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ABSTRACT

We study the communication cost (or message complexity) of funda-
mental distributed symmetry breaking problems, namely, coloring
and MIS. While significant progress has been made in understand-
ing and improving the running time of such problems, much less
is known about the message complexity of these problems. In fact,
all known algorithms need at least Q(m) communication for these
problems, where m is the number of edges in the graph. We address
the following question in this paper: can we solve problems such as
coloring and MIS using sublinear, i.e., o(m) communication, and if so
under what conditions?

In a classical result, Awerbuch, Goldreich, Peleg, and Vainish
[JACM 1990] showed that fundamental global problems such as
broadcast and spanning tree construction require at least Q(m) mes-
sages in the KT-1 CoNGEST model (i.e., CONGEST model in which
nodes have initial knowledge of the neighbors’ ID’s) when algo-
rithms are restricted to be comparison-based (i.e., algorithms in
which node ID’s can only be compared). Thirty five years after this
result, King, Kutten, and Thorup [PODC 2015] showed that one
can solve the above problems using O(n) messages (n is the number
of nodes in the graph) in O(n) rounds in the KT-1 CONGEST model
if non-comparison-based algorithms are permitted. An important
implication of this result is that one can use the synchronous nature
of the KT-1 CoNGEsST model, using silence to convey information,
and solve any graph problem using non-comparison-based algo-
rithms with O(n) messages, but this takes an exponential number
of rounds. In the asynchronous model, even this is not possible.
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In contrast, much less is known about the message complexity of
local symmetry breaking problems such as coloring and MIS. Our
paper fills this gap by presenting the following results.

Lower bounds: In the KT-1 CONGEST model, we show that
any comparison-based algorithm, even a randomized Monte-
Carlo algorithm with constant success probability, requires
Q(n?) messages in the worst case to solve either (A + 1)-
coloring or MIS, regardless of the number of rounds. We
also show that Q(n) is a lower bound on the number of
messages for any (A + 1)-coloring or MIS algorithm, even
non-comparison-based, and even with nodes having initial
knowledge of up to a constant radius.

Upper bounds: In the KT-1 CONGEST model, we present the
following randomized non-comparison-based algorithms for
coloring that, with high probability, use o(m) messages and
run in polynomially many rounds.

(a) A (A + 1)-coloring algorithm that uses O(n!->) messages,
while running in O(D + y/n) rounds, where D is the graph
diameter. Our result also implies an asynchronous algo-
rithm for (A + 1)-coloring with the same message bound
but running in O(n) rounds.

(b) For any constant ¢ > 0, a (1 +¢)A-coloring algorithm that
uses O(n/€%) messages, while running in O(n) rounds.

If we increase our input knowledge slightly to radius 2, i.e.,

in the KT-2 CONGEST model, we obtain:

(c) A randomized comparison-based MIS algorithm that uses
O(n'-*) messages. while running in O(+y/n) rounds.

While our lower bound results can be viewed as counterparts to the
classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM
90], but for local problems, our algorithms are the first-known
algorithms for coloring and MIS that take o(m) messages and run
in polynomially many rounds.
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1 INTRODUCTION

There has been significant interest over the last decade in obtaining
communication-efficient algorithms for fundamental problems in
distributed computing. In the CoNGEST model, which is a message-
passing model with small-sized messages (typically O(log n)-sized,
where n is the number of nodes in the network), communication
cost is usually measured by the number of messages. In the so-
called clean network model, a.k.a. the KT-0 (Knowledge Till radius
0) model, where nodes have intial knowledge of only themselves
and don’t even know the ID’s of neighbors, Kutten et al. [20] showed
that Q(m) (m is the number of edges in the network) is a lower
bound for the message complexity for fundamental global problems
such as leader election, broadcast, spanning tree, and mimimum
spanning tree (MST) construction. This lower bound applies even
for randomized Monte Carlo algorithms. For all these problems,
there exist algorithms that (essentially) match this message lower
bound; in fact, these also have optimal time complexity (of D, the
network diameter) in the CONGEsT model (see e.g., [8, 20, 31]).

The clean network model does not capture many real world
networks such as the Internet and peer-to-peer networks where
nodes typically have knowledge of identities (i.e., IP addresses) of
other nodes. Also, there has been a lot of recent interest in “all-
to-all” communication models such as the congested clique [22],
Massively Parallel Computing (MPC) [14], and k-machine model
[17], where each machine is assumed to have knowledge of ID’s
of all other machines. Motivated by these applications and models,
there has been a lot of recent interest in studying message-efficient
algorithms under the so-called KT-1 version of the CONGEST model,
where nodes have initial knowledge of the IDs of their neighbors,
but no other knowledge of their neighbors. An immediate question
that arises is whether the Q(m) message lower bound also holds in
the KT-1 model; or whether sublinear, i.e., o(m) message complexity
is possible.

The above question was partially answered in a seminal paper
by Awerbuch et al. [1] who initiated the study of trade-offs between
the message complexity and initial knowledge of distributed algo-
rithms that solve global problems, such as broadcast and spanning
tree construction. For any integer p > 0, in the KT-p version of the
CoNGEST model (in short, KT-p CONGEST), each node v is provided
initial knowledge of (i) the IDs of all nodes at distance at most
p from v and (ii) the neighborhood of every node at distance at
most p — 1 from v. The bounds in this paper [1] are for comparison-
based algorithms, i.e., algorithms in which local computations on
IDs are restricted to comparisons only. This means that opera-
tions on IDs such as those used in the Cole-Vishkin coloring algo-
rithm [6] or applying random hash functions to IDs are disallowed.
Comparison-based algorithms are quite natural and indeed, most
distributed algorithms (with few notable exceptions such as Cole-
Vishkin [6] and hash-functions based algorithms of King et al [16])
are comparison-based. For the KT-1 CONGEsT model the authors
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show that Q(m) messages are needed for any comparison-based
algorithm (even randomized) that solves broadcast. Furthermore,

1+0(1)
in the KT-p CONGEST model, Q (min mn °

messages are

needed for any comparison-based algorithm that solves broadcast.
The paper also shows matching upper bounds for comparison-based
algorithms for broadcast. These lower bounds also hold for non-
comparison based algorithms, where the size of the IDs is very large
and grows independently with respect to message size, time, and
randomness. This paper left open the possibility of circumventing
the lower bound if one uses non-comparison based algorithms on
more natural ID spaces typically used in distributed algorithms
(as assumed in the current paper), where IDs are drawn from a
polynomial-sized ID space.

