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ABSTRACT

We study the communication cost (ormessage complexity) of funda-

mental distributed symmetry breaking problems, namely, coloring

and MIS. While significant progress has been made in understand-

ing and improving the running time of such problems, much less

is known about the message complexity of these problems. In fact,

all known algorithms need at least Ω(m) communication for these

problems, wherem is the number of edges in the graph. We address

the following question in this paper: can we solve problems such as

coloring and MIS using sublinear, i.e., o(m) communication, and if so

under what conditions?

In a classical result, Awerbuch, Goldreich, Peleg, and Vainish

[JACM 1990] showed that fundamental global problems such as

broadcast and spanning tree construction require at least Ω(m)mes-

sages in the KT-1 Congest model (i.e., Congest model in which

nodes have initial knowledge of the neighbors’ ID’s) when algo-

rithms are restricted to be comparison-based (i.e., algorithms in

which node ID’s can only be compared). Thirty five years after this

result, King, Kutten, and Thorup [PODC 2015] showed that one

can solve the above problems using Õ(n)messages (n is the number

of nodes in the graph) in Õ(n) rounds in the KT-1 Congest model

if non-comparison-based algorithms are permitted. An important

implication of this result is that one can use the synchronous nature

of the KT-1 Congest model, using silence to convey information,

and solve any graph problem using non-comparison-based algo-

rithms with Õ(n) messages, but this takes an exponential number

of rounds. In the asynchronous model, even this is not possible.
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In contrast, much less is known about the message complexity of

local symmetry breaking problems such as coloring and MIS. Our

paper fills this gap by presenting the following results.

Lower bounds: In the KT-1 CONGEST model, we show that

any comparison-based algorithm, even a randomized Monte-

Carlo algorithm with constant success probability, requires

Ω(n2) messages in the worst case to solve either (∆ + 1)-

coloring or MIS, regardless of the number of rounds. We

also show that Ω(n) is a lower bound on the number of

messages for any (∆ + 1)-coloring or MIS algorithm, even

non-comparison-based, and even with nodes having initial

knowledge of up to a constant radius.

Upper bounds: In the KT-1 CONGEST model, we present the

following randomized non-comparison-based algorithms for

coloring that, with high probability, use o(m) messages and

run in polynomially many rounds.

(a) A (∆ + 1)-coloring algorithm that uses Õ(n1.5) messages,

while running in Õ(D +
√
n) rounds, where D is the graph

diameter. Our result also implies an asynchronous algo-

rithm for (∆ + 1)-coloring with the same message bound

but running in Õ(n) rounds.
(b) For any constant ε > 0, a (1+ε)∆-coloring algorithm that

uses Õ(n/ε2) messages, while running in Õ(n) rounds.
If we increase our input knowledge slightly to radius 2, i.e.,

in the KT-2 CONGEST model, we obtain:

(c) A randomized comparison-based MIS algorithm that uses

Õ(n1.5) messages. while running in Õ(
√
n) rounds.

While our lower bound results can be viewed as counterparts to the

classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM

90], but for local problems, our algorithms are the first-known

algorithms for coloring and MIS that take o(m) messages and run

in polynomially many rounds.
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1 INTRODUCTION

There has been significant interest over the last decade in obtaining

communication-efficient algorithms for fundamental problems in

distributed computing. In the Congest model, which is a message-

passing model with small-sized messages (typically O(logn)-sized,
where n is the number of nodes in the network), communication

cost is usually measured by the number of messages. In the so-

called clean network model, a.k.a. the KT-0 (Knowledge Till radius

0) model, where nodes have intial knowledge of only themselves

and don’t even know the ID’s of neighbors, Kutten et al. [20] showed
that Ω(m) (m is the number of edges in the network) is a lower

bound for the message complexity for fundamental global problems

such as leader election, broadcast, spanning tree, and mimimum

spanning tree (MST) construction. This lower bound applies even

for randomized Monte Carlo algorithms. For all these problems,

there exist algorithms that (essentially) match this message lower

bound; in fact, these also have optimal time complexity (of D, the
network diameter) in the Congest model (see e.g., [8, 20, 31]).

The clean network model does not capture many real world

networks such as the Internet and peer-to-peer networks where

nodes typically have knowledge of identities (i.e., IP addresses) of

other nodes. Also, there has been a lot of recent interest in “all-

to-all” communication models such as the congested clique [22],

Massively Parallel Computing (MPC) [14], and k-machine model

[17], where each machine is assumed to have knowledge of ID’s
of all other machines. Motivated by these applications and models,

there has been a lot of recent interest in studying message-efficient

algorithms under the so-called KT-1 version of the Congest model,

where nodes have initial knowledge of the IDs of their neighbors,
but no other knowledge of their neighbors. An immediate question

that arises is whether the Ω(m) message lower bound also holds in

the KT-1model; or whether sublinear, i.e., o(m)message complexity

is possible.

The above question was partially answered in a seminal paper

by Awerbuch et al. [1] who initiated the study of trade-offs between

the message complexity and initial knowledge of distributed algo-

rithms that solve global problems, such as broadcast and spanning

tree construction. For any integer ρ > 0, in the KT-ρ version of the

Congest model (in short, KT-ρ Congest), each node v is provided

initial knowledge of (i) the IDs of all nodes at distance at most

ρ from v and (ii) the neighborhood of every node at distance at

most ρ − 1 from v . The bounds in this paper [1] are for comparison-

based algorithms, i.e., algorithms in which local computations on

IDs are restricted to comparisons only. This means that opera-

tions on IDs such as those used in the Cole-Vishkin coloring algo-

rithm [6] or applying random hash functions to IDs are disallowed.
Comparison-based algorithms are quite natural and indeed, most

distributed algorithms (with few notable exceptions such as Cole-

Vishkin [6] and hash-functions based algorithms of King et al [16])

are comparison-based. For the KT-1 Congest model the authors

show that Ω(m) messages are needed for any comparison-based

algorithm (even randomized) that solves broadcast. Furthermore,

in the KT-ρ Congest model, Ω

(
min

{
m,n

1+Θ(1)
ρ

})
messages are

needed for any comparison-based algorithm that solves broadcast.

The paper also showsmatching upper bounds for comparison-based

algorithms for broadcast. These lower bounds also hold for non-

comparison based algorithms, where the size of the IDs is very large
and grows independently with respect to message size, time, and

randomness. This paper left open the possibility of circumventing

the lower bound if one uses non-comparison based algorithms on

more natural ID spaces typically used in distributed algorithms

(as assumed in the current paper), where IDs are drawn from a

polynomial-sized ID space.

Nearly 35 years later, the above question was settled by King et

al. [16] who showed that the Awerbuch et al. lower bounds “break” if

the assumption that the algorithms be comparison-based is dropped

and one uses ID space that is of polynomial size.
1
Specifically, it is

shown in [16] that the Spanning Tree (and hence broadcast) and

Minimum Spanning Tree (MST) problem can be solved using Õ(n)
messages in KT-1 Congest model.

