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ABSTRACT: Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including
water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is de-
veloped to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during
boreal summer in the United States. We use a leading principal component of U.S. soil moisture and an index based on the
North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP Climate Forecast System,
version 2 (CFSv2), at weeks 34 in the eastern United States. It is found that the North Pacific SST anomalies persist for
several weeks and are associated with a persistent wave train pattern, which leads to increased occurrences of blocking and
extreme temperature over the eastern United States. Extreme dry soil moisture conditions persist into week 4 and are
associated with an increase in sensible heat flux and a decrease in latent heat flux, which may help to maintain the overlying
anticyclone. The clear-sky conditions associated with blocking anticyclones further decrease soil moisture and increase the
frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop
planning, and reservoir operation and to provide mitigation of impacts from extreme heat events.

KEYWORDS: Atmosphere—land interaction; Atmosphere—ocean interaction; Blocking; Extreme events; Climate vari-

ability; Soil moisture; Statistical forecasting

1. Introduction

Subseasonal prediction lies between synoptic weather fore-
casting and seasonal prediction. The former is strongly influ-
enced by initial conditions while the latter is more impacted by
slowly evolving components of the climate system, such as the
ocean and land conditions, which act as ‘“boundary conditions”
for the atmospheric evolution (National Academies of Sciences
Engineering and Medicine 2016). Subseasonal prediction has
long been defined as a “‘predictability desert” and has the po-
tential to provide important information for the health, water
management, and agriculture sectors to mitigate the destructive
impacts of extreme events, especially when the frequency of
some extreme events, such as heat waves, is projected to increase
in a warming climate (Meehl and Tebaldi 2004; Teng et al. 2016).

Various sources of predictability act to enhance predic-
tion skill of midlatitude weather, including El Nifio—Southern
Oscillation (ENSO) and the Madden—Julian oscillation (MJO;
Qin and Robinson 1995; Jones et al. 2004). However, these
patterns of variability prevail during the winter season and
additional predictability sources are needed during summer.
Multiple studies have examined the ability for operational
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forecast models to predict aspects of extreme heat at the sub-
seasonal to seasonal (S2S) time scales. Pepler et al. (2015)
demonstrated the prediction of the summer (JJA) seasonal
mean, the 10th-percentile, and the 90th-percentile daily sur-
face temperatures using a multimodel ensemble. Large pre-
diction skill of the summer mean temperatures exists mainly
over oceans in the Northern Hemisphere. Although the skill in
forecasting the seasonal mean is generally higher than the skill
for extremes, there is slightly greater skill, albeit nonsignifi-
cant, in predicting the 90th-percentile temperature (defined as
the 90th percentile of maximum temperature for each month,
averaged over a season) over the western United States than
the summer mean temperatures. Slater et al. (2019) examined
the skill of the North American Multi-Model Ensemble
(NMME) in predicting surface air temperatures over the
United States and showed that most models suffer from un-
conditional biases during the summer season. Tian et al. (2017)
examined the ability of the Climate Forecast System, version 2
(CFSv2), to predict the number of extreme warm days (EWDs)
over 7-day, 14-day, and 30-day periods. The average Heidke
skill score (HSS) for the 7-day prediction window over the
continental United States (CONUS) was between 30 and 40 at
week 1 and dropped to ~10 at week 4. Despite the low HSS,
the CFSv2 was able to predict anomalous warm temperatures
on the subseasonal time scale associated with the 2012 U.S.
Great Plains flash drought (DeAngelis et al. 2020).

The relationship between soil moisture and extreme temper-
ature is well known (Diffenbaugh et al. 2007; Seneviratne et al.
2010; Hirschi et al. 2011), and the importance of soil conditions in
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long-range surface air temperature prediction was emphasized
early on (Namias 1952). Specifically, an inverse relationship has
been demonstrated between soil moisture and the surface air
temperature in subsequent months in large areas of the United
States during summer (Huang et al. 1996). Huang and colleagues
noted that the soil moisture is a better local predictor for tem-
perature than precipitation, as soil moisture has longer memory.
Mueller and Seneviratne (2012) demonstrated increased prob-
ability of EWDs following dry periods, noting the value of soil
moisture initialization in operational models. Koster et al. (2014,
2016) demonstrated that localized regions of dryness in the
central United States can lead to a significant change in precip-
itation and extreme temperature in remote regions during June
and July using a stationary wave model and an atmospheric
general circulation model. Orth and Seneviratne (2014) derived
soil moisture forecasts from a simple water balance model, and
then predicted extreme temperature for over 400 stations in
Europe using a simple linear relationship between soil moisture
and temperature. They achieved skill greater than climatology
at lead times up to 2 weeks, with skill at weeks 3 and 4 in cer-
tain locations. Some stations showed improvements of skill over
the ECMWEF forecast model at weeks 3 and 4, highlighting the
potential for more skillful temperature forecasts by dynamic
models through a more effective use of soil moisture informa-
tion. In short, the long-lasting memory of soil moisture makes it a
valuable predictability source for surface temperature on the
subseasonal time scale.