Nearly 35 years later, the above question was settled by King et
al. [16] who showed that the Awerbuch et al. lower bounds “break” if
the assumption that the algorithms be comparison-based is dropped
and one uses ID space that is of polynomial size.! Specifically, it is
shown in [16] that the Spanning Tree (and hence broadcast) and
Minimum Spanning Tree (MST) problem can be solved using O(n)
messages in KT-1 CoNGEST model.? In followup papers, it is shown
that these problems can be solved with o(m) messages, but with a
higher message bound of O(n!->), even in the asynchronous Con-
GEST KT-1 model [24, 25]. Using the King et al. [16] result, it is
possible to solve any graph problem (including symmetry break-
ing problems) using randomized non-comparison based algorithms
in O(n) messages. However, this takes an exponential number of
rounds. This is done by building a spanning tree using the algorithm
of King et al. and then using time-encoding to convey the entire
topology to the root of the spanning tree. The root then locally
computes the result and disseminates it to the entire network, again
using time-encoding (e.g., see [33] for details). Time-encoding uses
silence to convey information and takes at least exponential (in m)
rounds. Note that this works only in synchronous setting and not
in the asynchronous model. Hence, designing algorithms that use
O(n) (or even o(m)) messages for other graph problems, including
local symmetry breaking problems, regardless of the number of
rounds, in the asynchronous CoNGEsT KT-1 model is open. Design-
ing algorithms that use small number of messages is also relevant
from a practical point of view, especially in the context of designing
energy-efficient algorithms for resource-constrained networks such
as ad hoc wireless and sensor networks, where number of messages
exchanged is correlated to the energy spent by the algorithm.

Motivated by the above results, we initiate a similar study, but
for fundamental local symmetry breaking problems, such as (A + 1)-
coloring and Maximal Independent Set (MIS). These problems have
been studied extensively for over four decades. Significant progress
has been made in understanding and improving the running time
(round complexity) of these problems (see e.g., [2-4, 9, 10, 13, 35]
and the references therein); however, much less is known with
respect to message complexity. For (A + 1)-coloring and MIS, to the
best of our knowledge, all known distributed algorithms use at least

!This can be relaxed to allow even exponential-sized ID space: by using fingerprinting
technique [15, 16], with high probability, one can map n IDs in exponential ID space
to distinct IDs in polynomial ID space.

2We use O(f(n)) as short for O(f(n) - polylogn) and Q(g(n)) as short for
Q(g(n)/(poly log n)).
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(A + 1)-coloring MIS
C NC C NC
KTA Lower Bound | Q(m)* | Q(n) Q(m)* Q(n)
Upper Bound | O(m)* | O(n'-%) | O(m)* O(m)
KT-2 Lower Bound | Q(n) Q(n) Q(n) Q(n)
Upper Bound | O(m) | O(n') | O(n'->) | O(n'-)

Figure 1: A summary of lower and upper bounds results in
this paper. The notation “C” and “NC” stand for comparison-
based and non-comparison-based respectively. The compari-
son based upper bounds of O(m) are not from this paper; but
are immediately implied by a number of well-known MIS
and coloring algorithms (e.g., [23, 39]). The lower bounds in
the KT-2 column hold also in KT-p for any constant p > 1.
The cells marked with * are the ones where the lower bound
and upper bound are tight, i.e., within O(poly(log n)) factor.
Closing the gaps in the other regimes are interesting open
problems.

Q(m) messages. The overarching question we address in this paper
is whether these problems can be solved using o(m) messages in
the CoNGEST model and if so, under what conditions.

Our paper presents both negative and positive answers for the
above question and shows results in three general directions. First,
we show that even though the round complexity of local symme-
try breaking problems is provably much smaller than the round
complexity of global problems, comparison-based algorithms for
local symmetry breaking problems require as many messages as
they do for global problems in the KT-1 CoNGEsT model. Second,
we show that if we drop the requirement that our algorithms be
comparison-based only, then it is possible to design algorithms for
local symmetry breaking problems in the KT-1 CONGEST model
that use far fewer messages. Third, as we increase p, the radius of
initial knowledge, to just two, i.e., in the KT-2 CONGEST model, it is
possible to design algorithms for local symmetry breaking problems
that use even fewer messages. The specific results that illustrate
these three directions are presented in the next subsection.

1.1 Main Results

We present new lower and upper bounds on the message com-
plexity for two fundamental symmetry breaking problems, namely,
coloring and MIS. See Figure 1 for a summary.

Lower bounds: In the KT-1 CoNGEST model, we show that
any comparison-based algorithm, even a randomized Monte
Carlo algorithm with constant success probability, requires
Q(n?) messages in the worst case to solve either (A + 1)-
coloring or MIS, regardless of the number of rounds. Our
result can be considered as a counterpart to the classical
result of Awerbuch et al. [1], but for local problems. We also
show that in the KT-p CoNGEST model, for any constant
p =1, (A + 1)-coloring and MIS require Q(n) messages even
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for non-comparison-based and Monte Carlo randomized al-

gorithms with constant success probability.

Upper bounds: In the KT-1 CoNGEST model, we present the
following randomized non-comparison-based algorithms for
coloring that with high probability® (w.h.p.) use o(m) mes-
sages and run in polynomially many rounds.

(@) A (A + 1)-coloring algorithm that uses O(n'->) messages,
while running in O(D + v/n) rounds, where D is the graph
diameter. Our result also implies an asynchronous algo-
rithm for (A + 1)-coloring with the same message bound
but running in O(n) rounds.

(b) A (1+¢&)A-coloring algorithm that uses O(n/e?) messages,
while running in O(n) rounds.

If we increase our input knowledge slightly, i.e., we work in

the KT-2 CoNGEST model, where nodes have initial knowl-

edge of their two hop-neighborhood, then we get the following
additional and stronger result.

(¢) A comparison-based algorithm for MIS that uses O(n
messages, while running in O(y/n) rounds.

Our algorithms for coloring and MIS are the first-known al-
gorithms that take o(m) messages and running in polynomial
number of rounds.

1.5)

1.2 Other Related Work

Several recent papers (see e.g., [11, 12, 24, 25] have studied message-
efficient algorithms for global problems, namely, construction of
spanning tree, minimum spanning tree, broadcasting and leader
election, in the KT-1 CoNGEST model inspired by the work of King et
al. [16]. We note that all these are non-comparison-based algorithms.
We use these prior algorithms for our non-comparison-based algo-
rithms in the KT-1 and KT-2 models. In a recent paper, Robinson
[33] shows non-trivial lower bounds on the message complexity of
constructing graph spanners in the CoNGesT KT-1 model.

In contrast to global problems, much less is known about obtain-
ing sublinear, i.e., o(m) algorithms for local problems, such as MIS
and coloring. Pai et al. [28] showed that MIS has a fundamental
lower bound of Q(n?) messages in the CONGEST KT-0 model (even
for randomized algorithms). However, this result does not extend
to the KT-1 model. In contrast, they also showed that the 2-ruling
set problem (note that MIS is 1-ruling set) can be solved using O(n)
messages in the KT-0 model in polynomial time. To the best of our
knowledge, we are not aware of other results on the message com-
plexity (in particular, lower bounds and sublinear upper bounds)
on fundamental symmetry breaking problems, vis-a-vis the initial
input knowledge.

Recently, [34] initiated the study of volume complexity of dis-
tributed graph problems. The volume complexity measures the
size of the network (i.e., number of nodes) that a node must learn
about in order to compute its output. This measure of complexity
of distributed algorithms does not seem to have any (non-trivial)
connections to the message complexity (which instead quantifies
the total number of used edges), and vice versa.