2
In followup papers, it is shown

that these problems can be solved with o(m) messages, but with a

higher message bound of Õ(n1.5), even in the asynchronous Con-

gest KT-1 model [24, 25]. Using the King et al. [16] result, it is

possible to solve any graph problem (including symmetry break-

ing problems) using randomized non-comparison based algorithms

in Õ(n) messages. However, this takes an exponential number of

rounds. This is done by building a spanning tree using the algorithm

of King et al. and then using time-encoding to convey the entire

topology to the root of the spanning tree. The root then locally

computes the result and disseminates it to the entire network, again

using time-encoding (e.g., see [33] for details). Time-encoding uses

silence to convey information and takes at least exponential (inm)

rounds. Note that this works only in synchronous setting and not

in the asynchronous model. Hence, designing algorithms that use

Õ(n) (or even o(m)) messages for other graph problems, including

local symmetry breaking problems, regardless of the number of

rounds, in the asynchronous Congest KT-1 model is open. Design-

ing algorithms that use small number of messages is also relevant

from a practical point of view, especially in the context of designing

energy-efficient algorithms for resource-constrained networks such

as ad hoc wireless and sensor networks, where number of messages

exchanged is correlated to the energy spent by the algorithm.

Motivated by the above results, we initiate a similar study, but

for fundamental local symmetry breaking problems, such as (∆+ 1)-
coloring and Maximal Independent Set (MIS). These problems have

been studied extensively for over four decades. Significant progress

has been made in understanding and improving the running time

(round complexity) of these problems (see e.g., [2–4, 9, 10, 13, 35]

and the references therein); however, much less is known with

respect to message complexity. For (∆+ 1)-coloring and MIS, to the

best of our knowledge, all known distributed algorithms use at least

1
This can be relaxed to allow even exponential-sized ID space: by using fingerprinting

technique [15, 16], with high probability, one can map n IDs in exponential ID space

to distinct IDs in polynomial ID space.

2
We use Õ (f (n)) as short for O (f (n) · poly logn) and Ω̃(д(n)) as short for

Ω(д(n)/(poly logn)).
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(∆ + 1)-coloring MIS

C NC C NC

KT-1

Lower Bound Ω(m)* Ω(n) Ω(m)* Ω(n)

Upper Bound Õ(m)* Õ(n1.5) Õ(m)* Õ(m)

KT-2

Lower Bound Ω(n) Ω(n) Ω(n) Ω(n)

Upper Bound Õ(m) Õ(n1.5) Õ(n1.5) Õ(n1.5)

Figure 1: A summary of lower and upper bounds results in

this paper. The notation “C” and “NC” stand for comparison-

based andnon-comparison-based respectively. The compari-

son based upper bounds of Õ(m) are not from this paper; but

are immediately implied by a number of well-known MIS

and coloring algorithms (e.g., [23, 39]). The lower bounds in

the KT-2 column hold also in KT-ρ for any constant ρ ≥ 1.

The cells marked with * are the ones where the lower bound

and upper bound are tight, i.e., within O(poly(logn)) factor.
Closing the gaps in the other regimes are interesting open

problems.

Ω(m) messages. The overarching question we address in this paper

is whether these problems can be solved using o(m) messages in

the Congest model and if so, under what conditions.

Our paper presents both negative and positive answers for the

above question and shows results in three general directions. First,

we show that even though the round complexity of local symme-

try breaking problems is provably much smaller than the round

complexity of global problems, comparison-based algorithms for

local symmetry breaking problems require as many messages as

they do for global problems in the KT-1 Congest model. Second,

we show that if we drop the requirement that our algorithms be

comparison-based only, then it is possible to design algorithms for

local symmetry breaking problems in the KT-1 Congest model

that use far fewer messages. Third, as we increase ρ, the radius of
initial knowledge, to just two, i.e., in the KT-2 Congest model, it is

possible to design algorithms for local symmetry breaking problems

that use even fewer messages. The specific results that illustrate

these three directions are presented in the next subsection.

1.1 Main Results

We present new lower and upper bounds on the message com-

plexity for two fundamental symmetry breaking problems, namely,

coloring and MIS. See Figure 1 for a summary.

Lower bounds: In the KT-1 Congest model, we show that

any comparison-based algorithm, even a randomized Monte

Carlo algorithm with constant success probability, requires

Ω(n2) messages in the worst case to solve either (∆ + 1)-

coloring or MIS, regardless of the number of rounds. Our

result can be considered as a counterpart to the classical

result of Awerbuch et al. [1], but for local problems. We also

show that in the KT-ρ Congest model, for any constant

ρ ≥ 1, (∆ + 1)-coloring and MIS require Ω(n) messages even

for non-comparison-based and Monte Carlo randomized al-

gorithms with constant success probability.

Upper bounds: In the KT-1 Congest model, we present the

following randomized non-comparison-based algorithms for

coloring that with high probability
3
(w.h.p.) use o(m) mes-

sages and run in polynomially many rounds.

(a) A (∆ + 1)-coloring algorithm that uses Õ(n1.5) messages,

while running in Õ(D +
√
n) rounds, where D is the graph

diameter. Our result also implies an asynchronous algo-

rithm for (∆ + 1)-coloring with the same message bound

but running in Õ(n) rounds.
(b) A (1+ε)∆-coloring algorithm that uses Õ(n/ε2)messages,

while running in Õ(n) rounds.
If we increase our input knowledge slightly, i.e., we work in

the KT-2 Congest model, where nodes have initial knowl-

edge of their two hop-neighborhood, thenwe get the following

additional and stronger result.

(c) A comparison-based algorithm for MIS that uses Õ(n1.5)
messages, while running in Õ(

√
n) rounds.

Our algorithms for coloring and MIS are the first-known al-

gorithms that take o(m)messages and running in polynomial

number of rounds.

1.2 Other Related Work

Several recent papers (see e.g., [11, 12, 24, 25] have studied message-

efficient algorithms for global problems, namely, construction of

spanning tree, minimum spanning tree, broadcasting and leader

election, in the KT-1Congestmodel inspired by the work of King et

al. [16].We note that all these are non-comparison-based algorithms.

We use these prior algorithms for our non-comparison-based algo-

rithms in the KT-1 and KT-2 models. In a recent paper, Robinson

[33] shows non-trivial lower bounds on the message complexity of

constructing graph spanners in the Congest KT-1 model.

In contrast to global problems, much less is known about obtain-

ing sublinear, i.e., o(m) algorithms for local problems, such as MIS

and coloring. Pai et al. [28] showed that MIS has a fundamental

lower bound of Ω(n2) messages in the Congest KT-0 model (even

for randomized algorithms). However, this result does not extend

to the KT-1 model. In contrast, they also showed that the 2-ruling

set problem (note that MIS is 1-ruling set) can be solved using Õ(n)
messages in the KT-0 model in polynomial time. To the best of our

knowledge, we are not aware of other results on the message com-

plexity (in particular, lower bounds and sublinear upper bounds)

on fundamental symmetry breaking problems, vis-a-vis the initial

input knowledge.

Recently, [34] initiated the study of volume complexity of dis-

tributed graph problems. The volume complexity measures the

size of the network (i.e., number of nodes) that a node must learn

about in order to compute its output. This measure of complexity

of distributed algorithms does not seem to have any (non-trivial)

connections to the message complexity (which instead quantifies

the total number of used edges), and vice versa.

3
This refers to probability at least 1 − n−c

for constant c ≥ 1.
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1.3 Technical Contributions

• Lower bounds: To obtain our KT-1 Congest lower bounds

for comparison-based algorithms for (∆ + 1)-coloring and

MIS, we start with the machinery introduced by Awerbuch

et al. [1] for proving their KT-1 Congest lower bounds for

comparison-based algorithms for broadcast. At the core of

their approach is an indistinguishability argument that uses

edge crossings. Edge crossings have been used numerous

times to prove a variety of distributed computing lower

bounds (see [19, 20, 28, 30, 32] for some examples). However,

in the KT-1 Congest model, indistinguishability arguments

via edge crossing are more challenging because when an

edge incident on a node is crossed, the node is exposed to a

new ID due to KT-1. For symmetry breaking problems, there

is a further challenge due to the fact that multiple outputs

are possible and the indistinguishability argument needs to

work for all outputs. Finally, since we want to show our

lower bounds even for Monte Carlo algorithms with con-

stant success probability, we require our indistinguishability

arguments to apply to a large fraction of edge crossings (so

as to be able to apply Yao’s lemma [26, 38]). The lower bound

graph family and ID assignment we design, overcomes all of

these challenges. We use a unified construction that works

for both (∆ + 1)-coloring and MIS and we expect this con-

struction to work for other symmetry breaking problems

such as maximal matching and edge coloring.

