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ABSTRACT: Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including

water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is de-

veloped to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during

boreal summer in the United States. We use a leading principal component of U.S. soil moisture and an index based on the

North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP Climate Forecast System,

version 2 (CFSv2), at weeks 3–4 in the eastern United States. It is found that the North Pacific SST anomalies persist for

several weeks and are associated with a persistent wave train pattern, which leads to increased occurrences of blocking and

extreme temperature over the eastern United States. Extreme dry soil moisture conditions persist into week 4 and are

associated with an increase in sensible heat flux and a decrease in latent heat flux, which may help to maintain the overlying

anticyclone. The clear-sky conditions associated with blocking anticyclones further decrease soil moisture and increase the

frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop

planning, and reservoir operation and to provide mitigation of impacts from extreme heat events.

KEYWORDS: Atmosphere–land interaction; Atmosphere–ocean interaction; Blocking; Extreme events; Climate vari-

ability; Soil moisture; Statistical forecasting

1. Introduction

Subseasonal prediction lies between synoptic weather fore-

casting and seasonal prediction. The former is strongly influ-

enced by initial conditions while the latter is more impacted by

slowly evolving components of the climate system, such as the

ocean and land conditions, which act as ‘‘boundary conditions’’

for the atmospheric evolution (National Academies of Sciences

Engineering and Medicine 2016). Subseasonal prediction has

long been defined as a ‘‘predictability desert’’ and has the po-

tential to provide important information for the health, water

management, and agriculture sectors to mitigate the destructive

impacts of extreme events, especially when the frequency of

some extreme events, such as heat waves, is projected to increase

in awarming climate (Meehl andTebaldi 2004; Teng et al. 2016).

Various sources of predictability act to enhance predic-

tion skill of midlatitude weather, including El Niño–Southern
Oscillation (ENSO) and the Madden–Julian oscillation (MJO;

Qin and Robinson 1995; Jones et al. 2004). However, these

patterns of variability prevail during the winter season and

additional predictability sources are needed during summer.

Multiple studies have examined the ability for operational

forecast models to predict aspects of extreme heat at the sub-

seasonal to seasonal (S2S) time scales. Pepler et al. (2015)

demonstrated the prediction of the summer (JJA) seasonal

mean, the 10th-percentile, and the 90th-percentile daily sur-

face temperatures using a multimodel ensemble. Large pre-

diction skill of the summer mean temperatures exists mainly

over oceans in the Northern Hemisphere. Although the skill in

forecasting the seasonal mean is generally higher than the skill

for extremes, there is slightly greater skill, albeit nonsignifi-

cant, in predicting the 90th-percentile temperature (defined as

the 90th percentile of maximum temperature for each month,

averaged over a season) over the western United States than

the summer mean temperatures. Slater et al. (2019) examined

the skill of the North American Multi-Model Ensemble

(NMME) in predicting surface air temperatures over the

United States and showed that most models suffer from un-

conditional biases during the summer season. Tian et al. (2017)

examined the ability of the Climate Forecast System, version 2

(CFSv2), to predict the number of extremewarm days (EWDs)

over 7-day, 14-day, and 30-day periods. The average Heidke

skill score (HSS) for the 7-day prediction window over the

continental United States (CONUS) was between 30 and 40 at

week 1 and dropped to ;10 at week 4. Despite the low HSS,

the CFSv2 was able to predict anomalous warm temperatures

on the subseasonal time scale associated with the 2012 U.S.

Great Plains flash drought (DeAngelis et al. 2020).

The relationship between soil moisture and extreme temper-

ature is well known (Diffenbaugh et al. 2007; Seneviratne et al.

2010;Hirschi et al. 2011), and the importance of soil conditions in
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long-range surface air temperature prediction was emphasized

early on (Namias 1952). Specifically, an inverse relationship has

been demonstrated between soil moisture and the surface air

temperature in subsequent months in large areas of the United

States during summer (Huang et al. 1996).Huang and colleagues

noted that the soil moisture is a better local predictor for tem-

perature than precipitation, as soil moisture has longer memory.

