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1. Introduction

In this paper, we develop new semiparametric methodology and theory for spatio-temporal processes where both
space and time are continuously indexed, which often arise in many scientific disciplines [see, e.g., 34]. An illustrative
data set comprises measurements of a health hazard taken in an indoor environment by both static sensors at fixed
sampling locations and roving sensors at varying sampling locations over time [31]. The spatio-temporal sampling design
is non-standard due to data irregularity and sparsity in both space and time, calling for development of novel methodology
and theory.

In spatial statistics, geostatistical data with continuous spatial index and lattice data with discrete spatial index often
require different modeling techniques. For example, to account for spatial dependence, a Matérn covariance function is
typically used for geostatistical data, while a spatial weight matrix is used for lattice data [8]. For spatio-temporal datasets,
the distinction between continuous and discrete index applies to both spatial and temporal dimensions. To analyze
datasets with continuous spatial index and discrete temporal index, time series methods for temporal data are often
combined with geostatistical methods for spatial data. For example, Stroud et al. [41] developed a state space model where
spatial variability is captured by a locally weighted mixture of linear regressions while the regression coefficients are
allowed to vary with time. Sun et al. [42] proposed a profile likelihood based estimation procedure for a semiparametric
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spatial dynamic model with a nonlinear spatial trend. Al-Sulami et al. [ 1] considered a nonlinear spatio-temporal model to
investigate the relationship between housing price index (HPI) and consumer price index (CPI) for individual states in the
USA. The aforementioned spatial time series methods can capture nonlinearity and nonstationarity in space and/or time,
assuming that data are observed at regular and discrete time points. In contrast, for spatio-temporal data with continuous
temporal index, approaches that enable simultaneous estimation of the mean and covariance functions are limited. While
the existing methods focus primarily on linear regression models [see, e.g., 11], we will develop semiparametric methods
and theory for continuously indexed spatio-temporal processes.

The underlying spatio-temporal process can be decomposed into a mean trend and a spatio-temporal error process.
Partially linear models offer a flexible way to model the mean trend of spatio-temporal data. For independent data,
partially linear models have been extensively studied [see, e.g., 14,22,26,27,37]. For spatio-temporal data, Gao et al. [18]
proposed an estimation procedure based on marginal integration for geostatistical partially linear models, and Lu et al. [29]
developed spatio-temporal varying coefficient models, which can be applied to spatio-temporal partially linear models.
Theoretical property is established for both works under the spatio-temporal mixing conditions. Since both works focus
on estimating the mean trend of spatio-temporal data, spatio-temporal error is treated as independent in estimation. In
practice, there is considerable interest in spatio-temporal covariance functions, which characterize the spatio-temporal
dependence of underlying processes. Furthermore, to interpolate unsampled spatial locations and time points (spatio-
temporal kriging), spatio-temporal covariance functions are a key building block. Thus, there is clearly a need for statistical
methods to estimate spatio-temporal covariance functions and here, we aim to develop new methodology which allows
simultaneous estimation of the mean and covariance functions.

Various types of spatio-temporal covariance functions have been developed [see, e.g., 7,9,16,19,35,39]. However, the
dependence structure in spatio-temporal data poses challenges for establishing the asymptotic properties. In spatial
statistics, there are three commonly used asymptotic frameworks, namely, increasing-domain asymptotics, fixed-domain
asymptotics and mixed-domain asymptotics. For increasing-domain asymptotics, the spatial domain expands as the
number of observations increases [see, e.g., 6,10,32]. For fixed-domain asymptotics, the spatial domain is fixed and
the sampling locations get denser [see, e.g., 28,38,45,46]. A mixed-domain asymptotic framework allows both spatial
domain and sampling density to increase [see, e.g., 4,21,23,30]. For spatio-temporal processes, Bandyopadhyay et al. [3]
considered an increasing temporal domain and a mixed spatial domain for a Fourier analysis. Chu et al. [5] proposed
a spatio-temporal expanding distance (STED) asymptotic framework in a fixed spatio-temporal domain, which extends
the aforementioned asymptotic frameworks for spatial domain to spatio-temporal domain for exploring the asymptotic
properties of statistical inference for spatio-temporal processes. The STED framework also paves the way for studying
the local behavior of a spatio-temporal process, especially the second-order properties. Here, we will consider a locally
stationary spatio-temporal covariance function, introduced by Chu et al. [5], to study the slowly-varying second-order
nonstationarity under the STED asymptotic framework.

In essence, the mean trend of spatio-temporal data is modeled through partially linear models, and spatio-temporal
dependence is accounted by locally stationary spatio-temporal covariance functions. The resulting model provides a
flexible way to analyze continuously indexed spatio-temporal datasets. For estimation, the main challenge is to incor-
porate spatio-temporal covariance functions, which we overcome by profiling the spatio-temporal likelihood function. In
addition, the theoretical property of proposed method is investigated under STED framework, and both consistency and
asymptotic normality are established. Furthermore, a proper bandwidth selection is critical for estimation. For iid data,
various methods have been studied, notably cross validation [see, e.g., 13], but are known to not perform well for non-iid
data [see, e.g., 2,12,24,33]. Here, we show that cross-validation is asymptotically biased in the presence of spatio-temporal
correlated errors for most commonly used kernels. We also propose a cross-validation based method with bimodal kernels
to alleviate this bias in bandwidth selection.

The remainder of the paper is organized as follows. Section 2 introduces the spatio-temporal model and the profile
likelihood method. The asymptotic properties of the profile likelihood estimation are established in Section 3 under
suitable regularity conditions. In Section 4, we discuss the choice of kernel functions and develop a procedure for
bandwidth selection. Numerical examples including a simulation study and the health hazard data example are given
in Sections 5 and 6, respectively. Appendix A contains the technical details including proofs, while additional simulation
results are given as Supplementary Materials.

2. Model and estimation
2.1. Spatio-temporal semiparametric model

We consider the following spatio-temporal process for the response variable y(-, -),

y(s, t) =x(s,t) B+f(t)+e(s,t), SER, €T, (1)
where the location s is in the unit hypercube R = [0, 1]¢ for d > 1 and the rescaled time t takes values in 7 = [0, 1]. Here,
X(s, t) = (x1(s, £), ..., xp(s, )" is a p x 1 vector of covariates at spatial location s and time point t, 8 = (81, ..., ,BP)T

is a p x 1 vector of regression coefficients, and f(t) denotes a fixed nonparametric temporal function. In the special case
of B = 0, (1) has a fully nonparametric mean function. Furthermore, the zero-mean spatio-temporal Gaussian random
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process &(s, t) accounts for the local variations unexplained by the mean function (i.e., trend) x(s, )7 8 + f(t). In practice,
g(s, t) = e1(s, t) + &(s, t), where (s, t) is a Gaussian spatio-temporal error process, and &,(s, t) are Gaussian iid errors
with mean 0 and equal variance, representing the nugget effect and independent of (s, t). Denote y((s, t), (s, t'); ) as
the covariance function of &(s, t), where (s, t), (s',t') € R x T and 6 is a q¢ x 1 vector of covariance function parameters.
For y((s, t), (s, t'); @), various types of covariance functions are proposed [see, e.g., 7,9,16,19,35,39]. In this work, we focus
on locally stationary covariance function, introduced by Chu et al. [5], and more details are provided in Section 5.

We consider N samples observed at (s1, t1), ..., (Sn, ty). Define the N x 1 vector of the response variable as y =
(y(s1, t1), ..., y(sn, tn))T, the N x p design matrix as X = [x(si, ti)]?i’l’,j:], and the N x 1 vector of the errors as
e = (e(s1,t1), ..., e(sn, tn))T. Let f = (f(t1), ..., f(tn))" denote the temporal function at the N sampling points. We
have

y=XB+f+e. (2)

The N x N covariance matrix of & is expressed as I'(8) = [y ((s;, t;), (5j, t;); 0)]{-‘_’1.:1. Further, let y = (ﬁT, 67)T denote a
(p + q) x 1 vector of parameters comprising both the regression coefficients 8 and the covariance function parameters .

2.2. Profile likelihood estimation

Since the likelihood principle cannot be easily adopted for semiparametric models like (1), here we develop a profile
likelihood method for model estimation. For a given B, let y; = y(s;, t;) — X(s;, t;)" B denote a partially detrended spatio-
temporal process for the response variable and let y* = (y7, ..., yﬁ)T denote an N x 1 vector of partially detrended
spatio-temporal response variables. We obtain an estimate of f by local polynomial regression; that is, we minimize the
following criterion, with respect to b, = (bg,, b1¢)",

N
* 2
> v = o — bi(ti — )} Ka(ti — 1), (3)
i=1
where K, = K(-/h)/h is a kernel function K(-) with a bandwidth h.

With K, = diag{Ku(t; — t), ..., Ku(ty — )}, D = (Iy,dy.), dyy = (t; —t)/h, ..., (ty —t)/h)T, and 1y isan N x 1
vector of 1's, it follows from (1) that, (bo,, hbi )" = w(t)y*, where w(t) = (DtTK[Dt)‘lDtTKt. The resulting estimate of f
is f = Sy* = S(y — Xp), where the smoother matrix is

T
S = (wl(tl)Tw--,wl(tN)T) ) (4)
and w1(t) = (1, 0)w(t). Plugging}Nr into (2), we have the following approximation
(I—Sy~I—-S)XB+e. (5)

If ¢ is a sequence of independent and identically distributed random variables, the profile method is used to obtain
estimates of 8 as

B=(X"U-8)"(I-S)X}'XT(I-S)"(I-S)y

and f = S(y — X ﬁ). However, the above method does not account for the spatio-temporal dependence of (s, t), and
therefore, the spatio-temporal parameter # cannot be estimated. In order to estimate both the mean trend and the
spatio-temporal parameter #, we propose to maximize the approximated profile log-likelihood function based on (5),

€(B, 6) = —(N/2)log(27) — (1/2)log{detr(9)} — (1/2)y — XB)"(I —S)'1(6) (I — S)y — XB). (6)

The estimate of (ﬂT, 07)T is the maximizer of (6), and is denoted as (’B\T,/@T)T. Consequently, the estimate of f can be
expressed as

F =5y —XB).
In addition, let f' = (f'(t1), ..., f'(ty))" denote an N x 1 vector of the first-order derivatives of the temporal function
f(t) evaluated at the sampling time points {ti, ..., ty}. Minimizing (3) yields an estimate of f’
f =Ly —XB),

where L = (h™wy(t1)", ... ., h—uoz(tN)T)T and w,(t) = (0, De(t).

