation probabilities for loot boxes over
multiple classes of items.

For unique box strategies, the optimal allocation probabilities may be non-uniform,
dynamic, and depend on the current set of items owned by the customer. It is difficult to
explain such policies to customers, let alone characterize the optimal allocation probabili-
ties. Thankfully, for unique boxes there is a simple allocation and pricing strategy that is
asymptotically optimal for the seller. Proposition 3 shows that a unique box strategy that
simply allocates all unowned items uniformly at random, completely ignoring the class, is

tth

asymptotically optimal. Thus, for the t"* unique box, each unowned item is allocated with

probability m

ProrosiTION 3 ((UB) with Uniform Allocation is Asymptotically Optimal).

Suppose unique boxes allocate items uniformly at random, independent of class. Then we
have that

Nll_fgo Rup =
Surprisingly, the proof of Proposition 3 is almost identical to that of Theorem 2. Although
the distribution of the unowned items is no longer i.i.d., Wald’s identity and Chebshev’s
inequality continue to hold where appropriate.

Next, we shift focus to the allocation problem for the traditional box strategy. Once
again, we shall show that a simple allocation policy is asymptotically optimal. Specifically,
we show that it is optimal to allocate each item uniformly at random (w.p. %), independent
of the class. To simplify the problem, we restrict our attention to class level allocation
probabilities, i.e., allocation rules where all items in the same class have the same allocation
probabilities but may differ between classes. We emphasize that class level allocation rules
are common in practice (see Fig. EC.2 for examples). For a class level allocation rule, we let

d,, be the probability of drawing an item in class m, and d = (dy,...,dy) be a probability

dm

L A uniform allocation

vector. Thus, the probability of getting an item in class m is
rule corresponds to the case where d=0.

Let QY (p,d) denote the normalized number of loot boxes purchased by a customer (i.e.

E[# Purchases]

. ) and let Rrp(p,d) be the normalized expected revenue, both of which are a
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function of the price p and class allocation probabilities d. In Proposition 4 we show that for
a carefully constructed price as a function of d, the limit of Q" (p,d) can be characterized

simply.
PROPOSITION 4. Suppose a traditional box strategy follows a multi-class allocation rule
di
d and price p= Z%Zl dmume_ka for some 0 <k <1. Then

lim E [Q"(p,d)] = k.

N—oo

To build intuition for Proposition 4, consider the case of a single class of items, and
note from the proof of Theorem 4 that the number of unowned items after opening kN
traditional boxes is roughly Ne~*. If a customer stops after kN purchases, then their
valuation for the next box is roughly pe™*, meaning that a price of pe™* will induce
purchase up to that point but no further. The proposed price in Proposition 4 generalizes
this intuition to the multi-class case. For example, when d,, = 3,, for all m and k =0, the
induced price in Proposition 4 is p = . Proposition 4 implies that the limiting normalized
selling volume for this price with the uniform allocation strategy is 0. This agrees with our
intuition, as the customer valuation drops below i after opening e N boxes for any fixed
€ > 0. Armed with Proposition 4, we find in Theorem 5 that as N tends to infinity, the
simple strategy of setting the price to be g and the allocation probability vector to be g

results in asymptotically optimal normalized revenue of g

THEOREM 5 ((TB) with Uniform Allocations are Asymptotically Optimal).

For traditional box with M classes, we have

o =

N—oo p,d

lim maxRrp(p,d) = J}i_I};ORTB (ga (Bry--- 75M)) =

Proof. Consider a class allocation probability vector d = (di,...,dy). For p >

2%21 Ay b, by the law of large numbers, the normalized selling volume will tend to 0. Thus

we can focus on the case p < 2%21 Ao - Note EM dm,ume_%k equals & when k£ =0,

m=1
and decreases monotonically to 0 as k — co. Thus for any price p, there exist a unique pos-
itive k such that p= Z%:l dmumefgizk. Recall by Proposition 4, if p= an\le dmume*%k,
1>k >0, then

lim E [Q"(p,d)] = k.

N—oo

Using this identity we can write the limiting revenue function in terms of k, i.e.,
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M M
. ERT N . _dimk._
lim Rrp(p,d) = lim p-E[Q"(p,d)] —k;dmume om .—z_:le(k‘)-

Consider the m'* term of the revenue function, G,,(k) = umdmke_g‘%k. This function
obtains its maximum at k = 3,,/d,,, and the maximum value is B, /e, which is inde-
pendent from the value of d,,. Hence, the limiting optimal revenue is bounded above by
Z%zl Bmttm /e =f/e. For any d, we can reach the the upper bound fi/e if every component
function reaches the maximum simultaneously in the limit, i.e., k = 3,,/d,, for all m. Since

Zn]\le Bm = ZM d,, = 1, the only possible limiting allocation is d,,, = ,,,, which is the uni-

m=1 "M
d7n

form allocation. In this case, k =1, and the corresponding price is p = 27]\:21 A fhme Pm” =
1i/e. Hence, the solution p = fi/e with uniform allocation is asymptotically optimal with
corresponding revenue fi/e. U

Note that the allocation d = (f,...,By) is simply the uniform allocation over all the
items (not over all classes). Thus Theorem 5 is a natural generalization of Theorem 3
to the multi-class case. The uniform allocation strategy with price fi/e is asymptotically
optimal, for any fixed number of classes and any set of valuation distributions. In this
sense, Theorem 5 makes the decisions of a seller who adopts traditional box selling simple:
instead of designing complicated allocation structures, just use uniform allocations and
focus on the price. Further, Theorem 5 extends the asymptotic dominance of unique box
strategies over traditional boxes to the case of multiple item classes; varying the allocation
probabilities cannot close the gap in revenue between the two strategies.

We emphasize that for uniform allocations to be optimal in Theorem 5, the price for the
loot box must be optimally chosen. For prices other than 7i/e, uniform allocations may not
be optimal. For example, suppose we have two classes with pu; = $10, us = $5 and 5, = 5, =
0.5, then the price % = $2.76 with uniform allocation is asymptotically optimal. However,
if the seller uses the price $3, then by optimizing over d, we find that the asymptotically
optimal class allocation probabilities are d = (0.514,0.486).

Finally, we note that another natural selling mechanism to consider in this setting is to
sell different classes separately via loot boxes of various prices. However, this mechanism
is more complex and may create a sense of unfairness whereby wealthy players are able to
obtain the high-value items more easily. Therefore, we believe that the simple allocation

rule proposed in this section is preferable, in addition to being asymptotically optimal.
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4.3. Transparency of the Allocation Probabilities

In previous sections, we assumed that both the customer and the seller believe and act
according to the announced allocation probabilities. In practice, the seller sometimes may
lie about the allocation probabilities by purposely using an allocation strategy different
than the announced strategy. In this section, we discuss the potential implications of such
deceit.

Consider a situation where the seller deviates from the posted allocation rule, but the
customers still believe the posted allocation rule. As an example, such a situation occurred
in the game Monster Taming, where the seller claimed the chance to receive a rare item
was 1% whereas the actual odds were 0.0005% (Fingas 2018). In such cases, the duped
customer may end up buying many more loot boxes due to the false announcement. In
Example 2, we demonstrate that sellers can greatly increase their revenue by misrepre-
senting the allocation probabilities, and further, can do so in a way that is difficult to
detect (unlike in the case of Monster Taming). In particular, Example 2 shows that a
so-called random perturbation strategy can increase the revenue of a traditional loot box
while adhering to the announced allocation rule in expectation, making such a deception
hard to detect.