Mueller and Seneviratne (2012) demonstrated increased prob-

ability of EWDs following dry periods, noting the value of soil

moisture initialization in operational models. Koster et al. (2014,

2016) demonstrated that localized regions of dryness in the

central United States can lead to a significant change in precip-

itation and extreme temperature in remote regions during June

and July using a stationary wave model and an atmospheric

general circulation model. Orth and Seneviratne (2014) derived

soil moisture forecasts from a simple water balance model, and

then predicted extreme temperature for over 400 stations in

Europe using a simple linear relationship between soil moisture

and temperature. They achieved skill greater than climatology

at lead times up to 2 weeks, with skill at weeks 3 and 4 in cer-

tain locations. Some stations showed improvements of skill over

the ECMWF forecast model at weeks 3 and 4, highlighting the

potential for more skillful temperature forecasts by dynamic

models through a more effective use of soil moisture informa-

tion. In short, the long-lastingmemory of soilmoisturemakes it a

valuable predictability source for surface temperature on the

subseasonal time scale.

The slowly evolving nature of sea surface temperature (SST)

has also been exploited for S2S prediction of temperature and

precipitation. Specifically, previous studies have shown that

midlatitude North Pacific SST anomalies precede U.S. heat-

wave events (Namias 1982; Lyon and Dole 1995). Alfaro et al.

(2006) used canonical correlation analysis of the North Pacific

Ocean SST to predict the seasonal maximum and minimum

temperatures. More recently, McKinnon et al. (2016) investi-

gated the predictability of eastern U.S. hot days and found

significant precursor anomalies of the North Pacific SST 50 days

before extreme hot days. Additionally, Namias (1982) found

that a large cold ocean anomaly in the North Pacific influenced

the formation of the east Pacific ridge and preceded the Great

Plains drought of summer 1980.

Here, we aim to develop skillful statistical prediction of ex-

treme heat and precipitation in boreal summer on the time scale

of 3–4 weeks, which remains a challenging task for operational

numerical models. We will demonstrate the importance of SST

and soil moisture in influencing extreme events over the eastern

United States. Section 2 describes the data and methods. The

prediction skill of the statistical model is presented in section 3,

while the underlying physical mechanisms linking the predictors

and extreme weather are examined in section 4. Section 5 con-

tains the discussion and conclusions.

2. Data and method

a. Data

The observational data consists of 2-m temperature (T2m),

precipitation, SST, soil moisture within the top 28 cm, 500-hPa

geopotential height (Z500), and sensible heat flux from the

ERA-Interim reanalysis (ERAI; Dee et al. 2011) dataset. Data

are interpolated to a 18 latitude–longitude grid from a T255L60

(;0.78 in the horizontal plane) grid. The ERAI SST field is

constructed from various SST datasets, including the Operational

Sea Surface Temperature and Sea Ice Analysis (OSTIA; Dee

et al. 2011), and has comparable lead–lag relationships be-

tween SST and precipitation to the NCDC dataset (Kumar

et al. 2013). The precipitation is produced from ECMWF

Integrated Forecast System (Cy31r2) forecast model and is

comparable to the Global Precipitation Climatology Project

(GPCP)V2.1 (Balsamo et al. 2010). Li et al. (2020) showed that

the ERAI soil moisture has statistically significant correlations

with observations. Although a finer-resolution observational

dataset may bemore useful if one focuses on local values of soil

moisture, the ERAI data are satisfactory for our purpose of

examining large-scale variability in soil moisture.

The skill of our statistical model is compared with the skill of

the NCEP CFSv2 (Saha et al. 2014). The reforecast data con-

tain four ensemble members and are initialized daily from

1999–2010 on an ;18 grid (L64). It contains forecasts out to

44 days. The reforecasts of T2m and precipitation are used to

identify extreme events in the CFSv2. Our statistical model is

evaluated over 1999–2010 to be consistent with the reforecast

time period; a longer time period, 1980–2017, is chosen to en-

sure the robustness of results when examining the link between

the predictors and extremes. It is also shown that the statistical

model contains skill when evaluated over the longer time pe-

riod. We focus on the month of July, but the findings are

qualitatively valid for the other summer months as well.

b. Two-dimensional blocking index

To provide a dynamical mechanism for the increased fre-

quency of EWDs, we calculate a two-dimensional blocking

index following a standard deviation approach (R. L. Miller

et al. 2020). We first detrend the Z500 field from 1980–2017 at

each grid point and then apply an inverse sine-of-latitude

weight (sin458/sinf) to better represent atmospheric energy

dispersion by eliminating bias toward high latitudes (Hoskins

et al. 1977; Dole and Gordon 1983). A 5-day running mean is

then calculated to remove high-frequency fluctuations. On

each calendar day and for each grid point, the standard devi-

ation is calculated within a 29-day period centered on that

calendar day from 1980–2017 (or 1999–2010 for the CFSv2).