In general, we write the estimate of F(t) = (f(t), hf’(t))T as f(t) = o(t)y — XE). In the case of spatio-temporal
independence (i.e., T' = o%I), the estimates of 8 and o2 in (6) can be expressed in closed form [see, e.g., 14]. In the case
of a nonparametric mean function (i.e., 8 = 0), (6) can still be maximized to obtain the estimates of # and f, while the

estimate of f’ can be obtained by f' = Ly. The estimation procedure above depends on the choice of bandwidth, which
will be discussed in Section 4.
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3. Asymptotic properties
3.1. Asymptotic framework

The spatio-temporal framework is essential for establishing asymptotic property of parameter estimators. In spatial
statistics, there are three asymptotic frameworks, namely, increasing-domain asymptotics, fixed-domain asymptotics, and
mixed-domain asymptotics. For the likelihood-based method considered here, we employ a spatio-temporal expanding
distance (STED) asymptotic framework in a fixed spatio-temporal domain, which provides a flexible tool for exploring the
asymptotic properties of statistical inference for spatio-temporal processes [5]. Let n denote the stage of the asymptotics
and let {A,} and {B;} be two sequences of increasing positive numbers. The (A;, B,)-rate STED asymptotic framework in
a fixed spatio-temporal domain is defined as follows. For all n, there exist positive constants cq, ¢; and c3, independent
of n, such that

(A.]) Sn/minlg,-an 5] n=<0C,
(AZ) Cn/min]J<Nn C; n = C,
(A.3) 84A%nBy > C3,

where §;, = min{|ls; — sl : 1 < i < Ny, 8 # 8j}, 6p = Maxi<j<n, Sjn, §n = Min{|t; — G| : 1 < i < Ny, t; # t;} and
{n = MaXi<j<n, ¢jn. We assume that the error process &(s, t) is locally stationary in the sense that a covariance function
¥a ((s, 1), (s, t')) is said to be locally stationary if there exists a sequence of functions g(-, -, s, t) such that,

[vn ((5.6). (8. €)) —gn (8 —s.t' —t.5.6)| = O (IS —sll +[t' —t| + pn).

uniformly for all (s, t), (s',t’) € R x T, where {p,} is a sequence of positive numbers, which does not depend on the
location, time or the parameter 6. Furthermore, p, — 0 as n — oo. In addition, there exists a function g such that, as
n— oo,

lim |g, (s —s,t' —t,5,t) —g(ug, up, s, t)] > 0
n—oo

uniformly for all (s, t), (s', t’) € R x T, where u; = A,(s' —s) and up = B,(t' — t).

We use a one-dimensional (1D) toy example to illustrate the structure of the locally stationary covariance function. For
locations s € R = [0, 1], we construct a locally stationary covariance function by taking the product of a positive function
D(s) and a stationary covariance function such that y(s,s’) = D(s)D(s")exp(—d/r), where r is the range parameter and
d = |s — §'| is the distance between s and s'. Fig. A of the supplementary material demonstrates four covariance functions,
one stationary covariance function where D;(s) = 1 and three locally stationary covariance functions.

3.2. Asymptotic properties

For iid data, the maximum profile likelihood estimate B is consistent and asymptotically normal [14]. For the spatio-
temporal semiparametric model (1), the asymptotic properties of the maximum profile likelihood estimates " and "4,
which maximize (6), will be established as follows.

TheTorenTl 1. Under (C.1)-(C.13) in the Appendix A, there exists, with probability tending to one, a local maximizer "y =
("B ,"0 )" of £(y) such that |"§ — nol = Op(Ny 172 ). Moreover, the local maximizer "3 is asymptotic normal; that is, as

n— oo,
N2("B — Bg) —> N(0,TT') and N2("6 — 6y) —> N(0, Zo(8o)~ ")

Theorem 1 establishes that the estimate "3 is root-N, consistent. However, the asymptotic varlance of ”ﬂ does not
converge to the information matrix (13). As will be seen in Appendix A, if |T™"||o = O(1), then X'T7'X > & T '®,
where A > B if A — B is positive semi-definite. That is, the asymptotic variance of 8 in partially linear models is greater
than those in simple linear regression models. Following a series of lemmas in Appendix A, the proof of Theorem 1 is
given in Appendix A.

A by-product of the proof for Theorem 1, given in Appendix A, shows that Z(8,) = lim;— N‘1XT(I S)TI“1(I —S)X.
Thus, we use N IXT(I=S8)"r~'(I—S)X as a finite sample approximation of IT, the asymptotic variance of " ﬁ In contrast,
for "0 it can be shown that the asymptotic variance is the same as that for the case when the temporal function f(-) is
assumed to be known.__ R -

Further, recall that F(t) = o(t)(y — XB) is the estimate of F(t) = (f(t), hf'(t)) ', where w(t) = (D, K:D,)"'D/ K. The
following Theorem 2 establishes the asymptotic normality of F(t). The proof of Theorem 2 is given in Appendix A.

Theorem 2. Suppose fC)(t) is bounded. Under (C.1)-(C.13) in the Appendix A, we have, as n — oo,

ooy fFw) - ko) - e (M O) o} 2w (0. (5 2 ) sy )

for t € (0, 1), where i = [ X*K(x)dx
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Similar to Theorems 1 and 2, we can show that, when B is known, the asymptotic properties of "9 and f(t) remain the
same as in Theorem 2. This may be expected, since f is root-N, consistent. Further, A; is generally unknown in practice.
As suggested by (C.9), A; can be approximated by N‘lhq( )‘2k T'k;, where k; = {Ky(t; — t){(t; —t)/h}~ }l 71 isan N, x 2
matrix. Since q(t) represents the density of the sampling time p01nts we may use a kernel density method to estimate
q(t). An alternative is to estimate q(t) by vo /Ny, where vo; = le] Ki(t; — t). Lemma 1 in Appendix A shows that such
an approximation is reasonable. In the remainder of this paper, we will refer to the former approximation as a kernel
density approximation and the latter a plug-in approximation.

4. Selection of kernel and bandwidth
4.1. Theoretically optimal bandwidth

The selection of bandwidth is crucial in kernel smoothing and thus we derive a theoretically optimal bandwidth. By
the results in Theorem 2, the asymptotic mean squared error (AMSE) of f (t)is
AMSE(t) = (1/4h*u3f"(t) + (Nah) "1 (1,0)A,(1,0)",
and the asymptotic weighted mean integrated squared error is

1 1
AMISE(h):/ AMSE(t)q(t)dt = (1/4)h*u /f” 2q(t)dt + (Nh)~ f(l,O)At(l,O)Tq(t)dt
0

0
Viewing the density function q(t) as a weight function, we obtain an asymptotically optimal bandwidth as

15
hope = N71/5 11523 {fo A(1,0)7g (t)dt} , .
fo fr(e)>q(t)d

where the convergence rate is Nn/ > and is the nonparametric optimal rate [40].

The asymptotically optimal bandwidth hey above depends on several unknown quantities: A, in the asymptotic
variance of F(t), the density of sampling time points q(t), and the second-order derivative of the temporal function f”(t);
thus, it is not straightforward to estimate hopt When I = oI (i.e., the process assumes spatio-temporal independence),
A, can be expressed as o%q(t)~diag{ /> K(u)*du, [ u?K(u)?du}. A rule of thumb for bandwidth selection in this case is
available [see, e.g., 13]. The idea is to plug in the estimates of o2 and f”(t) to obtain an approximation of hept. Specifically,
after a pilot global polynomial regression of degree 4 is fitted, o2 is estimated by the standardized residual sum of squares,
and the estimate of f”(t) is obtained by differentiating the resulting global fit. However, for a spatio-temporally correlated
error process, the covariance matrix I' needs to be estimated, and this rule of thumb is not directly applicable. Hence, a
more practical bandwidth selection procedure is needed.

4.2. Practical bandwidth selection

Under model (1), we have

V(s t) = f(t) +ei(s, t) + eas, t), SER, t€T. (8)
We use a leave-one-out cross-validation criterion [CV; 44]. A straightforward calculation reveals that CV(h —1 Z
2
{y’]%fs(:’)} , Where S;; is the (i, i)th element of the smoother matrix S. However, as will be seen in the followmg theorem,

cross-validation is asymptotically biased in the presence of correlated errors for most commonly used kernels with

K(0) # 0.

Theorem 3. Under Assumptions (C.1)-(C.13) in the Appendix A, if there exists a sequence C, > 0 such that C;h™' — 0 and
l/(Bng“n)fBonocn y1(u)du — 0, as n — oo, then we have

Cov(e, &)

E(CV(R)} = N, ) E(f(6) — FU6))? + 02 — K (0) § (2/Nn) — =2 0 (1/(Nyh
(cvimy Zl{f(l (6)) + 02 —K (0) /nzlgbt, %0 O (1/(Nah)
i= i= Jt,\<Cn
where f *")(t,) is the leave -one-out estimator with the ith observation deleted for estimation, 02 = Z Var(Y;),
2 ,
CV(h) = Ny oMy — T2t} and b(t) = Nag(t)h(peo.q e — 12, )i

The proof of Theorem 3 is given in Appendix A. Theorem 3 provides a theoretical basis for the choice of kernel functions.
In practice, we propose the following procedure for the selection of bandwidth h.

5
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(i) For a predetermined bandwidth hy and a kernel function Kj,, obtain the estimated regression coefficients ﬁ by the
profile likelihood method.
(ii) For given a kernel function, find the bandwidth h,p that minimizes the cross-validation criterion

Nn ""*_T* 2
cvi=n > (=) ©
i1 ii

where 3/’;‘ =y; — X(sj, t,-)TE, and f,* is the profile likelihood estimate of (8).
(iii) Use hepe and the kernel function from Step (ii) to obtain the desired estimates of both the regression coefficients g
and the covariance function parameters 6.

As to be illustrated in a simulation study, the estimate of f is not very sensitive to the choices of bandwidth and
kernel function in Step (i). Thus, we suggest to use a pilot bandwidth to yield an underestimate of f and consequently an
estimate of 8. In Steps (ii) and (iii), we use a bimodal kernel K»(u) = 27 ~/?u? exp(—u?); see Fig. B of the supplementary
material [12]. Unlike the more commonly used kernels (e.g., Gaussian or Epanechnikov kernel), the bimodal kernel satisfies
K5(0) = 0, which can mitigate the influence of the spatio-temporal correlation.