The slowly evolving nature of sea surface temperature (SST)
has also been exploited for S2S prediction of temperature and
precipitation. Specifically, previous studies have shown that
midlatitude North Pacific SST anomalies precede U.S. heat-
wave events (Namias 1982; Lyon and Dole 1995). Alfaro et al.
(2006) used canonical correlation analysis of the North Pacific
Ocean SST to predict the seasonal maximum and minimum
temperatures. More recently, McKinnon et al. (2016) investi-
gated the predictability of eastern U.S. hot days and found
significant precursor anomalies of the North Pacific SST 50 days
before extreme hot days. Additionally, Namias (1982) found
that a large cold ocean anomaly in the North Pacific influenced
the formation of the east Pacific ridge and preceded the Great
Plains drought of summer 1980.

Here, we aim to develop skillful statistical prediction of ex-
treme heat and precipitation in boreal summer on the time scale
of 3—4 weeks, which remains a challenging task for operational
numerical models. We will demonstrate the importance of SST
and soil moisture in influencing extreme events over the eastern
United States. Section 2 describes the data and methods. The
prediction skill of the statistical model is presented in section 3,
while the underlying physical mechanisms linking the predictors
and extreme weather are examined in section 4. Section 5 con-
tains the discussion and conclusions.

2. Data and method
a. Data

The observational data consists of 2-m temperature (T2m),
precipitation, SST, soil moisture within the top 28 cm, 500-hPa
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geopotential height (Z500), and sensible heat flux from the
ERA-Interim reanalysis (ERATL Dee et al. 2011) dataset. Data
are interpolated to a 1° latitude—longitude grid from a T255L.60
(~0.7° in the horizontal plane) grid. The ERAI SST field is
constructed from various SST datasets, including the Operational
Sea Surface Temperature and Sea Ice Analysis (OSTIA; Dee
et al. 2011), and has comparable lead-lag relationships be-
tween SST and precipitation to the NCDC dataset (Kumar
et al. 2013). The precipitation is produced from ECMWF
Integrated Forecast System (Cy31r2) forecast model and is
comparable to the Global Precipitation Climatology Project
(GPCP) V2.1 (Balsamo et al. 2010). Li et al. (2020) showed that
the ERAI soil moisture has statistically significant correlations
with observations. Although a finer-resolution observational
dataset may be more useful if one focuses on local values of soil
moisture, the ERAI data are satisfactory for our purpose of
examining large-scale variability in soil moisture.

The skill of our statistical model is compared with the skill of
the NCEP CFSv2 (Saha et al. 2014). The reforecast data con-
tain four ensemble members and are initialized daily from
1999-2010 on an ~1° grid (L64). It contains forecasts out to
44 days. The reforecasts of T2m and precipitation are used to
identify extreme events in the CFSv2. Our statistical model is
evaluated over 1999-2010 to be consistent with the reforecast
time period; a longer time period, 1980-2017, is chosen to en-
sure the robustness of results when examining the link between
the predictors and extremes. It is also shown that the statistical
model contains skill when evaluated over the longer time pe-
riod. We focus on the month of July, but the findings are
qualitatively valid for the other summer months as well.