3This refers to probability at least 1 — n=° for constant ¢ > 1.
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1.3 Technical Contributions

e Lower bounds: To obtain our KT-1 CONGEST lower bounds
for comparison-based algorithms for (A + 1)-coloring and
MIS, we start with the machinery introduced by Awerbuch
et al. [1] for proving their KT-1 CoNGEST lower bounds for
comparison-based algorithms for broadcast. At the core of
their approach is an indistinguishability argument that uses
edge crossings. Edge crossings have been used numerous
times to prove a variety of distributed computing lower
bounds (see [19, 20, 28, 30, 32] for some examples). However,
in the KT-1 CoNGEST model, indistinguishability arguments
via edge crossing are more challenging because when an
edge incident on a node is crossed, the node is exposed to a
new ID due to KT-1. For symmetry breaking problems, there
is a further challenge due to the fact that multiple outputs
are possible and the indistinguishability argument needs to
work for all outputs. Finally, since we want to show our
lower bounds even for Monte Carlo algorithms with con-
stant success probability, we require our indistinguishability
arguments to apply to a large fraction of edge crossings (so
as to be able to apply Yao’s lemma [26, 38]). The lower bound
graph family and ID assignment we design, overcomes all of
these challenges. We use a unified construction that works
for both (A + 1)-coloring and MIS and we expect this con-
struction to work for other symmetry breaking problems
such as maximal matching and edge coloring.

e Upper bounds: Our upper bounds are largely obtained by
exploiting the fact that shared (or public) randomness com-
bined with KT-1 is a powerful way of eliminating the need to
communicate over a large number of edges.* Specifically, we
start with the recent coloring algorithm of Chang et al. [5]
that works efficiently in the MPC model. Roughly speaking,
this algorithm starts with a probabilistic step; by randomly
partitioning the nodes and the color palette. Then, after this
probabilistic step, a large number of edges become inactive
for the rest of algorithm. This property is crucial to ensuring
that the algorithm is efficient in the MPC model. After the
probabilistic step, nodes exchange their state with neighbors
in so that every node can determine which of its incident
edges to render inactive. This state exchange is cheap in the
MPC model, but is costly with respect to messages in the
CoNGEsT model. We show how to simulate this coloring al-
gorithm in the CoNGEsST model without the costly exchange
of state. Instead we use shared randomness with limited
dependence combined with KT-1.

1.4 Preliminaries

1.4.1  KT-p CoNGEST model. We work in the synchronous, message-
passing model of distributed computing, known as the CONGEST
model. The input is a graph G = (V, E), n = |V|, which also serves
as the communication network. Nodes in the graph are processors
with unique IDs from a space whose size is polynomial in n. In
each round, each node can send an O(log n)-bit message to each

“4Note that we do not a priori assume shared randomness, but only private randomness
(as is usual), but use the danner structure (Section 1.4.3) to share privately generated
random bits throughput the graph.
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of its neighbors. Since we are interested in message complexity,
the initial knowledge of the nodes is important. For any integer
p > 0, in the KT-p CoNGEST model each node v is provided initial
knowledge of (i) the IDs of all nodes at distance at most p from v
and (ii) the neighborhood of every vertex at distance at most p — 1
from v.

1.4.2  Comparison-based Algorithms. Often, the outcome of a dis-
tributed algorithm does not depend on specific values of node
IDs, but may depend on the relative ordering of IDs. For example,
node IDs of endpoints may be used to break ties between edges of
the same weight vying to join a minimum spanning tree. In this
case, only the ordering of the IDs matters, not their specific values.
Since this type of behavior is characteristic of many distributed
algorithms, Awerbuch et al. [1] formally define these as comparison-
based algorithms. In comparison-based algorithms, the algorithm
executed by each node contains two types of variables: ID-type
variables and ordinary variables. In the KT-p CONGEST model, the
ID-type variables at a node v will store the IDs of all nodes within
p hops of v. Nodes can send ID-type variables in messages, but
since messages in the CONGEST model are restricted to be O(log n)
bits long, each message can contain only a constant number of
ID-type variables. The local computations at any node may involve
operations of the following two forms only:

(1) Comparing two ID-type variables I;, I; and storing the result

of the comparison in an ordinary variable.

(2) Performing an arbitrary computation on ordinary variables

and storing the result in another ordinary variable.

Note that if randomization is allowed, then nodes can choose
to ignore the node IDs and choose a new set of (O(log n)-length) IDs
and do arbitrary computations with them. These are still comparison-
based algorithms.’

1.4.3  Efficient Broadcasting in the KT-1 CONGEST model. As ex-
plained earlier, shared randomness along with initial knowledge,
plays a key role in making our algorithms message-efficient. We
use a graph structure called a danner introduced by Gmyr and Pan-
durangan [12] to share random bits among the nodes in the graph
in a message-efficient fashion. Their specific result is stated in the
following theorem.

THEOREM 1.1 (GMYR AND PANDURANGAN [12]). Given an n-vertex,
m-edge, diameter D, graph G = (V, E) and a parameter § € [0, 1],
there is a randomized algorithm in the KT-1 CONGEST model, that
constructs a spanning subgraph (i.e., a danner) H of G such that H
has O(min{m, n'*9}) edges and diameter O(D + n'=9) with high
probability. This construction uses O(min{m, nl+d}) messages and
runs in O(n'=%) rounds with high probability.

We need the following corollary of this theorem.

COROLLARY 1.2. Given an n-vertex, m-edge, diameter D graph
G = (V,E) and a parameter § € [0, 1], there exists a randomized
algorithm to solve the leader election and broadcast problems in the
synchronous KT-1 CONGEST model using O(min{m, n1+5}) messages
and in O(D + n'~%) rounds with high probability.
SHowever, note that such randomly chosen node IDs are unknown to neighbors and if

the algorithm uses only those IDs then this becomes effectively the KT0 model where
bounds are already known [1, 28].
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We use this corollary to share O(poly log n) random bits in a
message-efficient manner by first electing a leader and then having
the leader locally generate the random bits and broadcasting them.
The message and time complexities for this operation are given by
the above corollary. We note that the above danner bounds hold in
KT-1 CoNGEST model, which is synchronous.

1.4.4  Tail inequalities and hash functions with limited independence.
To obtain message-efficient algorithms in the KT-1 model, we make
use of hash functions with limited independence. These hash func-
tions use c-wise independence and hence we use the following tail
inequalities and properties of such hash functions.

The following tail inequalities are from [36].

LEMMA 1.3. Letc > 4 be an even integer. Suppose Z1,Za, . . ., Z;
are c-wise independent random variables taking values in [0, 1]. Let
Z = Zle Z;i and p = E[Z], and let A > 0. Then,

ct\¢/2
Pri|Z - pl > A] <2 (A—Z)

LEMMA 1.4. Suppose that X is the summation of n, c-wise in-
dependent 0-1 random variables, each with mean p. Let u satisfy

p > E[X] = np. Then,
PrX = (1 + &)p] < exp(—min{c, 82p}).
The following is Definition 7 in [7].

Definition 1.5. For N, L, ¢ € N, such that ¢ < N, a family of func-
tions H = {h : [N] — [L]} is c-wise independent if for all distinct
X1,%2,...,%c € [N], the random variables h(x1), h(x2), ..., h(x¢)
are independent and uniformly distributed in [L] when & is chosen
uniformly at random from H.