ExAMPLE 2. Consider a traditional box with a single class of items and price u/e.
Suppose the seller claims that a uniform allocation is used, but instead, the seller randomly
chooses half of the items to be allocated with probability 1—;6 and the other half to be
allocated with probability % By Proposition 4, the normalized selling volume under a
truly uniform allocation is asymptotically equal to 1. On the other hand, when the random
perturbation is used, the traditional box can be regarded as a two-class traditional box,
with gy = ps = p, and d = (0.5(1 +€),0.5(1 — €)). If the customer has complete information,
then by Proposition 4, the normalized selling volume £ is given by solving

1 1—
pel =y <%e—(1+e)k + Tee—(l—e)k) ' (1)

However, if the customer assumes the allocation is uniform, then the weight of two classes

changes from (<, 15¢) to (3, 3) while the exponential terms in Eq. (1) remain the same.

In this case k is given by solving

1

1
-1 —(1+o)k —(1—e)k
pe T =p (26 + 5¢ ) )
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and it turns out that k is strictly greater than one. Thus, the selling volume (and thus
revenue) increases by setting e > 0. For example when e¢ = 0.2, the selling volume and
revenue increases by 2.4%. O

We highlight that even small deviations from uniform allocations can be profitable,
while being quite difficult for consumers or regulators to discover. Notice that under the
strategy in Example 2, when the perturbation is randomized for each customer, the total
number of each item allocated among all the customers in the market is balanced. Thus
a regulator examining aggregate allocation data would not be able to detect the existence
of such strategies. Example 2 demonstrates the need for regulators to focus on not only
enforcing that sellers follow the stated allocation probabilities, but also to ensure that the
seller follows these rules precisely for each customer. Thus, effective regulation may need
to require that sellers disclose granular, customer-by-customer and transaction-level data

so that the regulators may conduct statistical tests to detect unfair strategies.

4.4. Salvage System

In previous sections, we assumed that customers extract zero value from duplicate items
received from traditional boxes, and that a customer could not resell items back to the
seller. In practice however, some loot box marketplaces are equipped with salvage sys-
tems, mechanisms by which a customer can trade in unwanted items for currency. Salvage
systems are a ubiquitous method for managing customer satisfaction under various sales
policies, offering customers a form of recourse against unlikely or unfortunate outcomes
(see Fig. EC.3 for an example). In this section, we shall consider loot box selling strategies
that allow customers to trade-in or salvage items for a value c. For simplicity, we restrict
our attention to the case where the loot box allocates a single item at a time and there is
only a single class of items.

The main focus in this setting is to understand the two competing effects that salvage
systems have on loot box revenue. On the one hand, the presence of a salvage cost ¢
increases the minimum valuation of any item to at least ¢, increasing the expected valuation
of an item (from E[V;] to E[max{V;,c}]) and thus inducing more purchases. On the other
hand, salvage systems return currency to the customer which dilutes the revenue garnered
from customer purchases. The results in this section characterize and extend the revenue
guarantees of Theorems 2 and 3 to the case when items can be salvaged for some value

c. Throughout this section we use the notation R.(c) to denote the optimal revenue of
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a strategy with fixed salvage cost c. Note that in the presence of a salvage system, the
allocation mechanism for unique box strategies is no longer well-specified. For our results
we assume that customers facing a unique loot box strategy are never allocated an item
they had previously salvaged, which is the case in the example described in Fig. EC.3.
We first show in Theorem 6 that the introduction of a salvage system by the seller makes
both loot box strategies more attractive than separate selling. Specifically, by treating the
salvage cost ¢ as a parameter of a loot box strategy, the revenues of both the optimal
unique box or traditional box strategies are guaranteed to dominate the revenue of separate

selling.

THEOREM 6 (Loot Boxes with Salvage Outperform Separate Selling). For any
N, both the unique box and traditional box strategies with a salvage system dominate sep-
arate selling, i.e.,

max Ryp(c) > Rss and maxRrp(c) > Rss.

Proof of Theorem 6. Let p* be the optimal price used by separate selling. Now consider
a loot box strategy (either unique or traditional) with salvage cost p* and price p*. The
customer will purchase loot boxes, keeping all the items which they value at p* or greater
and returning the unwanted items for a full refund, until they obtain all items which they
value above p*. Thus, such a loot box induces the same revenue as separate selling, which
implies that

maxRyp(c) >Rss and maxRrp(c) > Rss.

O

We emphasize that this result is valid for any finite N. It is well known that the grand

bundle is not guaranteed to outperform separate selling for finite N, even though grand

bundle selling is asymptotically optimal. Thus, Theorem 6 allows us to pin down the precise

relationship between loot box strategies and separate selling and further explains the power
and popularity of loot boxes in practice.

We next investigate the revenue of salvage systems in the asymptotic regime. Proposi-

tion 5 gives the limiting normalized revenue with respect to a fixed salvage cost c.

PROPOSITION 5 (Revenue and Surplus of Loot Boxes with Salvage Costs.).
Let ¢ be the salvage cost, n=E[V;|V; > ¢c|, and F(c) =P(V; > ¢).
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a) The unique box strategy asymptotically earns
lim Ryp(c)=nF(c),
N—o00

and the limiting normalized customer surplus is cF(c).

b) The traditional loot box strategy asymptotically earns

lim Ryp(c)=F(c)(n—c) ( - +e"nc) ’

N—oo n—c
and the limiting normalized customer surplus is F(c) (77 —c—(2n— c)e_#> .

This result generalizes the insights derived from Theorem 2 and Theorem 3 to the
case with salvage costs. First, note that like before the (asymptotic) revenue of unique
box strategies dominates the (asymptotic) revenue of traditional box strategies for any
valuation distribution F' and salvage cost c. To see this, note since 0 < ¢ <17, we may
substitute ¢ by ¢ = gn, for some ¢ € [0,1]. Plugging in this substitution and rearranging
yields:

lim Rrp(c) < F(e)n max (q +(1- q)efﬁ> <F(c)n= A}im Rur(c), (2)
—00

N—oo q€(0,1]

where the final equality comes from noting ¢ + (1 — q)efﬁ is monotone increasing and

tends to 1 as ¢ — 1. Thus limy_,o Ryp(c) > limy_,o Rrp(c). Further, the monotonicity in

[

the maximum in Eq. (2) implies when o s large (close to 1), the gap in expected revenue

between unique box strategies and traditional box strategies is small and generally shrinks
from a factor of e (7 = 0) monotonically down to 1 (7 =1). Thus when salvage costs are
large relative to n, the additional value of employing unique box strategies is diminished.
Further, by combining Theorems 2 and 6 and Proposition 5, we obtain a complete ordering
of the four strategies in presence of salvage cost:

lim Rep = lim maxRyp(c) > lim maxRrp(c) > lim Rgs,
N—00 N—oo ¢ N—oo ¢ N—oo

Compared to the revenue without salvage, it is worth noting that for the unique boxes,
F(c)n < p, with equality achieved only when ¢ = 0. Thus, when N is large it is never
optimal for a purely revenue-maximizing seller to use salvage systems with unique boxes.
For traditional box, the benefit of introducing a salvage system is distribution-dependent.

For example, when V; is a uniform random variable supported on [0, 2u], the asympotic
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optimal traditional box revenue with salvage is 0.517u, which is 40.4% better than 0.368,
the revenue without salvage.

Finally, salvage systems are primarily used to improve customer outcomes and overall
satisfaction with the system. For unique box strategies, the expected normalized customer
surplus under a revenue maximizing unique box with salvage cost ¢ is ¢F(c). Note the
expected normalized customer surplus is monotonically increasing in ¢. Thus the salvage
system enables the unique box seller to balance revenue and customer surplus to their
desired proportion.

For traditional box strategies, we find in Theorem 7 that the revenue-maximizing seller
may only increase the surplus by at most 1.4%, compared to the case without salvage

(c=0).

THEOREM 7 (Salvage System Barely Increases Surplus for (TB)). The limiting
normalized customer surplus of the traditional box strategy with any salvage cost ¢ is at
most 1.4% more than the customer surplus of the traditional box strategy with no salvage

system (c=0).

