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a b s t r a c t

Spatio-temporal processes with a continuous index in space and time are useful for
modeling spatio-temporal data in many scientific disciplines such as environmental
and health sciences. However, approaches that enable simultaneous estimation of the
mean and covariance functions for such spatio-temporal processes are limited. Here, we
propose a flexible spatio-temporal model with partially linear regression in the mean
function and local stationarity in the covariance function. We develop a profile likelihood
method for estimation and an effective bandwidth selection in the presence of spatio-
temporally correlated errors. Specifically, we employ a family of bimodal kernels to
alleviate bias, which may be of independent interest for semiparametric spatial statistics.
The theoretical properties of our profile likelihood estimation, including consistency and
asymptotic normality, are established. A simulation study is conducted and suggests
sound empirical properties, while a health hazard data example further illustrates the
methodology.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we develop new semiparametric methodology and theory for spatio-temporal processes where both
pace and time are continuously indexed, which often arise in many scientific disciplines [see, e.g., 34]. An illustrative
ata set comprises measurements of a health hazard taken in an indoor environment by both static sensors at fixed
ampling locations and roving sensors at varying sampling locations over time [31]. The spatio-temporal sampling design
s non-standard due to data irregularity and sparsity in both space and time, calling for development of novel methodology
nd theory.
In spatial statistics, geostatistical data with continuous spatial index and lattice data with discrete spatial index often

equire different modeling techniques. For example, to account for spatial dependence, a Matérn covariance function is
ypically used for geostatistical data, while a spatial weight matrix is used for lattice data [8]. For spatio-temporal datasets,
he distinction between continuous and discrete index applies to both spatial and temporal dimensions. To analyze
atasets with continuous spatial index and discrete temporal index, time series methods for temporal data are often
ombined with geostatistical methods for spatial data. For example, Stroud et al. [41] developed a state space model where
patial variability is captured by a locally weighted mixture of linear regressions while the regression coefficients are
llowed to vary with time. Sun et al. [42] proposed a profile likelihood based estimation procedure for a semiparametric
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patial dynamic model with a nonlinear spatial trend. Al-Sulami et al. [1] considered a nonlinear spatio-temporal model to
nvestigate the relationship between housing price index (HPI) and consumer price index (CPI) for individual states in the
SA. The aforementioned spatial time series methods can capture nonlinearity and nonstationarity in space and/or time,
ssuming that data are observed at regular and discrete time points. In contrast, for spatio-temporal data with continuous
emporal index, approaches that enable simultaneous estimation of the mean and covariance functions are limited. While
he existing methods focus primarily on linear regression models [see, e.g., 11], we will develop semiparametric methods
nd theory for continuously indexed spatio-temporal processes.
The underlying spatio-temporal process can be decomposed into a mean trend and a spatio-temporal error process.

artially linear models offer a flexible way to model the mean trend of spatio-temporal data. For independent data,
artially linear models have been extensively studied [see, e.g., 14,22,26,27,37]. For spatio-temporal data, Gao et al. [18]

proposed an estimation procedure based on marginal integration for geostatistical partially linear models, and Lu et al. [29]
developed spatio-temporal varying coefficient models, which can be applied to spatio-temporal partially linear models.
Theoretical property is established for both works under the spatio-temporal mixing conditions. Since both works focus
on estimating the mean trend of spatio-temporal data, spatio-temporal error is treated as independent in estimation. In
practice, there is considerable interest in spatio-temporal covariance functions, which characterize the spatio-temporal
dependence of underlying processes. Furthermore, to interpolate unsampled spatial locations and time points (spatio-
temporal kriging), spatio-temporal covariance functions are a key building block. Thus, there is clearly a need for statistical
methods to estimate spatio-temporal covariance functions and here, we aim to develop new methodology which allows
simultaneous estimation of the mean and covariance functions.

Various types of spatio-temporal covariance functions have been developed [see, e.g., 7,9,16,19,35,39]. However, the
dependence structure in spatio-temporal data poses challenges for establishing the asymptotic properties. In spatial
statistics, there are three commonly used asymptotic frameworks, namely, increasing-domain asymptotics, fixed-domain
asymptotics and mixed-domain asymptotics. For increasing-domain asymptotics, the spatial domain expands as the
number of observations increases [see, e.g., 6,10,32]. For fixed-domain asymptotics, the spatial domain is fixed and
the sampling locations get denser [see, e.g., 28,38,45,46]. A mixed-domain asymptotic framework allows both spatial
domain and sampling density to increase [see, e.g., 4,21,23,30]. For spatio-temporal processes, Bandyopadhyay et al. [3]
considered an increasing temporal domain and a mixed spatial domain for a Fourier analysis. Chu et al. [5] proposed
a spatio-temporal expanding distance (STED) asymptotic framework in a fixed spatio-temporal domain, which extends
the aforementioned asymptotic frameworks for spatial domain to spatio-temporal domain for exploring the asymptotic
properties of statistical inference for spatio-temporal processes. The STED framework also paves the way for studying
the local behavior of a spatio-temporal process, especially the second-order properties. Here, we will consider a locally
stationary spatio-temporal covariance function, introduced by Chu et al. [5], to study the slowly-varying second-order
nonstationarity under the STED asymptotic framework.

In essence, the mean trend of spatio-temporal data is modeled through partially linear models, and spatio-temporal
dependence is accounted by locally stationary spatio-temporal covariance functions. The resulting model provides a
flexible way to analyze continuously indexed spatio-temporal datasets. For estimation, the main challenge is to incor-
porate spatio-temporal covariance functions, which we overcome by profiling the spatio-temporal likelihood function. In
addition, the theoretical property of proposed method is investigated under STED framework, and both consistency and
asymptotic normality are established. Furthermore, a proper bandwidth selection is critical for estimation. For iid data,
arious methods have been studied, notably cross validation [see, e.g., 13], but are known to not perform well for non-iid
ata [see, e.g., 2,12,24,33]. Here, we show that cross-validation is asymptotically biased in the presence of spatio-temporal
orrelated errors for most commonly used kernels. We also propose a cross-validation based method with bimodal kernels
o alleviate this bias in bandwidth selection.

The remainder of the paper is organized as follows. Section 2 introduces the spatio-temporal model and the profile
ikelihood method. The asymptotic properties of the profile likelihood estimation are established in Section 3 under
suitable regularity conditions. In Section 4, we discuss the choice of kernel functions and develop a procedure for
bandwidth selection. Numerical examples including a simulation study and the health hazard data example are given
in Sections 5 and 6, respectively. Appendix A contains the technical details including proofs, while additional simulation
results are given as Supplementary Materials.