The following lemma appears as Corollary 3.34 in [37].

LEMMA 1.6. Foreverya, b, c, there is a family of c-wise independent
hash functions H = {h : {0,1}* — {0,1}?} such that choosing
a random function from H takes ¢ - max{a, b} random bits, and
evaluating a function from H takes poly(a, b, c) computation.

2 MESSAGE COMPLEXITY LOWER BOUNDS

2.1 Technical Preliminaries

We now state key definitions and notation from Awerbuch et al. [1]
which we will use in our proofs of the Q(m) message lower bounds
for (A + 1)-coloring and MIS, for comparison-based algorithms, in
the KT-1 CoNGEST model.

Definition 2.1 (Executions). We denote the execution of a CoN-
GEST algorithm (or protocol) A on a graph G(V, E) with an ID-
assignment ¢ by EX(A, G, ¢). This execution contains (i) the mes-
sages sent and received by the nodes in each round and (ii) a snap-
shot of the local state of each node in each round. We denote the
state of a node v in the beginning of round i of the execution
EX(A, G, ¢) by Li(EX, v).

The decoded representation of an execution is obtained by replac-
ing each occurrence of an ID value ¢(v) by v in the execution. This
decoded representation allows us to define a similarity of execu-
tions. We denote the decoded representations of all messages sent
during round i of an execution EX(A, G, ¢) as h;j(EX(A, G, ¢)).
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Definition 2.2 (Similar executions). Two executions of a CONGEST
algorithm A on graphs G(V, E) and G’(V, E”) with ID-assignments
¢ and ¢’ are similar if they have the same decoded representation.
Likewise, we say that two messages are similar if their decoded
representations are the same.

A crucial element of our lower bound proof consists of taking
two graphs G(V, E) and G’(V’, E’), where G’ is obtained from G by
“crossing” a pair of edges in G, and showing that the executions of
any comparison-based algorithm, on G and G’ are similar. Show-
ing similarity of executions requires that the “crossing” of edges
remains, in a certain sense, hidden from the algorithm. Below, we
define what it means for an algorithm to utilize an edge. Later on
we will be able to show that if the edges being “crossed” are not
utilized by the algorithm, then the edge “crossing” is hidden from
the algorithm. One way an algorithm utilizes an edge is by sending
a message across it. But, this notion of utilization does not suffice
in the KT-1 model. We need the stronger notion, defined below.

Definition 2.3 (Utilized Edge). Anedge e = {u, v} is utilized if any
one of the following happens during the course of the algorithm: (i)
a message is sent along e, (ii) the node u sends or receives ID ¢(v),
or (iii) the node v sends or receives ID ¢(u).

By definition, the number of utilized edges is an upper bound on
the number of edges along which a message sent. Using a charging
argument, Awerbuch et al. [1] show that the number of utilized
edges is also upper bounded by a constant times the number of
edges along which a message sent. We restate their claim here.

LEMMA 2.4 (LEMMA 3.4 oF [1]). Let my, denote the number of uti-
lized edges in an execution EX(A, G, §). Then the message complexity
of the execution is Q(my,).

2.2 Lower Bound Graph Construction and ID
Assignments

We now describe the construction of lower bound graphs that we
use for our Q(n?) message complexity lower bounds. The same con-
struction works for both the (A + 1)-coloring and MIS lower bounds.
Recall that these bounds are for comparison-based algorithms in
the KT-1 CONGEST model.

We start with a graph G(X, Y, Z, E) such that |[X| = |Y| = |Z| =t
and the subgraphs of G induced by X U Y and Y U Z are both
isomorphic to the complete bipartite graph K; ;. Thus, |E| = 2t2. We
thenadda copy G'(X’,Y’, Z’, E’) of G and consider the graph GUG’.
We call this the base graph.LetV = XUYUZand V/ = X'UY'UZ".
For each v € V, the corresponding copy in V’ is named v’. Let
n = |VUV’|. Thus t = n/6. From the base graph GUG’, we obtain a
crossed graph as follows. For a vertex y € Y, cross an edge e = {y, z}
in G, where z € Z with the edge ¢/ = {x’,y’} in G’ where x” € X’
to obtain the graph G, /. When we cross the edge e = {y,z} € E
with e’ = {x’,y’} € E’, the resulting crossed graph G ¢ has vertex
set VUV’ and edge set (EUE’\{e,e’})U{{y,y’}, {x’, z} }. The base
graph G U G and the crossed graph G, for edges e € E, e’ € E’
are illustrated in Figure 2.

We now define appropriate ID-assignments for the base graph
and the crossed graph. Let S be an arbitrary totally ordered set
such that |S| = 40¢, and let S be the sorted list of elements in S in
ascending order. We will assign distinct elements in S as ID’s to
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Figure 2: This figure shows the base graph G U G’ and the
crossed graph G, ./, described in Section 2.2

the base graph and the crossed graph. We use a short-hand and say
that the ID of a vertex v is i € [0, 40t), when we mean that the ID of
v is S[i]. Note that since S is sorted in ascending order, the relative
ordering of the indices is the same as that of the corresponding ID’s
inS.

Let ¢ : V — [0,40¢) be an ID assignment such that ¢(v) is
even for all v € V and additionally ¢(v) € [0, 2¢) if v € X, ¢(v) €
[10t,12t) if v € Y, and $(v) € [20t,22¢t) if v € Z. For a vertex
y € Y and pair of incident edges e = {y,z} and ¢’ = {x’, ¢y}, we
define a “shifted” ID assignment ¢ , for the vertex set V" of G’. We
motivate this “shifted” assighment and define it precisely further
below. But for now, assuming ¢/, o I8 defined, we define the ID
assignment Y o : VUV’ — [0,40t) as just the union of ¢ and
ng;’e,, ie., Ye,e(v) = P(v) forallv € V and e, ¢ (v) = éve,(v’) for
all v’ € V’. Our first goal in this subsection is to show that these
two executions

EX = EX(.?[, GuU Gl’ lpe,e’)§ EXe,e' = EX(ﬂ, Ge,e’s ‘//e,e')

on the base graph G U G’ and the crossed graph G, are similar
for any comparison-based algorithm A.

For the executions EX and EX, . to be similar, it must be the case
that the crossing of edges e and e’ is hidden from algorithm A. To
achieve this, the ID assignment ¢ o of V’ must be carefully chosen.
For example, vertex z has neighbor y in GU G’, but has neighbor x”
in Ge, ¢ (see Figure 2). In the KT-1 model, z’s initial local knowledge
consists of vertex y in G U G” and vertex x” in G, . Therefore, for
A to not distinguish between these two situations, it must be the
case that the ID of x’ is “adjacent” to the ID of y. To achieve this,
without disrupting other constraints on the relative order of ID’s,
we start by assigning vertices in X’ the ID’s of their corresponding
vertices in X and then “shift” these by (#(y) — #(x)) + 1. As a result,
vertex x” ends up with ID ¢(y) + 1. A similar “shift” is performed to
obtain the ID’s of vertex set Y, though this time the “shift” is by the
amount (¢(z) — ¢(y)) + 1 because we want vertex y’ to be “adjacent”
to vertex z. The “shift” for vertex set Z’ just needs to be so that
the ID assignment is disjoint, We now define the ID assignment

'V —[0,40t) as

$(v) + (9(y) — p(x)) + 1, if o’ € X’
¢l (V) = {6() + ($(2) — $)) + 1, if v € Y
¢(v) + 10t + 1, if o’ € Z/

1

Note that the IDs of all vertices in each of the parts, X', Y’, and
Z', are “shifted” by the same amount, though IDs in different parts
may be “shifted” by different amounts.