A popular alternative to the cross-validation criterion (9) is the generalized cross-validation [GCV;20] criterion, in
which S;; is replaced by N, 1tr(S). For dependent data, Francisco-Fernandez and Opsomer [15] proposed a bias-corrected
generalized cross-validation criterion (GCV,), replacing S; by N, ! tr(SR(9)); that is,

Nn ~x T2
GCV,(h) = Z"zl(_y{ 1) , (10)
Np{1 — N, " tr(SR(0))}2

where R(#) is a correlation matrix. In practice, a pilot estimate of the covariance parameter vector is required; however,
the choice of such an estimate is not obvious, and would impact the overall estimation performance. To ensure
the performance of parameter estimation in covariance function, for each candidate bandwidth h, we compute the
corresponding estimate of # and obtain an estimated GCV, criterion, denoted by GCV,. As further demonstrated in the
simulation study, the results based on the cross-validation and GCV,, are similar, although GCV,, is computationally more
expensive.

5. Simulation study
5.1. Simulation set-up

We sample N; locations uniformly from the spatial domain [0, 1]?, where N; € {20, 40, 60}. At each sampling location,
we randomly sample 4% from the grid of time points (i — 1/2)/1000, i € {1, ..., 1000}. The selected locations and time
are labeled as {(s1, t1), ..., (Sn,. tn,)}. For Ny € {20, 40, 60}, the sample sizes are N, € {806, 1644, 2449}, respectively.
The space-time coordinates will remain fixed across iterations once generated.

For the regression mean function and the semiparametric mean function, the vector of regression coefficients is
B =(4,3,2,1)7. The covariates are drawn (once) from a multivariate normal distribution with zero mean, unit variance,
and a cross-covariate correlation of 0.5. Each covariate is standardized to have zero sample mean and unit sample variance.
Further, the nonparametric temporal function in the semiparametric mean function is f(t) = 2{1 — cos(2xt)}.

We then draw a realization from the mean zero Gaussian error process £(s, t) using three different covariance functions.
The first covariance function is an exponential spatio-temporal covariance function

201 _ _ e _ ¢ e g

Covie(si, ti), e(sj, )} = :02(1 c)exp{—oinllsi = sill/¢ — oanlti — Gl/cc}, i i # ],

o, ifi=j.
Here, o2 is the variance of (s, t), c € [0, 1] is the proportion of random noise such that co? is the nugget effect, and c;
and c, are the positive spatial and temporal range parameters, respectively. We take 0> = 9.0,c =0.2,¢; = land ¢, = 1.

This covariance function is stationary and separable and we denote it as COV-1.
Next, we consider a generalized spatio-temporal Matérn covariance function [5]:
D(s,)D(s’,t'Jo 208/ 221 -
(02u34+1)" (03 uZ+03)4/2 ' (v)
d/2
Ya((s, t), (', t'); 0) = { _Dis,oD(s’,t)o05 : _ (11)
(612u%+1)”((~)12u%+(7‘3)d/2 ) if ”ul ” - 07 |u2| > O,

D(s, tY?0? + co?, if |u1]l =0, luz| =0,

m(uy, u2)"Ky {m(uq, uz)},  if [luq | > 0,

where #; = p1 (s’ —s) and uy = p; a(t'—t). In this covariance function, m(uy, uz) = 62 |uq [{(03u3 +1)/(6?u3 +65)}/? and
K,(+) is the modified Bessel function of the second kind of order v. Here, 6#; and 6, are nonnegative range parameters of
time and space respectively, 83 > 0 is a separability parameter. The point-wise variance of (s, t) is D(s, t)D(s’, t')o 2 +co?,

6
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where co? accounts for the nugget effect. The parameter v in K,(-) controls the smoothness of the covariance. If we let
v =1/2 and 63 = 1, then (11) reduces to

2 g .
D(s;, t;)D(sj, Q)W exp{—boisllsi —sjll}, ifi#j;

(12)
D(s;, t;)D(sj, t])o + co? ifi =j.

Covie(si, t;), &(sj, tj)} = {

2 2

Similarly, o“ is the variance of ¢(s, t), c € [0, 1] is the proportion of random noise such that co“ is the nugget effect,
and a and b are the positive temporal and spatial range parameters, respectively. Here, D(s;, t;) = dt; + 1 varies by time,
resulting in a nonstationarity covariance function. We set 6> = 9,¢c = 0.2,a = 1,b = 1 and d = 1. This covariance
function is still separable in space and time, which we refer to as COV-2.

The third covariance function we considered is a slight modification of COV-2, with D(s;, t;) = dt; + esq; + fso; + 1. We
seto? =9.0,c=02,a=1,b=1,d=0.5,e=0.5and f = 0.5. This covariance function is nonstationary, nonseparable
and asymmetric, referred as COV-3.

For each combination of the sample size and the covariance function, we generate 400 simulation replicates. We also
consider a special case of the semiparametric mean function where the temporal function f is assumed to be zero. As will
be demonstrated later, this case will serve as a benchmark in the comparison of the estimation for 8 and 6.

For each simulated data set, a predetermined bandwidth hy = 0.05 is used to obtain an initial estimate of B.
The estimate of the optimal bandwidth h is then determined by minimizing the cross-validation criterion (9) over a
predetermined grid of bandwidth values. Given the estimated optimal bandwidth, the profile likelihood estimates B, 6
and f(-) are obtained. We further consider two variants of the GCV for determining the bandwidth in (9): GCV. and GCV,,
as described in Section 4.

The profile likelihood method (PLE) results are compared with two alternative methods, namely, ALT; and ALT,. In ALT4,
the parameter estimates and the estimate of the temporal function are obtained by the profile likelihood method ignoring
the spatio-temporal dependence. In ALT,, the regression coefficients 8 and the covariance parameters 6 are estimated by
the classical maximum likelihood method assuming the temporal trend f(-) is known. That is, ALT, is essentially the
maximum likelihood method under the model with the regression mean function.

To assess the performance of estimation by the different methods under the different bandwidth selection criteria, we
compute the means and the standard deviations (SD) of 8 and @ from the 400 simulated data sets. We also compute the
estimated standard errors of the parameters for each simulated data set based on the information matrix in Theorem 1
and report the mean estimated standard errors (SDm). For ALT;, we use 1‘(0) = &I to calculate SDm. In addition, for the
estimated temporal function f we calculate the average squared error (ASE) for each simulated data set, defined as

Ngrid

ASE = N Z{f(ti,grid) —Fltigria)}?.
p

where Ligria = (i— 1/2)/Ngrid forie{l,..., Ngrid} and Ngrid = 1000.

Finally, we generate an additional 10% new sampling locations and, at each new sampling location, new sampling
time points are generated as in the simulation set-up. At these new sampling locations and time points, new observations
denoted as y; new are generated and let ; e denote the predicted value at the ith new sampling location and time, where
i€ {1,..., Npew}, and Ny is the total number of new sampling locations and time points. We use the mean squared
prediction error (MSPE) to evaluate the performance of the various methods as

NneW
MSPE = Nl:elv Z(Yi,new - yi,new)zv
i=1

The results are provided in Tables 1-3, the last two rows of which give the average values of ASE and MSPE.
5.2. Simulation results

As shown in Table 1 for the first scenario of the spatio-temporal covariance function (COV-1), the bandwidths chosen by
the three selection criteria, CV, GCV, and GCV,, are similar for the profile likelihood method. For parameter estimation,
both the accuracy and the precision increase as the sample size increases. The empirical standard deviations are well
approximated by the standard errors, supporting the information-based asymptotic variance in Theorem 1. Further, under
different bandwidth selection criteria, similar ASE and MSPE values are obtained, which may not be surprising due to the
similar choices of bandwidths and hence similar estimates.

For the estimation of the regression coefficients, our method PLE and the two alternative methods ALT; and ALT,
have comparable estimation bias, which suggests that the accuracy of 8 is not sensitive to the assumption of covariance
structure. However, the simulation standard deviations from ALT; are larger than those from PLE and ALT,, indicating
noticeable gain of statistical efficiency in the parameter estimation by accounting for spatio-temporal dependence. In
addition, ALT; has much larger MSPE and thus poorer prediction than PLE and ALT,. For estimating the temporal function,
the ASEs for ALT; and PLE are similar; both decrease as the sample size increases.
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Table 1

Sample mean, sample standard deviation (SD), averaged information matrix based standard deviation (SDm) of regression and covariance parameters,
averaged squared error (ASE) and mean-squared prediction error (MSPE) for three sample sizes with Ny = 20, 40, 60 using bimodal kernel for COV-1
and for three bandwidth selection criteria, CV, GCV., GCV, under profile likelihood estimation (PLE). Comparison is made with two alternatives ALT;
and ALT,.

Term Truth Ns =20 N = 40 N; = 60

Method - PLE ALT; ALT, PLE ALT; ALT, PLE ALT; ALT,
Criteria - v GCV. GCV, CV - v GCV. GCV, CV - v GCV. GCV, CV -

h - 0.079 0.081 0.082 0.079 - 0.072 0.073 0.073 0.072 - 0.068 0.069 0.069 0.068 -