2. Model and estimation

2.1. Spatio-temporal semiparametric model

We consider the following spatio-temporal process for the response variable y(·, ·),

y(s, t) = x(s, t)⊤β + f (t) + ε(s, t), s ∈ R, t ∈ T , (1)

where the location s is in the unit hypercube R = [0, 1]d for d ≥ 1 and the rescaled time t takes values in T = [0, 1]. Here,
(s, t) = (x1(s, t), . . . , xp(s, t))⊤ is a p × 1 vector of covariates at spatial location s and time point t , β = (β1, . . . , βp)⊤
s a p × 1 vector of regression coefficients, and f (t) denotes a fixed nonparametric temporal function. In the special case
f β = 0, (1) has a fully nonparametric mean function. Furthermore, the zero-mean spatio-temporal Gaussian random
2
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rocess ε(s, t) accounts for the local variations unexplained by the mean function (i.e., trend) x(s, t)⊤β + f (t). In practice,
(s, t) = ε1(s, t) + ε2(s, t), where ε1(s, t) is a Gaussian spatio-temporal error process, and ε2(s, t) are Gaussian iid errors
ith mean 0 and equal variance, representing the nugget effect and independent of ε1(s, t). Denote γ ((s, t), (s′, t ′); θ) as

the covariance function of ε(s, t), where (s, t), (s′, t ′) ∈ R × T and θ is a q × 1 vector of covariance function parameters.
For γ ((s, t), (s′, t ′); θ), various types of covariance functions are proposed [see, e.g., 7,9,16,19,35,39]. In this work, we focus
on locally stationary covariance function, introduced by Chu et al. [5], and more details are provided in Section 5.

We consider N samples observed at (s1, t1), . . . , (sN , tN ). Define the N × 1 vector of the response variable as y =

(y(s1, t1), . . . , y(sN , tN ))⊤, the N × p design matrix as X = [xj(si, ti)]
N,p
i=1,j=1, and the N × 1 vector of the errors as

ε = (ε(s1, t1), . . . , ε(sN , tN ))⊤. Let f = (f (t1), . . . , f (tN ))⊤ denote the temporal function at the N sampling points. We
have

y = Xβ + f + ε. (2)

The N × N covariance matrix of ε is expressed as Γ(θ) = [γ ((si, ti), (sj, tj); θ)]Ni,j=1. Further, let η = (β⊤, θ⊤)⊤ denote a
(p+ q)× 1 vector of parameters comprising both the regression coefficients β and the covariance function parameters θ.

2.2. Profile likelihood estimation

Since the likelihood principle cannot be easily adopted for semiparametric models like (1), here we develop a profile
likelihood method for model estimation. For a given β, let y∗

i = y(si, ti) − x(si, ti)⊤β denote a partially detrended spatio-
temporal process for the response variable and let y∗

= (y∗

1, . . . , y
∗

N )
⊤ denote an N × 1 vector of partially detrended

spatio-temporal response variables. We obtain an estimate of f by local polynomial regression; that is, we minimize the
following criterion, with respect to bt = (b0,t , b1,t )⊤,

N∑
i=1

{
y∗

i − b0,t − b1,t (ti − t)
}2 Kh(ti − t), (3)

where Kh = K (·/h)/h is a kernel function K (·) with a bandwidth h.
With K t = diag{Kh(t1 − t), . . . , Kh(tN − t)}, Dt = (1N , d1t ), d1t = ((t1 − t)/h, . . . , (tN − t)/h)⊤, and 1N is an N × 1

vector of 1’s, it follows from (1) that, (̂b0,t , ĥb1,t )⊤ = ω(t)y∗, where ω(t) = (D⊤

t K tDt )−1D⊤

t K t . The resulting estimate of f
is f̃ = Sy∗

= S(y − Xβ), where the smoother matrix is

S =
(
ω1(t1)⊤, . . . ,ω1(tN )⊤

)⊤
, (4)

and ω1(t) = (1, 0)ω(t). Plugging f̃ into (2), we have the following approximation

(I − S)y ≈ (I − S)Xβ + ε. (5)

If ε is a sequence of independent and identically distributed random variables, the profile method is used to obtain
estimates of β as

β̄ = {X⊤(I − S)⊤(I − S)X}
−1X⊤(I − S)⊤(I − S)y

and f̄ = S(y − X β̄). However, the above method does not account for the spatio-temporal dependence of ε(s, t), and
therefore, the spatio-temporal parameter θ cannot be estimated. In order to estimate both the mean trend and the
spatio-temporal parameter θ, we propose to maximize the approximated profile log-likelihood function based on (5),

ℓ(β, θ) = −(N/2) log(2π ) − (1/2) log{detΓ(θ)} − (1/2)(y − Xβ)⊤(I − S)⊤Γ(θ)−1(I − S)(y − Xβ). (6)

The estimate of (β⊤, θ⊤)⊤ is the maximizer of (6), and is denoted as (̂β
⊤
, θ̂

⊤
)⊤. Consequently, the estimate of f can be

expressed as

f̂ = S(y − X β̂).

In addition, let f ′
= (f ′(t1), . . . , f ′(tN ))⊤ denote an N × 1 vector of the first-order derivatives of the temporal function

f (t) evaluated at the sampling time points {t1, . . . , tN}. Minimizing (3) yields an estimate of f ′

f̂ ′
= L(y − X β̂),

where L =
(
h−1ω2(t1)⊤, . . . , h−1ω2(tN )⊤

)⊤ and ω2(t) = (0, 1)ω(t).
In general, we write the estimate of F (t) =

(
f (t), hf ′(t)

)⊤ as F̂ (t) = ω(t)(y − X β̂). In the case of spatio-temporal
independence (i.e., Γ = σ 2I), the estimates of β and σ 2 in (6) can be expressed in closed form [see, e.g., 14]. In the case
of a nonparametric mean function (i.e., β = 0), (6) can still be maximized to obtain the estimates of θ and f , while the
estimate of f ′ can be obtained by f̂ ′

= Ly. The estimation procedure above depends on the choice of bandwidth, which
will be discussed in Section 4.
3
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. Asymptotic properties

.1. Asymptotic framework

The spatio-temporal framework is essential for establishing asymptotic property of parameter estimators. In spatial
tatistics, there are three asymptotic frameworks, namely, increasing-domain asymptotics, fixed-domain asymptotics, and
ixed-domain asymptotics. For the likelihood-based method considered here, we employ a spatio-temporal expanding
istance (STED) asymptotic framework in a fixed spatio-temporal domain, which provides a flexible tool for exploring the
symptotic properties of statistical inference for spatio-temporal processes [5]. Let n denote the stage of the asymptotics
nd let {An} and {Bn} be two sequences of increasing positive numbers. The (An, Bn)-rate STED asymptotic framework in
fixed spatio-temporal domain is defined as follows. For all n, there exist positive constants c1, c2 and c3, independent

of n, such that

(A.1) δn/min1≤j≤Nn δj,n ≤ c1,
(A.2) ζn/min1≤j≤Nn ζj,n ≤ c2,
(A.3) δdnA

d
nζnBn ≥ c3,

where δj,n = min{∥si − sj∥ : 1 ≤ i ≤ Nn, si ̸= sj}, δn = max1≤j≤Nn δj,n, ζj,n = min{|ti − tj| : 1 ≤ i ≤ Nn, ti ̸= tj} and
n = max1≤j≤Nn ζj,n. We assume that the error process ε(s, t) is locally stationary in the sense that a covariance function

γn
((
s, t), (s′, t ′

))
is said to be locally stationary if there exists a sequence of functions gn(·, ·, s, t) such that,⏐⏐γn

((
s, t), (s′, t ′

))
− gn

(
s′

− s, t ′ − t, s, t
)⏐⏐ = O

(
∥s′

− s∥ + |t ′ − t| + ρn
)
,

uniformly for all (s, t), (s′, t ′) ∈ R × T , where {ρn} is a sequence of positive numbers, which does not depend on the
location, time or the parameter θ. Furthermore, ρn → 0 as n → ∞. In addition, there exists a function g such that, as

→ ∞,

lim
n→∞

⏐⏐gn (s′
− s, t ′ − t, s, t

)
− g(u1, u2, s, t)

⏐⏐ → 0

uniformly for all (s, t), (s′, t ′) ∈ R × T , where u1 = An(s′
− s) and u2 = Bn(t ′ − t).