• Upper bounds: Our upper bounds are largely obtained by

exploiting the fact that shared (or public) randomness com-

bined with KT-1 is a powerful way of eliminating the need to

communicate over a large number of edges.
4
Specifically, we

start with the recent coloring algorithm of Chang et al. [5]

that works efficiently in the MPC model. Roughly speaking,

this algorithm starts with a probabilistic step; by randomly

partitioning the nodes and the color palette. Then, after this

probabilistic step, a large number of edges become inactive

for the rest of algorithm. This property is crucial to ensuring

that the algorithm is efficient in the MPC model. After the

probabilistic step, nodes exchange their state with neighbors

in so that every node can determine which of its incident

edges to render inactive. This state exchange is cheap in the

MPC model, but is costly with respect to messages in the

Congest model. We show how to simulate this coloring al-

gorithm in the Congest model without the costly exchange

of state. Instead we use shared randomness with limited

dependence combined with KT-1.

1.4 Preliminaries

1.4.1 KT-ρ Congestmodel. Wework in the synchronous, message-

passing model of distributed computing, known as the Congest

model. The input is a graph G = (V , E), n = |V |, which also serves

as the communication network. Nodes in the graph are processors

with unique IDs from a space whose size is polynomial in n. In
each round, each node can send an O(logn)-bit message to each

4
Note that we do not a priori assume shared randomness, but only private randomness

(as is usual), but use the danner structure (Section 1.4.3) to share privately generated

random bits throughput the graph.

of its neighbors. Since we are interested in message complexity,

the initial knowledge of the nodes is important. For any integer

ρ > 0, in the KT-ρ Congest model each node v is provided initial

knowledge of (i) the IDs of all nodes at distance at most ρ from v
and (ii) the neighborhood of every vertex at distance at most ρ − 1

from v .

1.4.2 Comparison-based Algorithms. Often, the outcome of a dis-

tributed algorithm does not depend on specific values of node

IDs, but may depend on the relative ordering of IDs. For example,

node IDs of endpoints may be used to break ties between edges of

the same weight vying to join a minimum spanning tree. In this

case, only the ordering of the IDs matters, not their specific values.

Since this type of behavior is characteristic of many distributed

algorithms, Awerbuch et al. [1] formally define these as comparison-

based algorithms. In comparison-based algorithms, the algorithm

executed by each node contains two types of variables: ID-type
variables and ordinary variables. In the KT-ρ Congest model, the

ID-type variables at a node v will store the IDs of all nodes within
ρ hops of v . Nodes can send ID-type variables in messages, but

since messages in the Congest model are restricted to be O(logn)
bits long, each message can contain only a constant number of

ID-type variables. The local computations at any node may involve

operations of the following two forms only:

(1) Comparing two ID-type variables Ii , Ij and storing the result
of the comparison in an ordinary variable.

(2) Performing an arbitrary computation on ordinary variables

and storing the result in another ordinary variable.

Note that if randomization is allowed, then nodes can choose

to ignore the node IDs and choose a new set of (O(logn)-length) IDs
and do arbitrary computationswith them. These are still comparison-

based algorithms.
5

1.4.3 Efficient Broadcasting in the KT-1 Congest model. As ex-

plained earlier, shared randomness along with initial knowledge,

plays a key role in making our algorithms message-efficient. We

use a graph structure called a danner introduced by Gmyr and Pan-

durangan [12] to share random bits among the nodes in the graph

in a message-efficient fashion. Their specific result is stated in the

following theorem.

Theorem 1.1 (Gmyr and Pandurangan [12]). Given ann-vertex,
m-edge, diameter D, graph G = (V , E) and a parameter δ ∈ [0, 1],

there is a randomized algorithm in the KT-1 Congest model, that

constructs a spanning subgraph (i.e., a danner) H of G such that H

has Õ(min{m,n1+δ }) edges and diameter Õ(D + n1−δ ) with high

probability. This construction uses Õ(min{m,n1+δ }) messages and

runs in Õ(n1−δ ) rounds with high probability.

We need the following corollary of this theorem.

Corollary 1.2. Given an n-vertex, m-edge, diameter D graph

G = (V , E) and a parameter δ ∈ [0, 1], there exists a randomized

algorithm to solve the leader election and broadcast problems in the

synchronous KT-1 Congest model using Õ(min{m,n1+δ }) messages

and in Õ(D + n1−δ ) rounds with high probability.

5
However, note that such randomly chosen node IDs are unknown to neighbors and if

the algorithm uses only those IDs then this becomes effectively the KT0 model where

bounds are already known [1, 28].
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We use this corollary to share O(poly logn) random bits in a

message-efficient manner by first electing a leader and then having

the leader locally generate the random bits and broadcasting them.

The message and time complexities for this operation are given by

the above corollary. We note that the above danner bounds hold in

KT-1 Congest model, which is synchronous.

1.4.4 Tail inequalities and hash functions with limited independence.

To obtain message-efficient algorithms in the KT-1model, we make

use of hash functions with limited independence. These hash func-

tions use c-wise independence and hence we use the following tail

inequalities and properties of such hash functions.

The following tail inequalities are from [36].

Lemma 1.3. Let c ≥ 4 be an even integer. Suppose Z1,Z2, . . . ,Zt
are c-wise independent random variables taking values in [0, 1]. Let

Z =
∑t
i=1 Zi and µ = E[Z ], and let λ > 0. Then,

Pr [|Z − µ | ≥ λ] ≤ 2

( ct
λ2

)c/2
.

Lemma 1.4. Suppose that X is the summation of n, c-wise in-

dependent 0-1 random variables, each with mean p. Let µ satisfy

µ ≥ E[X ] = np. Then,

Pr[X ≥ (1 + δ )µ] ≤ exp(−min{c, δ2µ}).

The following is Definition 7 in [7].

Definition 1.5. For N , L, c ∈ N, such that c ≤ N , a family of func-

tionsH = {h : [N ] → [L]} is c-wise independent if for all distinct
x1, x2, . . . , xc ∈ [N ], the random variables h(x1),h(x2), . . . ,h(xc )
are independent and uniformly distributed in [L] when h is chosen

uniformly at random from H .

The following lemma appears as Corollary 3.34 in [37].

Lemma 1.6. For every a,b, c , there is a family of c-wise independent

hash functions H = {h : {0, 1}a → {0, 1}b } such that choosing

a random function from H takes c · max{a,b} random bits, and

evaluating a function from H takes poly(a,b, c) computation.

2 MESSAGE COMPLEXITY LOWER BOUNDS

2.1 Technical Preliminaries

We now state key definitions and notation from Awerbuch et al. [1]

which we will use in our proofs of the Ω(m) message lower bounds

for (∆ + 1)-coloring and MIS, for comparison-based algorithms, in

the KT-1 Congest model.