Proof. Recall from Proposition 5 that the customer surplus given salvage c is
F(c) ((n—c) —(2n— c)e_#). By replacing ¢ with ¢n, one can see that the normalized
customer surplus can be expressed as

F(e) ((n—¢) = (2n—c)e 7% ) =Fle)y (1—a) ~ (2 - q)e 77 ). (3)
As a special case, when ¢ =0 the normalized surplus is (1 — %) 1 =0.2644 as discussed in
Theorem 4. When ¢ > 0, note that in the right-hand side of Eq. (3), one can easily see that
F(e)n < p, and max,(1 —q) — (2 — q)efl%q = 0.268 where the maximum is reached when
g =0.074. So using any salvage ¢ may increase the customer surplus by at most 1.4%, i.e.,
0.268/0.264-1. In fact, the surplus decreases in most cases.

The following example shows that this bound is tight. Suppose valuations are constant
and equal to 1 for all items. Then for any ¢ < u, n=p=1. Let ¢=0.074n =0.074. Then
F(c)n=1, and the normalized surplus is 0.268, which is 1.4% better than 0.264, the surplus
from traditional box without salvage. 0
Theorem 7 implies that for traditional boxes, the salvage system may serve as a tool to

increase revenue, but does not necessarily improve the customers satisfaction.
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5. Numerical Experiments

In previous sections, we showed that, asymptotically, unique boxes are optimal and tradi-
tional boxes earn a constant fraction of the optimal revenue. In this section, we conduct
numerical experiments to demonstrate the efficacy of unique box and traditional box sell-
ing for finite N. First, in Section 5.1 we compute and compare the optimal revenues of UB,
TB, GB, and SS strategies for typical valuation distributions over a range of values for
N that reflect industry practices. We then numerically investigate the impact of budget
constraints on the performance of UB, TB, GB and SS strategies in Section 5.2.

In our experiments we consider three possible valuation distributions: the uniform dis-
tribution between 0 and 2, the log-normal distribution with log-mean 0 and log-variance 1,
and the exponential distribution with mean 1. These distributions are commonly used to
model customer valuations, and have been previously studied in Abdallah (2018). For each
distribution, we let N range from 1 to 3000, and consider the optimal prices and revenues
of the four candidate strategies: UB, TB, GB, and SS. Computation of the revenues is
done via simulation by generating 50,000 customer sample paths and using brute force to

search for the optimal prices (at 1% accuracy).

5.1. Finite Number of Items

In Fig. 4, we show how the optimal prices of the various strategies change as N increases.
Note that for all three distributions that © =1 and the optimal price of the traditional box
strategy quickly converges to % for N > 50. The optimal price of the unique box strategy

also converges to u for each distribution, albeit at a slower rate.

Figure 4  Optimal Prices for Uniform (left), Log-normal (middle) and Exponential (right) Valuations.
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In Fig. 5, we plot the normalized revenues for each strategy. For traditional boxes, the
revenue of the optimal policy quickly converge to £ for all three valuation distributions.
For unique boxes, the revenue of the optimal policy trends slowly towards it’s limit of 1,
however it closely follows the revenue of the optimal grand bundle strategy. When N > 100,
the unique box strategy garners more than 70% of the maximum possible revenue and
more than 97% of the revenue of the grand bundle. The performance for finite N also
depends closely on the distribution. For example, under uniform valuations, the revenue
of grand bundle and unique box strategies converge faster than in the case of log-normal
valuations. We also note, when NV is small, traditional boxes may garner significantly more
than 1/e under uniform valuations, while under log-normal valuations, it converges to 1/e

from below.

Figure 5 Normalized Optimal Revenue for Uniform (left), Log-normal (middle) and Exponential (right)

Valuations.
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5.2. Budget Constraints
Finally, we look into the impact of budgets on the relative performance of the various strate-
gies. Recall that without budgets, as the catalog of items grows, the normalized revenue
of separate selling remains fixed and distribution-dependent whereas grand bundle selling
becomes asymptotically optimal (Bakos and Brynjolfsson 1999). However, the fact that
customers are budget-constrained may hamper the performance of bundling in practice. In
particular, the asymptotic optimality of bundling strategies breaks down when customers
vary in their ability to spend on virtual items, i.e., when customers are budget-constrained.
In this subsection, we model the case where customers vary in their budgets to spend

on virtual items. Specifically, let each customer’s budget be a realization of the random
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variable B with distribution Fz. When budgets vary in this fashion, the revenue of grand
bundle selling becomes highly dependent on the distribution Fz and may be greatly dimin-
ished in some cases, whereas the revenues of separate selling and loot box selling are
essentially unchanged.

The (unnormalized) revenue of the optimal grand bundle strategy in the presence of
random budgets is:

N
PSS V,>p B>
s (z > p)

i=1
which is upper bounded by the revenue of a single price strategy in the space of budgets,

max, pP (B > p) =max,p (1 — Fg(p)). Note that, like the normalized revenue of separate
selling, max, p (1 — Fg(p)) can be anywhere between 0% to 100% of the expected budget
size E[B] and depends explicitly on Fp.

On the other hand, separate selling and both loot box strategies are quite robust to
random fluctuations in customers’ budgets. To see this, first consider a customer with
budget b facing separate selling. For any fixed price p such a customer simply purchases
items until they either obtain all the items for which their valuation exceeds the price, or
until they exhaust their budget. In the case where the customer exhausts their budget b,
they will purchase L%J items, spending all of their budget except for possibly some leftover
amount less than the price of one item. Thus, for each fixed price p, the revenue of separate
selling garnered from each customer is either identical to the case without budgets or close
to the budget up to the price of a single item.

Loot boxes, owing to the sequential nature in which they are purchased, share this
property with separate selling. For each customer facing a loot box strategy and fixed
price p, they either purchase the same number of boxes as they would in the case without
budgets or they spend all of their budget except for possibly some leftover amount less
than the price of one box. Combining this observation with Theorem 2 shows that unique
boxes maintain the asymptotic optimality properties of grand bundle selling while remaining
effective in the presence of heterogeneous customer budgets. Thus budget considerations
give strong justification for the efficacy and popularity of loot boxes in practice.

In the remainder of this section we study the impact of budgets numerically. First, we
specify the distribution of customer budgets. In 2016, 51% of paying customers spent less
than $50 on in-game purchases, and 70% of paying customers spent less than $100 on in-

game purchases (Kunst 2017). To fit this data, we assume that the budget B of a random
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customer follows an exponential distribution with a mean of $75. Under this assumption,
49% of the customers spend less than $50, and 74% of the customers spend less than $100.

In Fig. 6, we plot the optimal revenues of each strategy with respect to N, facing
customers with exponentially distributed budgets. We use total revenue as the performance
measure because the expected revenue now is upper bounded by the expected budget size,
$75. When N < 10, we note that GB maintains it’s revenue dominance over the other three
strategies. However, as N increases, UB, TB and SS extract almost all the budget, whereas
the grand bundle strategy falters, only garnering about 37% the customers budget. This
experiment further shows the robustness of loot box strategies in the presence of limited

budgets.

Figure 6  (Unnormalized) Optimal Revenue for Uniform (left), Log-normal (middle) and Exponential (right)

Valuations with Budget Constraints.
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6. Conclusions

Our work implies a host of managerial insights for sellers, customers, and regulators of loot
boxes. For sellers, we give a thorough analysis of the profitability of loot boxes, yielding
guidelines for how to design and price loot boxes so as to maximize revenue. We show
that the unique box strategy is asymptotically optimal, whereas the traditional box can
garner only 36.7% of the maximum revenue. These results hold in the cases where loot
boxes allocate multiple items as well as when the items are heterogeneous. When customers
are budget-constrained the implication is even clearer: unique box selling stands above
the other three strategies, retaining the asymptotic efficiency properties of grand bundle

selling while remaining robust to fluctuations in customers ability to spend. Finally, and
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perhaps surprisingly, even in the case where items come from multiple classes, designing
the allocation rule for either loot box strategy is easy: a simple uniform allocation policy
is effective and asymptotically optimal.