The following observations about ¢;’ o are easy to verify.

(i) The ranges of ¢ and ¢, , are disjoint.
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(ii) Moreover, ¢é’e,(v) €[8t+ 1,14t + 1] ifv € X/, ¢7;7e,(v) €
[18t + 1,24t + 1] ifv € Y/, and ¢é,e,(v) € [30t + 1,32t + 1] if
veZ.

(iii) Forany u,v € V,u # v, p(u) < ¢(v) iff¢;’e,(u') < ¢é’e,(v’).
Item (iii) is simply saying that the ID ordering on V' induced by
¢;, o s the same as the ID ordering induced by ¢ with respect to
the corresponding vertices in V. This follows from the fact that the
ID’s of vertices in X’ are obtained by shifting the ID’s of vertices
in X by the same amount, thus preserving the relative ordering of
ID’s in X and X’. Similarly, for vertex sets Y” and Z’. Furthermore,
even though the ID’s of different sets, X’, Y/, and Z’ are obtained
by “shifting” by different amounts, the “shifting” also ensures that
ID’s in X’ remain less than ID’s in Y’, which in turn remain less
than ID’s in Z’.

To prove that EX and EX, - are similar, we need two interme-
diate ID assignments for the set V U V’. Recall that edge e = {y, z}
and edge e’ = {x’,y}.

(i) Define ¥, ¢/, x to be the ID assignment i/ . except for inter-
changing the values of x” and y (i.e. Ve, e/, x(y) = ¢é’e,(x')
and Ye,er,x(x") = $(y))-

(ii) Define ¢, ¢, , analogously as . . except for interchang-
ing the values of y’ and z (i.e. Ye,e,;(2) = ;,e,(y’) and
Ve,er,z(y) = $(2)).

Using these ID assignments, we define two intermediate executions
on the base graph GU G’.

EXe,e’,x = EX(.?(, GuU G,, lﬁe,e’,x);
EXe,e’,z = EX(&ZL Gu G’, Ipe,e',z)

The following lemma, which shows that the executions EX,
EXe e’ x, and EX ¢,y are similar, critically uses the fact that the
ID assignment i/, ¢+ shifts the ID’s of vertices in X’ U Y’ U Z’ so
that the ID of x” becomes “adjacent” to the ID of y and the ID of y’
becomes “adjacent” to the ID of z.

LEMMA 2.5. Foranyx € X,y € Y,z € Z and edgese = {y, z} and
e’ = {x’,y’}, the executions EX, EX, ¢ x and EX, ¢, are similar.

Proor. All three executions have the same input graph G U G’.
The execution pair EX and EX, . x have the same ID assignment
except for the vertices x’ and y, which have their ID’s swapped.
Note that by definition of lﬁ‘;e, and ¢é’e, in (1), we have

Ve,or (X)) = ¢, o (X)) = $(x) + (P(y) — P(x)) + 1 = p(y) + 1.

Furthermore, e, ¢/ (y) = ¢(y). Therefore, when we swap the ID’s of
x" and y in i, ¢ to obtain Y, ¢ x, there is no change in the relative
ordering of ID’s and therefore the executions EX and EX, ¢/  are
similar.

A similar argument holds for the execution pair EX and EX, ¢/, ;.
By the definition of lﬁé’e, and qﬁé’e, in (1), we have

Ve (W) = 6 (") = () + ($(2) - $()) + 1 = §(2) + 1

and Y, ¢(z) = ¢(2). Thus the relative ordering of ID’s in /¢ ¢ and

Ve e,z is the same and therefore the executions EX and EXe ¢’
are similar.

The lemma follows because similarity of executions is transitive.

O
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We can derive the final tool we need by directly appealing to a
lemma in Awerbuch et al. [1]. Informally, the lemma shows that if
edges e = {y, z} and {x’, y’} are not utilized in the execution EX of
algorithm A, then executions EX and EX, . are similar. The main
obstacle is that the initial knowledge vertices x’,y, 3, z is different
in EX and EX ¢ so a direct inductive proof like in Lemma 2.5 does
not work. But we can use the intermediate executions of Lemma 2.5
to show the similarity for these four vertices. For all other vertices,
we can do a direct inductive argument.

LEMMA 2.6 (RESTATEMENT OF LEMMA 3.8 OF [1]). Letx € X,y € Y,
and z € Z be arbitrary vertices and let e = {y,z} and e’ = {x’,y’}.
Suppose that during the first r rounds of the execution EX both e and
e’ are not utilized. Then the following hold for every round1 < i <r
of the executions EX, EXe ¢’ x  EXe,e’,z and EXe ¢':

(1) The states of the nodes in the beginning of the round, i.e. L;(-, ")

satisfy:

(a) For every processorw € V\ {y,z,y’,x"}, Li(EXe,er, W) =
Li(EX, W).

(b) Foru € {x’,z}, Li(EX¢ ¢, u) = Li(EXe, e/ x, ).

(c) Forv e {y,y'}, Li(EXe,er,v) = Li(EXe, e’ 2, ).

(2) The messages sent during the round are similar, i.e., h;(EX) =

hi(EXe,e’,x) = hi(EXe,e’,z) = hi(EXe,e’)~

(3) InEXe, ¢, no messages are sent during the round over the edges

{x’,z} and {y,y’}.

COROLLARY 2.7. Suppose that during the execution EX neither of
the edgese = {y,z} and e’ = {x’,y’} are utilized, for some vertices
x € X,y €Y, andz € Z. Then the executions EX and EX, . are
similar and furthermore in EX, o/, no messages are sent through the
edges {y,y'} and {x’, z}.

In the next subsections, we will show that this similarity leads
to a contradiction with respect to correctness for problems such as
(A + 1)-coloring and MIS. This in turn will imply a constraint on
the behavior of algorithm A: for every pair of edges e = {y, z} and
e’ = {x’,y’}, at least one of the edges is utilized by A. This in turn
will lead to the message complexity lower bound we desire.