b. Two-dimensional blocking index

To provide a dynamical mechanism for the increased fre-
quency of EWDs, we calculate a two-dimensional blocking
index following a standard deviation approach (R. L. Miller
et al. 2020). We first detrend the Z500 field from 1980-2017 at
each grid point and then apply an inverse sine-of-latitude
weight (sind5°/sing) to better represent atmospheric energy
dispersion by eliminating bias toward high latitudes (Hoskins
et al. 1977; Dole and Gordon 1983). A 5-day running mean is
then calculated to remove high-frequency fluctuations. On
each calendar day and for each grid point, the standard devi-
ation is calculated within a 29-day period centered on that
calendar day from 1980-2017 (or 1999-2010 for the CFSv2).
We then mark grid points that exceed 1.5 times the local
standard deviation. To be considered a blocking event, the area
of an extreme anomaly must be greater than 10° X 10° (100 grid
points) and persist for at least 5 days. We then smooth the
blocking frequency by averaging over a 5° X 5° box at each grid
point. The climatology of this blocking algorithm is shown in
Fig. S1 in the online supplemental material.

c. Extreme warm days, standardized precipitation index,
and predictors

This study aims to predict the number of EWDs per week
and 14-day standardized precipitation index (SPI) with a focus
on weeks 3 and 4. Here, EWDs are defined as a day with a
detrended daily average temperature greater than the 90th
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FIG. 1. (a) The second EOF mode of daily SST in July over 20°S-50°N, 145°E-128°W. The North Pacific SST
index was calculated by subtracting the average over box B (42°—46°N, 142°~138°W) from the average over box A
(31°-35°N, 169°-165°W). (b) The second EOF mode of U.S. soil moisture during July. The numbers in the title
represent the variance explained. Note that the color bar is reversed for soil moisture so that red indicates dry

conditions and blue indicates moist conditions.

percentile of all July and August days from 1980 to 2017 at each
grid point (Miller and Wang 2019). The field is smoothed by
averaging a 5° X 5° box centered at each grid point.

The SPI, developed by McKee et al. (1993), is a widely used
index for meteorological drought. The SPI is calculated by
fitting a gamma function to the accumulated precipitation
distribution, followed by transformation to a normal distribu-
tion. It can be interpreted as the number of standard deviations
from the mean. For example, a SPI value below —1 is consid-
ered dry while a value below —2 is extremely dry. The SPI can
be calculated for different periods, ranging from 1 to 36
months, but can be used on shorter time scales. Here, we cal-
culate the SPI using the 14-day accumulated precipitation
within a 10° X 10° box. A coarse spatial resolution and a long
time interval are chosen to reduce the number of low precipi-
tation events and facilitate the transformation from a gamma
distribution to a normal distribution.

Similar to the ERAI an EWD for the CFSv2 is defined as a
day with a daily mean temperature greater than the 90th per-
centile of detrended daily mean temperatures for all lead times
initialized in July during 1999-2010. The 90th percentile is
calculated separately for each ensemble member. The same
method for SPI is applied to the CFSv2. Since the SPI is cal-
culated over a 14-day period, week 3—4 is the period of days
14-28 and week 4-5 is the period of days 21-35.

Previous studies showed that anomalous SSTs over the
North Pacific precede U.S. extreme heat events (Namias 1982;
Lyon and Dole 1995; McKinnon et al. 2016). To objectively
define a SST index over the North Pacific, we first perform
empirical orthogonal function (EOF) analysis on the July daily
Pacific SST field (20°S-50°N, 145°-232°E). The leading mode
displays the well-known ENSO pattern with strong SST
anomalies in the tropical Pacific and anomalies of the opposite
polarity in the extratropical central Pacific (Fig. S2 in the on-
line supplemental material). The second leading mode of
Pacific SST (Fig. 1a) displays a North Pacific dipole pattern,
similar to the patterns related to heat wave events reported in
previous studies (Namias 1982; McKinnon et al. 2016). Here,
we define a simple SST index (denoted as the NPSST index) as
the difference between the areal average of the northern node

(42°-46°N, 142°-138°W) and the areal average of the southern
node (31°-35°N, 169°-165°W). The pentad mean of the NPSST
index is used as a predictor in our statistical model. Our July
mean NPSST index is strongly correlated (Pearson correlation
coefficient r = 0.6; p value =~ 0) to the July Pacific meridional
mode. Strong SST anomalies in the tropical Pacific are also
evident in the second EOF that resemble the ENSO but are
shifted eastward relative to the leading EOF mode. Although
previous studies have shown more extreme heat events during
La Nifia summers (Loikith and Broccoli 2014; Luo and Lau
2020), Nifio-3.4 is not included as a predictor because the
NPSST index and the Nifo-3.4 index are significantly corre-
lated (p value < 0.01). However, the Nifio-3.4 index was tested
and the NPSST produced more skillful predictions.