From the customer’s perspective, we show that the traditional loot box strategy is pre-
ferred and the unique box strategy does not yield any customer surplus. Further, we show
that the introduction of a salvage system has surprisingly little affect on customer surplus
when facing traditional loot boxes, with a potential gain of only 1.4%. We also show that
customers may be at risk to seller manipulation. Specifically, if the seller deviates from the
announced allocation probabilities, then they are capable of making more revenue, even
when the allocation probabilities are correct in expectation. Thus, it is essential for regula-
tors to protect consumers against such a scenario. In fact, we show that the regulator must
check each customer’s allocations individually to properly ensure that the seller is being
truthful. These facts together show that ex post analysis of allocations may be insufficient
in detecting fraudulent behavior on behalf of the seller and suggest that regulatory bodies
must inspect customer-dependent data streams or loot box mechanisms at their source
implementation to ensure truthful behavior.

Finally, while loot box selling has recently gained attention in the domains of psychology
and policy-making, there is a distinct lack of academic work which analyzes loot boxes from
a revenue management perspective. Our work breaks ground on this topic, but leaves open
several interesting avenues for future work. One particularly fruitful direction for future
work may consider loot boxes under richer customer valuation models. In our work, valua-
tions for the items are assumed to be a priori identical for each customer, and independent
of the customer’s current collection. Follow-up work may consider some form of structured
dependency among the customer valuations for the items, e.g., they are modulated by a
common customer-specific random factor. One may also consider the case where valuations
are no longer additive, but submodular or supermodular in the items currently owned. For
example, customers may highly value the very last unowned item since it is necessary to
complete their collection. In this case, the revenue from a traditional box strategy may
increase dramatically, since it takes many purchases in expectation to collect all the items.
On the other hand, if many of the items are substitutable, the customers might be less
interested to open the last few boxes since their additional value is marginal relative to

the current collection.
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Further, our model does not specify the time scale on which the items are acquired.
Customer behavior may be more complicated when the utility is proportional to how often
the item is used. Within this setting, it is possible that customers have higher valuations
for items acquired earlier since the player can use those items for longer. One may also
consider loot box selling when the catalog of items is increased dynamically over time.
For such models, the cost of introducing new items may be non-trivial and increase with
the catalog size as the complexity required to maintain game balance grows. The sequence
in which the new items are added to the catalog may also have a non-trivial impact on
the revenue garnered. Finally, in connection with the ongoing debate in the media and
governments, it would be interesting to consider loot box pricing and design problems

under various legal or fairness considerations.
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Online Appendix: Loot Box Pricing and Design
Appendix A: Omitted Proofs
A.1. Omitted Proofs from Section 2
Proof of Theorem 1.
(a) Unique Boz. Without loss of generality, we index the items by the order in which they are allocated,
i.e., the i*® unique box yields the i** item which is valued at V;. Let z;, = Zle(v,- —p), which is the net utility

of buying k unique boxes. Note that the myopic customer will buy the first unique box if U; =z /N > 0.

The customer will continue to purchase until the first time 7+ 1 where U, ; <0, i.e, until

i INI\Sp 11 Vi S Vi Ty —x
Uy = SN Sen % Do TN EC.1
HETN s PT TN PT NS, (EC.1)

When this condition is met, the customer stops with 7 items in total and has total utility of x,. For clarity,
we set Uny1 <0 to include the case that 7= N. From Eq. EC.1, we find that 7 is also the first time that

2, >xy (or 7=N if z, <z for all t) since

T N
T, = Z(UZ —p)=xy— Z (vi—p)=2zx —(N—7)U, 11> xN. (EC.2)
i=1 i=r+1

Hence, the net utility of the myopic strategy, x., is at least zy.
Observe that an upper bound on the maximum possible utility of any purchasing strategy is the utility of
the clairvoyant strategy, denoted by My, that stops when customer utility is maximized, i.e.,

k
My = max V; —P),
N | ;( p)

kEOU[N

where Z?=1(Ui —p) =0. For a random customer, My is equivalent to the maximum value of a random
walk on { X, 1N, where X, = > (Vi —p). By Theorem 2.12.1 in Gut (2009), limy_, ., My/N converges to
max (0, 4 — p) almost surely. Further by the strong law of large numbers, limy_, ., Xn/N converges to u—p
almost surely, which implies that the expected normalized net utility of a myopic customer converges to
max (0, 1 —p) almost surely, because a myopic customer always garners at least max(0, X ) utility. Therefore,
the expected normalized net utility of the myopic strategy and optimal strategies must also converge to
max (0, u — p) almost surely.

(b) Traditional Boz. Let T+ 1 be the first period where a myopic customer decides not purchase an item,
meaning the customer purchased exactly 7 traditional boxes. This means that

2ieINN\S, 1 Vi

UT+1 = N

—p<0. (EC.3)

However, it is clear that the the utility U, is non-increasing in ¢. If a duplicate is received in period ¢, then
U, =Uis1. If a new item is received, then the customer now values that item as 0 in the future and their
expected valuation of a traditional loot box decreases. Therefore, once 7 + 1 is reached, a customer will
never see a traditional box that offers a positive utility even if they continue purchasing indefinitely. Thus,

a myopic strategy is optimal. [
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A.2. Omitted Proofs from Section 3

Proof of Theorem 2. The proof works by constructing a sequence of prices, py, and showing that
Rus(py) is greater than a term that converges to pu as N goes to co. Since p is the maximum possible
normalized revenue by Proposition 1, this then implies that limy_,. Ry (py) =limy_, o Rys = p. We shall
rely on the random walk from the proof of Theorem 1(a), {X;}52, where X := S (Vi —pn) and X, =0.
Without loss of generality, we assume the items are indexed so that the " item a customer receives from
the i*"* unique box is valued at V. Let the random variable 7y denote the number of boxes purchase, and
recall from Eq. (EC.2) that 7y is also the first time that X., > Xy, or 7y = N if X, < Xy for all ¢. Note
that Ryz(py) = pnE[7x]/N. Also note that since Xy is not known to the seller, 7 is not a stopping time.
(However, it is a stopping time from the perspective of the customer.) We shall show that for a sequence of
prices that tend to u, that 7 tends to N which implies our result.

For some i > ey > 0 to be optimized later, let py =yt — ex. We shall compare 75 to an actual stopping
time Ty, which is the first time { X} crosses the threshold (1 —ky)Ney, where 1 > ky > 0 shall be optimized
later. Note that if we condition on the event that Xy > (1 —ky)Ney, then we know that 75 > 7x since { X}

must hit (1 — ky)Ney before hitting X . Therefore,

E[ry] >E [TNHXNZ(I—kN)NeN]
[

E [TnIxy>(1—kn)Nen ]

:E[’]_—N} 7]E I:,T_-NI[XNG[O,(I—kN)NEN)] 7E [7_—N]IXN<0} . (EC4)

We proceed by lower bounding Eq. (EC.4) term by term, beginning with E[7y]. Since 7y is a stopping

time, by Wald’s equation we know that

E[Xey] =E[} (Vi = pw)] = El7w]E[V: —pn] = Elrvlen. (EC.5)
Rearranging (EC.5), we have
E[ry] = E[;X*N] > (1= ]iN)NEN =(1—ky)N, (EC.6)

where the inequality follows from the definition of 7.