We use a one-dimensional (1D) toy example to illustrate the structure of the locally stationary covariance function. For
locations s ∈ R = [0, 1], we construct a locally stationary covariance function by taking the product of a positive function
D(s) and a stationary covariance function such that γ (s, s′) = D(s)D(s′) exp(−d/r), where r is the range parameter and
d = |s − s′| is the distance between s and s′. Fig. A of the supplementary material demonstrates four covariance functions,
one stationary covariance function where D1(s) = 1 and three locally stationary covariance functions.

3.2. Asymptotic properties

For iid data, the maximum profile likelihood estimate β̂ is consistent and asymptotically normal [14]. For the spatio-
temporal semiparametric model (1), the asymptotic properties of the maximum profile likelihood estimates nβ̂ and n̂θ,
which maximize (6), will be established as follows.

Theorem 1. Under (C.1)–(C.13) in the Appendix A, there exists, with probability tending to one, a local maximizer n̂η =

(nβ̂
⊤
, n̂θ

⊤
)⊤ of ℓ(η) such that ∥

n̂η − η0∥ = Op(N
−1/2
n ). Moreover, the local maximizer n̂η is asymptotic normal; that is, as

n → ∞,

N1/2
n (nβ̂ − β0)

D
−→ N (0,Π−1) and N1/2

n (n̂θ − θ0)
D

−→ N (0,I0(θ0)−1).

Theorem 1 establishes that the estimate n̂η is root-Nn consistent. However, the asymptotic variance of nβ̂ does not
converge to the information matrix (13). As will be seen in Appendix A, if ∥Γ−1

∥∞ = O(1), then X⊤Γ−1X ⪰ Φ⊤Γ−1Φ,
here A ⪰ B if A − B is positive semi-definite. That is, the asymptotic variance of β̂ in partially linear models is greater
han those in simple linear regression models. Following a series of lemmas in Appendix A, the proof of Theorem 1 is
iven in Appendix A.
A by-product of the proof for Theorem 1, given in Appendix A, shows that I(β0) = limn→∞ N−1

n X⊤(I−S)⊤Γ−1(I−S)X .
hus, we use N−1

n X⊤(I −S)⊤Γ−1(I −S)X as a finite sample approximation of Π, the asymptotic variance of nβ̂. In contrast,
or n̂θ, it can be shown that the asymptotic variance is the same as that for the case when the temporal function f (·) is
ssumed to be known.
Further, recall that F̂ (t) = ω(t)(y − X β̂) is the estimate of F (t) =

(
f (t), hf ′(t)

)⊤, where ω(t) = (D⊤

t K tDt )−1D⊤

t K t . The
ollowing Theorem 2 establishes the asymptotic normality of F̂ (t). The proof of Theorem 2 is given in Appendix A.

heorem 2. Suppose f (3)(t) is bounded. Under (C.1)–(C.13) in the Appendix A, we have, as n → ∞,

(Nnh)1/2
{
F̂ (t) − F (t) − (1/2)h2

(
µ2f ′′(t)

0

)
+ o(h2)

}
D

−→ N
(
0,
(
1 0
0 µ−1

2

)
∆t

(
1 0
0 µ−1

2

))
,∫

∞ k
or t ∈ (0, 1), where µk =
−∞

x K (x)dx.

4
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Similar to Theorems 1 and 2, we can show that, when β is known, the asymptotic properties of n̂θ and F̂ (t) remain the
same as in Theorem 2. This may be expected, since β̂ is root-Nn consistent. Further, ∆t is generally unknown in practice.
As suggested by (C.9), ∆t can be approximated by N−1

n hq(t)−2k⊤

t Γkt , where kt = {Kh(ti − t){(ti − t)/h}j−1
}
Nn,2
i,j=1 is an Nn ×2

atrix. Since q(t) represents the density of the sampling time points, we may use a kernel density method to estimate
(t). An alternative is to estimate q(t) by v0,t/Nn, where v0,t =

∑Nn
i=1 Kh(ti − t). Lemma 1 in Appendix A shows that such

n approximation is reasonable. In the remainder of this paper, we will refer to the former approximation as a kernel
ensity approximation and the latter a plug-in approximation.

. Selection of kernel and bandwidth

.1. Theoretically optimal bandwidth

The selection of bandwidth is crucial in kernel smoothing and thus we derive a theoretically optimal bandwidth. By
he results in Theorem 2, the asymptotic mean squared error (AMSE) of f̂ (t) is

AMSE(t) = (1/4)h4µ2
2f

′′(t)2 + (Nnh)−1(1, 0)∆t (1, 0)⊤,

nd the asymptotic weighted mean integrated squared error is

AMISE(h) =

∫ 1

0
AMSE(t)q(t)dt = (1/4)h4µ2

2

∫ 1

0
f ′′(t)2q(t)dt + (Nnh)−1

∫ 1

0
(1, 0)∆t (1, 0)⊤q(t)dt.

iewing the density function q(t) as a weight function, we obtain an asymptotically optimal bandwidth as

hopt = N−1/5
n µ

−2/5
2

{∫ 1
0 (1, 0)∆t (1, 0)⊤q(t)dt∫ 1

0 f ′′(t)2q(t)dt

}1/5

, (7)

where the convergence rate is N2/5
n and is the nonparametric optimal rate [40].

The asymptotically optimal bandwidth hopt above depends on several unknown quantities: ∆t in the asymptotic
variance of F̂ (t), the density of sampling time points q(t), and the second-order derivative of the temporal function f ′′(t);
thus, it is not straightforward to estimate hopt. When Γ = σ 2I (i.e., the process assumes spatio-temporal independence),
∆t can be expressed as σ 2q(t)−1diag{

∫
∞

−∞
K (u)2du,

∫
∞

−∞
u2K (u)2du}. A rule of thumb for bandwidth selection in this case is

vailable [see, e.g., 13]. The idea is to plug in the estimates of σ 2 and f ′′(t) to obtain an approximation of hopt. Specifically,
fter a pilot global polynomial regression of degree 4 is fitted, σ 2 is estimated by the standardized residual sum of squares,
nd the estimate of f ′′(t) is obtained by differentiating the resulting global fit. However, for a spatio-temporally correlated
rror process, the covariance matrix Γ needs to be estimated, and this rule of thumb is not directly applicable. Hence, a
ore practical bandwidth selection procedure is needed.

.2. Practical bandwidth selection

Under model (1), we have

y∗(s, t) = f (t) + ε1(s, t) + ε2(s, t), s ∈ R, t ∈ T . (8)

e use a leave-one-out cross-validation criterion [CV; 44]. A straightforward calculation reveals that CV(h) = N−1
n
∑Nn

i=1
y∗i −̂f (ti)
1−Sii

}2
, where Sii is the (i, i)th element of the smoother matrix S . However, as will be seen in the following theorem,

ross-validation is asymptotically biased in the presence of correlated errors for most commonly used kernels with
(0) ̸= 0.

heorem 3. Under Assumptions (C.1)–(C.13) in the Appendix A, if there exists a sequence Cn > 0 such that Cnh−1
→ 0 and

/(Bnζn)
∫

∞

BnCn
γ1(u)du → 0, as n → ∞, then we have

E{CV(h)} = N−1
n

Nn∑
i=1

E{f (ti) − f̂ (−i)(ti)}2 + σ 2 − K (0)

⎧⎪⎪⎨⎪⎪⎩(2/Nn)
Nn∑
i=1

∑
j̸=i

|tj−ti |<Cn

Cov(εi, εj)
b(ti) − K (0)

⎫⎪⎪⎬⎪⎪⎭+ o (1/(Nnh)) ,

here f̂ (−i)(ti) is the leave-one-out estimator with the ith observation deleted for estimation, σ 2 = N−1
n
∑Nn

i=1 Var(Yi),
CV(h) = N−1

n
∑Nn

i=1

{
y∗

i − f̂ (−i)(ti)
}2

and b(ti) = Nnq(ti)h(µ0,tiµ2,ti − µ2
1,ti

)µ−1
2,ti

.