We then mark grid points that exceed 1.5 times the local

standard deviation. To be considered a blocking event, the area

of an extreme anomaly must be greater than 108 3 108 (100 grid
points) and persist for at least 5 days. We then smooth the

blocking frequency by averaging over a 58 3 58 box at each grid

point. The climatology of this blocking algorithm is shown in

Fig. S1 in the online supplemental material.

c. Extreme warm days, standardized precipitation index,
and predictors

This study aims to predict the number of EWDs per week

and 14-day standardized precipitation index (SPI) with a focus

on weeks 3 and 4. Here, EWDs are defined as a day with a

detrended daily average temperature greater than the 90th
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percentile of all July andAugust days from 1980 to 2017 at each

grid point (Miller and Wang 2019). The field is smoothed by

averaging a 58 3 58 box centered at each grid point.

The SPI, developed by McKee et al. (1993), is a widely used

index for meteorological drought. The SPI is calculated by

fitting a gamma function to the accumulated precipitation

distribution, followed by transformation to a normal distribu-

tion. It can be interpreted as the number of standard deviations

from the mean. For example, a SPI value below 21 is consid-

ered dry while a value below22 is extremely dry. The SPI can

be calculated for different periods, ranging from 1 to 36

months, but can be used on shorter time scales. Here, we cal-

culate the SPI using the 14-day accumulated precipitation

within a 108 3 108 box. A coarse spatial resolution and a long

time interval are chosen to reduce the number of low precipi-

tation events and facilitate the transformation from a gamma

distribution to a normal distribution.

Similar to the ERAI, an EWD for the CFSv2 is defined as a

day with a daily mean temperature greater than the 90th per-

centile of detrended daily mean temperatures for all lead times

initialized in July during 1999–2010. The 90th percentile is

calculated separately for each ensemble member. The same

method for SPI is applied to the CFSv2. Since the SPI is cal-

culated over a 14-day period, week 3–4 is the period of days

14–28 and week 4–5 is the period of days 21–35.

Previous studies showed that anomalous SSTs over the

North Pacific precede U.S. extreme heat events (Namias 1982;

Lyon and Dole 1995; McKinnon et al. 2016). To objectively

define a SST index over the North Pacific, we first perform

empirical orthogonal function (EOF) analysis on the July daily

Pacific SST field (208S–508N, 1458–2328E). The leading mode

displays the well-known ENSO pattern with strong SST

anomalies in the tropical Pacific and anomalies of the opposite

polarity in the extratropical central Pacific (Fig. S2 in the on-

line supplemental material). The second leading mode of

Pacific SST (Fig. 1a) displays a North Pacific dipole pattern,

similar to the patterns related to heat wave events reported in

previous studies (Namias 1982; McKinnon et al. 2016). Here,

we define a simple SST index (denoted as the NPSST index) as

the difference between the areal average of the northern node

(428–468N, 1428–1388W) and the areal average of the southern

node (318–358N, 1698–1658W). The pentad mean of the NPSST

index is used as a predictor in our statistical model. Our July

mean NPSST index is strongly correlated (Pearson correlation

coefficient r 5 0.6; p value ’ 0) to the July Pacific meridional

mode. Strong SST anomalies in the tropical Pacific are also

evident in the second EOF that resemble the ENSO but are

shifted eastward relative to the leading EOF mode. Although

previous studies have shown more extreme heat events during

La Niña summers (Loikith and Broccoli 2014; Luo and Lau

2020), Niño-3.4 is not included as a predictor because the

NPSST index and the Niño-3.4 index are significantly corre-

lated (p value, 0.01). However, the Niño-3.4 index was tested
and the NPSST produced more skillful predictions.

Our second predictor is defined based on July soil moisture

anomalies over the United States. We perform EOF analysis

on the top two layers of daily ERAI soil moisture (0–28 cm).

The first four principal components (PCs; Fig. S3 in the online

supplemental material) are examined separately, and we find

that the second EOF mode has a stronger correlation with

temperature and precipitation over the eastern United States

than the other modes, and it is thus chosen as the second pre-

dictor. As shown in Fig. 1b, the second EOF mode represents

positive soil moisture anomalies over the eastern United States

and negative soil moisture anomalies over the southern plains

and northern Mexico.