Next, we provide an upper bound for the second term in (EC.4), E ['T__N]IXNE[O,(I—I@N)NEN)] This term
corresponds to the case that Xy € [0, (1 — ky)Ney). To derive an upper bound, we suppose that {X;} has
not hit (1 —ky)Ney after N steps, and further assume the worst case that X = 0. In this case, it is a fresh
random walk starting from 0. We first note that for a discrete random walk crossing a threshold, by (Lorden

1970) Theorem 1 we have

Elmax(Vi— -+ ev.0)°] _E(Vi—p+ex)?] _EVi—ptenl+0? _p+o”

€N €N €N €N

E[X;, — (1 —kyx)Ney] <

which implies that
12+ o

€N
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Hence, by Wald’s equation (see (EC.5)), in expectation it takes at most another (1 —kyx)N + “2:5"2 steps to
N

E [ | Xy € [0, (1 kn)Nex)] < N + (1 — k)N + 2 :" . (EC.7)
N
The probability that X € [0,(1 —kyx)Ney) can be upper bounded using Chebyshev’s Inequality,
2
P(Xy €[0,(1—ky)Ney)) <P(Xy < (1—ky)Ney) < —5 o — (EC.8)
2N
Combining (EC.7) and (EC.8), we have
2, 2 2 2 2 2y 2
) Brot\ o 2—k)o? | (R +odo
B lbowe ] < (N+ (kN7 ) REN T R Bay - (Y

Next, we provide an upper bound for the third term in (EC.4), E [TxIx, <o]. This term corresponds to the
case that Xy < 0. To derive an upper bound, we suppose that {X;} has not hit (1 — ky)Ney after N steps,
and further assume the worst case that Xy = —Npy (since V; >0). Following the same logic as (EC.7),

E[7n| Xy <0l <N+ (EC.10)
€N €N
As before, the probability that X < 0 can also be upper bounded using Chebyshev’s Inequality,
o2
P(Xy <0) < (EC.11)

AN
Combining (EC.10) and (EC.11) yields

_ 2 2 2
E [l o] < (N+Np+(1 kx)New | p +a> o :<M+1—kN>+(“+J>. (BC.12)

en €% €GN €N €% ey N

Plugging Egs. (EC.6), (EC.9) and (EC.12) into the right hand side of Eq. (EC.4) yields

E[TN]ZN<1—kN— 20° oo _ ot oy (C+or)or (“2+"2)"2).

BEN N AN ENTEN  RANT | AN

Now we can lower bound the normalized revenue of a unique box strategy,

E|T
Rus > (M - 61\1) BVN]
(177) - 252 N o2 B o2p B o2 +02kN B (1240202 (p%+ 0202
=l = NTREN kv N &N &N &N | kLl N? ANz )

Choosing ey = uN~Y/° and ky = N~1/%, we have

202 o? ot o? o
Ruyp > u(l— N5 <1— 14+ = )N7Y5 - - N=35 _ _N=45 _(— 4 — N‘6/5> .
UB ( ( 12 12 Lt <M2 /J4>
Taking the limit of both sides gives

A}i_I}Hoo Rus = .

Combined with the fact that Ry s < p from Proposition 1, we conclude that limy_,.o Ry = i O

Proof of Theorem 3. Consider a random walk for N steps, {Y;},, where Y; = ZZ ;1 Vi for j =
0,...,N—1 and Yy = 0. Without loss of generality, we assume the items are indexed so that the i*" unique
item a customer receives from purchasing traditional loot boxes is valued at V;. Therefore, every time the

customer receives the " unique item, their valuation for the traditional box becomes Y;/N.
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Similar to our proof of Theorem 2, we construct a sequence of prices py such that limy py — £ and show
the expected number of traditional loot boxes purchased by a customer at price py tends to V. Let the
random variable 7y denote the number of unique items acquired, and recall from Eq. (EC.3) that 7y is also
the first time Y, /N — py < 0. Note that 7y is well defined since Yy =0.

The number of traditional loot boxes a customer must have purchased to acquire 7y unique items is the
sum of 7y independent geometric random variables, Geo(1) + Geo(2=L) + ... + Geo(=2t1). The revenue

under price py is then,

1 T N-—-1 N — 1
Rre(pn) = NIE PN <Geo(1) + Geo (N) +...+ Geo <;}V+)> ]ITNN}

_ E_i 1+L+ +L I
“PNEIN N-1 N-—ry+1) ™
=pyE[(log(N) +7+y —log(N =7y +1) =7 = (nvory41) Ly >1]

[ N—71y+1
=pnE ( log TN +Cn — CN—TN+1> Hm>1] ; (EC.13)

where the third equality follows from the well known expression for the harmonic numbers, Zle % =logk+
¥+ (i, with {¢;} converges to 0 from above, and + is the Euler-Mascheroni constant.

First we bound E[N — 7y + 1]. Let us define the monotonically increasing random walk {C;}32, such
that (i) {C;}0 g ={Yn_j}i o, ie, Co=0,Cr=Vy, Co=Vy+Vy_1, ..., Oy =Vy+...+ Vi and (i)
C;=Cn+ ZZ:Nﬁ'H Vi for j=N+1,N+2,... where V,,V_1,V_o,... are virtual random variables that
are i.i.d. samples from F. Let ry be the first time that {C;}52, is at least Npy. By definition of 7y, note
that when 7y > 1, ry = N — 75 + 1. Since 7y is the first passage time when C; > Npy, it follows by the

well known inspection paradox that E[C,., — C,,_1] = % = “2;“’2. Using this fact together with Wald’s

equation, E[C,., | = E[ry]u, we have

E[C, Np N 2
E[ry] = [ N]E{p,p—i-l—kz}. (EC.14)
[ nop
Now we can construct a lower bound for Rrz(py),
[ N—7y+1
Rre(py) =pyE (— log TN +(n — CTN> ]ITN>1} (Eq. (EC.13))
i N-7y+1
>pnE (— log T) ]ITN>1] ({¢, } monotone dec.)
- ry
- '
> —log X )
>pyE ( log N)} (EC.16)
> —pylogE [%} (Jensen’s Inequality)
py 1 %
>—pylog | — + T” (Eq. (EC.14)) (EC.17)
1
where Eq. (EC.15) follows from the fact that —log - <0 when ry > N. Setting py = £ yields
R >Hy ! EC.18
TB(pN)_gOg 1+Z% (EC.18)

1
e+ N
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which is our desired guarantee.
We now upper bound the revenue, Rr5(py). Consider the event that 5F < (1 —ey)®¥ for some small

1> en >0, which is an ingredient of our proof. We can upper bound the probability of such an event by,

(7 s0) s

N
=P Y VixNpy

N
t=N—(l—ey) =2k

N
Zt:N—(l—e )N Vi 1

=P
(1—EN)NZN _]._GN
N
2in-(eyy 2en Vi €
<P — > N o
- (1—en )NPN T 1l—en
o2

IN

(Chebyshev’s Inequality)

€2
(1= en) 5 e

0.2

-7 (EC.19)
(1*];]N) Nle’[’

Now we can upper bound the revenue from (TB) when using price py by

N

[ N—-—my+1
<pnyE <10g]\;V+CN> ]ITN>1]

=pyE _(—log N +<N> 'rN<N:|
<pnCn +pnE [(-108; ) TNgN]

r
=pnCy +DPNE K— log W) HrNe[N(l—eN)p—N,N]] +pnvE [(— log %) HrNe[1,N(1—eN)PTN)}

[ N-—-7mv+1
RTB(pN):pN]E <_10gN+CN_CTN)HTN21:|

r
< pnCy + py max{—log ((1 - 6N) 1 > O} +pnE [(7 log WN) ]ITNE[LNU*EN)FTN)]

1 o?
o pemnst g (1022 ) 0) 4 (-1og (1)) o
2log N
= pnCn + py max{log S 0} + Sz o8 (EC.21)
(1—en)py o —
e

where the first equality follows from (EC.13), the second equality follows from the facts that 7w < N and
ry =N —75+1 when 7y > 1, and the third equality follows from the fact that ry > 1. Eq. (EC.20) follows
by the monotonicity of log(-) and by applying Eq. (EC.19).
Now setting ex = N~3 and substituting in (EC.21) gives
u (1—N-%)o2log N
R < + py max{lo n ,01 +
r8(Pn) <pyCn + DN { g(l—N_E)pN } MN3

Maximizing Eq. (EC.22) over py gives iy := p/exp(1+1log(1 — N~3) —y). Plugging in py into Eq. (EC.22)

(EC.22)

gives the desired upper bound, and combining with Eq. (EC.18) yields
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1 1—-N-3)o2log N
Prog | ——— | <R — ( Jolog N (EC.23)
e l_~_1+ﬂ72 €_CN(1—N 3) /.LN3
e N
Taking the limit of both sides of Eq. (EC.23) completes the proof. a

Proof of Theorem 4.