2.3 Q(m) message lower bound for
(A + 1)-Coloring in KT-1 CONGEST

Now that we have shown that EX and EX, ¢/ are similar if e and
e’ are not utilized by algorithm A, we will show that for some
problems this leads to a contradiction. The intuition for this is
simple. Let ¢ and ¢’ be ID assignments for V and V"’ respectively,
that consistently order the vertices, i.e., ¢p(u) < ¢(v) iff ¢’(u’) <
¢’(v’) for all u,v € V. Since G and G’ are isomorphic, it is easy
to show that EXg = EX(A, G, ¢) and EXg = EX(A,G’, ¢’) are
similar. This is shown below in Lemma 2.8 below. Now consider the
base graph G U G’ and the ID assignment /. ¢ of V U V’. Lemma
2.8 implies that corresponding vertices v and v’ have the same local
states after execution EX = EX(A,GU G, Y, ’) completes. Since
EX and EX, o = EX(A, Ge,¢’, Ye,e) are similar, this also implies
that vertices v and v’ have the same local states after execution
EXe,e- But, in the crossed graph G, ¢, y and y’ are neighbors. For
problems in which neighboring vertices ought not to have the same
local state (e.g., neighboring vertices cannot have the same color in
a solution to the vertex coloring problem), this is a contradiction.
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LEmMA 2.8. Consider an arbitrary vertexy € Y and an arbitrary
pair of edges e = {y,z},z € Z ande’ = {x",y’}, x’ € X’. For
any comparison-based algorithm A in the KT-1 CONGEST model, the
executions EXG = EX(A, G, ¢) and EXg = EX(A, G, ¢; o) are
similar. ’

Proor. Since the input graphs G and G’ are copies of each other,
the only thing that is different between the two executions is the
ID assignments. However, Property (iii) of the ID assignment ¢/, e
above implies that every ID comparison by A on G yields the same
result as the corresponding ID comparison on G’. Therefore, by an
inductive argument it can be shown that at the beginning of each
round, the state of each vertex v in G is the same as the state of the
corresponding vertex v’ in G’ and the messages received by these
vertices are also be the same. This gives us that the executions EXg
and EX are similar. ]

LEMMA 2.9. Letx € X,y € Y, andz € Z be three vertices such that
the edgese = {y, z)} ande’ = {x’,y’} are not utilized in the execution
EX. Then, algorithm A computes an incorrect (A + 1)-coloring for
the crossed graph Ge .

Proor. In the execution EX, since the input graph has two dis-
connected components G and G’, Lemma 2.8 gives us that the color
of a vertex v in G is the same as the color of the corresponding
vertex v’ in G’. Since the edges e = {y,z} and ¢/ = {x’,y’} are
not utilized in G U G’, applying Corollary 2.7, A will compute
the same coloring in the graph G, ¢ as it will in G U G’. This im-
plies a monochromatic edge {y, y’} in G, - which contradicts the
correctness of the algorithm. O

THEOREM 2.10 (DETERMINISTIC LOWER BOUND). Let A be a deter-
ministic comparison-based algorithm that computes a (A+1)-coloring.
Then the message complexity of A is Q(n?). This holds even if the
vertices know the size of the network.

Proor. Suppose that A is a deterministic comparison-based
algorithm that computes a (A + 1)-coloring and has message com-
plexity o(n?). Then by Lemma 2.4, the number of edges utilized
by A is o(n?). This implies that there exists a y € Y and edges
e ={y,z} and ¢’ = {x’,y’} such that e and ¢’ are not utilized when
A executes on GUG’. By Lemma 2.9 this implies that A computes
an incorrect (A + 1)-coloring for Ge . O

We now extend this lower bound to Monte Carlo randomized
algorithms, even with constant error probability. To do this we
strengthen Lemma 2.9 so that it applies not just to a single crossed
graph, but to the entire family of crossed graphs. Let ¥ denote
the family of all crossed graphs, i.e., ¥ = {Ge,e’ | € = {y, 2z}, ¢’ =
{x",y'}, x,y,z € V}. Note that |F| = t3 because there are t choices
for y and for each choice of y, there are 2 choices for e and ¢’.

LEMMA 2.11. Let A be a deterministic comparison-based KT-1
CONGEST algorithm that computes a (A + 1)-coloring correctly on
at least a constant § fraction of graphs in the family F. Then the
message complexity of A is Q(5n?). This holds even if the vertices
know the size of the network.

Proor. Assume for the sake of contradiction that the message
complexity of A is o(n?). By Lemma 2.4, we have that A utilizes
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0(8n?) edges in any graph that it runs on. Specifically consider
the execution EX of algorithm A on input graph G U G’ and ID
assignment 1/, .- where e, e’ denote a graph G, ¢ in the family ¥ .

Since A utilizes o(5n?) edges, there can only be o(n) = o(t)
vertices in Y such that more than c¢n/6 = ct incident edges are
utilized, for some constant c to be determined later. Recall that
t = n/6. The rest of the t — o(t) vertices in Y have less than ct
incident edges that are utilized. By Lemma 2.8 the same statement
holds for the corresponding vertices in Y” because in EX, the two
graphs G and G’ that form the input graph are disconnected, which
implies the executions of A on G and G’ are similar.

So for each such vertex y € Y, there are at most (c?/4)t* edge
pairs of the form e = {y, z}, ¢’ = {x’, y’} such that e, ¢’ are utilized.
Therefore, by Lemma 2.9, the algorithm computes an incorrect
(A + 1)-coloring on at least (1 —0(1))(1 - (c?/4)) = 1 - (c?/4) — o(1)-
fraction of the graphs in 7 (since for each y € Y there are exactly t2
graphs in F). Setting ¢ = V28, the algorithm computes an incorrect
(A + 1)-coloring on at least 1 — §/2 — o(1)-fraction of the graphs
in . This is a contradiction if 1 - § < 1 - /2 — o(1) or § > o(1).
Since § is a constant, we get a contradiction. O

A simple application of Yao’s lemma [26, 38] with the uniform
distribution on all the graphs in the family # gives the following
theorem.

THEOREM 2.12 (RANDOMIZED LOWER BoUND). Let A be a ran-
domized Monte-Carlo comparison based KT-1 CONGEST algorithm
that computes a (A + 1)-coloring with probability of error less than
a constant € € [0, 1). Then the worst case message complexity of A
is Q((1 — €)n?). This holds even if the vertices know the size of the
network.

2.4 Q(m)message lower bound for MIS in KT-1
CONGEST

In this section, we show analogous theorems for MIS. The proofs
are omitted either due to space constraints (see [29]) or because
they are similar to the proofs in the previous section.

LEMMA 2.13. Letx € X,y € Y, and z € Z be three vertices such
that the edges e = {y,z} and ¢’ = {x’,y’} are not utilized in the
execution EX. Then, algorithm A computes an incorrect MIS on G ¢'.

THEOREM 2.14 (DETERMINISTIC LOWER BOUND). Let A be a de-
terministic comparison-based KT-1 CONGEST algorithm that solves
the MIS problem. Then the message complexity of A is Q(n?). This
holds even if the vertices know the size of the network.

LEMMA 2.15. Let A be a deterministic comparison-based KT-1
CONGEST algorithm that computes an MIS correctly on at least a
constant § fraction of graphs in the family F. Then the message
complexity of A is Q(5n?). This holds even if the vertices know the
size of the network.

THEOREM 2.16 (RANDOMIZED LOWER BOUND). Let A be a ran-
domized Monte-Carlo comparison-based KT-1 CONGEST algorithm
that computes an MIS with probability of error less than a constant
€ € [0, 1). Then the worst case message complexity of A is Q((1—€)n?).
This holds even if the vertices know the size of the network.
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2.5 Q(n) message lower bound in KT-p
CONGEST

The Q(m) lower bounds we have proved apply to comparison-based
algorithms in the KT-1 CONGEST model. We now prove a weaker
Q(n) message complexity bound for (A + 1)-coloring and MIS, but
these apply more generally, to all algorithms (even non-comparison-
based) and to the KT-p CoNGEST model, for any constant p.