The proof of Theorem 3 is given in Appendix A. Theorem 3 provides a theoretical basis for the choice of kernel functions.
In practice, we propose the following procedure for the selection of bandwidth h.
5
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(i) For a predetermined bandwidth h0 and a kernel function Kh0 , obtain the estimated regression coefficients β̃ by the
profile likelihood method.

(ii) For given a kernel function, find the bandwidth hopt that minimizes the cross-validation criterion

CV(h) = N−1
n

Nn∑
i=1

(
ỹ∗

i − f̃ ∗

i

1 − Sii

)2

, (9)

where ỹ∗

i = yi − x(si, ti)⊤β̃, and f̃ ∗

i is the profile likelihood estimate of (8).
(iii) Use hopt and the kernel function from Step (ii) to obtain the desired estimates of both the regression coefficients β

and the covariance function parameters θ.

As to be illustrated in a simulation study, the estimate of β is not very sensitive to the choices of bandwidth and
kernel function in Step (i). Thus, we suggest to use a pilot bandwidth to yield an underestimate of f and consequently an
estimate of β. In Steps (ii) and (iii), we use a bimodal kernel K2(u) = 2π−1/2u2 exp(−u2); see Fig. B of the supplementary
aterial [12]. Unlike the more commonly used kernels (e.g., Gaussian or Epanechnikov kernel), the bimodal kernel satisfies
2(0) = 0, which can mitigate the influence of the spatio-temporal correlation.
A popular alternative to the cross-validation criterion (9) is the generalized cross-validation [GCV;20] criterion, in

hich Sii is replaced by N−1
n tr(S). For dependent data, Francisco-Fernandez and Opsomer [15] proposed a bias-corrected

eneralized cross-validation criterion (GCVc), replacing Sii by N−1
n tr(SR(θ)); that is,

GCVc(h) =

∑Nn
i=1 (̃y

∗

i − f̃ ∗

i )
2

Nn{1 − N−1
n tr(SR(θ))}2

, (10)

here R(θ) is a correlation matrix. In practice, a pilot estimate of the covariance parameter vector is required; however,
he choice of such an estimate is not obvious, and would impact the overall estimation performance. To ensure
he performance of parameter estimation in covariance function, for each candidate bandwidth h, we compute the
orresponding estimate of θ and obtain an estimated GCVc criterion, denoted by GCVce. As further demonstrated in the
simulation study, the results based on the cross-validation and GCVce are similar, although GCVce is computationally more
expensive.

5. Simulation study

5.1. Simulation set-up

We sample Ns locations uniformly from the spatial domain [0, 1]2, where Ns ∈ {20, 40, 60}. At each sampling location,
we randomly sample 4% from the grid of time points (i − 1/2)/1000, i ∈ {1, . . . , 1000}. The selected locations and time
are labeled as {(s1, t1), . . . , (sNn , tNn )}. For Ns ∈ {20, 40, 60}, the sample sizes are Nn ∈ {806, 1644, 2449}, respectively.
The space–time coordinates will remain fixed across iterations once generated.

For the regression mean function and the semiparametric mean function, the vector of regression coefficients is
β = (4, 3, 2, 1)⊤. The covariates are drawn (once) from a multivariate normal distribution with zero mean, unit variance,
and a cross-covariate correlation of 0.5. Each covariate is standardized to have zero sample mean and unit sample variance.
Further, the nonparametric temporal function in the semiparametric mean function is f (t) = 2{1 − cos(2π t)}.

We then draw a realization from the mean zero Gaussian error process ε(s, t) using three different covariance functions.
The first covariance function is an exponential spatio-temporal covariance function

Cov{ε(si, ti), ε(sj, tj)} =

{
σ 2(1 − c) exp{−ϱ1,n∥si − sj∥/cs − ϱ2,n|ti − tj|/ct}, if i ̸= j,
σ 2, if i = j.

Here, σ 2 is the variance of ε(s, t), c ∈ [0, 1] is the proportion of random noise such that cσ 2 is the nugget effect, and cs
and ct are the positive spatial and temporal range parameters, respectively. We take σ 2

= 9.0, c = 0.2, cs = 1 and ct = 1.
This covariance function is stationary and separable and we denote it as COV-1.

Next, we consider a generalized spatio-temporal Matérn covariance function [5]:

γn((s, t), (s′, t ′); θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(s,t)D(s′,t ′)σ2θ

d/2
3 21−ν

(θ21 u
2
2+1)ν (θ21 u

2
2+θ3)d/2Γ (ν)

m(u1, u2)νKν {m(u1, u2)} , if ∥u1∥ > 0,

D(s,t)D(s′,t ′)σ2θ
d/2
3

(θ21 u
2
2+1)ν (θ21 u

2
2+θ3)d/2

, if ∥u1∥ = 0, |u2| > 0,

D(s, t)2σ 2
+ cσ 2, if ∥u1∥ = 0, |u2| = 0,

(11)

where u1 = ρ1,n(s′
−s) and u2 = ρ2,n(t ′ −t). In this covariance function, m(u1, u2) = θ2∥u1∥{(θ2

1u
2
2+1)/(θ2

1u
2
2+θ3)}1/2 and

Kν(·) is the modified Bessel function of the second kind of order ν. Here, θ1 and θ2 are nonnegative range parameters of
time and space respectively, θ > 0 is a separability parameter. The point-wise variance of ε(s, t) is D(s, t)D(s′, t ′)σ 2

+cσ 2,
3
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here cσ 2 accounts for the nugget effect. The parameter ν in Kν(·) controls the smoothness of the covariance. If we let
= 1/2 and θ3 = 1, then (11) reduces to

Cov{ε(si, ti), ε(sj, tj)} =

{
D(si, ti)D(sj, tj) σ2

{a2|ϱ2,n(ti−tj)|2+1}3/2
exp{−bϱ1,n∥si − sj∥}, if i ̸= j;

D(si, ti)D(sj, tj)σ 2
+ cσ 2, if i = j.

(12)

Similarly, σ 2 is the variance of ε(s, t), c ∈ [0, 1] is the proportion of random noise such that cσ 2 is the nugget effect,
and a and b are the positive temporal and spatial range parameters, respectively. Here, D(si, ti) = dti + 1 varies by time,
resulting in a nonstationarity covariance function. We set σ 2

= 9, c = 0.2, a = 1, b = 1 and d = 1. This covariance
unction is still separable in space and time, which we refer to as COV-2.