Definition 2.1 (Executions). We denote the execution of a Con-

gest algorithm (or protocol) A on a graph G(V , E) with an ID-

assignment ϕ by EX (A,G,ϕ). This execution contains (i) the mes-

sages sent and received by the nodes in each round and (ii) a snap-

shot of the local state of each node in each round. We denote the

state of a node v in the beginning of round i of the execution

EX (A,G,ϕ) by Li (EX ,v).

The decoded representation of an execution is obtained by replac-

ing each occurrence of an ID value ϕ(v) by v in the execution. This

decoded representation allows us to define a similarity of execu-

tions. We denote the decoded representations of all messages sent

during round i of an execution EX (A,G,ϕ) as hi (EX (A,G,ϕ)).

Definition 2.2 (Similar executions). Two executions of a Congest

algorithm A on graphsG(V , E) andG ′(V , E ′) with ID-assignments

ϕ and ϕ ′ are similar if they have the same decoded representation.

Likewise, we say that two messages are similar if their decoded

representations are the same.

A crucial element of our lower bound proof consists of taking

two graphsG(V , E) andG ′(V ′, E ′), whereG ′
is obtained fromG by

“crossing” a pair of edges in G, and showing that the executions of

any comparison-based algorithm, on G and G ′
are similar. Show-

ing similarity of executions requires that the “crossing” of edges

remains, in a certain sense, hidden from the algorithm. Below, we

define what it means for an algorithm to utilize an edge. Later on

we will be able to show that if the edges being “crossed” are not

utilized by the algorithm, then the edge “crossing” is hidden from

the algorithm. One way an algorithm utilizes an edge is by sending

a message across it. But, this notion of utilization does not suffice

in the KT-1 model. We need the stronger notion, defined below.

Definition 2.3 (Utilized Edge). An edge e = {u,v} is utilized if any
one of the following happens during the course of the algorithm: (i)

a message is sent along e , (ii) the node u sends or receives ID ϕ(v),
or (iii) the node v sends or receives ID ϕ(u).

By definition, the number of utilized edges is an upper bound on

the number of edges along which a message sent. Using a charging

argument, Awerbuch et al. [1] show that the number of utilized

edges is also upper bounded by a constant times the number of

edges along which a message sent. We restate their claim here.

Lemma 2.4 (Lemma 3.4 of [1]). Letmu denote the number of uti-

lized edges in an execution EX (A,G,ϕ). Then the message complexity

of the execution is Ω(mu ).

2.2 Lower Bound Graph Construction and ID
Assignments

We now describe the construction of lower bound graphs that we

use for our Ω(n2)message complexity lower bounds. The same con-

struction works for both the (∆+1)-coloring and MIS lower bounds.

Recall that these bounds are for comparison-based algorithms in

the KT-1 Congest model.

We start with a graphG(X ,Y ,Z , E) such that |X | = |Y | = |Z | = t
and the subgraphs of G induced by X ∪ Y and Y ∪ Z are both

isomorphic to the complete bipartite graphKt ,t . Thus, |E | = 2t2. We

then add a copyG ′(X ′,Y ′,Z ′, E ′) ofG and consider the graphG∪G ′
.

We call this the base graph. LetV = X ∪Y ∪Z andV ′ = X ′∪Y ′∪Z ′
.

For each v ∈ V , the corresponding copy in V ′
is named v ′. Let

n = |V ∪V ′ |. Thus t = n/6. From the base graphG∪G ′
, we obtain a

crossed graph as follows. For a vertex y ∈ Y , cross an edge e = {y, z}
in G, where z ∈ Z with the edge e ′ = {x ′,y′} in G ′

where x ′ ∈ X ′

to obtain the graph Ge ,e ′ . When we cross the edge e = {y, z} ∈ E
with e ′ = {x ′,y′} ∈ E ′, the resulting crossed graph Ge ,e ′ has vertex

setV ∪V ′
and edge set (E∪E ′\{e, e ′})∪{{y,y′}, {x ′, z}}. The base

graph G ∪G ′
and the crossed graph Ge ,e ′ for edges e ∈ E, e ′ ∈ E ′

are illustrated in Figure 2.

We now define appropriate ID-assignments for the base graph

and the crossed graph. Let S be an arbitrary totally ordered set

such that |S | = 40t , and let S be the sorted list of elements in S in

ascending order. We will assign distinct elements in S as ID’s to
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Figure 2: This figure shows the base graph G ∪ G ′
and the

crossed graph Ge ,e ′ , described in Section 2.2

the base graph and the crossed graph. We use a short-hand and say

that the ID of a vertexv is i ∈ [0, 40t), when we mean that the ID of

v is S[i]. Note that since S is sorted in ascending order, the relative

ordering of the indices is the same as that of the corresponding ID’s

in S .
Let ϕ : V → [0, 40t) be an ID assignment such that ϕ(v) is

even for all v ∈ V and additionally ϕ(v) ∈ [0, 2t) if v ∈ X , ϕ(v) ∈
[10t, 12t) if v ∈ Y , and ϕ(v) ∈ [20t, 22t) if v ∈ Z . For a vertex

y ∈ Y and pair of incident edges e = {y, z} and e ′ = {x ′,y′}, we
define a “shifted” ID assignmentϕ ′e ,e ′ for the vertex setV

′
ofG ′

. We

motivate this “shifted” assignment and define it precisely further

below. But for now, assuming ϕ ′e ,e ′ is defined, we define the ID

assignment ψe ,e ′ : V ∪ V ′ → [0, 40t) as just the union of ϕ and

ϕ ′e ,e ′ , i.e.,ψe ,e ′(v) = ϕ(v) for allv ∈ V andψe ,e ′(v
′) = ϕ ′e ,e ′(v

′) for

all v ′ ∈ V ′
. Our first goal in this subsection is to show that these

two executions

EX = EX (A,G ∪G ′,ψe ,e ′); EXe ,e ′ = EX (A,Ge ,e ′,ψe ,e ′)

on the base graph G ∪G ′
and the crossed graph Ge ,e ′ are similar

for any comparison-based algorithm A.

For the executions EX and EXe ,e ′ to be similar, it must be the case

that the crossing of edges e and e ′ is hidden from algorithm A. To

achieve this, the ID assignment ϕ ′e ,e ′ ofV
′
must be carefully chosen.

For example, vertex z has neighbor y inG ∪G ′
, but has neighbor x ′

inGe ,e ′ (see Figure 2). In the KT-1 model, z’s initial local knowledge
consists of vertex y in G ∪G ′

and vertex x ′ in Ge ,e ′ . Therefore, for

A to not distinguish between these two situations, it must be the

case that the ID of x ′ is “adjacent” to the ID of y. To achieve this,

without disrupting other constraints on the relative order of ID’s,
we start by assigning vertices in X ′

the ID’s of their corresponding
vertices in X and then “shift” these by (ϕ(y) −ϕ(x))+ 1. As a result,
vertex x ′ ends up with ID ϕ(y)+ 1. A similar “shift” is performed to

obtain the ID’s of vertex setY ′
, though this time the “shift” is by the

amount (ϕ(z)−ϕ(y))+ 1 because we want vertex y′ to be “adjacent”
to vertex z. The “shift” for vertex set Z ′

just needs to be so that

the ID assignment is disjoint, We now define the ID assignment

ϕ ′e ,e ′ : V
′ → [0, 40t) as

ϕ ′e ,e ′(v
′) =


ϕ(v) + (ϕ(y) − ϕ(x)) + 1, if v ′ ∈ X ′

ϕ(v) + (ϕ(z) − ϕ(y)) + 1, if v ′ ∈ Y ′

ϕ(v) + 10t + 1, if v ′ ∈ Z ′

(1)

Note that the IDs of all vertices in each of the parts, X ′
, Y ′

, and

Z ′
, are “shifted” by the same amount, though IDs in different parts

may be “shifted” by different amounts.