THEOREM 2.17. Any randomized Monte Carlo algorithm that com-
putes an MIS or a (A + 1)-vertex coloring with probability at least g,
requires Q(n) messages in expectation in the KT-p CONGEST model,
for any constant p.

Proor. Similarly to [21, 27], we assume without loss of gener-
ality that algorithms follow the general framework that all nodes
perform their coin flips initially and only exchange their current
local state (including coin flips) without performing any other local
computation until the very last round.

For the given constant p, define the constant k to be the smallest
integer such that

log™ (k) > 2(p + 3).
Consider an n-node graph G consisting of the disjoint union of n/k
cycles each of k nodes.® For each cycle C;, we fix a set of IDs R;
from some integer range of size k such that all ID ranges assigned
to the cycles are pairwise disjoint. We will equip the nodes of each
cycle C; with k unique IDs given by some permutation of R;, as
described below.

Suppose towards a contradiction that there exists an algorithm
B, that computes a 3-coloring on G while sending o(n) messages
in expectation. We provide additional power to the algorithm by
revealing, to each node u, the coin flips of the nodes in its p-
neighborhood. Since there are n/k = Q(n) cycles but the expected
message complexity of B, is o(n), it holds that, with probability
at least %, there exists a cycle C; such that the nodes in Cj do not
send any messages at all when executing By; call this event MUTE.
Note that the probability bound on MuTE holds for any possible
asssignment of IDs to the nodes.

We now condition on MUTE occurring. Consider any node u € Cj
and observe that the output of u is a function of its initial knowledge,
i.e., its random coin flips and the local state of its p-neighborhood.
We point out that, even though that u also has knowledge of n, it is
easy to see that this does not have any impact on the output of the
algorithm. It follows that the execution of algorithm B, at u can
be simulated by a canonical p-round algorithm By under the KT—0
assumption that exchanges messages for the first p rounds without
performing any other computation and then outputs the color at u
obtained by locally computing the state transitions of the nodes in
u’s p-hop neighborhood according to B,,. Clearly, the output at u
follows the exact same probability distribution when executing B,
under the KT-p assumption as it does when executing algorithm
By under the KT-0 assumption.

A straightforward consequence of [27] is that, for each cycle C;,
and any canonical p-round algorithm, there exists some permuta-
tion of the set R;, denoted I;, such that the algorithm fails to yield
a valid coloring with some probability greater than % (assuming

®For simplicity, we assume that n/k is an integer.



Session 4: Shortcuts, Spanners, and Message Complexity

KT-0) when the nodes in C; are assigned the IDs in I;, where this
probability is taken over the coin flips of the nodes in C;. Let I be
the resulting ID assignment if we assign the IDs of the nodes in
each cycle C; according to I;.

Now consider the execution of B, on graph G with ID assignment
I. Since event MUTE occurs with probability at least %, the above
implies that algorithm B, fails to yield a valid coloring on at least
one of the cycles with probability > %, yielding a contradiction. O

3 UPPER BOUNDS IN KT-1 CONGEST
3.1 (A +1)-Coloring using O(n!-3) Messages
In this section we present a (A + 1)-list-coloring algorithm in the
KT-1 CoNnGEsT model that uses O(n'-?) messages. This algorithm is
obtained by utilizing — with some modifications - the simple graph
partitioning technique introduced recently by Chang et al. [5]. This
technique is central to the fast (A + 1)-coloring algorithms that
Chang et al. [5] obtain in different models of computation, namely
Congested Clique, MPC, and Centralized Local Computation.

The Chang et al. [5] graph partitioning scheme is as follows. Let
¥(v) denote the palette of vertex v € V and let k = VA.

e Vertex set partition: We partition V into By, ..., B, L as
follows. Include each v € V in the set L with probability

q= 9(\/logn

Al/4

). Then each remaining vertex joins one of

By, ..., B uniformly at random.

e Palette partition: Let C = |J, ¢y ¥(v) be the set of all
colors. We partition C into k sets Cy, . ..,Cr where each
color ¢ € C joins one of the k sets uniformly at random.

Chang et al. [5] then show that whp, the output of the parti-
tioning scheme satisfies the following 4 properties, assuming that
A = w(log? n). These properties allow us to color each set B; using
palette C;, in parallel, and then recursively color the set L until it
becomes small enough to color trivially.

(i) Size of Each Part: |[E(G[B;])| = O(|V|), for each i € [k].
Also, |L| = O(q|V]) = o( Viogn | 1y

Al/4

(ii) Available Colors in B;: For eachi € {1,...,k} and v €
Bi, let the number of available colors in v in the subgraph
B; be gi(v) = |¥(v) N Cj|. Then g;(v) > A; + 1, where
Aj := max,ep; degp, (v).

(iii) Available Colors in L: For each v € L, define gy (v) :=
|¥(v)| — (degg(v) — degy (v)). It is required that gr(v) >
max{deg; (v), AL, — Ai/‘l} + 1 for each v € L, where Ay :=
maxy ey, degy (v). Note that g1.(v) represents a lower bound
on the number of available colors in v’s palette after all of
By, ..., By have been colored.

(iv) Remaining Degrees: The maximum degrees of B; and L
are degp (v) < A; = O(VA) and deg; (v) < Ap = O(qA) =

o5

NG ) - A. For each vertex, we have that degp_ (v) <

max{O(log n), O(1/VA) - deg(v)} and also have deg;(v) <
max{O(log n), O(q) - deg(v)}.

We now present our algorithm, which takes as input an n-vertex
graph G with maximum degree A and diameter D. The algorithm

255

PODC 21, July 26-30, 2021, Virtual Event, Italy

runs in the KT-1 CoNGEST model and produces a (A+1)-list-coloring
of G using O(n!->) messages and running in O(D + v/n) rounds.

Algorithm 1: KT-1 (A + 1)-Coloring Algorithm:

1 For § = 1/2, build a danner H, elect a leader ¢, and have the
leader broadcast a string R of O(log? n) random bits.

2 Nodes use the O(log? n) bits of R to sample three
O(log n)-wise independent hash functions: (a) Ay, to decide
whether to join L, (b) h, to decide which set B; to join, and
(c) hc, to determine which color goes into which part C;.

3 Nodes execute a randomized algorithm for list coloring by
Johansson [39] in each B; in parallel.

4 Using the danner H, we can check whether the induced
graph G[L] has O(n) edges.

5 If it does, we execute the list coloring algorithm by
Johansson [39] on G[L].

6 If not, we recursively run this algorithm on G[L] with the
same parameter n.

The “full independence” version of the following lemma is proved
in [5]. We provide a brief sketch of the changes required in this
proof to make a version with limited independence go through.

LEMMA 3.1. Properties (i)-(iv) mentioned above hold w.h.p., even
when the partitioning of vertices and colors is done using O(log n)-
wise independence, as described in Line 2 of Algorithm 1.