The third covariance function we considered is a slight modification of COV-2, with D(si, ti) = dti + es1i + fs2i + 1. We
et σ 2

= 9.0, c = 0.2, a = 1, b = 1, d = 0.5, e = 0.5 and f = 0.5. This covariance function is nonstationary, nonseparable
nd asymmetric, referred as COV-3.
For each combination of the sample size and the covariance function, we generate 400 simulation replicates. We also

onsider a special case of the semiparametric mean function where the temporal function f is assumed to be zero. As will
e demonstrated later, this case will serve as a benchmark in the comparison of the estimation for β and θ.
For each simulated data set, a predetermined bandwidth h0 = 0.05 is used to obtain an initial estimate of β.

he estimate of the optimal bandwidth ĥ is then determined by minimizing the cross-validation criterion (9) over a
redetermined grid of bandwidth values. Given the estimated optimal bandwidth, the profile likelihood estimates β̂, θ̂
nd f̂ (·) are obtained. We further consider two variants of the GCV for determining the bandwidth in (9): GCVc and GCVce
s described in Section 4.
The profile likelihood method (PLE) results are compared with two alternative methods, namely, ALT1 and ALT2. In ALT1,

he parameter estimates and the estimate of the temporal function are obtained by the profile likelihood method ignoring
he spatio-temporal dependence. In ALT2, the regression coefficients β and the covariance parameters θ are estimated by
he classical maximum likelihood method assuming the temporal trend f (·) is known. That is, ALT2 is essentially the
aximum likelihood method under the model with the regression mean function.
To assess the performance of estimation by the different methods under the different bandwidth selection criteria, we

ompute the means and the standard deviations (SD) of β̂ and θ̂ from the 400 simulated data sets. We also compute the
stimated standard errors of the parameters for each simulated data set based on the information matrix in Theorem 1
nd report the mean estimated standard errors (SDm). For ALT1, we use Γ(̂θ) = σ̂ 2I to calculate SDm. In addition, for the
stimated temporal function f̂ , we calculate the average squared error (ASE) for each simulated data set, defined as

ASE = N−1
grid

Ngrid∑
i=1

{f (ti,grid) − f̂ (ti,grid)}2,

here ti,grid = (i − 1/2)/Ngrid for i ∈ {1, . . . ,Ngrid} and Ngrid = 1000.
Finally, we generate an additional 10% new sampling locations and, at each new sampling location, new sampling

ime points are generated as in the simulation set-up. At these new sampling locations and time points, new observations
enoted as yi,new are generated and let ỹi,new denote the predicted value at the ith new sampling location and time, where
∈ {1, . . . ,Nnew}, and Nnew is the total number of new sampling locations and time points. We use the mean squared
rediction error (MSPE) to evaluate the performance of the various methods as

MSPE = N−1
new

Nnew∑
i=1

(yi,new − ỹi,new)2,

he results are provided in Tables 1–3, the last two rows of which give the average values of ASE and MSPE.

.2. Simulation results

As shown in Table 1 for the first scenario of the spatio-temporal covariance function (COV-1), the bandwidths chosen by
the three selection criteria, CV, GCVc and GCVce, are similar for the profile likelihood method. For parameter estimation,
both the accuracy and the precision increase as the sample size increases. The empirical standard deviations are well
approximated by the standard errors, supporting the information-based asymptotic variance in Theorem 1. Further, under
different bandwidth selection criteria, similar ASE and MSPE values are obtained, which may not be surprising due to the
similar choices of bandwidths and hence similar estimates.

For the estimation of the regression coefficients, our method PLE and the two alternative methods ALT1 and ALT2
have comparable estimation bias, which suggests that the accuracy of β̂ is not sensitive to the assumption of covariance
structure. However, the simulation standard deviations from ALT1 are larger than those from PLE and ALT2, indicating
noticeable gain of statistical efficiency in the parameter estimation by accounting for spatio-temporal dependence. In
addition, ALT1 has much larger MSPE and thus poorer prediction than PLE and ALT2. For estimating the temporal function,
the ASEs for ALT and PLE are similar; both decrease as the sample size increases.
1
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able 1
ample mean, sample standard deviation (SD), averaged information matrix based standard deviation (SDm) of regression and covariance parameters,
veraged squared error (ASE) and mean-squared prediction error (MSPE) for three sample sizes with Ns = 20, 40, 60 using bimodal kernel for COV-1
nd for three bandwidth selection criteria, CV, GCVc , GCVce under profile likelihood estimation (PLE). Comparison is made with two alternatives ALT1
nd ALT2 .
Term Truth Ns = 20 Ns = 40 Ns = 60

Method – PLE ALT1 ALT2 PLE ALT1 ALT2 PLE ALT1 ALT2
Criteria – CV GCVc GCVce CV – CV GCVc GCVce CV – CV GCVc GCVce CV –

h – 0.079 0.081 0.082 0.079 – 0.072 0.073 0.073 0.072 – 0.068 0.069 0.069 0.068 –
β1 4.0 3.985 3.985 3.985 3.991 3.985 4.002 4.002 4.002 3.993 4.002 4.002 4.002 4.002 4.003 4.002
SD 0.104 0.104 0.104 0.120 0.104 0.080 0.080 0.080 0.104 0.080 0.067 0.067 0.067 0.082 0.067
SDm 0.112 0.112 0.112 0.132 0.112 0.080 0.080 0.080 0.095 0.080 0.066 0.066 0.066 0.078 0.066
β2 3.0 3.017 3.017 3.017 3.017 3.018 3.009 3.009 3.009 3.004 3.010 2.996 2.996 2.996 2.989 2.996
SD 0.123 0.123 0.123 0.140 0.122 0.075 0.075 0.075 0.095 0.075 0.065 0.065 0.065 0.079 0.065
SDm 0.116 0.116 0.116 0.136 0.117 0.078 0.078 0.078 0.094 0.078 0.065 0.065 0.065 0.077 0.065
β3 2.0 2.006 2.006 2.006 2.003 2.005 1.986 1.986 1.986 1.982 1.986 1.997 1.997 1.997 2.001 1.997
SD 0.109 0.109 0.109 0.127 0.109 0.074 0.074 0.074 0.087 0.074 0.067 0.067 0.067 0.082 0.067
SDm 0.114 0.114 0.114 0.132 0.114 0.081 0.081 0.081 0.096 0.081 0.064 0.064 0.064 0.077 0.064
β4 1.0 0.996 0.996 0.995 0.988 0.996 1.002 1.002 1.002 1.010 1.002 1.000 1.000 1.000 0.999 1.000
SD 0.110 0.110 0.110 0.131 0.110 0.077 0.077 0.077 0.097 0.077 0.065 0.065 0.065 0.082 0.065
SDm 0.115 0.115 0.115 0.134 0.115 0.079 0.079 0.079 0.094 0.079 0.065 0.065 0.065 0.077 0.065
σ 2 9.0 9.111 9.112 9.112 9.101 8.944 9.120 9.120 9.120 9.113 8.997 9.055 9.055 9.055 9.054 8.963
SD 0.569 0.569 0.569 0.589 0.525 0.387 0.387 0.387 0.394 0.372 0.325 0.324 0.324 0.334 0.317
SDm 0.546 0.547 0.547 – 0.528 0.395 0.395 0.395 – 0.384 0.319 0.319 0.319 – 0.313
c 0.2 0.209 0.209 0.209 – 0.202 0.201 0.201 0.201 – 0.196 0.197 0.197 0.197 – 0.193
SD 0.077 0.077 0.077 – 0.078 0.047 0.047 0.048 – 0.047 0.043 0.043 0.043 – 0.043
SDm 0.074 0.074 0.074 – 0.077 0.047 0.047 0.047 – 0.048 0.040 0.040 0.040 – 0.041
cs 1.0 1.090 1.090 1.091 – 1.025 1.052 1.052 1.052 – 1.007 1.027 1.027 1.027 – 0.994
SD 0.224 0.224 0.224 – 0.198 0.134 0.134 0.134 – 0.124 0.103 0.103 0.103 – 0.098
SDm 0.213 0.213 0.213 – 0.200 0.127 0.127 0.127 – 0.121 0.099 0.099 0.099 – 0.095
ct 1.0 1.087 1.088 1.088 – 1.029 1.047 1.048 1.048 – 1.008 1.016 1.016 1.016 – 0.987
SD 0.243 0.244 0.245 – 0.224 0.142 0.142 0.142 – 0.134 0.112 0.112 0.112 – 0.108
SDm 0.213 0.213 0.213 – 0.204 0.139 0.139 0.139 – 0.134 0.112 0.112 0.112 – 0.109