B 4.0 3.985 3985 3985 3.991 3985 4.002 4.002 4.002 3993 4.002 4.002 4.002 4.002 4.003 4.002
SD 0.104 0.104 0.104 0.120 0.104 0.080 0.080 0.080 0.104 0.080 0.067 0.067 0.067 0.082 0.067
SDm 0.112 0.112 0.112 0.132 0.112 0.080 0.080 0.080 0.095 0.080 0.066 0.066 0.066 0.078 0.066
Ba 3.0 3.017 3.017 3.017 3.017 3.018 3.009 3.009 3.009 3.004 3.010 2996 2996 2996 2989 2.996
SD 0.123 0.123 0.123 0.140 0.122 0.075 0.075 0.075 0.095 0.075 0.065 0.065 0.065 0.079 0.065
SDm 0.116 0.116 0.116 0.136 0.117 0.078 0.078 0.078 0.094 0.078 0.065 0.065 0.065 0.077 0.065
B3 2.0 2.006 2.006 2.006 2.003 2005 1986 198 1986 1.982 1986 1.997 1997 1997 2.001 1.997
SD 0.109 0.109 0.109 0.127 0.109 0.074 0.074 0.074 0.087 0.074 0.067 0.067 0067 0.082 0.067
SDm 0.114 0.114 0.114 0.132 0.114 0.081 0.081 0.081 0.096 0.081 0.064 0.064 0064 0.077 0.064
Ba 1.0 0996 0.996 0.995 0988 0.996 1.002 1.002 1.002 1.010 1.002 1.000 1.000 1.000 0.999 1.000
SD 0.110 0.110 0.110 0.131 0.110 0.077 0.077 0.077 0.097 0.077 0.065 0.065 0065 0.082 0.065
SDm 0.115 0.115 0.115 0.134 0.115 0.079 0.079 0.079 0.094 0.079 0.065 0.065 0.065 0.077 0.065
o? 9.0 9.111 9.112 9.112 9.101 8944 9.120 9.120 9.120 9.113 8.997 9.055 9.055 9.055 9.054 8.963
SD 0.569 0569 0569 0589 0,525 0387 0387 0387 0394 0372 0325 0324 0324 0334 0317
SDm 0.546 0547 0547 - 0528 0.395 0395 0395 - 0384 0319 0319 0319 - 0.313
c 0.2 0209 0209 0.209 - 0202 0.201 0201 0.201 - 0.196 0.197 0.197 0.197 - 0.193
SD 0.077 0.077 0.077 - 0.078 0.047 0.047 0.048 - 0.047 0.043 0.043 0.043 - 0.043
SDm 0.074 0.074 0.074 - 0.077 0.047 0.047 0.047 - 0.048 0.040 0.040 0.040 - 0.041
Cs 1.0 1.090 1.090 1.091 - 1.025 1.052 1052 1.052 - 1.007 1.027 1.027 1.027 - 0.994
SD 0224 0224 0224 - 0.198 0.134 0.134 0.134 - 0.124 0.103 0.103 0.103 - 0.098
SDm 0213 0213 0213 - 0200 0.127 0.127 0.127 - 0.121 0.099 0.099 0.099 - 0.095
[ 1.0 1.087 1.088 1.088 - 1.029 1.047 1.048 1.048 - 1.008 1.016 1.016 1.016 - 0.987
SD 0.243 0244 0245 - 0.224 0.142 0.142 0.142 - 0.134 0.112 0.112 0.112 - 0.108
SDm 0213 0213 0213 - 0204 0.139 0.139 0.139 - 0.134 0.112 0.112 0.112 - 0.109
ASE - 0.266 0.265 0.266 0.265 - 0.183 0.183 0.183 0.182 - 0.149 0.149 0.150 0.149 -
MSPE - 6.501 6.501 6501 9.245 6484 7.403 7.403 7.403 9.169 7.386 6934 6.933 6933 9.090 6.918

When the sample size is smaller, PLE has less accuracy and precision in the estimation than ALT,. In particular, both
the standard deviations and the standard errors of the estimates from PLE are considerably larger than those of ALT,, for
all the covariance parameters except the nugget proportion c. When the sample size is larger, PLE and ALT, have similar
estimation results. In particular, the standard deviations and the standard errors of the estimates from PLE are similar to
ALT,, supporting that the asymptotic variance of # under the semiparametric mean function is the same as the regression
mean function, as shown in Theorem 1. Moreover, ALT, has slightly better prediction than PLE due to possible bias in the
estimation of f(-) in PLE.

Tables 2 and 3 show results for the second and the third scenario of the spatio-temporal covariance function, COV-2 and
COV-3, respectively. Similar conclusions can be drawn. Particularly, in the presence of non-separability and nonstationarity
in the spatio-temporal covariance function, the finite-sample performance of the estimation for the semiparametric mean
function is sound and supports the asymptotic results. The bandwidths selected by the three criteria, CV, GCV, and GCV,,
are very similar and so are the resulting estimates. Unlike COV-1 and COV-2, the prediction under COV-3 changes greatly
for different sample sizes, which may be attributed to the nonstationarity in space with very different variances at different
new spatial locations where the observations are predicted. Tables D-E in Section 3 of the Supplementary Material show
that the regression coefficient estimates are robust against the choice of the kernel and the initial bandwidth. For a
predetermined bandwidth, it can be seen that, different kernel functions in Step (i) of the bandwidth selection procedure
yield very similar results. Moreover, those results are similar to the benchmark case when = B.

As demonstrated in Theorem 3, bimodal kernels can effectively alleviate the influence of correlated errors on bandwidth
selection. To see this, we compare the results from a bimodal kernel with those from a Gaussian kernel. The estimation
results under the Gaussian kernel for the first scenario of spatio-temporal covariance function (COV-1) are given in Table
F of the Supplementary Material. Unlike the bimodal kernel, the bandwidths selected by the three criteria, CV, GCV, and
GCV,, can be quite different. In particular, CV selects much smaller bandwidth than GCV, and GCV,,, supporting the fact
that cross-validation does not handle correlation well for most commonly-used kernels with K(0) # 0. The regression
coefficient estimates are similar for all three bandwidth selection criteria, which suggests that the estimation of 8 is not
sensitive to the choice of bandwidth. However, the estimates of covariance parameters are greatly affected by the bias in
the bandwidth selection, with CV having the largest bias in parameter estimation and the largest ASE in the estimation
of the temporal function, among the three criteria. As an alternative of CV in the presence of spatio-temporal correlation,
GCV, produces a much larger bandwidth, although the resulting estimates are not as accurate as those from the bimodal
kernel function.
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Table 2

Sample mean, sample standard deviation (SD), averaged information matrix based standard deviation (SDm) of regression and covariance parameters,
averaged squared error (ASE), and mean-squared prediction error (MSPE) for three sample sizes with Ny = 20, 40, 60 using bimodal kernel for COV-2
and for three bandwidth selection criteria, CV, GCV., GCV, under profile likelihood estimation (PLE). Comparison is made with two alternatives ALT,
and ALT,.

Term Truth Ns; =20 N; = 40 N; = 60

Method - PLE ALT; ALT, PLE ALT; ALT, PLE ALT; ALT,
Criteria - cv GCV. GCV., CV - cv GCV. GCV., CV - cv GCV. GCV., CV -

h - 0.100 0.103 0.104 0.100 - 0.089 0.091 0.091 0.089 - 0.083 0.086 0.086 0.083 -

B 4.0 3969 3969 3969 3987 3969 4.002 4.002 4.002 3987 4.003 4.004 4.004 4.004 4.005 4.004
SD 0.136 0.137 0.137 0.197 0.137 0.102 0.102 0.102 0.169 0.102 0.089 0.089 0.089 0.129 0.089
SDm 0.146 0.146 0.146 0.209 0.146 0.104 0.104 0.104 0.151 0.104 0.086 0.086 0.086 0.123 0.086
B 3.0 3.020 3.020 3.020 3.027 3.023 3.010 3.010 3.010 3.008 3.012 2994 2994 2994 2983 2994
SD 0.165 0.165 0.165 0218 0.164 0.097 0.097 0.097 0.155 0.097 0.083 0.083 0.083 0.128 0.082
SDm 0.153 0.153 0.153 0215 0.153 0.101 0.101 0.101 0.150 0.101 0.082 0.082 0.082 0.122 0.082
B3 2.0 2011 2011 2011 1998 2.008 1984 1984 1984 1970 1984 1993 1993 1993 2.000 1.993
SD 0.146 0.146 0.146 0201 0.146 0.100 0.100 0.100 0.136 0.100 0.088 0.088 0.088 0.130 0.088
SDm 0.152 0.152 0.152 0209 0.152 0.106 0.106 0.106 0.154 0.106 0.082 0.082 0.082 0.121 0.082
Ba 1.0 1.003 1.003 1.003 0.983 1.004 1.002 1.002 1.002 1.021 1.002 1.002 1.002 1.002 1.000 1.002
SD 0.144 0.144 0.144 0208 0.144 0.101 0.101 0.101 0.161 0.102 0.085 0.085 0.085 0.130 0.085
SDm 0.148 0.149 0.149 0213 0.148 0.102 0.102 0.102 0.150 0.102 0.084 0.084 0.084 0.122 0.084
o? 9.0 9.075 9.073 9.071 22751 8934 9.198 9.199 9.199 23316 9.094 9.163 9.159 9.159 22.736 9.085
SD 1.610 1609 1608 1.658 1543 1.131 1.133  1.133 1217 1114 0871 0869 0.869 0.995 0.864
SDm 1569 1569 1569 - 1544 1114 1114 1114 - 1.100 0.887 0.887 0.887 - 0.879
c 0.2 0229 0229 0230 - 0.227 0200 0200 0200 - 0.199 0.195 0.195 0.195 - 0.194
SD 0.121 0.121 0.121 - 0.120 0.060 0.060 0.060 - 0.061 0.051 0.051 0.051 - 0.051
SDm 0.102 0.102 0.102 - 0.103 0.061 0.061 0061 - 0.062 0.049 0049 0049 - 0.050
a 1.0 0980 0980 0980 - 0996 0991 0991 0991 - 1.002 1002 1002 1002 - 1.010
SD 0.117 0.117 0117 - 0.118 0.070 0.070 0.070 - 0.071 0.058 0.058 0.058 - 0.058
SDm 0.101 0.101 0.101 - 0.104 0.069 0.069 0.069 - 0.071 0058 0.058 0.058 - 0.059
b 1.0 0973 0973 0973 - 1.001 0984 0984 0984 - 1.006 0992 0992 0992 - 1.009
SD 0.139 0.139 0.139 - 0.140 0.089 0.089 0089 - 0.089 0.070 0.070 0.070 - 0.070
SDm 0.131 0.131 0.131 - 0.135 0.086 0.086 0.086 - 0.087 0.069 0.069 0.069 - 0.070
d 1.0 1.020 1020 1020 - 1.021 0999 0999 0999 - 1.000 0991 0992 0992 - 0.992
SD 0246 0247 0247 - 0.242 0.167 0.167 0.167 - 0.167 0.127 0.127 0.127 - 0.127
SDm 0.238 0.238 0.238 - 0.237 0.162 0.162 0.162 - 0.161 0.129 0.129 0.129 - 0.129
ASE - 0663 0659 0657 0655 - 0451 0451 0451 0450 - 0365 0366 0367 0366 -
MSPE - 13454 13456 13456 24.114 13429 15.646 15.645 15.646 21.682 15.609 15.629 15.629 15.629 24.123 15.598

Finally, in Tables 1-3, the standard deviations and the standard errors of E from PLE are similar to those from ALT,. This
is as expected, since the design matrix in our setting does not vary by time. In Section 1.2 of the Supplementary Material,
we investigate a design matrix that varies over time. From Table G in the Supplementary Material, it can be seen that
the standard deviations of 8 from PLE are larger than those from ALT,, which indicates a loss of statistical efficiency in
the estimation of 8 when the unknown temporal function is estimated. This finding is consistent with the standard error
formula in Theorem 1. In addition, we consider a nonseparable but stationary covariance function. The simulation results
are provided in Section 1.3 of the Supplementary Material, and similar lessons can be learned.