Proor. Chang et al. [5] show that this lemma holds when the
vertex partitioning is done using full independence, while the color
partitioning is done using O(log n)-wise independence. A closer
look at their proof reveals that all four properties are shown using
Chernoff bounds, and these bounds can be safely replaced by limited
dependence Chernoff bounds described in Lemma 1.4. Therefore
the four properties hold whp even when the partitioning of both
vertices and colors is done using O(log n)-wise independence. O

The following lemma is proved in [5] and given that Properties
(i)-(iv) hold in the limited independence setting we use, it goes
through without any changes.

LEmMA 3.2. The algorithm makes O(1) recursive calls w.h.p.

THEOREM 3.3. Given as input an n-vertex graph G with maximum
degree A and diameter D, Algorithm 1 runs in the KT-1 CONGEST
model and produces a (A+1)-list-coloring of G using O(n'->) messages
and running in O(D + +/n) rounds.

Due to space constraints, the proof of the above theorem appears
in the full version [29].

3.1.1  Asynchronous KT-1 CONGEST algorithm. The (A + 1)-coloring
in the CoNGEsT KT-1 mode described above (Algorithm 1) has a
natural counterpart in the asynchronous version of the CONGEST
KT-1 model. The details appear in the full version [29] leading to
the following theorem.

THEOREM 3.4. Given as input an n-vertex graph G with maximum
degree A, there is an algorithm that runs in the asynchronous KT-
1 CoNGEST model and produces a (A + 1)-list-coloring of G using
O(n'-®) messages and running in O(n) rounds.
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3.2 (1+ €e)A-Coloring using O(n) Messages
In this section, we show that for any € > 0, there is an algorithm
that can compute a (1 + €)A-coloring in the KT-1 CONGEST model
in O(n) rounds, using O(n/e®) messages. Due to space constraints,
the proofs in this section appear in the full version [29].

At the beginning of the algorithm, for a large enough constant
C, one node generates (C/¢) - log® n random bits and shares it with
all other nodes using a danner [12], using O(n/e) messages and
O(n) rounds in the KT-1 ConGesT model (cf. Corollary 1.2). In the
following algorithm, each node v that has not already permanently
colored itself, will use random bit string s; in Phase i to first select
a random hash function A; from a family of @(log n)-wise indepen-
dent hash functions H = {h : [poly(n)] — [(1 + €)A]}. Node v
will then compute h;(IDy) to pick a random color from the palette
[(1 + €)A]. Note that the length of s; is ©(log? n) and by Lemma 1.6,
this number of random bits suffice to pick a ®(log n)-wise indepen-
dent hash function with domain size poly(n) and range size (1+¢€)A.
In Corollary 3.6, it is shown that Algorithm 2 runs in O(logn/¢)
phases and therefore r = O(log n/¢) random bit strings suffice.

Algorithm 2: KT-1 (1 + €)A-Coloring (One phase):

1 Each active node (i.e., which has not been colored yet)
chooses a random candidate color from (1 + £)A color
palette.

2 It makes this color permanent if it is sure that none of its
neighbors has chosen this color yet.

3 If unsuccessful in choosing a permanent color, go to step 1.

In step 2, we will show that a node has to check only a small
subset of its neighbors in any phase. First, we will show that the
probability of success in each phase is large.

LEMMA 3.5. In any phase, a node chooses a color that has not been
chosen by any of its neighbors in this phase or in any previous phases
with probability at least ¢ [(1+¢) ~ ¢ (for small ¢). Hence there will be
no conflict with the chosen color and hence the node will successfully
color itself. Thus, a node successfully colors itself in O(log n/¢) rounds
whp.

COROLLARY 3.6. Whp, all nodes successfully color themselves in
O(log n/¢) rounds.

Implementing step 2 with small message complexity:

LEMMA 3.7. In each phase, each node exchanges at most O(log? n/¢)
messages whp.

THEOREM 3.8. There is a coloring algorithm that achieves (1 +
€)A coloring using O(nlog® n/e?) messages whp in KT1 model (with
shared randomness).

4 AN MIS ALGORITHM USING é(nl‘s)
MESSAGES IN KT-2 CONGEST

We now give a high-level overview of Algorithm 3 that uses KT-2

knowledge to compute an MIS using only O(n'-> log? n) messages

while taking O(+/n) rounds; the full details are explained in the full

version [29]. We first sample a set S of ©(+/n) nodes and then add
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these nodes to the independent set according to the randomized
greedy MIS algorithm. Since S was chosen randomly, this has the
same effect as performing ©(+/n) iterations of the sequential ran-
domized greedy algorithm, which is known to reduce the maximum
degree in the remnant graph to é(\/ﬁ) (see [18]). Then, each node
u € S that entered the independent set informs its 2-hop neighbors.
It is crucial that node u uses its KT-2 knowledge to convey this
information, as otherwise the same 2-hop neighbor v might receive
u’s message from multiple 1-hop neighbors of u, which may result
in w(n) messages being sent on behalf of u. Finally, we compute an
MIS on the (sparsified) remnant graph using Luby’s algorithm.

Algorithm 3: KT-2 MIS Algorithm:

1 Sample O(+/n) vertices: Add each node to a set S with
probability ¢/+/n.

2 Run Randomized Greedy MIS: Each node in S chooses a
random rank at the start of the algorithm. In the parallel
version of Greedy, a node enters the MIS as soon as it is a
local maximum among undecided neighbors in S.

3 Inform 2-hop Neighbors: Each node u € S that enters the
MIS u uses KT-2 knowledge to inform all of its 2-hop
neighbors that it has joined the MIS.

4 Pruning Inactive Edges: Each node v € V uses its own
KT-2 knowledge to either deactivate itself if a 1-hop
neighbor has joined the MIS or deactivate edges incident
on the 1-hop neighbors that are neighbors with a node that
joins the MIS.

5 Finishing Up: All nodes in the remnant graph know which
of their neighbors are deactivated and so we can run
Luby’s algorithm on the remnant graph.

THEOREM 4.1. Algorithm 3 computes a correct MIS. Moreover, it
uses O(n!-° log? n) messages and runs in O(\/n) rounds with high
probability.

5 CONCLUSION

In this paper, we initiate the study of the message complexity of
two fundamental symmetry breaking problems, MIS and (A + 1)-
coloring. We show that while it is impossible to obtain o(m) message
complexity in the KT-1 CONGEsST model using comparison-based
algorithms, one can do so by either using non-comparison based
algorithms or by slightly increasing the input knowledge, i.e., in
the KT-2 CONGEST model.

Several key open questions arise from our work. The first is
whether one can obtain an o(m)-message, non-comparison-based al-
gorithm for MIS in the KT-1 CONGEST model, running in polynomial
time. We have shown that this is possible for (A + 1)-coloring. The
second is whether one can obtain (nearly optimal) O(n)-message
(non-comparison-based) algorithms for MIS and (A + 1)-coloring in
the KT-1 CoNGEST model, running in polynomial time. The ques-
tion is open for MIS even in the KT-2 CoNGEST model. Another
important issue is reducing the running time of our algorithms. In
particular, can we make them run in polylog n rounds, for the same
message bounds?
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