It is worth mentioning that the two predictors do not have a

consistent correlation throughout the 38 years of analysis (not

shown), and the correlation of the daily time series of the

predictors in July fluctuates between positive and negative

values from year to year. In addition, we focus on predictions

initialized in July, but week 3–4 forecasts and composite

analysis with a lag of 3–4 weeks extends into August.

d. Model evaluation and statistical significance

Amultiple linear regression (MLR) model is used to predict

the weekly frequency of EWDs (i.e., the number of EWDs per

week) and the 14-day SPI, and the leave-one-year-out cross-

validation method is used to assess the prediction skill. With

leaving one year out, the training dataset contains 1147 time

FIG. 1. (a) The second EOF mode of daily SST in July over 208S–508N, 1458E–1288W. The North Pacific SST

index was calculated by subtracting the average over box B (428–468N, 1428–1388W) from the average over box A

(318–358N, 1698–1658W). (b) The second EOF mode of U.S. soil moisture during July. The numbers in the title

represent the variance explained. Note that the color bar is reversed for soil moisture so that red indicates dry

conditions and blue indicates moist conditions.

15 JULY 2021 M I L LER ET AL . 5889



points (37 years 3 31 days per year), and the test dataset in-

cludes 31 time points (i.e., one month). The evaluation period

spans 1999–2010 to be consistent with the CFSv2 model years,

but it is shown that the statistical model performs well when

evaluated over the observational time period (1980–2017: see

section 3a). To evaluate the prediction model, we calculate the

Heidke skill score (HSS; Wilks 2011) for two-tier prediction

between the observed and predicted frequency of EWDs or

SPI. The threshold to separate the tiers is the median of the

respective datasets. To further evaluate the model, we calcu-

late the critical success index (CSI), probability of detection

(POD), and the probability of false detection (POFD). A

skillful forecast will have a high HSS, CSI, and POD while

showcasing lower values of POFD. The Spearman rank cor-

relation is also presented in supporting information to show the

skill of the deterministic forecasts.

In addition to the MLR, a generalized additive model

(GAM) was tested, which can incorporate the nonlinear forms

of predictors. The GAM model provides a better fit than the

MLR (Fig. S4 in the online supplemental material), with

overall larger correlation coefficients across the United States.

However, when the GAM model is used on independent data,

themodel fails to perform as well as theMLRmodel (Fig. S5 in

the online supplemental material). This is not surprising be-

cause GAM, when treated as a completely nonparametric

model, is more flexible than a linear model but will inherit the

potential poor prediction skill of smoothing splinemodels. This

leads to better model fitting as shown in Fig. S4, but poor

prediction as shown in Fig. S5. The lower skill and increased

computational cost of GAM encourage us to move forward

with the MLR instead of the GAM.

Composite anomalies of various variables are examined to

investigate the mechanisms linking temperature and SPI ex-

tremes and the predictors. As our predictor values represent

slowly evolving components of the Earth system, extreme

values of the indices will likely cluster together during certain

years. To avoid overlapping events, the composites are con-

structed so that an event occurs when the indices first become

extreme (i.e., exceeding a threshold) and a second event may

not occur until 28 days later. To test the significance of the

anomalies of Z500, SST, sensible heat flux, and SPI, a two-

tailed Student’s t test is performed with a null hypothesis that

the anomalies do not differ from zero. AMann–WhitneyU test

is used to test the significance of the composite anomalies of

EWDs per week, soil moisture, and the weekly blocking fre-

quency as the distributions are non-Gaussian.

3. Statistical prediction of extreme warm day frequency
and 14-day SPI

a. Predicting the weekly frequency of EWDs

Figures 2a and 2b present the HSS of the MLR model in

predicting weekly frequency of EWDs at weeks 3 and 4. The

MLR model (Figs. 2a,b) exhibits large positive HSS values

over the eastern United States, indicating a forecast that is

more skillful than climatology. A large portion of the skillfully

predicted area contains HSS values greater than 0.33 at weeks

3 and 4 over a large region in the eastern United States,

signifying a two-tier prediction that is correct twice as often as

it is incorrect. HSS values reach as high as 0.60 at week 3 and

0.54 at week 4. To complement theHSS, we also investigate the

FIG. 2. Heidke skill score between the (a),(b)MLR-predicted or (c),(d) CFSv2-predicted extremewarm days per

week and observations at weeks (left) 3 and (right) 4. White contours indicate HSS greater than 0.33, or a forecast