The following observations about ϕ ′e ,e ′ are easy to verify.

(i) The ranges of ϕ and ϕ ′e ,e ′ are disjoint.

(ii) Moreover, ϕ ′e ,e ′(v) ∈ [8t + 1, 14t + 1] if v ∈ X ′
, ϕ ′e ,e ′(v) ∈

[18t + 1, 24t + 1] if v ∈ Y ′
, and ϕ ′e ,e ′(v) ∈ [30t + 1, 32t + 1] if

v ∈ Z ′
.

(iii) For any u,v ∈ V , u , v , ϕ(u) < ϕ(v) iff ϕ ′e ,e ′(u
′) < ϕ ′e ,e ′(v

′).

Item (iii) is simply saying that the ID ordering on V ′
induced by

ϕ ′e ,e ′ is the same as the ID ordering induced by ϕ with respect to

the corresponding vertices in V . This follows from the fact that the

ID’s of vertices in X ′
are obtained by shifting the ID’s of vertices

in X by the same amount, thus preserving the relative ordering of

ID’s in X and X ′
. Similarly, for vertex sets Y ′

and Z ′
. Furthermore,

even though the ID’s of different sets, X ′
, Y ′

, and Z ′
are obtained

by “shifting” by different amounts, the “shifting” also ensures that

ID’s in X ′
remain less than ID’s in Y ′

, which in turn remain less

than ID’s in Z ′
.

To prove that EX and EXe ,e ′ are similar, we need two interme-

diate ID assignments for the set V ∪V ′
. Recall that edge e = {y, z}

and edge e ′ = {x ′,y′}.

(i) Defineψe ,e ′,x to be the ID assignmentψe ,e ′ except for inter-
changing the values of x ′ and y (i.e. ψe ,e ′,x (y) = ϕ

′
e ,e ′(x

′)

andψe ,e ′,x (x
′) = ϕ(y)).

(ii) Define ψe ,e ′,z analogously as ψe ,e ′ except for interchang-
ing the values of y′ and z (i.e. ψe ,e ′,z (z) = ϕ ′e ,e ′(y

′) and

ψe ,e ′,z (y
′) = ϕ(z)).

Using these ID assignments, we define two intermediate executions

on the base graph G ∪G ′
.

EXe ,e ′,x = EX (A,G ∪G ′,ψe ,e ′,x );

EXe ,e ′,z = EX (A,G ∪G ′,ψe ,e ′,z )

The following lemma, which shows that the executions EX ,
EXe ,e ′,x , and EXe ,e ′,y are similar, critically uses the fact that the

ID assignment ψe ,e ′ shifts the ID’s of vertices in X ′ ∪ Y ′ ∪ Z ′
so

that the ID of x ′ becomes “adjacent” to the ID of y and the ID of y′

becomes “adjacent” to the ID of z.

Lemma 2.5. For any x ∈ X , y ∈ Y , z ∈ Z and edges e = {y, z} and
e ′ = {x ′,y′}, the executions EX , EXe ,e ′,x and EXe ,e ′,z are similar.

Proof. All three executions have the same input graph G ∪G ′
.

The execution pair EX and EXe ,e ′,x have the same ID assignment

except for the vertices x ′ and y, which have their ID’s swapped.
Note that by definition ofψ ′

e ,e ′ and ϕ
′
e ,e ′ in (1), we have

ψe ,e ′(x
′) = ϕ ′e ,e ′(x

′) = ϕ(x) + (ϕ(y) − ϕ(x)) + 1 = ϕ(y) + 1.

Furthermore,ψe ,e ′(y) = ϕ(y). Therefore, when we swap the ID’s of
x ′ and y inψe ,e ′ to obtainψe ,e ′,x , there is no change in the relative

ordering of ID’s and therefore the executions EX and EXe ,e ′,x are

similar.

A similar argument holds for the execution pair EX and EXe ,e ′,z .
By the definition ofψ ′

e ,e ′ and ϕ
′
e ,e ′ in (1), we have

ψe ,e ′(y
′) = ϕ ′e ,e ′(y

′) = ϕ(y) + (ϕ(z) − ϕ(y)) + 1 = ϕ(z) + 1

andψe ,e ′(z) = ϕ(z). Thus the relative ordering of ID’s inψe ,e ′ and
ψe ,e ′,z is the same and therefore the executions EX and EXe ,e ′,x
are similar.

The lemma follows because similarity of executions is transitive.

□
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We can derive the final tool we need by directly appealing to a

lemma in Awerbuch et al. [1]. Informally, the lemma shows that if

edges e = {y, z} and {x ′,y′} are not utilized in the execution EX of

algorithm A, then executions EX and EXe ,e ′ are similar. The main

obstacle is that the initial knowledge vertices x ′,y,y′, z is different
in EX and EXe ,e ′ so a direct inductive proof like in Lemma 2.5 does

not work. But we can use the intermediate executions of Lemma 2.5

to show the similarity for these four vertices. For all other vertices,

we can do a direct inductive argument.

Lemma 2.6 (Restatement of Lemma 3.8 of [1]). Letx ∈ X ,y ∈ Y ,
and z ∈ Z be arbitrary vertices and let e = {y, z} and e ′ = {x ′,y′}.
Suppose that during the first r rounds of the execution EX both e and
e ′ are not utilized. Then the following hold for every round 1 ≤ i ≤ r
of the executions EX , EXe ,e ′,x , EXe ,e ′,z and EXe ,e ′ :

(1) The states of the nodes in the beginning of the round, i.e. Li (·, ·)
satisfy:

(a) For every processorw ∈ V \ {y, z,y′, x ′}, Li (EXe ,e ′,w) =

Li (EX ,w).

(b) For u ∈ {x ′, z}, Li (EXe ,e ′,u) = Li (EXe ,e ′,x ,u).
(c) For v ∈ {y,y′}, Li (EXe ,e ′,v) = Li (EXe ,e ′,z ,v).

(2) The messages sent during the round are similar, i.e., hi (EX ) =

hi (EXe ,e ′,x ) = hi (EXe ,e ′,z ) = hi (EXe ,e ′).
(3) In EXe ,e ′ , no messages are sent during the round over the edges

{x ′, z} and {y,y′}.

Corollary 2.7. Suppose that during the execution EX neither of

the edges e = {y, z} and e ′ = {x ′,y′} are utilized, for some vertices

x ∈ X , y ∈ Y , and z ∈ Z . Then the executions EX and EXe ,e ′ are
similar and furthermore in EXe ,e ′ , no messages are sent through the

edges {y,y′} and {x ′, z}.

In the next subsections, we will show that this similarity leads

to a contradiction with respect to correctness for problems such as

(∆ + 1)-coloring and MIS. This in turn will imply a constraint on

the behavior of algorithm A: for every pair of edges e = {y, z} and
e ′ = {x ′,y′}, at least one of the edges is utilized by A. This in turn

will lead to the message complexity lower bound we desire.