6. Data example

To illustrate our methodology, we consider a data set collected by static sensors at fixed sampling locations in time
and roving sensors traversing the spatial domain in time in an engine facility for evaluating the intensity level of noise
as an occupational hazard [25,31]. We focus on the observations between 10:29:00 am and 11:24:00 am when all the
sensors are operating. As shown in Fig. 1, there are 56 observations, one per minute, for each of the 17 static sensors.
For the two roving sensors, there are a total of 179 observations, observed at irregular time points. Therefore, the total
sample size is N, = 1131.

We consider the semiparametric mean function (12) with the generalized spatio-temporal Matérn error covariance
function (12). More specifically, for s = (s1, s3), we have

y(s, t) = Bis1 + Bas2 +f(t) + &(s, t),

where the regression is on the coordinates of the spatial location s, the temporal function f is nonparametric, and the
zero-mean error process £(s, t) has the spatio-temporal covariance function (12). We fit three spatio-temporal covariance
functions: Dq(s, t) = 1 for stationarity, D,(s,t) = 1+ dt and Ds(s,t) = 1+ dt + e(t — k), for nonstationary. In the
latter two nonstationary cases, for any fixed time point ty, £(s, to) is spatially stationary. For Ds(s, t), ¥ is chosen around
11:02:00 am, which is expected to capture the temporal change due to an engine shutdown.

9
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Table 3

Journal of Multivariate Analysis 183 (2021) 104735

Sample mean, sample standard deviation (SD), averaged information matrix based standard deviation (SDm) of regression and covariance parameters,
averaged squared error (ASE), and mean-squared prediction error (MSPE) for three sample sizes with Ny = 20, 40, 60 using bimodal kernel for COV-3
and for three bandwidth selection criteria, CV, GCV., GCV, under profile likelihood estimation (PLE). Comparison is made with two alternatives ALT,

and ALT,.
Term Truth Ns; =20 N; = 40 N; = 60
Method - PLE ALT; ALT, PLE ALT; ALT, PLE ALT;  ALT,
Criteria - cv GCV, GCVe, CV - cv GCV, GCV., CV - cv GCV, GCV, CV -
h - 0.106 0.108 0.109 0.106 - 0.095 0.098 0.099 0.095 - 0.087 0.090 0.090 0.087 -
B1 4.0 3.964 3963 3963 3.984 3963 4.003 4.003 4.003 3984 4.003 4.005 4.005 4.005 4.004 4.005
SD 0.154 0.154 0.154 0.220 0.154 0.114 0.114 0.114 0.193 0.114 0.098 0.098 0.098 0.148 0.098
SDm 0.165 0.165 0.165 0.238 0.165 0.116 0.116 0.116 0.173 0.116 0.096 0.096 0.096 0.139 0.096
B 3.0 3.025 3.025 3.025 3.029 3.027 3.014 3.014 3.014 3.011 3.015 2992 2992 2992 2983 2992
SD 0.184 0.184 0.184 0.248 0.183 0.107 0.107 0.107 0.181 0.107 0.092 0.092 0.092 0.144 0.092
SDm 0.171 0.171 0.171 0.246 0.172 0.112 0.112 0.112 0.171 0.112 0.092 0.092 0.092 0.138 0.092
Bs 2.0 2014 2.014 2014 1994 2011 1981 1981 1981 1968 1981 1991 1991 1991 2.002 1.991
SD 0.162 0.162 0.162 0.230 0.161 0.111 0.111 0.111 0.158 0.111 0.097 0.097 0.097 0.148 0.097
SDm 0.172 0.172 0.172 0.238 0.172 0.117 0.117 0.117 0.176 0.117 0.092 0.092 0.092 0.137 0.092
Ba 1.0 1.002 1.002 1.002 0.981 1.003 1.002 1.002 1.002 1.023 1.002 1.004 1.004 1.004 0.999 1.004
SD 0.163 0.163 0.163 0.238 0.163 0.114 0.114 0.114 0.177 0.114 0.096 0.096 0.096 0.145 0.095
SDm 0.168 0.168 0.168 0.242 0.168 0.112 0.112 0.112 0.172 0.112 0.093 0.093 0.093 0.137 0.093
o? 9.0 9322 9328 9.330 29.520 9.066 9.415 9.418 9419 30491 9275 9366 9363 9.363 29.027 9.262
SD 2418 2417 2418 2115 2374 1757 1758 1756 1552 1728 1409 1408 1408 1228 1.393
SDm 2397 2398 2398 - 2343 1725 1725 1725 - 1.700 1431 1431 1431 - 1.416
c 0.2 0.238 0.238 0.238 - 0.240 0202 0202 0.202 - 0.201 0.193 0.193 0.193 - 0.192
SD 0.151 0.151 0.151 - 0.155 0.077 0.077 0.077 - 0.077 0.062 0.062 0.062 - 0.062
SDm 0.134 0.134 0.134 - 0.138 0.075 0.075 0.075 - 0.076 0.061 0.061 0.061 - 0.061
a 1.0 0.982 0981 0981 - 0.996 0990 0989 0989 - 1.000 1.002 1.002 1.002 - 1.009
SD 0.115 0.115 0.115 - 0.116 0.067 0.067 0.067 - 0.068 0.055 0.055 0.055 - 0.056
SDm 0.098 0.098 0.098 - 0.101 0.066 0.066 0.066 - 0.067 0.056 0.056 0.056 - 0.056
b 1.0 0.977 0977 0977 - 1.001 0986 0.986 0985 - 1.005 0993 0.993 0993 - 1.008
SD 0.135 0.135 0.135 - 0.135 0.087 0.087 0.087 - 0.087 0.067 0.067 0.067 - 0.067
SDm 0.127 0.127 0.127 - 0.130 0.083 0.083 0.083 - 0.084 0.067 0.067 0.067 - 0.068
d 0.5 0.509 0509 0508 - 0.513 0498 0498 0498 - 0.500 0490 0490 0491 - 0.491
SD 0.222 0222 0222 - 0.221 0.158 0.158 0.158 - 0.158 0.117 0.117 0.117 - 0.116
SDm 0.222 0222 0222 - 0.224 0.150 0.150 0.150 - 0.150 0.120 0.120 0.120 - 0.120
e 0.5 0.502 0501 0501 - 0.515 0497 0497 0497 - 0.500 0483 0483 0483 - 0.486
SD 0.223 0223 0223 - 0.228 0.140 0.141 0.140 - 0.142 0.119 0.119 0.119 - 0.120
SDm 0.217 0217 0217 - 0.220 0.145 0.145 0.145 - 0.146 0.118 0.118 0.118 - 0.118
f 0.5 0.514 0514 0514 - 0.524 0487 0487 0487 - 0491 0493 0493 0493 - 0.496
SD 0.193 0.193 0.193 - 0.198 0.151 0.151 0.151 - 0.153 0.116 0.116 0.116 - 0.117
SDm 0.197 0.197 0.197 - 0.200 0.151 0.151 0.151 - 0.151 0.115 0.115 0.115 - 0.115
ASE - 0.825 0.828 0.829 0.823 - 0.577 0577 0578 0576 - 0.450 0.447 0447 0450 -
MSPE - 13.107 13.103 13.103 23.673 13.062 20.457 20.455 20.455 28.599 20.412 22.368 22.369 22.369 34.789 22.336
40 17A lll'.t‘..z‘ 100 L
. . G3A eeeee
L] .:11..5‘.%"..
L]
o
° ooR0g00
DR .
1% 12 14
° .
o o o o
o 15 o
10 o
o
%
o
[e]
0 [e]
0 5 10 15 10:30 10:45 11:00 11:15

Fig. 1. Left panel: Locations of static and roving sensors (A: static sensors in group 1, A: static sensors in group 2, e: roving sensors closer to static
sensors in group 1, and o: roving sensors closer to static sensors in group 2). Right panel: noise intensity over time at all static and roving sensors.
Here, time series for static sensors in Group 1 are shown in solid line, and those from Group 2 static sensors are shown in dashed line. In addition,
measurements of roving sensors recorded near Group 1 sensors are shown in dark solid circles, otherwise, they are shown as open circles.

We apply our method to analyze this data set and summarize the parameter estimates of 1, f, and @ in Table 4,
whereas the estimated temporal function f(t) and the pointwise 95% confidence intervals are plotted in Fig. 2. We
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Table 4

Selected bandwidths using bimodal kernel and corresponding parameter estimates for four
covariance structures: Dq(s,t) = 1, Do(s, t) = dt + 1 and Ds(s, t) = dt + e(t — k)4 + 1. Standard
errors are computed based on information matrices from Theorem 1 and given in parentheses.

Dq(s, t) Dy(s, t) Ds(s, t) Ds(s, t) (penalized)
h 0.0193 0.0193 0.0193 0.0193
Regression parameters
B —0.3922 (0.0820) —0.4492 (0.0652) —0.4872 (0.0608) —0.4600 (0.0636)
B 0.3015 (0.0565) 0.4048 (0.0440) 0.4142 (0.0410) 0.3954 (0.0425)
Covariance parameters
o? 50.8840 (8.7442) 8.8096 (1.7254) 19.0058 (3.6086) 14.7628 (2.7797)
c 0.0007 (0.0001) 0.0020 (0.0005) 0.0007 (0.0002) 0.0009 (0.0002)
Cs 0.1662 (0.0040) 0.1677 (0.0037) 0.1647 (0.0035) 0.1723 (0.0038)
Ct 0.0152 (0.0025) 0.0215 (0.0033) 0.0201 (0.0031) 0.0237 (0.0036)
d - 1.9218 (0.2647) —0.3070 (0.1298) 0.1982 (0.1723)
e - - 6.5719 (0.4883) 3.0394 (0.4177)
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Fig. 2. Estimated temporal function f(t) (solid curve) and 95% pointwise confidence intervals (dash curves) by maximizing the profile-likelihood (6)
with four covariance structures: constant Dq(s, t) = 1; linear Dy(s, t) = dt + 1; truncated polynomial Ds(s, t) = dt + e(t — )+ + 1; and maximizing
a penalized profile-likelihood by adding a penalty term to (6) with Ds.

o~ o~

approximate the pointwise standard deviation of f(t) by Theorem 2. The temporal function estimates f(t) under the three
models D1, D,, and D3 are quite similar; however, the pointwise confidence interval based on D; is much wider than those
based on D,. For Ds, the pointwise confidence interval is much narrower than D; and D, when t is small, however it is
unusually large when t is large.