that is correct 2 times as often as it is incorrect.
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CSI, POD, and POFD at week 4 (Fig. S6 in the online sup-

plemental material). The MLR model contains CSI values

greater than 50% over the eastern United States, indicating

that more than half of the observed and/or predicted extreme

warm events were correctly forecast. In addition, a large por-

tion of the eastern United States contains a hit rate (POD) of

greater than 70% and a false alarm rate (POFD) of less than

30%. Evaluation of the deterministic forecasts also produces

large and significant Spearman rank correlations (Fig. S7 in the

online supplemental material) between the statistical forecasts

and observations. Although the above results are for the period

1999–2010, the model still contains positive HSSs and hit rates

greater than 60% over the eastern United States when evalu-

ated over 1980–2017 (Fig. S8 in the online supplemental ma-

terial). Most skillfully predicted individual events (correct

positives and correct negatives) over the eastern United States

are associated with strong anomalies of the NPSST index and/

or soil moisture predictor (Fig. S9 in the online supplemental

material). The negative soil index values correspond to ab-

normally dry conditions over the eastern United States, while

the negative NPSST index values correspond to a wave train

that produces an anticyclone over the eastern United States.

The relationship between the predictors and extreme warm

days are further discussed in section 4.

The CFSv2 exhibits large HSS at week 1 and week 2 (not

shown), but the skill decreases rapidly with increasing forecast

lead times. Although the CFSv2 shows a larger area of positive

HSS at week 3, the HSS hardly exceeds 0.15 at week 3 and

further decays at week 4 (Figs. 2c,d). The CFSv2 also contains

negative values of CSI at week 4 along with POD and POFD

values of 50%, indicating little skill at this lead time (Fig. S10 in

the online supplemental material). The MLR model is more

skillful than the CFSv2 over the majority of the eastern United

States at both weeks 3 and 4.

b. Predicting 14-day standardized precipitation index

The 14-day SPI prediction skill is presented in Fig. 3. As

expected, the MLR model prediction skill of SPI is overall

much less than that of the EWD frequency (Figs. 2a,b). Two

locations of positive HSSs exist: one over the North American

monsoon region (Adams and Comrie 1997) that extends into

the northern plains and the other over the east coast of the

United States with the maximum HSS over the northeastern

United States. The skill over western Mexico decreases from

weeks 3–4 to weeks 4–5, while strong skill maintains from

weeks 3–4 to weeks 4–5 in the northeast, with the HSS values

exceeding 0.6 in some locations. Interestingly, the MLRmodel

contains a POD greater than 80% and a POFD less than 20%

over a small region in the northeast (Fig. S11 in the online

supplemental material). In contrast, the CFSv2 is hardly skill-

ful at weeks 3–4 or weeks 4–5 (Figs. 3c,d), as negative HSSs are

evident across the United States.

4. Underlying physical mechanisms for the statistical
prediction

a. North Pacific SST predictor

Composite analysis is performed to investigate the under-

lying physical mechanisms related to the two predictors used in

the MLR model. The lead–lag composite anomalies in Fig. 4

are constructed based on days when the NPSST index first

becomes less than the 10th percentile (12 events over 1980–

2017). The 10th percentile is chosen due to the inverse rela-

tionship between the NPSST index and the EWD frequency

over the eastern United States.

A wave train is evident extending from the Eurasian conti-

nent to the North Atlantic. It consists of anomalous highs over

Asia, the western North Pacific, and North America during

FIG. 3. As in Fig. 2, but for 14-day SPI.
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week 0, resembling a circumglobal teleconnection pattern

(Ding and Wang 2005; Teng and Branstator 2017). The wave

train evolves slowly from week 21 to week 1, with the major

centers of action remaining quasi-stationary, especially the

anticyclone over the United States. Fromweek 2 to week 3, the

upstream cells of the wave train over the Eurasian continent

weaken. While the wave train remains prominent from the

North Pacific to the North Atlantic Ocean, the anomalous high

over North America shifts southward in week 2, and then re-

mains over the eastern United States from week 3 to week 4.

During the 6-week period, negative SST anomalies prevail

over the northeast Pacific, with small regions of positive SST

anomalies over the central North Pacific (including box A in

Fig. 1a). The pattern closely resembles the EOF2 pattern of SST

shown in Fig. 1a (but with an opposite polarity) and is also similar

to the composite SST patterns in McKinnon et al. (2016).