2.3 Ω(m) message lower bound for

(∆ + 1)-Coloring in KT-1 Congest

Now that we have shown that EX and EXe ,e ′ are similar if e and
e ′ are not utilized by algorithm A, we will show that for some

problems this leads to a contradiction. The intuition for this is

simple. Let ϕ and ϕ ′ be ID assignments for V and V ′
respectively,

that consistently order the vertices, i.e., ϕ(u) < ϕ(v) iff ϕ ′(u ′) <
ϕ ′(v ′) for all u,v ∈ V . Since G and G ′

are isomorphic, it is easy

to show that EXG = EX (A,G,ϕ) and EXG′ = EX (A,G ′,ϕ ′) are
similar. This is shown below in Lemma 2.8 below. Now consider the

base graph G ∪G ′
and the ID assignmentψe ,e ′ of V ∪V ′

. Lemma

2.8 implies that corresponding verticesv andv ′ have the same local

states after execution EX = EX (A,G ∪G ′,ψe ,e ′) completes. Since

EX and EXe ,e ′ = EX (A,Ge ,e ′,ψe ,e ′) are similar, this also implies

that vertices v and v ′ have the same local states after execution

EXe ,e ′ . But, in the crossed graph Ge ,e ′ , y and y′ are neighbors. For
problems in which neighboring vertices ought not to have the same

local state (e.g., neighboring vertices cannot have the same color in

a solution to the vertex coloring problem), this is a contradiction.

Lemma 2.8. Consider an arbitrary vertex y ∈ Y and an arbitrary

pair of edges e = {y, z}, z ∈ Z and e ′ = {x ′,y′}, x ′ ∈ X ′
. For

any comparison-based algorithm A in the KT-1 Congest model, the

executions EXG = EX (A,G,ϕ) and EXG′ = EX (A,G ′,ϕ ′e ,e ′) are

similar.

Proof. Since the input graphsG andG ′
are copies of each other,

the only thing that is different between the two executions is the

ID assignments. However, Property (iii) of the ID assignment ϕ ′e ,e ′
above implies that every ID comparison byA onG yields the same

result as the corresponding ID comparison on G ′
. Therefore, by an

inductive argument it can be shown that at the beginning of each

round, the state of each vertex v inG is the same as the state of the

corresponding vertex v ′ in G ′
and the messages received by these

vertices are also be the same. This gives us that the executions EXG
and EXG′ are similar. □

Lemma 2.9. Let x ∈ X ,y ∈ Y , and z ∈ Z be three vertices such that

the edges e = {y, z)} and e ′ = {x ′,y′} are not utilized in the execution
EX . Then, algorithm A computes an incorrect (∆ + 1)-coloring for
the crossed graph Ge ,e ′ .

Proof. In the execution EX , since the input graph has two dis-

connected componentsG andG ′
, Lemma 2.8 gives us that the color

of a vertex v in G is the same as the color of the corresponding

vertex v ′ in G ′
. Since the edges e = {y, z} and e ′ = {x ′,y′} are

not utilized in G ∪ G ′
, applying Corollary 2.7, A will compute

the same coloring in the graph Ge ,e ′ as it will in G ∪G ′
. This im-

plies a monochromatic edge {y,y′} inGe ,e ′ which contradicts the

correctness of the algorithm. □

Theorem 2.10 (Deterministic Lower Bound). LetA be a deter-

ministic comparison-based algorithm that computes a (∆+1)-coloring.
Then the message complexity of A is Ω(n2). This holds even if the

vertices know the size of the network.

Proof. Suppose that A is a deterministic comparison-based

algorithm that computes a (∆ + 1)-coloring and has message com-

plexity o(n2). Then by Lemma 2.4, the number of edges utilized

by A is o(n2). This implies that there exists a y ∈ Y and edges

e = {y, z} and e ′ = {x ′,y′} such that e and e ′ are not utilized when
A executes onG ∪G ′

. By Lemma 2.9 this implies that A computes

an incorrect (∆ + 1)-coloring for Ge ,e ′ . □

We now extend this lower bound to Monte Carlo randomized

algorithms, even with constant error probability. To do this we

strengthen Lemma 2.9 so that it applies not just to a single crossed

graph, but to the entire family of crossed graphs. Let F denote

the family of all crossed graphs, i.e., F = {Ge ,e ′ | e = {y, z}, e ′ =
{x ′,y′}, x,y, z, ∈ V }. Note that |F | = t3 because there are t choices
for y and for each choice of y, there are t2 choices for e and e ′.

Lemma 2.11. Let A be a deterministic comparison-based KT-1

Congest algorithm that computes a (∆ + 1)-coloring correctly on

at least a constant δ fraction of graphs in the family F . Then the

message complexity of A is Ω(δn2). This holds even if the vertices

know the size of the network.

Proof. Assume for the sake of contradiction that the message

complexity of A is o(δn2). By Lemma 2.4, we have that A utilizes
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o(δn2) edges in any graph that it runs on. Specifically consider

the execution EX of algorithm A on input graph G ∪ G ′
and ID

assignmentψe ,e ′ where e, e
′
denote a graph Ge ,e ′ in the family F .

Since A utilizes o(δn2) edges, there can only be o(n) = o(t)
vertices in Y such that more than cn/6 = ct incident edges are
utilized, for some constant c to be determined later. Recall that

t = n/6. The rest of the t − o(t) vertices in Y have less than ct
incident edges that are utilized. By Lemma 2.8 the same statement

holds for the corresponding vertices in Y ′
because in EX , the two

graphsG andG ′
that form the input graph are disconnected, which

implies the executions of A on G and G ′
are similar.

So for each such vertex y ∈ Y , there are at most (c2/4)t2 edge
pairs of the form e = {y, z}, e ′ = {x ′,y′} such that e, e ′ are utilized.
Therefore, by Lemma 2.9, the algorithm computes an incorrect

(∆+ 1)-coloring on at least (1−o(1))(1− (c2/4)) = 1− (c2/4) −o(1)-
fraction of the graphs in F (since for eachy ∈ Y there are exactly t2

graphs in F ). Setting c =
√
2δ , the algorithm computes an incorrect

(∆ + 1)-coloring on at least 1 − δ/2 − o(1)-fraction of the graphs

in F . This is a contradiction if 1 − δ < 1 − δ/2 − o(1) or δ > o(1).
Since δ is a constant, we get a contradiction. □

A simple application of Yao’s lemma [26, 38] with the uniform

distribution on all the graphs in the family F gives the following

theorem.

Theorem 2.12 (Randomized Lower Bound). Let A be a ran-

domized Monte-Carlo comparison based KT-1 Congest algorithm

that computes a (∆ + 1)-coloring with probability of error less than

a constant ϵ ∈ [0, 1). Then the worst case message complexity of A

is Ω((1 − ϵ)n2). This holds even if the vertices know the size of the

network.

2.4 Ω(m) message lower bound for MIS in KT-1

Congest

In this section, we show analogous theorems for MIS. The proofs

are omitted either due to space constraints (see [29]) or because

they are similar to the proofs in the previous section.

Lemma 2.13. Let x ∈ X , y ∈ Y , and z ∈ Z be three vertices such

that the edges e = {y, z} and e ′ = {x ′,y′} are not utilized in the

execution EX . Then, algorithmA computes an incorrect MIS onGe ,e ′ .

Theorem 2.14 (Deterministic Lower Bound). Let A be a de-

terministic comparison-based KT-1 Congest algorithm that solves

the MIS problem. Then the message complexity of A is Ω(n2). This
holds even if the vertices know the size of the network.

Lemma 2.15. Let A be a deterministic comparison-based KT-1

Congest algorithm that computes an MIS correctly on at least a

constant δ fraction of graphs in the family F . Then the message

complexity of A is Ω(δn2). This holds even if the vertices know the

size of the network.

Theorem 2.16 (Randomized Lower Bound). Let A be a ran-

domized Monte-Carlo comparison-based KT-1 Congest algorithm

that computes an MIS with probability of error less than a constant

ϵ ∈ [0, 1). Then the worst casemessage complexity ofA isΩ((1−ϵ)n2).
This holds even if the vertices know the size of the network.