(a) Unique Boz. Suppose the optimal price p% does not converges to p, i.e., there exist € > 0 such that
|p% — | > € infinitely often. First, consider the case where p% < p — € infinitely often. Since the normalized
selling volume is at most 1, then the revenue must be less than p — € infinitely often. However, this contradicts
the fact that Ry converges to p.

Now consider the case that py, > p+ € infinitely often. Using Chebyshev’s inequality, the probability that
a customer purchases the first loot box is at most

P (ZV > p) <
N (ph —m)2N

Thus is also an upper bound on the normalized sales volume, since the best case the customer

0,2
» (ph—n)2N
buys the maximum N unique boxes. Thus, an upper bound on the the normalized revenue when py > p+e€
2% 2 x
is =2~ —_ Note that ——2¥.— is decreasing p% when p% >+ €, so an even greater upper bound on the

(py—1)2N zgp NTH)ZN
revenue in this case is % Since this upper bound tends to 0 as N tends to oo, then this contradicts the
fact that Ryp converges to v and thus py cannot be greater than p + € infinitely often.

Now we consider the expected fraction of unique items collected by the customer, which is also the expected
normalized selling volume for the unique box strategy. Since the normalized selling volume is upper bounded
by 1, if it does not converges to 1, Ry cannot converges to p given that the optimal price converges to p.
Hence the expected selling volume converges to 1.

Finally, since the expected customer valuation is ¢ and Ry p converges to u, then no utility is left for the
customer and therefore the normalized customer surplus converges to 0.

(b) Traditional Boxz. We first show that the optimal price converges to . Suppose the optimal price pj
does not converge to £, i.e., there exists € > 0 such that |py, — [ > € infinitely often. Recall from Eq. (EC.22)
that the revenue by using any price py is upper bounded by

1-N-3)o%log N
L oy ( )1 g
(1-N"3%)py pN
W

and this upper bound converges to py max{log ﬁ,()}. Note that py max{log ﬁ,O} < £ for any py # £.

e

pnCn + py max{log

Y

Therefore, using a price bounded away from £ infinitely often results in a revenue that is bounded away £
infinitely often. This contradicts the fact that Rrp converges to g and thus p}, cannot be bounded away
from £ infinitely often.

The fraction of unique items collected by the customer is given by 7n(p)/N = (N +1—7x5(p))L.y )<~ /N.
By Eq. (EC.14), E[rx(p)]/N converges to p/p. When p < p1, by Theorem 7.1 in (Gut 2009), E[ry(p)]/N is

uniformly integrable and E[ry(p)L., ,)<n|/N converges to p/u. Plugging in limy_, . pi = it/e, we have
E[rn(p3) Ly (v3) <] . nle - 1

x E|[(N —ry(Py) + DL (o=
g Blv @) _ BN —rw08) DLy poend _

N—oo N—o0 N N—o0 N 7 e’
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For the selling volume, note that for any p, Eq. (EC.17) and Eq. (EC.22) implies that

lim Rers(p) =max(0, log H). (EC.24)
b

N — o0 P
Plugging in p* = p/e gives the normalized selling volume in the limit, which is 1.
Finally, the customer surplus is the total utility from the unique items )~ V; minus the total price paid.

Hence we have

E[>N V,
lim E[Normalized Surplus] = lim B2y Vil lim Rrgp
N —o0 N —o0 N N —o0
N—oo N N—o0
1 I3
= 1 —_ — —_ —
(A=2)u—=7
2
=1-—-)u.
(1=2)u

A.3. Omitted Proofs from Section 4

Proof of Proposition 2. For unique boxes, we show that the revenue from the size-1 case is dominated
by the revenue of the size-j case with a simple coupling argument. Since the asympotic revenue in the size-1
case is u by Theorem 2, this implies that the asympotic revenue for the size-j case is also u. Now suppose p
is the price in the size-1 case and set jp to be the price in the size-j case. If a customer bought 7 loot boxes
in the size-1 case and would like to buy the next size-1 box given that they owned the set S,, then we claim
that the same customer would have bought a size-j box. This follows from the fact that the valuation of a
size-j unique box in this state is exactly j times the valuation of a size-1 box. Thus, since the price is also
scaled by j, the decision of purchasing a loot box in period 7 is perfectly coupled, which concludes the proof.

For traditional boxes, we use a more complex coupling argument to show that the revenue from the size-1
case is very close to the revenue of the size-j case with a price slightly lower than jp. Let p be the price of the
size-1 box and let pN (1 — (1 —1/N)7) be the price of the size-j box. If a customer has purchased 7 size-1 box
with inventory state S, and would like to buy the next size-1 box, then we claim that the same customer
would like to buy a size-j box given the same situation. This follows from the fact that the customer may
get a specific item with probability 1 — (1 —1/N)?, and the valuation of a size-j unique box after owning S,
is (1= (1—1/N)’) > x5, Vis while the corresponding valuation of the size-1 box is i > v\s, Vi Therefore,

a size-j box is purchased in period 7 if and only if a size-1 box would have been purchased:

% S Vizpe= (1-(1-1NY) 3 Vi>pN(1- (1-1/N)).
[N\S~ [N]\S~

Hence, if a customer stops after purchasing 7 size-1 boxes, along with the same sampling path he will stop
after purchasing [7/7] size-j boxes. Note that jp > pN(1— (1 —1/N)?), so the normalized revenue generated

by size-j box is bounded as

N(l1—(1—-1/N)’ . ) N(l1—(1—-1/N)’ N(1—-(1—-1/N)’
PNO= (YN e o (1 1) < PN YND) N (= (1N
Jp Jp N
Taking the limit of the above as N — oo leads to limy_,o R%5(jp) = limy_ o Rrp(p). Since the optimal TB

revenue is £ by Theorem 3, this concludes the proof. [J
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Proof of Proposition 8. In this proposition we show that unique box with uniform allocation is asymptot-
ically optimal. We modify the random walk X, in the proof of Theorem 2 into a stochastic process { X/, ¢ > 0}.
For t <N, let X be the net utility of a random customer after opening ¢ unique boxes. For ¢t > N, simply
let X, — X/ | =i —p. Note X} has mean N (i —p) and variance N&2, where 3> = _ 8,,02. Also, the
expectation of X] — X/ | is i —p for any ¢t > 1. Note {X/}5°, is not a stationary random walk, since its
step lengths are correlated. However, {X,};2, satisfies the Markovian property, as for every ¢, X; ; depends
only on the number of items in each class that are not yet owned. Hence, following the proof of Theorem 2,
the Wald’s equations (Eq. (EC.6)) and Chebyshev’s inequalities (Eq. (EC.8), Eq. (EC.11)) are still valid.
The only difference is the overshoot term, E[X. — (1 —ky)Ney]. By Theorem 2 in (Lorden 1970), it is
bounded by (02, + p2..)/en + (020 + H20) (1 — kx)enN/ex)"?, which will not influence the limit and
the convergence rate. Thus, the limiting result remains the same. [

Proof of Proposition 4. Fix k € (0,1), a probability vector d, and and let p = ZTAZ=1 dmumf%k. We
shall show that the normalized number of loot box purchases made by a customer under the pricing and
allocation strategy (p,d), E[QY (p,d)], tends to k as N — oo. For clarity, we prove the lower and upper

bounds separately.