Our second predictor is defined based on July soil moisture
anomalies over the United States. We perform EOF analysis
on the top two layers of daily ERAI soil moisture (0-28 cm).
The first four principal components (PCs; Fig. S3 in the online
supplemental material) are examined separately, and we find
that the second EOF mode has a stronger correlation with
temperature and precipitation over the eastern United States
than the other modes, and it is thus chosen as the second pre-
dictor. As shown in Fig. 1b, the second EOF mode represents
positive soil moisture anomalies over the eastern United States
and negative soil moisture anomalies over the southern plains
and northern Mexico.

It is worth mentioning that the two predictors do not have a
consistent correlation throughout the 38 years of analysis (not
shown), and the correlation of the daily time series of the
predictors in July fluctuates between positive and negative
values from year to year. In addition, we focus on predictions
initialized in July, but week 3-4 forecasts and composite
analysis with a lag of 3-4 weeks extends into August.

d. Model evaluation and statistical significance

A multiple linear regression (MLR) model is used to predict
the weekly frequency of EWDs (i.e., the number of EWDs per
week) and the 14-day SPI, and the leave-one-year-out cross-
validation method is used to assess the prediction skill. With
leaving one year out, the training dataset contains 1147 time
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FIG. 2. Heidke skill score between the (a),(b) MLR-predicted or (c),(d) CFSv2-predicted extreme warm days per
week and observations at weeks (left) 3 and (right) 4. White contours indicate HSS greater than 0.33, or a forecast

that is correct 2 times as often as it is incorrect.

points (37 years X 31 days per year), and the test dataset in-
cludes 31 time points (i.e., one month). The evaluation period
spans 1999-2010 to be consistent with the CFSv2 model years,
but it is shown that the statistical model performs well when
evaluated over the observational time period (1980-2017: see
section 3a). To evaluate the prediction model, we calculate the
Heidke skill score (HSS; Wilks 2011) for two-tier prediction
between the observed and predicted frequency of EWDs or
SPI. The threshold to separate the tiers is the median of the
respective datasets. To further evaluate the model, we calcu-
late the critical success index (CSI), probability of detection
(POD), and the probability of false detection (POFD). A
skillful forecast will have a high HSS, CSI, and POD while
showcasing lower values of POFD. The Spearman rank cor-
relation is also presented in supporting information to show the
skill of the deterministic forecasts.

In addition to the MLR, a generalized additive model
(GAM) was tested, which can incorporate the nonlinear forms
of predictors. The GAM model provides a better fit than the
MLR (Fig. S4 in the online supplemental material), with
overall larger correlation coefficients across the United States.
However, when the GAM model is used on independent data,
the model fails to perform as well as the MLR model (Fig. S5 in
the online supplemental material). This is not surprising be-
cause GAM, when treated as a completely nonparametric
model, is more flexible than a linear model but will inherit the
potential poor prediction skill of smoothing spline models. This
leads to better model fitting as shown in Fig. S4, but poor
prediction as shown in Fig. S5. The lower skill and increased
computational cost of GAM encourage us to move forward
with the MLR instead of the GAM.

Composite anomalies of various variables are examined to
investigate the mechanisms linking temperature and SPI ex-
tremes and the predictors. As our predictor values represent
slowly evolving components of the Earth system, extreme
values of the indices will likely cluster together during certain
years. To avoid overlapping events, the composites are con-
structed so that an event occurs when the indices first become
extreme (i.e., exceeding a threshold) and a second event may
not occur until 28 days later. To test the significance of the
anomalies of Z500, SST, sensible heat flux, and SPI, a two-
tailed Student’s ¢ test is performed with a null hypothesis that
the anomalies do not differ from zero. A Mann—Whitney U test
is used to test the significance of the composite anomalies of
EWDs per week, soil moisture, and the weekly blocking fre-
quency as the distributions are non-Gaussian.