This finding is also reflected in Table 4, the estimate of the coefficient of (t — «); in D3 (e) is unusually large. This
seems like a common phenomenon in spline smoothing with truncated polynomial basis functions. To circumvent this
potential issue, we consider a penalized approach [36]. That is, when maximizing the profile likelihood function (6), we
consider adding an additional penalty term —A|e|, where A is a tuning parameter. In practice, we choose A over a grid of
A values by minimizing the rotated residual sum of squares, for details, see Section 2.2 of the Supplementary Material.
In our data analysis, A = 20, and the resulting parameter estimates are given in the last column of Table 4. The resulting
estimate of e is much smaller, the other estimates of e are close to each other. The estimated standard deviation at each
time point are plotted in Fig. C of the Supplementary Material. We notice that D; from the penalized approach has the
smallest area under the curve. As a consequence, the 95% confidence interval of the temporal function f(t) of D; from the
penalized approach is the narrowest compared to D, D, and Ds, as presented in the last panel of Fig. 2.

Finally, we consider an interpolation of the noise intensity in space and time by kriging based on D3 with penalty. Fig. D
in the Supplementary Material presents a dynamic evolution of the noise intensity maps over time and suggests a possible
noise source in the upper-left corner with high noise intensity. There is also a sharp decrease of the noise intensity at
11:10:00 am when the engine was turned off even though all the sensors remain active, as well as a horizontal separation
around y = 30 before 11:10:00 am, reflecting the wall that separates the facility [31].
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Appendix A. Technical details

We use f3, to denote the vector of true regression coefficients and 6, to denote the vector of true covariance parameters.
We denote the log-likelihood of (B, #) in (1), when f(t) is known, as

€o(B, 8) = —(Na/2)log(27) — (1/2) log{detT(9)} — (1/2)y — XB —f)'0(6) '(y — XB —f).

Let £4(B) = 84o(B, 8)/9B and £,(0) = d£o(B, #)/06 denote the first-order partial derivatives of £o(8, #) with respect to 8
and 6, respectlvely For ease of notation, we suppress # in matrices relying on 6. For example, we write T' = I'(#). Then,
we have £;(B) = X' l(y- —XB—f)and the kth element of £4(#) is —(1/2)tr(T" “Ir)—(172)y —XB—f) Ty —XB—f),
where T, = aT'/36 and T¥ = a17'/36, = -~ ' 7' for ke {1, ..., q}.

Further, let £;(B,B) = 3%¢o(B, 0)/98% £5(0,0) = 9%Lo(B. 0)/06* and £5(B.0) = 9%¢o(B,0)/0B36 denote the
second-order partial derivatives with respect to 8 and 6. Let 7,(8) = E{—¢£;(B, B)} and J,(0) = E{—£;(6, #)} denote

the information matrices of B and 6, respectively. In particular, £5(8, B) = —X"r"'X, the kth column of £5(B, 0) is
X'r*%y — XB — f), and the (k, k')th entry of €500, 0) is —(1/2){tr(T~'Tye + T*Ty) + (v — XB )Ty — XB — £},
where Ty = 02I'/06,06 and T = 921~1/36,36, = I~ Y4~ 'Ty + T~y — Ty )0~ for k, kK € {1,..., q}. It can
be shown that E{¢;(B, #)} = 0, so the information matrix of  is J () = diag{7(B), T(0)}, where

Tu(B) = E{—¢(B, B} =X'T'X (13)

and the (k, k')th entry of J,(0) = E{—€4(0, 8)} is t /2 with tys = tr(D~ '\~ 'Ty) = tr(rT¥TTY ).
For a matrix A = [ai];;_,, we let u;i(A) denote its ith largest eigenvalue, let [Al2 = w1(A) denote its spectral

1/2
norm, let ||Allf = (Z Zl, ; ”,) denote its Frobenius norm, let ||A||max = max;y|a;z| denote its max norm, and

; . . P
let |Allc = mMaxi<i<n, Zi,”:] |a;7] denote the maximum absolute column sum of the matrix. Finally, let —> denote

convergence in probability and 2, denote convergence in distribution, as n — oo.
The theoretical properties of the methods developed in Section 2 are established under the following additional
regularity conditions.

(C.1) There exists a nondecreasing function Q(t) with Q(0) = 0 and Q(1) = 1 such that (i) sup;¢p 1) [Qn,(t) — Q(t)| =
O(&n), where Qu,, (¢ —1 ZN" I(t; < t); (ii) its first-order derivative function g(t) is bounded away from zero
and infinity and has contmuous second partial derivatives.

(C.2) Forj e {1,..., p}, there exists a function gj(-) on 7 with a bounded second derivative satisfying

Xi(si, t;) = gi(t;) + ¢y, i€ {1,...,Np},
where {¢;;} is a sequence of real numbers such that

lim N, '@'r7'® =11,

n—oo
where ¢; = (¢i1, . - qb,Nn) , ® = (¢, ..., $,), and IT is a positive definite matrix. In addition, for j € {1,..., p},
lim sup,,_, o.(1/a,) maxj<i<n, ‘Zm 1¢,W’ < oo for all permutations (iy, ..., iy,) of (1,...,N,), where a, =

]/2 log N,.

(C.3) The temporal function f(t) is twice differentiable with a bounded second-order derivative on 7.
(C.4) The kernel K(-) is a symmetric, nonnegative, and bounded function with a compact support in R and with a
bounded first-order derivative.
(C.5) The bandwidth h satlsﬁes h — 0, Nyh* — o0, Nph® — 0 and ¢,h™' — 0 as n — oo.
(C6) Fork e {1,...,q}, ITwll;* < DkNy /2= for some ¢ > 0 and Dy > O.
(C.7) It holds that ||I‘ |, < C* < oo for some constant C*.
(C.8) limy_, o N, 1.7n(0) —> Zy(0), where Zy(0) is non-singular.
(C.9) Given't € (0 1), there exists a 2 x 2 matrix A, such that (Nn”h)kaI‘kt — q(t)*A¢, where k; = {Ku(t; — t){(t; —
t)/hy~ }u 1 i1s an N, x 2 matrix.
(C.10) Define g(s, t) = g(0, 0, s, t). Assume g(s, t) satisfies |g(s, t) — g(§/, t')| < C1||s—§'||+C2|t — t'| for all (s, t), (s/,t) €
R x T, where Cq, C, are positive constants.
(C.11) There exist two positive nonincreasing functions y, and y; such that |y,((s,t), (s + uq/An, t +uz/By))| <
yo(llugl)y1(Juz]) for all n and ||u4||, |uz] € [0, co) such that (s, t), (s + u1/An, t + u3/B;) € R x 7. In addition,
Jo7 utyp(u)du < oo and i y4(u)du < oo.
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(C.12) The covariance function y,(-, -; @) is bounded and is twice continuously differentiable with respect to @ in an open
set.
(C.13) There exist two positive nonincreasing functions y, and y3 such that

max{|yn (s, £), ($ + w1 /An, t + tz/Bu))l, [Vns (S, ), (s + 1 /An, t + u2/Ba))l} < ya(llwa|)ys(lu2l)

for all n and |luy ||, [uz| € [0, 00) with (s, t), (S + 1 /An, t + uz/By) € R x T and 1 < k, k' < q. Further, [~ u¢~!
ya(u)du < oo and [ y3(u)du < oc.

-~

In the following proofs, we suppress n in "ty, "age, "', "T'y, "Tii, I, An, "3, "B and "6 for ease of notation.

Remarks. (C.1) is a condition on fixed time points for the spatio-temporal sampling design. (C.2) is a mild assumption
about the relationship between the fixed design points and {¢;} in the partially linear model, which is similar to Assumption
2.2 (i) in Gao and Liang [17]. (C.3)-(C.5) are common assumptions in kernel smoothing. (C.3) ensures the smoothness of
the temporal function [27,43]. (C.4) is a standard assumption for kernel functions and can be relaxed further such that K(t)
satisfies a Lipschitz condition |K(t) — K(t')| < ¢ |t — t’| for any ¢, t" € R and some ¢ > 0. In addition, (C.5) is a condition
for the rate of bandwidth with respect to N, and ¢,. (C.6) assures that the first-order partial derivatives of the covariance
matrix have a higher order than root-N,. (C.7) imposes a lower bound on the smallest eigenvalue of the covariance matrix.
(C.8) guarantees that the growth of the information matrix is at the rate of the total sample size [6]. Moreover, (C.9) is
an assumption for the fixed sampling design under the spatio-temporal dependence. Finally, (C.10)-(C.13) are regularity
conditions for locally stationary processes. In (C.11), the covariance function of locally stationary processes is bounded by
a product of two functions, whose integrals are finite.

A Remark on Assumption (C.2) Here, we will show that if |"T"'||o, = O(1), we have X 'T~'X > ®'T~'®, where A > B
if A — B is positive semi-definite. To see this, we write
X'1'X=¢r'¢+c¢'r'e+e'r'c+a'r's.
Since |"T '[loo = O(1), G' T~ is uniformly bounded elementwise. Together with (C.2), G'T~'& = O(N,’* logN,).
Recall that lim,_,,, N, '® T~ '® = II. Thus, G' T~'® is dominated by & 'T~'®, and thus,
X't'X>a'1r s,

in which the equality holds if g(-) = 0. This result indicates that the asymptotic variances of E in the partially linear
model are greater than those in the simple linear regression model.

In the following Lemmas 1-6, we generalize some classical results for random sampling designs [14] to fixed sampling
design, which will be used in the proofs of Theorems 1-3.

Lemma 1. Under Assumptions (C.1), (C.4) and (C.5), for k > 0,

sup |Uk,t - Nan.tQ(t)‘ = O(Nph + Nngnhil):
tel0,1]

where v, = h™* YN (6 — ¢)¥Kn(ti — t), Kn(t) = (1/h)K (t/h),

fff/h x*K (x)dx, if t < Mh,
fie = o X K(X)dx == i, ifMh <t <1—Mh,
SO kK (x)dx, ift > 1— Mh,

and [—M, M] is the compact support of K(-).