2.5 Ω(n) message lower bound in KT-ρ
Congest

The Ω(m) lower bounds we have proved apply to comparison-based

algorithms in the KT-1 Congest model. We now prove a weaker

Ω(n) message complexity bound for (∆ + 1)-coloring and MIS, but

these apply more generally, to all algorithms (even non-comparison-

based) and to the KT-ρ Congest model, for any constant ρ.

Theorem 2.17. Any randomized Monte Carlo algorithm that com-

putes an MIS or a (∆ + 1)-vertex coloring with probability at least
5

8
,

requires Ω(n) messages in expectation in the KT-ρ Congest model,

for any constant ρ.

Proof. Similarly to [21, 27], we assume without loss of gener-

ality that algorithms follow the general framework that all nodes

perform their coin flips initially and only exchange their current

local state (including coin flips) without performing any other local

computation until the very last round.

For the given constant ρ, define the constant k to be the smallest

integer such that

log
∗(k) ≥ 2(ρ + 3).

Consider an n-node graphG consisting of the disjoint union of n/k
cycles each of k nodes.

6
For each cycle Ci , we fix a set of IDs Ri

from some integer range of size k such that all ID ranges assigned

to the cycles are pairwise disjoint. We will equip the nodes of each

cycle Ci with k unique IDs given by some permutation of Ri , as
described below.

Suppose towards a contradiction that there exists an algorithm

Bρ that computes a 3-coloring on G while sending o(n) messages

in expectation. We provide additional power to the algorithm by

revealing, to each node u, the coin flips of the nodes in its ρ-
neighborhood. Since there are n/k = Ω(n) cycles but the expected
message complexity of Bρ is o(n), it holds that, with probability

at least
3

4
, there exists a cycle Cj such that the nodes in Cj do not

send any messages at all when executing Bρ ; call this event Mute.

Note that the probability bound on Mute holds for any possible

asssignment of IDs to the nodes.

We now condition onMute occurring. Consider any nodeu ∈ Cj
and observe that the output ofu is a function of its initial knowledge,

i.e., its random coin flips and the local state of its ρ-neighborhood.
We point out that, even though that u also has knowledge of n, it is
easy to see that this does not have any impact on the output of the

algorithm. It follows that the execution of algorithm Bρ at u can

be simulated by a canonical ρ-round algorithm B0 under the KT−0
assumption that exchanges messages for the first ρ rounds without

performing any other computation and then outputs the color at u
obtained by locally computing the state transitions of the nodes in

u’s ρ-hop neighborhood according to Bρ . Clearly, the output at u
follows the exact same probability distribution when executing Bρ
under the KT-ρ assumption as it does when executing algorithm

B0 under the KT-0 assumption.

A straightforward consequence of [27] is that, for each cycle Ci ,
and any canonical ρ-round algorithm, there exists some permuta-

tion of the set Ri , denoted Ii , such that the algorithm fails to yield

a valid coloring with some probability greater than
1

2
(assuming

6
For simplicity, we assume that n/k is an integer.
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KT-0) when the nodes in Ci are assigned the IDs in Ii , where this
probability is taken over the coin flips of the nodes in Ci . Let I be
the resulting ID assignment if we assign the IDs of the nodes in

each cycle Ci according to Ii .
Now consider the execution ofBρ on graphG with ID assignment

I . Since eventMute occurs with probability at least
3

4
, the above

implies that algorithm Bρ fails to yield a valid coloring on at least

one of the cycles with probability > 3

8
, yielding a contradiction. □

3 UPPER BOUNDS IN KT-1 CONGEST

3.1 (∆ + 1)-Coloring using Õ(n1.5) Messages

In this section we present a (∆ + 1)-list-coloring algorithm in the

KT-1 Congest model that uses Õ(n1.5) messages. This algorithm is

obtained by utilizing – with some modifications – the simple graph

partitioning technique introduced recently by Chang et al. [5]. This

technique is central to the fast (∆ + 1)-coloring algorithms that

Chang et al. [5] obtain in different models of computation, namely

Congested Clique, MPC, and Centralized Local Computation.

The Chang et al. [5] graph partitioning scheme is as follows. Let

Ψ(v) denote the palette of vertex v ∈ V and let k =
√
∆.

• Vertex set partition: We partition V into B1, . . . ,Bk , L as

follows. Include each v ∈ V in the set L with probability

q = Θ

(√
logn
∆1/4

)
. Then each remaining vertex joins one of

B1, . . . ,Bk uniformly at random.

• Palette partition: Let C =
⋃
v ∈V Ψ(v) be the set of all

colors. We partition C into k sets C1, . . . ,Ck where each

color c ∈ C joins one of the k sets uniformly at random.

Chang et al. [5] then show that whp, the output of the parti-

tioning scheme satisfies the following 4 properties, assuming that

∆ = ω(log2 n). These properties allow us to color each set Bi using
palette Ci , in parallel, and then recursively color the set L until it

becomes small enough to color trivially.

(i) Size of Each Part: |E(G[Bi ])| = O(|V |), for each i ∈ [k].

Also, |L| = O(q |V |) = O

(√
logn
∆1/4

)
· |V |.

(ii) Available Colors in Bi : For each i ∈ {1, . . . ,k} and v ∈

Bi , let the number of available colors in v in the subgraph

Bi be дi (v) := |Ψ(v) ∩ Ci |. Then дi (v) ≥ ∆i + 1, where

∆i := maxv ∈Bi degBi (v).
(iii) Available Colors in L: For each v ∈ L, define дL(v) :=

|Ψ(v)| − (degG (v) − degL(v)). It is required that дL(v) ≥

max{degL(v),∆L − ∆
3/4

L } + 1 for each v ∈ L, where ∆L :=

maxv ∈L degL(v). Note that дL(v) represents a lower bound
on the number of available colors in v’s palette after all of

B1, . . . ,Bk have been colored.

(iv) Remaining Degrees: The maximum degrees of Bi and L

are degBi (v) ≤ ∆i = O(
√
∆) and degL(v) ≤ ∆L = O(q∆) =

O

(√
logn
∆1/4

)
· ∆. For each vertex, we have that degBi (v) ≤

max{O(logn),O(1/
√
∆) · deg(v)} and also have degL(v) ≤

max{O(logn),O(q) · deg(v)}.

We now present our algorithm, which takes as input an n-vertex
graph G with maximum degree ∆ and diameter D. The algorithm

runs in the KT-1Congestmodel and produces a (∆+1)-list-coloring
of G using Õ(n1.5) messages and running in Õ(D +

√
n) rounds.

Algorithm 1: KT-1 (∆ + 1)-Coloring Algorithm:

1 For δ = 1/2, build a danner H , elect a leader ℓ, and have the

leader broadcast a string R of O(log2 n) random bits.

2 Nodes use the O(log2 n) bits of R to sample three

O(logn)-wise independent hash functions: (a) hL , to decide

whether to join L, (b) h, to decide which set Bi to join, and

(c) hc , to determine which color goes into which part Ci .
3 Nodes execute a randomized algorithm for list coloring by

Johansson [39] in each Bi in parallel.

4 Using the danner H , we can check whether the induced

graph G[L] has Õ(n) edges.
5 If it does, we execute the list coloring algorithm by

Johansson [39] on G[L].
6 If not, we recursively run this algorithm on G[L] with the

same parameter n.

The “full independence” version of the following lemma is proved

in [5]. We provide a brief sketch of the changes required in this

proof to make a version with limited independence go through.