3. Statistical prediction of extreme warm day frequency
and 14-day SPI

a. Predicting the weekly frequency of EWDs

Figures 2a and 2b present the HSS of the MLR model in
predicting weekly frequency of EWDs at weeks 3 and 4. The
MLR model (Figs. 2a,b) exhibits large positive HSS values
over the eastern United States, indicating a forecast that is
more skillful than climatology. A large portion of the skillfully
predicted area contains HSS values greater than 0.33 at weeks
3 and 4 over a large region in the eastern United States,
signifying a two-tier prediction that is correct twice as often as
it is incorrect. HSS values reach as high as 0.60 at week 3 and
0.54 at week 4. To complement the HSS, we also investigate the
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FIG. 3. As in Fig. 2, but for 14-day SPIL

CSI, POD, and POFD at week 4 (Fig. S6 in the online sup-
plemental material). The MLR model contains CSI values
greater than 50% over the eastern United States, indicating
that more than half of the observed and/or predicted extreme
warm events were correctly forecast. In addition, a large por-
tion of the eastern United States contains a hit rate (POD) of
greater than 70% and a false alarm rate (POFD) of less than
30%. Evaluation of the deterministic forecasts also produces
large and significant Spearman rank correlations (Fig. S7 in the
online supplemental material) between the statistical forecasts
and observations. Although the above results are for the period
1999-2010, the model still contains positive HSSs and hit rates
greater than 60% over the eastern United States when evalu-
ated over 1980-2017 (Fig. S8 in the online supplemental ma-
terial). Most skillfully predicted individual events (correct
positives and correct negatives) over the eastern United States
are associated with strong anomalies of the NPSST index and/
or soil moisture predictor (Fig. S9 in the online supplemental
material). The negative soil index values correspond to ab-
normally dry conditions over the eastern United States, while
the negative NPSST index values correspond to a wave train
that produces an anticyclone over the eastern United States.
The relationship between the predictors and extreme warm
days are further discussed in section 4.

The CFSv2 exhibits large HSS at week 1 and week 2 (not
shown), but the skill decreases rapidly with increasing forecast
lead times. Although the CFSv2 shows a larger area of positive
HSS at week 3, the HSS hardly exceeds 0.15 at week 3 and
further decays at week 4 (Figs. 2c,d). The CFSv2 also contains
negative values of CSI at week 4 along with POD and POFD
values of 50%, indicating little skill at this lead time (Fig. S10in
the online supplemental material). The MLR model is more
skillful than the CFSv2 over the majority of the eastern United
States at both weeks 3 and 4.

b. Predicting 14-day standardized precipitation index

The 14-day SPI prediction skill is presented in Fig. 3. As
expected, the MLR model prediction skill of SPI is overall
much less than that of the EWD frequency (Figs. 2a,b). Two
locations of positive HSSs exist: one over the North American
monsoon region (Adams and Comrie 1997) that extends into
the northern plains and the other over the east coast of the
United States with the maximum HSS over the northeastern
United States. The skill over western Mexico decreases from
weeks 3-4 to weeks 4-5, while strong skill maintains from
weeks 3—4 to weeks 4-5 in the northeast, with the HSS values
exceeding 0.6 in some locations. Interestingly, the MLR model
contains a POD greater than 80% and a POFD less than 20%
over a small region in the northeast (Fig. S11 in the online
supplemental material). In contrast, the CFSv2 is hardly skill-
ful at weeks 3—4 or weeks 4-5 (Figs. 3c,d), as negative HSSs are
evident across the United States.

4. Underlying physical mechanisms for the statistical
prediction

a. North Pacific SST predictor

Composite analysis is performed to investigate the under-
lying physical mechanisms related to the two predictors used in
the MLR model. The lead-lag composite anomalies in Fig. 4
are constructed based on days when the NPSST index first
becomes less than the 10th percentile (12 events over 1980-
2017). The 10th percentile is chosen due to the inverse rela-
tionship between the NPSST index and the EWD frequency
over the eastern United States.

A wave train is evident extending from the Eurasian conti-
nent to the North Atlantic. It consists of anomalous highs over
Asia, the western North Pacific, and North America during
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FIG. 4. Lead-lag composites of Z500 (contours from —60 to 60 m every 15 m) and SST (shading) from week —1 to
week 4 based on when the NP SST index first becomes less than the 10th percentile (12 events over 1980-2017). To
prevent overlap, an event cannot occur within 4 weeks of another event. From day —14 to day —7 is week —1, from
day —7 to day O refers to simultaneous composites (week 0), week 1 is from day 1 to day 7, etc. Only significant SST
anomalies are shown (5% significance level), and green contours represent Z500 anomalies exceeding the 5%
significance level. Black stars with gold outline indicate locations used in calculation of the NPSST index.