ASE – 0.266 0.265 0.266 0.265 – 0.183 0.183 0.183 0.182 – 0.149 0.149 0.150 0.149 –
MSPE – 6.501 6.501 6.501 9.245 6.484 7.403 7.403 7.403 9.169 7.386 6.934 6.933 6.933 9.090 6.918

When the sample size is smaller, PLE has less accuracy and precision in the estimation than ALT2. In particular, both
he standard deviations and the standard errors of the estimates from PLE are considerably larger than those of ALT2, for
ll the covariance parameters except the nugget proportion c. When the sample size is larger, PLE and ALT2 have similar
stimation results. In particular, the standard deviations and the standard errors of the estimates from PLE are similar to
LT2, supporting that the asymptotic variance of θ̂ under the semiparametric mean function is the same as the regression
ean function, as shown in Theorem 1. Moreover, ALT2 has slightly better prediction than PLE due to possible bias in the
stimation of f (·) in PLE.
Tables 2 and 3 show results for the second and the third scenario of the spatio-temporal covariance function, COV-2 and

OV-3, respectively. Similar conclusions can be drawn. Particularly, in the presence of non-separability and nonstationarity
n the spatio-temporal covariance function, the finite-sample performance of the estimation for the semiparametric mean
unction is sound and supports the asymptotic results. The bandwidths selected by the three criteria, CV, GCVc and GCVce,
are very similar and so are the resulting estimates. Unlike COV-1 and COV-2, the prediction under COV-3 changes greatly
for different sample sizes, which may be attributed to the nonstationarity in space with very different variances at different
new spatial locations where the observations are predicted. Tables D–E in Section 3 of the Supplementary Material show
that the regression coefficient estimates are robust against the choice of the kernel and the initial bandwidth. For a
predetermined bandwidth, it can be seen that, different kernel functions in Step (i) of the bandwidth selection procedure
yield very similar results. Moreover, those results are similar to the benchmark case when β̃ = β.

As demonstrated in Theorem 3, bimodal kernels can effectively alleviate the influence of correlated errors on bandwidth
selection. To see this, we compare the results from a bimodal kernel with those from a Gaussian kernel. The estimation
results under the Gaussian kernel for the first scenario of spatio-temporal covariance function (COV-1) are given in Table
F of the Supplementary Material. Unlike the bimodal kernel, the bandwidths selected by the three criteria, CV, GCVc and
GCVce, can be quite different. In particular, CV selects much smaller bandwidth than GCVc and GCVce, supporting the fact
that cross-validation does not handle correlation well for most commonly-used kernels with K (0) ̸= 0. The regression
coefficient estimates are similar for all three bandwidth selection criteria, which suggests that the estimation of β is not
sensitive to the choice of bandwidth. However, the estimates of covariance parameters are greatly affected by the bias in
the bandwidth selection, with CV having the largest bias in parameter estimation and the largest ASE in the estimation
of the temporal function, among the three criteria. As an alternative of CV in the presence of spatio-temporal correlation,
GCVc produces a much larger bandwidth, although the resulting estimates are not as accurate as those from the bimodal
kernel function.
8
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able 2
ample mean, sample standard deviation (SD), averaged information matrix based standard deviation (SDm) of regression and covariance parameters,
veraged squared error (ASE), and mean-squared prediction error (MSPE) for three sample sizes with Ns = 20, 40, 60 using bimodal kernel for COV-2
nd for three bandwidth selection criteria, CV, GCVc , GCVce under profile likelihood estimation (PLE). Comparison is made with two alternatives ALT1
nd ALT2 .
Term Truth Ns = 20 Ns = 40 Ns = 60

Method – PLE ALT1 ALT2 PLE ALT1 ALT2 PLE ALT1 ALT2
Criteria – CV GCVc GCVce CV – CV GCVc GCVce CV – CV GCVc GCVce CV –

h – 0.100 0.103 0.104 0.100 – 0.089 0.091 0.091 0.089 – 0.083 0.086 0.086 0.083 –
β1 4.0 3.969 3.969 3.969 3.987 3.969 4.002 4.002 4.002 3.987 4.003 4.004 4.004 4.004 4.005 4.004
SD 0.136 0.137 0.137 0.197 0.137 0.102 0.102 0.102 0.169 0.102 0.089 0.089 0.089 0.129 0.089
SDm 0.146 0.146 0.146 0.209 0.146 0.104 0.104 0.104 0.151 0.104 0.086 0.086 0.086 0.123 0.086
β2 3.0 3.020 3.020 3.020 3.027 3.023 3.010 3.010 3.010 3.008 3.012 2.994 2.994 2.994 2.983 2.994
SD 0.165 0.165 0.165 0.218 0.164 0.097 0.097 0.097 0.155 0.097 0.083 0.083 0.083 0.128 0.082
SDm 0.153 0.153 0.153 0.215 0.153 0.101 0.101 0.101 0.150 0.101 0.082 0.082 0.082 0.122 0.082
β3 2.0 2.011 2.011 2.011 1.998 2.008 1.984 1.984 1.984 1.970 1.984 1.993 1.993 1.993 2.000 1.993
SD 0.146 0.146 0.146 0.201 0.146 0.100 0.100 0.100 0.136 0.100 0.088 0.088 0.088 0.130 0.088
SDm 0.152 0.152 0.152 0.209 0.152 0.106 0.106 0.106 0.154 0.106 0.082 0.082 0.082 0.121 0.082
β4 1.0 1.003 1.003 1.003 0.983 1.004 1.002 1.002 1.002 1.021 1.002 1.002 1.002 1.002 1.000 1.002
SD 0.144 0.144 0.144 0.208 0.144 0.101 0.101 0.101 0.161 0.102 0.085 0.085 0.085 0.130 0.085
SDm 0.148 0.149 0.149 0.213 0.148 0.102 0.102 0.102 0.150 0.102 0.084 0.084 0.084 0.122 0.084
σ 2 9.0 9.075 9.073 9.071 22.751 8.934 9.198 9.199 9.199 23.316 9.094 9.163 9.159 9.159 22.736 9.085
SD 1.610 1.609 1.608 1.658 1.543 1.131 1.133 1.133 1.217 1.114 0.871 0.869 0.869 0.995 0.864
SDm 1.569 1.569 1.569 – 1.544 1.114 1.114 1.114 – 1.100 0.887 0.887 0.887 – 0.879
c 0.2 0.229 0.229 0.230 – 0.227 0.200 0.200 0.200 – 0.199 0.195 0.195 0.195 – 0.194
SD 0.121 0.121 0.121 – 0.120 0.060 0.060 0.060 – 0.061 0.051 0.051 0.051 – 0.051
SDm 0.102 0.102 0.102 – 0.103 0.061 0.061 0.061 – 0.062 0.049 0.049 0.049 – 0.050
a 1.0 0.980 0.980 0.980 – 0.996 0.991 0.991 0.991 – 1.002 1.002 1.002 1.002 – 1.010
SD 0.117 0.117 0.117 – 0.118 0.070 0.070 0.070 – 0.071 0.058 0.058 0.058 – 0.058
SDm 0.101 0.101 0.101 – 0.104 0.069 0.069 0.069 – 0.071 0.058 0.058 0.058 – 0.059
b 1.0 0.973 0.973 0.973 – 1.001 0.984 0.984 0.984 – 1.006 0.992 0.992 0.992 – 1.009
SD 0.139 0.139 0.139 – 0.140 0.089 0.089 0.089 – 0.089 0.070 0.070 0.070 – 0.070
SDm 0.131 0.131 0.131 – 0.135 0.086 0.086 0.086 – 0.087 0.069 0.069 0.069 – 0.070
d 1.0 1.020 1.020 1.020 – 1.021 0.999 0.999 0.999 – 1.000 0.991 0.992 0.992 – 0.992
SD 0.246 0.247 0.247 – 0.242 0.167 0.167 0.167 – 0.167 0.127 0.127 0.127 – 0.127
SDm 0.238 0.238 0.238 – 0.237 0.162 0.162 0.162 – 0.161 0.129 0.129 0.129 – 0.129