The circulation anomalies over North America are associ-

ated with extreme weather conditions (Fig. 5). Blocking fre-

quency increases significantly in the region of the anomalous

high, first located along 458N over the northern United States

in week 1. The blocking anticyclone then slightly shifts south-

eastward and remains over the eastern United States at weeks

3 and 4. The increase in blocking frequency due to the wave

train contributes to subsidence and increased solar radiation

and alters the surface energy budget (Brunner et al. 2017; Pfahl

and Wernli 2012). Specifically, our results show a decrease in

soil moisture and an increase in the surface sensible heat flux

throughout the 4-week period (not shown). Resulting from the

blocking anticyclone, there is a significant increase in EWDs

per week centered in the eastern half of the United States at

weeks 3 and 4, as well as a significant decrease in precipitation

(negative SPI) (Fig. 5). A MLR model was developed to pre-

dict the blocking frequency using the NPSST as the predictor.

It shows large positiveHSS values over theMidwest region and

far larger skill than the CFSv2 at weeks 3–4 (Fig. 6), which is

remarkable considering the difficulty operational models have

in predicting blocking regimes (Ferranti et al. 2015).

Given that a well-defined wave train pattern exists in

week 21 (Fig. 4a), it is possible that the SST anomalies are

excited by the overlying circulation, although the SST anom-

alies may aide in maintaining the wave train through air–sea

interaction (Seager et al. 2003). Using atmospheric general

circulation model simulations, Teng and Branstator (2017)

suggested that a circumglobal wave train pattern would pre-

cede U.S. heat waves by 15–20 days. The lead–lag composites

in Fig. 4 suggest that a longer lead can be identified. We

defined a daily wave train index using Z500 (WTZ500) based

on the regions of significant correlations (Fig. S12 in the online

supplemental material) between the NPSST index and Z500 at

week 0 (from day 26 to day 0). Specifically, the index is cal-

culated by adding areal averages of Z500 over the central

Pacific (328–368N, 1658–1618W) and north central United

States (448–488N, 958–908W), followed by subtracting an areal

average of Z500 over the northeast Pacific (488–528N, 1328–
1288W). We attempt predicting the EWDs using the WTZ500

index. However, it fails to produce as skillful of a prediction

as the NPSST index. The lack of skill is likely because the

impacts of the wave train not only depend on its intensity but

also its persistence: only persistent wave trains can induce the

dipole SST anomalies over the North Pacific and extreme con-

ditions over the United States. This is supported by the analysis

in Fig. 7.

Figure 7 shows similar composites as Fig. 4, except that the

composites are constructed for two subgroups: persistent wave

train events with the WTZ500 index exceeding 1.0 standard

deviation for at least five days during week 0, and nonpersistent

FIG. 4. Lead–lag composites of Z500 (contours from260 to 60m every 15m) and SST (shading) fromweek21 to

week 4 based on when the NP SST index first becomes less than the 10th percentile (12 events over 1980–2017). To

prevent overlap, an event cannot occur within 4 weeks of another event. From day214 to day27 is week21, from

day27 to day 0 refers to simultaneous composites (week 0), week 1 is from day 1 to day 7, etc. Only significant SST

anomalies are shown (5% significance level), and green contours represent Z500 anomalies exceeding the 5%

significance level. Black stars with gold outline indicate locations used in calculation of the NPSST index.
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wave train events with the WTZ500 index exceeding 1.0 stan-

dard deviation for at least one day but no more than four days

in week 0. The contrast between the two subgroups is intrigu-

ing. The North Pacific SST patterns associated with the per-

sistent wave train project onto the second EOF of Pacific SST

(Fig. 1a) and weaken throughout the 4-week period, while the

nonpersistent wave train events show little significant SST

anomalies, suggesting the nonlinearity of theWTZ500 impacts

on SST. At week 0, the circulation patterns are similar between

the two groups over the Pacific, showcasing a wave train

spanning across the North Pacific and an anticyclone over the

eastern United States. The persistent wave train at week 0 also

FIG. 6. As in Fig. 2, but for weekly blocking frequency.