week 0, resembling a circumglobal teleconnection pattern
(Ding and Wang 2005; Teng and Branstator 2017). The wave
train evolves slowly from week —1 to week 1, with the major
centers of action remaining quasi-stationary, especially the
anticyclone over the United States. From week 2 to week 3, the
upstream cells of the wave train over the Eurasian continent
weaken. While the wave train remains prominent from the
North Pacific to the North Atlantic Ocean, the anomalous high
over North America shifts southward in week 2, and then re-
mains over the eastern United States from week 3 to week 4.
During the 6-week period, negative SST anomalies prevail
over the northeast Pacific, with small regions of positive SST
anomalies over the central North Pacific (including box A in
Fig. 1a). The pattern closely resembles the EOF2 pattern of SST
shown in Fig. 1a (but with an opposite polarity) and is also similar
to the composite SST patterns in McKinnon et al. (2016).

The circulation anomalies over North America are associ-
ated with extreme weather conditions (Fig. 5). Blocking fre-
quency increases significantly in the region of the anomalous
high, first located along 45°N over the northern United States
in week 1. The blocking anticyclone then slightly shifts south-
eastward and remains over the eastern United States at weeks
3 and 4. The increase in blocking frequency due to the wave
train contributes to subsidence and increased solar radiation
and alters the surface energy budget (Brunner et al. 2017; Pfahl
and Wernli 2012). Specifically, our results show a decrease in
soil moisture and an increase in the surface sensible heat flux
throughout the 4-week period (not shown). Resulting from the
blocking anticyclone, there is a significant increase in EWDs
per week centered in the eastern half of the United States at
weeks 3 and 4, as well as a significant decrease in precipitation
(negative SPI) (Fig. 5). A MLR model was developed to pre-
dict the blocking frequency using the NPSST as the predictor.

It shows large positive HSS values over the Midwest region and
far larger skill than the CFSv2 at weeks 3-4 (Fig. 6), which is
remarkable considering the difficulty operational models have
in predicting blocking regimes (Ferranti et al. 2015).

Given that a well-defined wave train pattern exists in
week —1 (Fig. 4a), it is possible that the SST anomalies are
excited by the overlying circulation, although the SST anom-
alies may aide in maintaining the wave train through air-sea
interaction (Seager et al. 2003). Using atmospheric general
circulation model simulations, Teng and Branstator (2017)
suggested that a circumglobal wave train pattern would pre-
cede U.S. heat waves by 15-20 days. The lead-lag composites
in Fig. 4 suggest that a longer lead can be identified. We
defined a daily wave train index using Z500 (WTZ500) based
on the regions of significant correlations (Fig. S12 in the online
supplemental material) between the NPSST index and Z500 at
week O (from day —6 to day 0). Specifically, the index is cal-
culated by adding areal averages of Z500 over the central
Pacific (32°-36°N, 165°-161°W) and north central United
States (44°-48°N, 95°-90°W), followed by subtracting an areal
average of Z500 over the northeast Pacific (48°-52°N, 132°-
128°W). We attempt predicting the EWDs using the WTZ500
index. However, it fails to produce as skillful of a prediction
as the NPSST index. The lack of skill is likely because the
impacts of the wave train not only depend on its intensity but
also its persistence: only persistent wave trains can induce the
dipole SST anomalies over the North Pacific and extreme con-
ditions over the United States. This is supported by the analysis
in Fig. 7.

Figure 7 shows similar composites as Fig. 4, except that the
composites are constructed for two subgroups: persistent wave
train events with the WTZ500 index exceeding 1.0 standard
deviation for at least five days during week 0, and nonpersistent



15 JuLy 2021

MILLER ET AL.

5893

(b)

112.5°W 95°W
-1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8
(c) Extr Warm days/SPI (Week 3) (d) Extr Warm days/SPI (Week 4)

i e Y

34°N

W‘LJ %725{-.