ASE – 0.663 0.659 0.657 0.655 – 0.451 0.451 0.451 0.450 – 0.365 0.366 0.367 0.366 –
MSPE – 13.454 13.456 13.456 24.114 13.429 15.646 15.645 15.646 21.682 15.609 15.629 15.629 15.629 24.123 15.598

Finally, in Tables 1–3, the standard deviations and the standard errors of β̂ from PLE are similar to those from ALT2. This
s as expected, since the design matrix in our setting does not vary by time. In Section 1.2 of the Supplementary Material,
e investigate a design matrix that varies over time. From Table G in the Supplementary Material, it can be seen that
he standard deviations of β̂ from PLE are larger than those from ALT2, which indicates a loss of statistical efficiency in
he estimation of β when the unknown temporal function is estimated. This finding is consistent with the standard error
ormula in Theorem 1. In addition, we consider a nonseparable but stationary covariance function. The simulation results
re provided in Section 1.3 of the Supplementary Material, and similar lessons can be learned.

. Data example

To illustrate our methodology, we consider a data set collected by static sensors at fixed sampling locations in time
nd roving sensors traversing the spatial domain in time in an engine facility for evaluating the intensity level of noise
s an occupational hazard [25,31]. We focus on the observations between 10:29:00 am and 11:24:00 am when all the
ensors are operating. As shown in Fig. 1, there are 56 observations, one per minute, for each of the 17 static sensors.
or the two roving sensors, there are a total of 179 observations, observed at irregular time points. Therefore, the total
ample size is Nn = 1131.
We consider the semiparametric mean function (12) with the generalized spatio-temporal Matérn error covariance

unction (12). More specifically, for s = (s1, s2), we have

y(s, t) = β1s1 + β2s2 + f (t) + ε(s, t),

here the regression is on the coordinates of the spatial location s, the temporal function f is nonparametric, and the
ero-mean error process ε(s, t) has the spatio-temporal covariance function (12). We fit three spatio-temporal covariance
unctions: D1(s, t) = 1 for stationarity, D2(s, t) = 1 + dt and D3(s, t) = 1 + dt + e(t − κ)+ for nonstationary. In the
atter two nonstationary cases, for any fixed time point t0, ε(s, t0) is spatially stationary. For D3(s, t), κ is chosen around
1:02:00 am, which is expected to capture the temporal change due to an engine shutdown.
9
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ample mean, sample standard deviation (SD), averaged information matrix based standard deviation (SDm) of regression and covariance parameters,
veraged squared error (ASE), and mean-squared prediction error (MSPE) for three sample sizes with Ns = 20, 40, 60 using bimodal kernel for COV-3
nd for three bandwidth selection criteria, CV, GCVc , GCVce under profile likelihood estimation (PLE). Comparison is made with two alternatives ALT1
nd ALT2 .
Term Truth Ns = 20 Ns = 40 Ns = 60

Method – PLE ALT1 ALT2 PLE ALT1 ALT2 PLE ALT1 ALT2
Criteria – CV GCVc GCVce CV – CV GCVc GCVce CV – CV GCVc GCVce CV –

h – 0.106 0.108 0.109 0.106 – 0.095 0.098 0.099 0.095 – 0.087 0.090 0.090 0.087 –
β1 4.0 3.964 3.963 3.963 3.984 3.963 4.003 4.003 4.003 3.984 4.003 4.005 4.005 4.005 4.004 4.005
SD 0.154 0.154 0.154 0.220 0.154 0.114 0.114 0.114 0.193 0.114 0.098 0.098 0.098 0.148 0.098
SDm 0.165 0.165 0.165 0.238 0.165 0.116 0.116 0.116 0.173 0.116 0.096 0.096 0.096 0.139 0.096
β2 3.0 3.025 3.025 3.025 3.029 3.027 3.014 3.014 3.014 3.011 3.015 2.992 2.992 2.992 2.983 2.992
SD 0.184 0.184 0.184 0.248 0.183 0.107 0.107 0.107 0.181 0.107 0.092 0.092 0.092 0.144 0.092
SDm 0.171 0.171 0.171 0.246 0.172 0.112 0.112 0.112 0.171 0.112 0.092 0.092 0.092 0.138 0.092
β3 2.0 2.014 2.014 2.014 1.994 2.011 1.981 1.981 1.981 1.968 1.981 1.991 1.991 1.991 2.002 1.991
SD 0.162 0.162 0.162 0.230 0.161 0.111 0.111 0.111 0.158 0.111 0.097 0.097 0.097 0.148 0.097
SDm 0.172 0.172 0.172 0.238 0.172 0.117 0.117 0.117 0.176 0.117 0.092 0.092 0.092 0.137 0.092
β4 1.0 1.002 1.002 1.002 0.981 1.003 1.002 1.002 1.002 1.023 1.002 1.004 1.004 1.004 0.999 1.004
SD 0.163 0.163 0.163 0.238 0.163 0.114 0.114 0.114 0.177 0.114 0.096 0.096 0.096 0.145 0.095
SDm 0.168 0.168 0.168 0.242 0.168 0.112 0.112 0.112 0.172 0.112 0.093 0.093 0.093 0.137 0.093
σ 2 9.0 9.322 9.328 9.330 29.520 9.066 9.415 9.418 9.419 30.491 9.275 9.366 9.363 9.363 29.027 9.262
SD 2.418 2.417 2.418 2.115 2.374 1.757 1.758 1.756 1.552 1.728 1.409 1.408 1.408 1.228 1.393
SDm 2.397 2.398 2.398 – 2.343 1.725 1.725 1.725 – 1.700 1.431 1.431 1.431 – 1.416
c 0.2 0.238 0.238 0.238 – 0.240 0.202 0.202 0.202 – 0.201 0.193 0.193 0.193 – 0.192
SD 0.151 0.151 0.151 – 0.155 0.077 0.077 0.077 – 0.077 0.062 0.062 0.062 – 0.062
SDm 0.134 0.134 0.134 – 0.138 0.075 0.075 0.075 – 0.076 0.061 0.061 0.061 – 0.061
a 1.0 0.982 0.981 0.981 – 0.996 0.990 0.989 0.989 – 1.000 1.002 1.002 1.002 – 1.009
SD 0.115 0.115 0.115 – 0.116 0.067 0.067 0.067 – 0.068 0.055 0.055 0.055 – 0.056
SDm 0.098 0.098 0.098 – 0.101 0.066 0.066 0.066 – 0.067 0.056 0.056 0.056 – 0.056
b 1.0 0.977 0.977 0.977 – 1.001 0.986 0.986 0.985 – 1.005 0.993 0.993 0.993 – 1.008
SD 0.135 0.135 0.135 – 0.135 0.087 0.087 0.087 – 0.087 0.067 0.067 0.067 – 0.067
SDm 0.127 0.127 0.127 – 0.130 0.083 0.083 0.083 – 0.084 0.067 0.067 0.067 – 0.068
d 0.5 0.509 0.509 0.508 – 0.513 0.498 0.498 0.498 – 0.500 0.490 0.490 0.491 – 0.491
SD 0.222 0.222 0.222 – 0.221 0.158 0.158 0.158 – 0.158 0.117 0.117 0.117 – 0.116
SDm 0.222 0.222 0.222 – 0.224 0.150 0.150 0.150 – 0.150 0.120 0.120 0.120 – 0.120
e 0.5 0.502 0.501 0.501 – 0.515 0.497 0.497 0.497 – 0.500 0.483 0.483 0.483 – 0.486
SD 0.223 0.223 0.223 – 0.228 0.140 0.141 0.140 – 0.142 0.119 0.119 0.119 – 0.120
SDm 0.217 0.217 0.217 – 0.220 0.145 0.145 0.145 – 0.146 0.118 0.118 0.118 – 0.118
f 0.5 0.514 0.514 0.514 – 0.524 0.487 0.487 0.487 – 0.491 0.493 0.493 0.493 – 0.496
SD 0.193 0.193 0.193 – 0.198 0.151 0.151 0.151 – 0.153 0.116 0.116 0.116 – 0.117
SDm 0.197 0.197 0.197 – 0.200 0.151 0.151 0.151 – 0.151 0.115 0.115 0.115 – 0.115