Lemma 3.1. Properties (i)-(iv) mentioned above hold w.h.p., even

when the partitioning of vertices and colors is done using O(logn)-
wise independence, as described in Line 2 of Algorithm 1.

Proof. Chang et al. [5] show that this lemma holds when the

vertex partitioning is done using full independence, while the color

partitioning is done using O(logn)-wise independence. A closer

look at their proof reveals that all four properties are shown using

Chernoff bounds, and these bounds can be safely replaced by limited

dependence Chernoff bounds described in Lemma 1.4. Therefore

the four properties hold whp even when the partitioning of both

vertices and colors is done using O(logn)-wise independence. □

The following lemma is proved in [5] and given that Properties

(i)-(iv) hold in the limited independence setting we use, it goes

through without any changes.

Lemma 3.2. The algorithm makes O(1) recursive calls w.h.p.

Theorem 3.3. Given as input an n-vertex graphG with maximum

degree ∆ and diameter D, Algorithm 1 runs in the KT-1 Congest

model and produces a (∆+1)-list-coloring ofG using Õ(n1.5)messages

and running in Õ(D +
√
n) rounds.

Due to space constraints, the proof of the above theorem appears

in the full version [29].

3.1.1 Asynchronous KT-1 Congest algorithm. The (∆+ 1)-coloring
in the Congest KT-1 mode described above (Algorithm 1) has a

natural counterpart in the asynchronous version of the Congest

KT-1 model. The details appear in the full version [29] leading to

the following theorem.

Theorem 3.4. Given as input an n-vertex graphG with maximum

degree ∆, there is an algorithm that runs in the asynchronous KT-

1 Congest model and produces a (∆ + 1)-list-coloring of G using

Õ(n1.5) messages and running in Õ(n) rounds.
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3.2 (1 + ϵ)∆-Coloring using Õ(n) Messages

In this section, we show that for any ϵ > 0, there is an algorithm

that can compute a (1 + ϵ)∆-coloring in the KT-1 Congest model

in Õ(n) rounds, using Õ(n/ϵ2) messages. Due to space constraints,

the proofs in this section appear in the full version [29].

At the beginning of the algorithm, for a large enough constant

C , one node generates (C/ϵ) · log3 n random bits and shares it with

all other nodes using a danner [12], using Õ(n/ϵ) messages and

Õ(n) rounds in the KT-1 Congest model (cf. Corollary 1.2). In the

following algorithm, each node v that has not already permanently

colored itself, will use random bit string si in Phase i to first select

a random hash function hi from a family of Θ(logn)-wise indepen-
dent hash functions H = {h : [poly(n)] → [(1 + ϵ)∆]}. Node v
will then compute hi (IDv ) to pick a random color from the palette

[(1+ ϵ)∆]. Note that the length of si is Θ(log
2 n) and by Lemma 1.6,

this number of random bits suffice to pick a Θ(logn)-wise indepen-
dent hash function with domain size poly(n) and range size (1+ϵ)∆.
In Corollary 3.6, it is shown that Algorithm 2 runs in O(logn/ϵ)
phases and therefore r = Θ(logn/ϵ) random bit strings suffice.

Algorithm 2: KT-1 (1 + ϵ)∆-Coloring (One phase):

1 Each active node (i.e., which has not been colored yet)

chooses a random candidate color from (1 + ε)∆ color

palette.

2 It makes this color permanent if it is sure that none of its

neighbors has chosen this color yet.

3 If unsuccessful in choosing a permanent color, go to step 1.

In step 2, we will show that a node has to check only a small

subset of its neighbors in any phase. First, we will show that the

probability of success in each phase is large.

Lemma 3.5. In any phase, a node chooses a color that has not been

chosen by any of its neighbors in this phase or in any previous phases

with probability at least ε/(1+ε) ≈ ε (for small ε). Hence there will be
no conflict with the chosen color and hence the node will successfully

color itself. Thus, a node successfully colors itself inO(logn/ε) rounds
whp.

Corollary 3.6. Whp, all nodes successfully color themselves in

O(logn/ε) rounds.

Implementing step 2 with small message complexity:

Lemma 3.7. In each phase, each node exchanges atmostO(log2 n/ε)
messages whp.

Theorem 3.8. There is a coloring algorithm that achieves (1 +

ε)∆ coloring using O(n log3 n/ε2) messages whp in KT1 model (with

shared randomness).

4 AN MIS ALGORITHM USING Õ(n1.5)
MESSAGES IN KT-2 CONGEST

We now give a high-level overview of Algorithm 3 that uses KT-2

knowledge to compute an MIS using only O(n1.5 log2 n) messages

while taking Õ(
√
n) rounds; the full details are explained in the full

version [29]. We first sample a set S of Θ(
√
n) nodes and then add

these nodes to the independent set according to the randomized

greedy MIS algorithm. Since S was chosen randomly, this has the

same effect as performing Θ(
√
n) iterations of the sequential ran-

domized greedy algorithm, which is known to reduce the maximum

degree in the remnant graph to Õ(
√
n) (see [18]). Then, each node

u ∈ S that entered the independent set informs its 2-hop neighbors.

It is crucial that node u uses its KT-2 knowledge to convey this

information, as otherwise the same 2-hop neighborv might receive

u’s message from multiple 1-hop neighbors of u, which may result

in ω(n) messages being sent on behalf of u. Finally, we compute an

MIS on the (sparsified) remnant graph using Luby’s algorithm.

Algorithm 3: KT-2 MIS Algorithm:

1 Sample O(
√
n) vertices: Add each node to a set S with

probability c/
√
n.

2 Run Randomized Greedy MIS: Each node in S chooses a

random rank at the start of the algorithm. In the parallel

version of Greedy, a node enters the MIS as soon as it is a

local maximum among undecided neighbors in S .
3 Inform 2-hop Neighbors: Each node u ∈ S that enters the

MIS u uses KT-2 knowledge to inform all of its 2-hop

neighbors that it has joined the MIS.

4 Pruning Inactive Edges: Each node v ∈ V uses its own

KT-2 knowledge to either deactivate itself if a 1-hop

neighbor has joined the MIS or deactivate edges incident

on the 1-hop neighbors that are neighbors with a node that

joins the MIS.

5 Finishing Up: All nodes in the remnant graph know which

of their neighbors are deactivated and so we can run

Luby’s algorithm on the remnant graph.

Theorem 4.1. Algorithm 3 computes a correct MIS. Moreover, it

uses O(n1.5 log2 n) messages and runs in Õ(
√
n) rounds with high

probability.

5 CONCLUSION

In this paper, we initiate the study of the message complexity of

two fundamental symmetry breaking problems, MIS and (∆ + 1)-
coloring.We show that while it is impossible to obtain o(m)message

complexity in the KT-1 Congest model using comparison-based

algorithms, one can do so by either using non-comparison based

algorithms or by slightly increasing the input knowledge, i.e., in

the KT-2 Congest model.

Several key open questions arise from our work. The first is

whether one can obtain an o(m)-message, non-comparison-based al-

gorithm for MIS in the KT-1Congestmodel, running in polynomial

time. We have shown that this is possible for (∆ + 1)-coloring. The
second is whether one can obtain (nearly optimal) Õ(n)-message

(non-comparison-based) algorithms for MIS and (∆+ 1)-coloring in
the KT-1 Congest model, running in polynomial time. The ques-

tion is open for MIS even in the KT-2 Congest model. Another

important issue is reducing the running time of our algorithms. In

particular, can we make them run in polylogn rounds, for the same

message bounds?
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