Lower Bound: limy_,., E[QY (p,d)] >k
Givenp=>_1_, dmume_%k7 we first bound the probability that Q@ (p,d) < (1—¢€)k. Note since a customers
valuation for the next loot box decreases monotonically after each purchase, the event (a) @~ (p,d) < (1—¢)k
is equivalent to the event (b) the customer’s valuation for the loot box is less than p after they have opened
(1 — €)kN boxes. We will bound this event by applying Chebyshev’s inequality, for which we will need
estimates of both the mean and variance of customers valuation after opening (1 — €)kN boxes. Let Z™ be
an indicator random variable taking value 1 if item 4 from class m has not been revealed after (1 —¢)kN
purchases, and 0 otherwise. When the class is clear from the context we will drop the superscript. Now, after
each purchase the probability that item ¢ in class m is obtained is d— thus the expectation of Z" i
E[Z"] = <1 — d) e .
BN

Recall that G,,, denotes the set of items in class m. For a random customer, since V; and Z™ are indepen-

dent, the valuation of the next loot box after (1 —¢€)kN purchases is given by Zﬁf:l G dm = ViZ, and

the expected valuation for a loot box after (1 —e)kN purchases is,

vz d, (l—e)kN_ M e d, (1—e)kN
Zzi Zzﬂmﬁ N( M) —;Mmm(—m> .

m=1i1€Gm m=1i1€Gm

Moreover, observe that the set of indicators {Z] m}' mlis negatively correlated for all ¢ and m since for any
two different items, if one is not revealed so far then the other is more likely to have been revealed. Thus the
variance can be bounded by,

ROPE=)

m=1i1€Gm
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S;ieg Var (/Bidr:’rZLVVLZZ> ({Z;m} Neg COIT.)
M d. 9
- ¥ (5%) &2z - Ema)y)
m=1i€Gm m
M d 2
3 % (i) (B0ezl-@viz)) (zre(0.1))
m=1i€Gm m
a 2 (1-e)kN 2(1—e)kN
:mzugcm (;im) ((:u?n +02) (1 - Bi) —pz, (1 - ;ﬂ) > (Vi, Z; independent)
M d. )2 ) ( d. >(1—e)kN
< FEEY: w,, +o 1——
'rnz::liEGm <ﬂm ( ) /B'm
M2 ) ) d, (1—€)kN
:";1 g mtom) <1 N ﬁmN> (EC.25)

Now applying Chebyshev’s Inequality to the event that the mean valuation is less than p after opening
(1—¢€)kN boxes, we have

(QN(p’ ) (176)]{:)
=P <Z Z TVZ <p> (Event (a), (b) equivalent)

m=1i€Gm
JP’(ZZ Vi - ElZZVZ <p— EZZB )
m 1z€Gm m=1i€Gm m=14i€Gm m N
§P<ZZVZ EZZ >E ZZ—VZ )
m=1i€Gm m= leGm m= lzeGm

M dm
Var (Em 1 i€Gm Bm N ‘/;ZZ)

B[y 121% 1,2, - )

(Chebyshev’s Inequality)

m 577'LN

Z

., (1—e)kN 2
( m=1 Hm 5m7,nz'v) _p)
M

(From Eq. (EC.25))

2 (2 2 d (1-e)kN
d (Iu’m + Um) (1 - [37:1]\])

(1—e)kN . 2
"B (s (1) R

Taking the limit as N tends to infinity, the numerator of Eq. (EC.26) approaches a constant d? (u2, +

(1—e)kN dm
) —e #m" goestoe” k(=0

(EC.26)

dm _ . _dm g .
o2 e~ 5m *1=9) For the denominator, the term (1 — s —e Bm* which

is a constant, so the denominator goes to infinity. Thus for any € > 0, there exists C; such that for all N > (',

P(QY(p,d) < (1—¢€/2k)k) <e/2k. Applying Eq. (EC.26) yields a lower bound of E [Q" (p,d)],
E[QY(p,d)] =E [Q" (p,d)lon (p.ay<(1-c/2nyi] + E[QN (0, A)Ion (p.a)>(1-c /208
> _ _
20+ (1= g5) (1= 57)

= k(1)
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> k(11— %) —k—e (EC.27)

which implies that the lower bound converges to k as € goes to 0.

Upper Bound: limy_,., E[QN (p,d)] <k
Similar to the lower bound, we first control the event that QY (p,d) > (1 +€)k. Let Z™ =1 now denote the
event that after opening (1 + €)kN loot boxes, item ¢ in group m is still not revealed. As before we will
omit the superscript when it is clear from context. Following the derivation of (EC.26), we may bound the

probability of this event by

(1+€)kN
M (12, +02) (1- 25)

N 1 < .
P (QY(p,d) > (1+€)k) < Z;l - S o ?
m= BmN (Em:l ,umdm (6 Bm "™ — (1 — an”]\]) >)

Now we will choose e = —log(1 — N~%/3)/k. Substituting our choice of € into the denominator of Eq. (EC.28)

(EC.28)

we may obtain a lower bound,

M ) d (1+EN\ \ 2
/BmN mdm eiﬁk_ (1_"’1)
2" BN

M 2
> B (Z Py N2 (e’%k - egm(l_‘—e)k)) (Taylor expansion of e”)
m=1
M ., , 2
=B (Z fimdme” N2 (1 (1 - N”‘”’W))
m=1
M 1 2
dm
>Bm (Z iy Bm F N2 (1 - dm_1/3>> (Bernoulli’s Inequality)
— 1+ EN

M dm N\1/2 2
_ —4mp Bm
=B (Z Wo€™ Pm N T dm> .
m=1 Bm
Plugging back into Eq. (EC.28), the probability that customer purchases more than (1 —log(l — N~1/3))N
boxes is then bounded above by,
1-log(1-N~Y3)/k)kN
o) (1 ) |
P(QY(p,d)>(1—log(1-N"")) <} - PR
— _dm . gmN!
"=t B (fol Hmdme Nﬁ’7+m>

Finally, returning to ijv(p), a trivial upper bound on E[Q" (p,d)] is given by

E[Q" (p,d)] < E[# of purchases to collect all the items]
M
< E[# of purchases to collect all the items in class m]
m=1
M
d N-—1 d
= ;E [Geo(dm) + Geo (m(%:LN )) + -+ Geo <Bm”;v)]
BN BN BN

DB N (N1 4,

m
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Zﬂ’”N< L2 1+~'+1>

m=1 d"L /B‘HLN /B’mN_
S 6
f
< Z logN—|— 1).

Thus the expected number of purchases is upper bounded by E [QY (p,d)] <> _, B":' (log N 4 1) for any

price p. Now we can build an upper bound:

E [QN(pa d)] =E [QN(pv d)HQN(p,d)§(1+s)kN:| +E [QN(p, d)HQN(p,d)>(1+e)kN]

1-log(1-N~Y3)/k)kN
M2, (ufnJrafn)(lf;—mN)( )

<(1-log(1—N""*)/k)EN+N Y g—m(logN+ >y

m

dm p1/2

2
m=1 3 k _Bm
ﬂm <Zm llLLmd e [m, N1/3+Zm>
m

m=1

Taking N — oo on both sides, we have

M

M
< lim (1-log(1—N""*)/k)k+ lim > g—m(logN—i—l)Z

N—oo m

2
dm N1/2
—1 —1 M bk
m m Brn (Zm=1umdm€ o
Brm
d
r 9 2 2 —9m p M
&2 (2, +oz)e ot 300 B (log N +1)
m=1 — gk g 2
B \ L pimdme™ 5" Bt
"’YL
d
) 5 9 —dm M B, 1
Mo dy (e, Fon)e Y . (1+10g1\’)
2
dmm N1/2
m=1 M 7%16 ﬂmN
Brn (Zmﬂmdme " Gog M/A (N1 )

=k. (EC.29)

(1-log(1-N~1/3)/k)kN
2 (12, +02) (1- )

Thus combining Eq. (EC.27) and Eq. (EC.29), we have
E[QY(p,d
i @Y (. d)]

N—o00 N

=k.