FIG. 5. Composites of extreme warm days per week (shading), 14-day SPI (black contours from 22 to 2 days

every 0.5 days), and blocking-frequency anomalies (white contours from 22 to 2 days every 0.25 days) at weeks

(a) 1, (c) 2, (e) 3, and (g) 4. Composites are calculated based on when the NPSST index first becomes less than the

10th percentile. To prevent overlap, an event cannot occur within 4 weeks of another event (12 events over 1979–

2017). Only significant anomalies are shown (a 5 0.05).
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showcases an extended waveguide over the Atlantic. An anom-

alous high is established over the eastern United States in week

1 and persists into week 3 for both groups. However, the wave

train over the Pacific in the nonpersistent groupweakens and no

anticyclone is present at week 4. Previous studies (e.g., Ding

and Wang 2005; Yasui and Watanabe 2010) suggested that di-

abatic heating in various regions (including the Indian summer

monsoon) and the atmospheric internal dynamics both con-

tribute to the circumglobal teleconnection pattern (CGT).

Since the wave train pattern here slightly resembles the classic

CGT pattern, it is possible that the wave train is excited by

diabatic heating and atmospheric internal dynamics as well,

and that a persistent wave train then induces SST anomalies

over the North Pacific. Additionally, air–sea interaction and

land–atmosphere interaction may help maintain the wave train

(Teng et al. 2019). As shown in Fig. 8, persistent wave train

events are associated with significantly reduced soil moisture

anomalies in the eastern United States in week 1. The negative

soil moisture anomalies persist in the following weeks. In

contrast, the soil moisture anomalies for the nonpersistent

WTZ500 events weaken with time and are far less coherent at

week 4. The role of soil moisture anomalies is further examined

in the next section.

b. Soil moisture predictor

Composites based on extreme values of the soil moisture

index are examined in Fig. 9. Similar to the composites based

on the NPSST index, the composites are constructed for days

when the soil moisture index first becomes less than the 10th

percentile (23 events over 1980–2017). The soil moisture anom-

alies resemble the second EOF at week 1 (Fig. 9a), with negative

anomalies over the eastern United States and positive anoma-

lies over the southern plains and Mexico (opposite anomalies

of Fig. 1a), while a ridge is evident over the eastern United

States. The negative soil moisture anomalies persist from week

1 to week 4 over the eastern United States, while the positive

soil moisture anomalies weaken over the southern plains and

Mexico. The anticyclone shifts southward from week 1 to week

FIG. 7. (a),(c),(e),(g),(i) Composite differences of Z500 (contours from 2150 to 150m every 15m) and SST

(shading) based on when the WTZ500 index is extreme and persistent during week 0 (jWTZ500 indexj . 1.0

standard deviation for at least 5 days during week 0). (b),(d),(f),(h),(j) Composite differences of Z500 (contours

from275 to 75m every 15m) and SST (shading) based on when theWTZ500 index is extreme but lasts less than 5

days duringweek 0 (jWTZ500 indexj. 1.0 standard deviation for greater than 0 and less than 5 days duringweek 0).

Week 0 is defined as from day 26 to day 0, whereas week 1 is defined as day 1–day 7. To prevent overlap, a

persistent event cannot occur within 4 weeks of another event (10 events). Only significant differences of SST are

shown (a 5 0.05). Note that the color-bar limits are different between the two columns.
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2 and weakens through week 3 and week 4 (Figs. 9a,d,g,j).

Positive sensible heat flux anomalies are collocated with the

strong negative soil moisture anomalies over the eastern half of

the United States, which would aid in maintaining the anticy-

clone (Teng et al. 2019) and could contribute to the increase in

blocking frequency (Figs. 9b,e,h,k). Laguë et al. (2019) showed
an overall increase in sensible heat flux and solar radiation over

the eastern United States due to reduced cloud cover when the

evaporative resistance increases (or soil moisture decreases) in

coupled model simulations. Regarding the weakening of the

positive soil moisture anomalies over the southern plains and

Mexico, it is likely due to the extension of the anticyclone into

Mexico/Texas. In fact, this area experiences an increase in

evaporation and a decrease in precipitation (not shown), both

contributing to the diminishing soil moisture over Texas

and Mexico.

A lagged relationship exists between the dry soil moisture

and EWDs over the eastern United States (the right column in

Fig. 9), as the anticyclone shifts southward over the eastern

United States during the second week following dry soil

moisture conditions. The anticyclone is associated with subsi-

dence, reduced cloud cover, and increased solar radiation, and

therefore an increase of EWDs at week 2 into week 4. The

EWDs per week peak at week 3 (Fig. 9i) but are still significant

FIG. 8. As in Fig. 7, for but Z500 (contours) and volumetric soil moisture anomalies (shading). Note that the

color-bar limits and contours are different between the two columns; for (a), (c), (e), and (g) the contours go from

2150 to 150m every 15m and in (b), (d), (f), and (h) the contours go from 250 to 50m every 10m.
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at week 4 (Fig. 9l). The negative SPI values (low precipitation)

are centered on the east coast of the United States, which is

collocated with the negative soil moisture anomalies (left col-

umn), the increase in sensible heat flux (center column), and a

decrease in evaporation (not shown).