Proof. For any t € [0, 1],

1
Nnh_k/ (z — t)*Ky (z — t) d(Qy, — Q)(z)
0

|Uk,t - anik,tqu)’ =

1
+ ’Nnhk/ (z — 0Ky (z — £) dQ(2) — Nnuk,t(I(t)‘ = (I11) + (I1.2),
0
where

1
(1) = Nah ™ / (2 = 0Kn (2 — ) d(Q, — Q)(2)
0

1
= Nah™¥|(z = )'Ky (z — ) (Qu, — Q)(2)Ig— f (Qv, — Q)2)[(z — t)'K z — )] dz
0
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! z—t\""' [(z—t ! z—t\* (z—t
O(QNH—Q)(z)k(T) 1<( - >dz+fo(QN,,—sz)( - )x( . )dz

M M
< Nah™! sup [(Qu, — Q)(2)I (/ |ku* K (u ydu+/ }u"l((u)ydu).
- -M

z€[0,1] M

= N,h™2

The second equality uses the fact that (Qv, —Q)(1) = (Qv, —Q)(0) = 0. By (C.1), /7, |ku" K(u)| du-l-f |ukK'(u)| du =
O(1). Together with (C.4), (I1.1) = O(NpZnh™1). For (I ),

1
(o) = sup [Ngh™ / (2 = K (2 — £) dQ2) — Noq(t ik
tel0,1] 0
1-t ~
e " f uZhZ
— sup |, f WK () (q(r)+q/(t)uh+ L) du — Nag(O)1asc
tef0,1] —L 2
< Nnh{ sup Iq’(t)I/Iu"“1<(u)ldu+(h/2 sup |q"(t) I/Iu"“K Idul O(Nyh),

tef0,1] te[0,1]

where f € [t, t + uh]. Thus, Lemma 1 holds. O
Lemma 2. Under Assumptions (C.1) and (C.3)-(C5), sup;¢jo 1) l@1(t)f — f(£)] = o(h?).

Vot Vit
Ui VUt
Vo,t = qu(t),U-O,t + O(Nnh + annhil)- Vit = NnQ(t)MLt + O(Nnh + Nn{nhil) and Uyt = qu(t)MZ‘t + O(Nnh + Nn(nhil)-
In addition, notice that

(1,0)(DIKtDt)1=< S — )

2 2
Vo,tV2,r — Vi Vo,tV2,t — V7,

Proof. First, straightforward calculation yields D[TI( Dy = ( ) . By Lemma 1, uniformly on [0, 1], we have

Thus,

V2, _ _ M2, _ _ _
—— = N (q()) ———— + O(N; Th+ N g,
Vo,tV2,t — V7 Mo, c2,e — K7 ¢

—U1,¢ _ _ Mt _ _ _
———— =N (q(t)) ' —————=— + O(N; 'h+ N, 'z,h ")
Vo,tV2,t — V7t Mo M2 e — M7 ¢

uniformly on [0, 1].
Recall that @(t)f — f(t) = (1,0)D/K.D,)~'D]K.f — f(t). A Taylor's expansion yields f(t;) = f(t) + f'(t)(ti — t) +
1/2f"(&)(t; — t)?, where &; is between t and t;. Thus,

w1(t)f — f(t) = (1,0)D; KD,)"'D; K.D,(f(t), hf'(t))" + (1/2)(1, 0XD, K.D,)"'D; K.d; — f(t)
= (1/2)(1,0)D; K.D,)"'D/ K d,

where d; = (f"(&)(t; — t)%, ..., f"(én, )tn, — t)*)T. In addition,

2
Uyt U1,t U3¢

sup |(1,0)D;K:D;)"'D; K.d;| < max |f"(x)| sup
te[0,1] x€[0,1] te[0,1]

) h? = o(h?).

2 2
Vo,tV2,t — V7 Vo,tV2,t — V1t

Thus, Lemma 2 holds. O

Lemma 3. Suppose that Assumptions (C.1) and (C.3)-(C.5) hold. For any random vector € of zero mean,

log N, 12
sup |w(t)e| = O ( ) .
tef0,1] ! P Nyh

Proof. For a random vector & = (&1,...,éy,) , we have w1(t) = (1,0)(D/K.D,)"'D/K.e = (I31) — (I32), where
(51) = g2 Y0 Kl — Dy and (1) = e T Kt — 06 = Oh e

14
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Note that (I3 1) = —QL?2L Zit Kttt
31 V0t V2,6 — U“ ZI " Kn(ti— t)

1/2
Zl 1Kh(l t)e; — 0, (IOgNn> / . sup
Nph tel0,1]

SN Kn(t — t)
S . loghy \ /2 toghy \ /2
Following similar arguments in Lemma 2, sup¢(g 1 |(13,1)| =0, (ﬁ) and sup;¢(g 1 |(13,2)| =0, ( ,\ih") . 0O

i by Lemma 5,

Z?E](ti — O Kn(t; — )
SN Kn(ti — t)

sup
te[0,1]

Lemma 4. Under Assumptions (C.1) and (C.3)-(C.5),

s B ; logNn)]/2
s Fo-sol o ()

where f(t) = 01(t)y* = o1(t)y — XB).

Proof. First, f(t)—f(t) = w(t) {f + & — f(t)1y,} since @;(t)1y, — 1 = 0. Next, we have sup, o 1 [f(£) — f(£)] < suppo.1,
l@1()F — f(t)In, )| + Supseo, 17 l@1(t)e|. The desired result follows from Lemmas 2 and 3. O

Lemma 5. Suppose Assumptions (C.1), (C.4) and (C.5) hold. For any random vector & of zero mean,

log N, 172 .
= 0, 1}.
Op{(Nnh> , Jjef{0,1}

Proof. Let I, be the interval centered at c, with the length ty, = {log Nn/(Nnh)}l/2 h3*. There exist N, = Ltﬁnlj +1
TN (=t K (e
ZL”] Kn(ti—t)

YN (6 — eIyt — t)ei
Z,‘=1 Kh( i )

sup
te[0,1]

intervals satisfying [0, 1] C Uk ", I. First, sup;cp 1 < (Is.1) + (Is.2), where

SN (6 — tYKn(ti — e B SN (6 — ckVKn(ti — ci)si

(Is,1) = max sup

1=<k=rn, tel h Z Kp(ti —t) h 21:1 Kn(ti — cx)
N
" (6 — Y h Kyt — ¢
(Is2) = max Z, 1( k)’ n(ti 1 )
1<k<an Z,‘:1 Kh(ti - Ck)

For (Is,1),

(Ie,1) < max sup|—
1<k=rn, ter,

|:Zl<t ti, co)ti — tVh fs,:H

Vo,t

1 [

o |:Z{(ti —t) = (t — ) h 7K (t; — Ck)Sf:H
t

4+ max sup

15k5an tely i1

. o ; i k ( 1 k)} h( 1 k) 1
- (‘64,1/\) (15,13) (JG,1C)9

+ max sup
1<k=ry, tely

where K(t, t;, ¢g) = Ku(t; — t) — Ku(ti — ).

By Lemma 1, it can be shown that sup,ci 1y [vy /| = O(N;'). In addition, by (C4), for any t € I, [K(t, t;, ¢ )] <
h™" maxyer [K'(x)] |5 — 5% | = O(h~%uy,). Therefore,
If = max su K(t, t;, c)(t; — tYh Ve
(Is.14)  max. [ElIk) vor |:Z i Ck y 1j|
< max supl|K(t,t;, ¢g)] max sup i —t h‘fs = Yy h™2) &
< max suplK(t,t el max sur {Um ilel Yh e, ] " Z| ,
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We further note that

Nn
(Is,18) = ,fhax sup n |:Z{(ti —tY — (t — Y }hKn(t; — Ck)Si:H
=K=TNy tel) | Vo,t i1
0, ifj=0,
- {o(N;hN”h-l—f)z”"l lei|, ifj=1.
Moreover,
(s1c) = max sup| - Ck;K (t, i, &) Z(tl — aPh Kt — ci)e

Nn
1 - o
< max SUPi E |K(f,fi,Ck)|]  max [E |(ti_Ck)lh_J8i|Kh(ti_Ck)]
== | o

1<k=ry, tel, | Vo,tV0,¢ i—1

i
= O(N,2)O(Nyin, h™2)O(h™" ) Zm— B el

i 12
since 31", leil = Op(Nn). Is.1) = Op {(lgvgnﬁ") }

For (s »), let e = T""'/2¢ be a sequence of iid N(0, 1), and we have Z, (6 — tYKn(ti — t)e; = h"kLHI‘l/Ze, where k; ;1
is the (j 4+ 1)th column of k;, j € {0, 1}. For any A > 0 and t € [0, 1], by Bernstein inequality,

1
log Ny \ * —W0g
p > 2hvo¢ <exp{ 2t 1
Nnh hZJk[_’j+11"kt’j+1

In addition, we have hsz:jﬂl"kuﬂ <|ITl- ZN (t;— OV ¥Ku(ti— )% < |IT 2 ZN Ki(t;—t)?. By similar arguments as in

Nn

> (6 — tYK(ti — e

i=1

Lemma 1, we can show that, sup,g 1 ‘Zl 1 Kn(t; — t)*| = O(N,h~1). From Lemma 1, we also have infrefo.1) vOt = O(Nz)
and therefore, by choosing a large enough A,

log N, \ '/ 2
sup P > Avp, <7> = O(N; ).
tel0.1] ( “\ Nk "

Since

TN
IOgNn 12 . Ck)lKh(tl - ) Ei
P | (I A < E P
<( )= ( Nph ) N Vo, ¢k

= O(anNn %) =o(1),

Nn

Z(fi — tYKn(ti — )&

i=1

A (logNn>”z>
N,h

1/2
we have (Ig2) = O, {('?ﬂ”) } Thus, we have the result. O

Lemma 6. Suppose that Assumptions (C.1)-(C.5) hold, we have sup;¢g 11 l@(t)X| = O(1).