95°wW

112.5°W 77.5°W

-18 -12 -0.6 0.0 0.6 12 1.8

112.5°wW 95°W 77.5°W

-1.8 -1.2 -0.6 0.0 0.6 1.2 1.8

FIG. 5. Composites of extreme warm days per week (shading), 14-day SPI (black contours from —2 to 2 days
every 0.5 days), and blocking-frequency anomalies (white contours from —2 to 2 days every 0.25 days) at weeks
(a) 1, (c) 2, (e) 3, and (g) 4. Composites are calculated based on when the NPSST index first becomes less than the
10th percentile. To prevent overlap, an event cannot occur within 4 weeks of another event (12 events over 1979—

2017). Only significant anomalies are shown (a = 0.05).

wave train events with the WTZ500 index exceeding 1.0 stan-
dard deviation for at least one day but no more than four days
in week 0. The contrast between the two subgroups is intrigu-
ing. The North Pacific SST patterns associated with the per-
sistent wave train project onto the second EOF of Pacific SST
(Fig. 1a) and weaken throughout the 4-week period, while the

nonpersistent wave train events show little significant SST
anomalies, suggesting the nonlinearity of the WTZ500 impacts
on SST. At week 0, the circulation patterns are similar between
the two groups over the Pacific, showcasing a wave train
spanning across the North Pacific and an anticyclone over the
eastern United States. The persistent wave train at week 0 also
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FIG. 6. As in Fig. 2, but for weekly blocking frequency.
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F1G. 7. (a),(c),(e),(g),(i) Composite differences of Z500 (contours from —150 to 150 m every 15m) and SST
(shading) based on when the WTZ500 index is extreme and persistent during week 0 (JWTZ500 index| > 1.0
standard deviation for at least 5 days during week 0). (b),(d),(f),(h),(j) Composite differences of Z500 (contours
from —75 to 75 m every 15 m) and SST (shading) based on when the WTZ500 index is extreme but lasts less than 5
days during week 0 (|WTZ500 index| > 1.0 standard deviation for greater than 0 and less than 5 days during week 0).
Week 0 is defined as from day —6 to day 0, whereas week 1 is defined as day 1-day 7. To prevent overlap, a
persistent event cannot occur within 4 weeks of another event (10 events). Only significant differences of SST are
shown (a = 0.05). Note that the color-bar limits are different between the two columns.

showcases an extended waveguide over the Atlantic. An anom-
alous high is established over the eastern United States in week
1 and persists into week 3 for both groups. However, the wave
train over the Pacific in the nonpersistent group weakens and no
anticyclone is present at week 4. Previous studies (e.g., Ding
and Wang 2005; Yasui and Watanabe 2010) suggested that di-
abatic heating in various regions (including the Indian summer
monsoon) and the atmospheric internal dynamics both con-
tribute to the circumglobal teleconnection pattern (CGT).
Since the wave train pattern here slightly resembles the classic
CGT pattern, it is possible that the wave train is excited by
diabatic heating and atmospheric internal dynamics as well,
and that a persistent wave train then induces SST anomalies
over the North Pacific. Additionally, air-sea interaction and
land—atmosphere interaction may help maintain the wave train
(Teng et al. 2019). As shown in Fig. 8, persistent wave train
events are associated with significantly reduced soil moisture
anomalies in the eastern United States in week 1. The negative
soil moisture anomalies persist in the following weeks. In

contrast, the soil moisture anomalies for the nonpersistent
WTZ500 events weaken with time and are far less coherent at
week 4. The role of soil moisture anomalies is further examined
in the next section.

b. Soil moisture predictor

Composites based on extreme values of the soil moisture
index are examined in Fig. 9. Similar to the composites based
on the NPSST index, the composites are constructed for days
when the soil moisture index first becomes less than the 10th
percentile (23 events over 1980-2017). The soil moisture anom-
alies resemble the second EOF at week 1 (Fig. 9a), with negative
anomalies over the eastern United States and positive anoma-
lies over the southern plains and Mexico (opposite anomalies
of Fig. 1a), while a ridge is evident over the eastern United
States. The negative soil moisture anomalies persist from week
1 to week 4 over the eastern United States, while the positive
soil moisture anomalies weaken over the southern plains and
Mexico. The anticyclone shifts southward from week 1 to week
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2 and weakens through week 3 and week 4 (Figs. 9a,d,g,)).
Positive sensible heat flux anomalies are collocated with the
strong negative soil moisture anomalies over the eastern half of
the United States, which would aid in maintaining the anticy-
clone (Teng et al. 2019) and could contribute to the increase in
blocking frequency (Figs. 9b,e,h.k). Lagué et al. (2019) showed
an overall increase in sensible heat flux and solar radiation over
the eastern United States due to reduced cloud cover when the
evaporative resistance increases (or soil moisture decreases) in
coupled model simulations. Regarding the weakening of the
positive soil moisture anomalies over the southern plains and
Mexico, it is likely due to the extension of the anticyclone into

Mexico/Texas. In fact, this area experiences an increase in
evaporation and a decrease in precipitation (not shown), both
contributing to the diminishing soil moisture over Texas
and Mexico.