5. Summary and conclusions

Despite the growing need for skillful prediction of extreme

heat events at longer lead times, operational models produce

far lower skill than desired beyond week 2. Therefore, we in-

vestigate statistical techniques to produce skillful predictions

of EWDs and precipitation at lead times of 3–4 weeks. ANorth

Pacific SST (NPSST) index and the second leading principal

component of soil moisture over the United States are used to

develop a multiple linear regression prediction model, and it

demonstrates greater skill at weeks 3–4 than the Climate

Forecast System, version 2 (CFSv2). As shown by composite

analysis, the extreme values of the NPSST index are associated

with a wave train that spans from the Eurasian continent to the

North Atlantic, with a blocking anticyclone over the eastern

United States that contributes to an increase of EWDs and

negative SPI. Blocking frequency at weeks 3 and 4 can be

predicted skillfully using the NPSST index as a predictor.

Summer blocking events are difficult to predict as low-frequency

climate modes, such as the MJO and ENSO, are weaker in

summer than in winter. Further analysis showed that persistent

wave train patterns are associated with strong SST anomalies

over the North Pacific that project onto the second EOF mode

of SST. It is likely that the NPSST index defined based on the

EOF mode can be regarded as the footprint of persistent wave

train events. However, more analysis is needed to understand

the origin of the NPSST anomalies and the maintenance of the

persistent wave train.

Composite analysis also suggests that the persistent circulation

anomalies and increasing blocking occurrence over the eastern

United States could also be attributed to positive land–atmosphere

feedback. The increasedblocking occurrence produces an increase

in EWDs and low precipitation periods; reduced soil moisture

leads to an increase in sensible heat flux and a decrease in latent

heat flux, which help maintain a blocking high.

The two predictors discussed in this study provide skillful

predictions on the subseasonal time scale. However, given the

low-frequency nature of the predictors, it is possible that these

FIG. 9. Composite anomalies of (left) soil moisture (shading) andZ500 (contours from2100 to 100m every 10m), (center) sensible heat

flux (shading) and blocking frequency (contours from 22 to 2 days every 0.25 days), and (right) extreme warm days per week (shading)

and 14-day SPI (contours from21 to 1 day every 0.25 days) at weeks (a)–(c) 1, (d)–(f) 2, (g)–(i) 3, and (j)–(l) 4 following extreme values of

the soil moisture index. Composites are calculated based onwhen the soil moisture predictor first becomes less than the 10th percentile. To

prevent overlap, an event cannot occur within 4 weeks of another event (23 events over 1980–2017). Only significant anomalies are shown

(a 5 0.05).
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also operate on the interannual time scale (Vijverberg et al.

2020). Jong et al. (2021) demonstrated a statistically significant

increase in surface temperature over the eastern United States

during transitioning La Niña summers. The skill of our statis-

tical model only decreases slightly after removal of the sea-

sonal mean, indicating that subseasonal and interannual

anomalies both contribute to the skillful predictions. One

limitation is that this study is solely based on statistical analysis.

Numerical model simulations, such as GCM experiments with

prescribed SST or soil moisture, will help to further illustrate

the underlying mechanisms and casual relationships.

The results of this study highlight the importance of SST and

soil conditions in skillful long-range prediction of extreme heat

events. It is important to reiterate that the predictors influence

the occurrence of extreme heat events with a few weeks lag,

and a statistical model like the one developed in this study can

be used in conjunctionwith operationalmodels at the shorter lead

times as the operational forecast skill is much larger at week 1 and

week 2. Recently, the authors demonstrated the importance and

value of simple statistical and empirical models in predicting

winter Eurasian atmospheric blocking (Miller and Wang 2019)

and springtime U.S. severe weather (D. E. Miller et al. 2020). As

with the previous studies, the MLR model here may serve as a

benchmark for operational models at weeks 3 and 4 over the

eastern United States while aiding in irrigation scheduling, crop

planning, reservoir operation, and providingmitigation of impacts

from extreme heat events.
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