Proof of Proposition 5.

(a) Let V¢ :=max{V;,c} be the modified valuation of an item that has salvage value ¢, and let F. denote
the distribution of V. Let 7 be the mean of V,°. By Theorem 2 and Theorem 4, as the number of items
N — 00, the optimal price tends to 77 and the expected proportion of items obtained tends to 1. Since all
items are obtained in expectation, the proportion of items salvaged tends to F'(c¢). Thus the normalized cost

- E[# Ttems Salvaged
of salvages by the customer is limy_, M

¢ = F(c)c. Together, the normalized revenue is then

i) — F(c)e. Noting 7 can be rewritten as 7 = E[max{V;,c}] = F(c)c+ F(c)E[V;|V; > ¢] = F(c)c+ F(c)n, then

the normalized revenue becomes E[max{V;,c}] — F(c)c= F(c)n.
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For customer surplus, note that the customer all items in the limit, garnering expected utility of 7. The
cost to the customer is the revenue F(c)n, so the customer surplus is 7 — F(c)n = F(c)c.

(b) Following Theorem 3, we consider a modified random walk for customers of a traditional box strategy
with salvage cost c. Let Y = Zi\; j41 V£ +jc. For a random customer, Y/ /N is the expected valuation of the
traditional box after receiving j unique items. If the new item is at value greater than c, then Y] is decreased

by V;41 — ¢, otherwise it decreases by 0. Hence, the mean step length is given by

E[Y],, =Y/]=F(c)(n—c)+ F(c)-0=F(c)(n—c).

J

Also, note that Y3, = Nec. The random walk Y7 is still a decreasing process, which means that the valuation
of the box is decreasing as customers collect more and more new items. A customer purchases until the first
time such that Xt + <p <= Y/<Np < Y/~ Nec<N(p—c). Now consider the random walk {Y; — Ne},
which ends with 0, and is weakly decreasing with mean jump length F(c)(n—c). Let 7(p) be the first passage
time of {Y/ — Nc} hitting the line N(p — ¢) from above. The problem of approximating 7(p) is exactly the
same problem of approximating the expected selling volume of a vanilla traditional box in Theorem 3 with
mean F(c)(n — c) and price p — c. Recall that in the proof of Theorem 4, we show that the limiting selling
volume for a vanilla traditional box is max(log £,0) (see (EC.24)). So in the case with salvage ¢, we know

that the normalized selling volume is given by

E[selling volume] _ - <log F(c)(n—rc) 70) ’
N—o00 N p—c

F(C)(n c)

and for the nontrivial case p — ¢ < F(c)(n — ¢), the selling volume is simply log . The net revenue

is the revenue subtracted by the salvage cost. Note that only the new items with value greater than c are
not salvaged. The number of unique items is 7(p), and by the discussion in Theorem 4, 7(p)/N converges to

1—p/p, which is 1 — in the new problem. Hence the limiting revenue with price p < c+ F(c)(n—c)

F(e )(n c)
is

E[selling volume]  E[selling volume] — limy _, ., E[# of unique item with value > ¢]
hm ’RTB(C p)= hm P N —c N

_ I&EI})O (piC)E[sellin%V volume] JFA}EI}WC w
— (p—)log FO=O) | gy _PC
=(p—c)log et (F(c) nic),

Maximizing over the price yields p=c+ e_ﬁf(c)(n —¢). Plugging in p gives our desired revenue F(c)(n —

o) (75 +e 7).

Finally, customer surplus is the total utility from the unique items that the customer keeps minus the

total cost (i.e. revenue of the seller). Hence we have

E[Utility from unique items with value > ¢]

J}gr;o E[Normalized Surplus| = ]\}gnoo ~ - A}lﬁmoo Res

nE[# of unique items with value > ¢]

= dm, N - i R
— p—c — C __n

— F _— —F — _— n—e

n( (0) n_c) ()0 C><n_c+e 7 )
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Appendix B: Omitted Examples

ExaMpLE EC.1 (UNIFORM UNIQUE BOX MAY NOT BE OPTIMAL). Consider a unique box with two items
facing a customer with non-uniform allocation probabilities. At the time of the first purchase, the customer
has probability ¢ to receive item 1, and 1 — ¢ to receive the item 2. Since it is a unique box, upon second
purchase the customer will receive the unowned item with probability 1. Now suppose items are valued as
either 0 or 1, with probability 0.5.

Consider a unique box with certain allocations, ¢ =1. In this case, the first purchase of a loot box always

yields item 1, and the the second purchase then gives the remaining item 2. For this box, the optimal price

1

1(142), i.e., customers whose valuation is (1,0) will buy 1 box, and

is 1, and the selling volume would be
those with valuation (1,1) will buy 2 boxes. The resulting revenue is %. On the other hand, if ¢ =0.5 then we
have a uniform unique box, and the corresponding optimal price can be checked to be 0.5. The the uniform
allocation and corresponding price induce selling volume i(l.S + 1.5+ 2), i.e., customers whose valuation is
(0,1) or (1,0) will buy 1.5 boxes on average, and customers whose valuation is (1,1) will buy 2 boxes. The
resulting revenue is only g. O

ExAaMPLE EC.2 (NO K-STEP LOOK-AHEAD POLICY IS OPTIMAL FOR CUSTOMERS). Let the number of

products be N and the price of each unique box be 2.5. Now consider a customer whose realized valuations

for the products are (N, ~5,..., 25 )- If the customer is myopic, then they will not buy a single unique
)N
box since the expected utility of the first loot box is % —2.5=-0.5<0.

Now consider the following policy: purchase unique boxes until you obtain the item which is valued at

N. In expectation such a strategy requires 5 purchases and yields utility N 4+ & —1— 238 = I 1. Tt is

straight forward to show this policy is optimal given these parameters. Further, the expected utility for each

of the first ~ % loot box purchases before obtaining the high valued item is negative since, if a customer has

acquired ¢ percent of the catalog without obtaining the high valued item, their expected utility for the next
N+((1-q)N-1) g

box is T~

— 2.5 which is less than zero when ¢ < % Thus no policy that considers only a fixed

number of future purchases can be optimal. O
Appendix C: Omitted Figures

In this section we include additional figures depicting various forms of loot box selling in practice.
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Figure EC.1 Multi-item Loot Boxes in Online Games.
Flash Pack 7

Contains 1 player and 4 random items with a
chance at Flash players.

PURCHASE WITH

& 7,500 @& 10,500

Note. Depicted is a multi-item loot box in the game NBA 2K20. Each box contains 5 cards.

Figure EC.2 Loot Box with Multiple Classes.

Crate Odds

Mythic ltem

Legendary ltem

Epic tem

Jy

Rare Item

Note. In the game PlayerUnknown’s Battlegrounds, the traditional box contains four classes of items: Mythic, Leg-
endary, Epic, and Rare. The allocation probability varies across classes, however items within the same class have

the same probability.

Figure EC.3 Salvage System in Dota 2.

@ BONUS REWARD PROGRESS

e a bonus reward containing a treasure and sh:

INVOKER
Northern Blight @ RECYCLE

Note. In the game Dota 2, players can trade in 6 unwanted items for a new loot box plus 2000 shards, a form of

in-game currency.
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