A lagged relationship exists between the dry soil moisture
and EWDs over the eastern United States (the right column in
Fig. 9), as the anticyclone shifts southward over the eastern
United States during the second week following dry soil
moisture conditions. The anticyclone is associated with subsi-
dence, reduced cloud cover, and increased solar radiation, and
therefore an increase of EWDs at week 2 into week 4. The
EWDs per week peak at week 3 (Fig. 91) but are still significant
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(a = 0.05).

at week 4 (Fig. 91). The negative SPI values (low precipitation)
are centered on the east coast of the United States, which is
collocated with the negative soil moisture anomalies (left col-
umn), the increase in sensible heat flux (center column), and a
decrease in evaporation (not shown).

5. Summary and conclusions

Despite the growing need for skillful prediction of extreme
heat events at longer lead times, operational models produce
far lower skill than desired beyond week 2. Therefore, we in-
vestigate statistical techniques to produce skillful predictions
of EWDs and precipitation at lead times of 3-4 weeks. A North
Pacific SST (NPSST) index and the second leading principal
component of soil moisture over the United States are used to
develop a multiple linear regression prediction model, and it
demonstrates greater skill at weeks 3-4 than the Climate
Forecast System, version 2 (CFSv2). As shown by composite
analysis, the extreme values of the NPSST index are associated
with a wave train that spans from the Eurasian continent to the
North Atlantic, with a blocking anticyclone over the eastern
United States that contributes to an increase of EWDs and

negative SPI. Blocking frequency at weeks 3 and 4 can be
predicted skillfully using the NPSST index as a predictor.
Summer blocking events are difficult to predict as low-frequency
climate modes, such as the MJO and ENSO, are weaker in
summer than in winter. Further analysis showed that persistent
wave train patterns are associated with strong SST anomalies
over the North Pacific that project onto the second EOF mode
of SST. It is likely that the NPSST index defined based on the
EOF mode can be regarded as the footprint of persistent wave
train events. However, more analysis is needed to understand
the origin of the NPSST anomalies and the maintenance of the
persistent wave train.

Composite analysis also suggests that the persistent circulation
anomalies and increasing blocking occurrence over the eastern
United States could also be attributed to positive land-atmosphere
feedback. The increased blocking occurrence produces an increase
in EWDs and low precipitation periods; reduced soil moisture
leads to an increase in sensible heat flux and a decrease in latent
heat flux, which help maintain a blocking high.

The two predictors discussed in this study provide skillful
predictions on the subseasonal time scale. However, given the
low-frequency nature of the predictors, it is possible that these
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also operate on the interannual time scale (Vijverberg et al.
2020). Jong et al. (2021) demonstrated a statistically significant
increase in surface temperature over the eastern United States
during transitioning La Nifia summers. The skill of our statis-
tical model only decreases slightly after removal of the sea-
sonal mean, indicating that subseasonal and interannual
anomalies both contribute to the skillful predictions. One
limitation is that this study is solely based on statistical analysis.
Numerical model simulations, such as GCM experiments with
prescribed SST or soil moisture, will help to further illustrate
the underlying mechanisms and casual relationships.

The results of this study highlight the importance of SST and
soil conditions in skillful long-range prediction of extreme heat
events. It is important to reiterate that the predictors influence
the occurrence of extreme heat events with a few weeks lag,
and a statistical model like the one developed in this study can
be used in conjunction with operational models at the shorter lead
times as the operational forecast skill is much larger at week 1 and
week 2. Recently, the authors demonstrated the importance and
value of simple statistical and empirical models in predicting
winter Eurasian atmospheric blocking (Miller and Wang 2019)
and springtime U.S. severe weather (D. E. Miller et al. 2020). As
with the previous studies, the MLR model here may serve as a
benchmark for operational models at weeks 3 and 4 over the
eastern United States while aiding in irrigation scheduling, crop
planning, reservoir operation, and providing mitigation of impacts
from extreme heat events.
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