Proof. Using similar arguments as in Lemma 2, vi/(vo (vt — vf’t) = O(Nn‘]), for k € {0, 1, 2}. The ith element of
the first row of @(t) is v.r/(vo V2 — V3 IKn(ti — t) — v1.c/(vo,cv2e — V1 )Kn(ti — £)(t; — t)/h = O(N;'h™1). Similarly,
the ith element of the second row of w(t) is O(N; 'h™'). Thus, w(t)¢; = O(N, Ny '?h=1logN,). Using similar arguments
in Lemma 2, we obtain (0, 1e(t)g; — hgj/(t) = (0, 1/2)(DtTKtDt) ‘DTthgJ = O(h?), where &; is between t and t; and
d:j = (g"(&)(tr — t)%, ..., g"(&n, tn, — t)°). Thus, o()X; = w(t)(@; +&;) = O(1). O

Proof of Theorem 1. By Mardia and Marshall [32], the convergence property of £3(8), £5(6), £5(B, B), £5(B, 0) and £;(8, 9)
can be established. By (C.6)—(C.7), together with proof of Theorem 1 in Chu et al. [5], we have

N122,(0) -2 N (0, Zo(8)) . N '04(8, 6) —2> —T4(6).

Under (C.1)-(C.9), we first show the following results
N, V20/(B) = N (0.11) N, 20/(8) —> N (0. Zo(6)) . N, ¢ (B. ) > 1, (142)
N.'e"(6,0) 2> —Zo(6), N '¢"(B.0) > 0. (14b)
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First, straightforward calculation yields
C(B)=X"(I—S)' T (I —S)Y - XB)
=X"U-8)' T U—-8)e+X"U-8)'T7U—-8f =)+ ).
By Assumption (C.2),
() =N, "*{¢; + g} I —S)'T7'(I - S
=N, "?¢/T e + N;?¢/T7'Se + N, g/ (I — S) T 'Se+
N, "?¢/s'T e + N V’g[ (1 —8)' T e + N, /*¢/ ST 'S¢
=(I1) + (I12) + (I13) + (I14) + (I15) + (I1g).

—

For (I;y), it can be shown that Ny ’¢T~'e —> N(0, N, '¢, T~"4,). In addition, we have

_ _ _ 2 11—
¢/ T7'Sel’ <N 'IT'|5E|9 Se|” = O((log N.)’Ny 'h ™),
g/ (1—8)'17'Se)> <N, g/ (I —S)' TP E|S¢||* = O(h’ log Ny),
¢S T e <N ¢ STIPITTI3 = O(N, 'h~?(log N, )?),
g/ (I—8)'r el <N;'lg/ (I —S)TIPIT~"|5 = o(h?).

—_
eyl
—~ ~ ~

By Lemma 1 and Assumption (C.2), |S¢;|| = O(N,}/erj]h”N,}/Z logN,) = O(h~'logN,). Thus, for (I;s),
N, 'E(¢/S'T7'Se)’ <N, '/ ST IT S EISe]®> = O(N; 'h>(log Ny )?).
Similarly, for (I;), we obtain
N, gl (1 —$)' 171 — S)f = O(N,'*N,/? N, 2 h*) = O(N,*h*),
N, 2 T — S)f = O(N, '/>N,"* log Noh?) = O(h* log N,),
N, "¢/ s (I — S)f = O(N;/*h™ " logN,N,/*h*) = O(hlog N,).

n

Thus, N; /2¢/(8) 2> N (0, T1). The kth column of —€”(B, 8) is X (I — ) TX(I — S)(y — XB) = X ' (I — ) TX1I — S)(f + ).
The same argument can be used to show N 1¢(B, 6) 0.

Similarly, we can show
N1 (B)=—N;'XT(I—S)' 0 '0—8$)X 2> —N"'&'17'® = —IL
Therefore, N, 1¢"(B, B) —> —IL
By Lemmas 2-3,

logN, logN,
(I — ) |I> = NyO(h*) = O(N,h*), ||Se||* = N, O, (%) =0 ( Ogh ") ’
n

Since the kth element of —2¢/() is tr(T~'Ty) + (f + &) (I — S)"T¥(I — S)(f + €), we can further show that
N, 2F T —8)TT4 U = S)f < N V2T o)1 = S)F 11> = O(N,/*h*),
N 2T - 8) The < Ny 2oy, e 25 0,
N, '2IFT(1 — 8)'T*se| < N0, (N,2h* logN,,) ,

log N,
E|N;"2eTsTTkse| < N7V2 ¥, E IS¢ )2 = 0, (ﬁ) .
n

By Lemma 3, N, /2eTS ke = N{l/zlgneop(l) P, 0. Therefore, N, /e T(I — §)TX1I — S)e -2 N; /2eTre. Thus,

N,I]/ZZ’(O) 2N (0, o(0)), and similar argument can be applied to show that N;le”(o, 0) LN —Zy(0).
Next, we show the consistency and asymptotic normality of parameter estimates. To establish |[f — 70| = Op(Ny Y 2),
it suffices to show that, for a given constant € > 0, there is a constant C such that, for a sufficiently large n,

P{ sup £(o + N, *u) < E(ﬂo)} >1—¢, (15)
lul|=C
where u € RP*4, By Taylor’s expansion, we obtain
(o + N V2u) — £(no) = N V20 (o) "u — (1/2)N; 'u™ ¢ (o u{1 + 0,(1)). (16)
17
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By (14a)-(14b), we have N, e (o) = Op(1) and N, 1¢"(n,) = Op(1). Therefore, for a sufficiently large C, the second
term dominates the first term in (16), and therefore, (15) holds. S
To further establish the asymptotic normality of 7, it can be shown that ) = (8 , 0 )T satisfies

0 = €(n)],_; = €(n0) + [€"(n0) + 0(VI — mp)-
Together with (14a)-(14b), Theorem 1 holds. O

Proof of Theorem 2. Write f(t)—F(t) = w(t) {f + e —X(/B - ﬁ)} —F(t) = (II;) + (II;) — (II3), where (II;) = o(t)f — F(t),

(IL) = w(t)e and (II5) = w(t)X(B — B).
For (II,), a Taylor’s expansion yields

f(&) = FO) + £/ — £)+ 1726 — ¢ + 1/6f3E) G — t)?
- (1, %) F(6) + 1/2F(6)(6 — 0 + 1/6F3(E )6 — ),

where &; is between t and t;. Therefore, (II;) = (1/2)w(t)dof"(t) + %O)(t)dig, where dy = ((t; —t)?, ..., (ty, — )" and
ds: = (FOE) 6 — 03, ..., fBEn, tn, — £)*)T. Given ¢ € (0, 1), by Lemma 1,

2 f"(t) of "(t)
do F (1) = Uy = V1,eUs¢ — K2 w o(h2).
@(Ddaf () <U0,rU3,t — V1tV2t ) voVp — v%,t 0 +oh™)

Moreover, we have

(3)(x)[h3 _
| ot d3§| < max 4[f(x)] H(Uz,tv3,r U1,eV4,t )HZO(hg)'

XeR Vg vy — V2, —V1,tV3,t + Vo, Vs,

Therefore, (II;) = h? (sz”(t)) + o(h?).
For (1), let A(e Zl " Ki(t; — t)e; and B(e) = Z 1 Ka(t; ) Le;, we have

w(t)e = ; ( v tA(€) — v1,¢B(€) ) '
Vi

Vot Vst — —v1,tA(€) + vo,cB(€)

Nnvo, ¢ -1 (t)_l Nnvy ¢ Nnvy ¢

Fort € by Lemma 1, we have ——'— — , — 0 and
( ) y vo,tV2,t— Uft e q "O.tUZ,t_U%t "O.rvz,t_v%.t

Gaussian process, by (C.9) and Slusky’s Theorem,

D 1 0 1 0
(Nnh)l/zw(t)s — N (0, (0 M;1> Ay (O M;1>> .

For (II3), by Lemma 6, (t)X = O(1). By Theorem 1, we have ﬂ B = OP(N_l/z) and therefore, (II3) = OP(N_l/z) O

— q(t)"'. Since ¢ is a

. AT ]! AT ,
Proof of Theorem 3. Let o\ (t) = (1,0) [lD(t')} Kt(‘)DE'):| lD(f')} K", where D" is the matrix of D, with ith

row deleted, and Kt(f") is the matrix K; with both ith row and column deleted. In addition, we let y*(~? denote the vector
of response variables with the ith entry left out. Straightforward calculation reveals

) (=D
i) "2 "1t (i) i)y -y
P = o ey ) = L ) Ky = 3,
2.t; Vo, (vy t )? i
(=) (=)
(—) (V5 =) [T g (D i
where a; (t;) = W D; Kfi Vg = Zj;&i Kh(tj —t) = Vo,f; — Kn(0), Ul t ZJ# Kh )Jh L = U1,
(- 4=t )
and vZ,ti = Zj;éi Kh(tj — ,)( 0 ) = V2.4
By Lemma 1,
ey = Vo Kn(ti—t) i Kl =G = 6)/h Kt — ) v1.eKn(t — 6)(6 — )/h
jo = = 2 2
vé t:)v(() [[) (vg r:)) vé t:)v(() [l) (vg tx)) {vo.s — Kn(0)} va, — vy, {vo.; — Kn(0)} va, — vy

G\ R e (G (G
k() - mer (5) (5)

 Nahq(t) (0. 2. — 143 )/ 12, — K(O)

+ 0O (N; '+ Ny gh™?).

18
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Thus, for the leave-one-out cross-validation (CV) score function,

L\
E(CV(h)} = Niz{f(ti)Jrsi—f () ZE{f 6)—F ) + ZVar m)——ZCov Foe, e,
T iz
Denote A(h Z Cov{ FE(E), &}, we have
K(5i5) (1= A (5t
ZZ ( >( K2 ( " )> Cov(e;, &)+ O (N, '),

Nn b(t;) — K(0)

i=1 j#i

since ||T'||oc = O(1) as shown in the proof of Theorem 1 in Chu et al. [5]. Under the asymptotic framework (A.1), and
since K(-) has a bounded first-order derivative at the origin, we obtain

2 ¢ k() (- () K(0> 2 1
M2, t;
— - Cov(ei, &) = —————— Cov(ei, &) | +o0 < )
Ny ; § b(t;) — K(0) ST b() — Ny 2 Z o Nah
T lg-tlstn Bl i<
Note that
b b *
C o) = < d 0
> Covere)= Y o(Bngn)mbslgg@ﬂ»mﬂuh_ o(BngnMc y(u)du — 0,
J# / BnCn n-n
It=t;1>Cn m :l<T)J
so we have
Nn K <ﬁ> (1 _ kg (ﬁ))
2 h u2e \ h 1
— L Cov(gi, 6i) =0
N 2 b(t;) — K(0) (i, ) = (Nnh>

T =1 |G—t]>Cq

Therefore, A(h) = K (0) (Ni va_"l > %) +o0 (NL) Thus, the desired results are shown. 0O
n - |ti—tj|<Cn i

Appendix B. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2021.104735.
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