ASE – 0.825 0.828 0.829 0.823 – 0.577 0.577 0.578 0.576 – 0.450 0.447 0.447 0.450 –
MSPE – 13.107 13.103 13.103 23.673 13.062 20.457 20.455 20.455 28.599 20.412 22.368 22.369 22.369 34.789 22.336

Fig. 1. Left panel: Locations of static and roving sensors (▲: static sensors in group 1, △: static sensors in group 2, •: roving sensors closer to static
ensors in group 1, and ◦: roving sensors closer to static sensors in group 2). Right panel: noise intensity over time at all static and roving sensors.
ere, time series for static sensors in Group 1 are shown in solid line, and those from Group 2 static sensors are shown in dashed line. In addition,
easurements of roving sensors recorded near Group 1 sensors are shown in dark solid circles, otherwise, they are shown as open circles.

We apply our method to analyze this data set and summarize the parameter estimates of β1, β2 and θ in Table 4,

whereas the estimated temporal function f̂ (t) and the pointwise 95% confidence intervals are plotted in Fig. 2. We

10



J. Liu, T. Chu, J. Zhu et al. Journal of Multivariate Analysis 183 (2021) 104735

a

s
p
c
λ

I
e
t

Table 4
Selected bandwidths using bimodal kernel and corresponding parameter estimates for four
covariance structures: D1(s, t) = 1, D2(s, t) = dt + 1 and D3(s, t) = dt + e(t − κ)+ + 1. Standard
errors are computed based on information matrices from Theorem 1 and given in parentheses.

D1(s, t) D2(s, t) D3(s, t) D3(s, t) (penalized)

h 0.0193 0.0193 0.0193 0.0193

Regression parameters

β1 −0.3922 (0.0820) −0.4492 (0.0652) −0.4872 (0.0608) −0.4600 (0.0636)
β2 0.3015 (0.0565) 0.4048 (0.0440) 0.4142 (0.0410) 0.3954 (0.0425)

Covariance parameters

σ 2 50.8840 (8.7442) 8.8096 (1.7254) 19.0058 (3.6086) 14.7628 (2.7797)
c 0.0007 (0.0001) 0.0020 (0.0005) 0.0007 (0.0002) 0.0009 (0.0002)
cs 0.1662 (0.0040) 0.1677 (0.0037) 0.1647 (0.0035) 0.1723 (0.0038)
ct 0.0152 (0.0025) 0.0215 (0.0033) 0.0201 (0.0031) 0.0237 (0.0036)
d – 1.9218 (0.2647) −0.3070 (0.1298) 0.1982 (0.1723)
e – – 6.5719 (0.4883) 3.0394 (0.4177)

Fig. 2. Estimated temporal function f̂ (t) (solid curve) and 95% pointwise confidence intervals (dash curves) by maximizing the profile-likelihood (6)
with four covariance structures: constant D1(s, t) = 1; linear D2(s, t) = dt + 1; truncated polynomial D3(s, t) = dt + e(t − κ)+ + 1; and maximizing
penalized profile-likelihood by adding a penalty term to (6) with D3 .

approximate the pointwise standard deviation of f̂ (t) by Theorem 2. The temporal function estimates f̂ (t) under the three
models D1, D2, and D3 are quite similar; however, the pointwise confidence interval based on D1 is much wider than those
based on D2. For D3, the pointwise confidence interval is much narrower than D1 and D2 when t is small, however it is
unusually large when t is large.

This finding is also reflected in Table 4, the estimate of the coefficient of (t − κ)+ in D3 (e) is unusually large. This
eems like a common phenomenon in spline smoothing with truncated polynomial basis functions. To circumvent this
otential issue, we consider a penalized approach [36]. That is, when maximizing the profile likelihood function (6), we
onsider adding an additional penalty term −λ|e|, where λ is a tuning parameter. In practice, we choose λ over a grid of
values by minimizing the rotated residual sum of squares, for details, see Section 2.2 of the Supplementary Material.

n our data analysis, λ̂ = 20, and the resulting parameter estimates are given in the last column of Table 4. The resulting
stimate of e is much smaller, the other estimates of e are close to each other. The estimated standard deviation at each
ime point are plotted in Fig. C of the Supplementary Material. We notice that D3 from the penalized approach has the
smallest area under the curve. As a consequence, the 95% confidence interval of the temporal function f̂ (t) of D3 from the
penalized approach is the narrowest compared to D1, D2 and D3, as presented in the last panel of Fig. 2.

Finally, we consider an interpolation of the noise intensity in space and time by kriging based on D3 with penalty. Fig. D
in the Supplementary Material presents a dynamic evolution of the noise intensity maps over time and suggests a possible
noise source in the upper-left corner with high noise intensity. There is also a sharp decrease of the noise intensity at
11:10:00 am when the engine was turned off even though all the sensors remain active, as well as a horizontal separation
around y = 30 before 11:10:00 am, reflecting the wall that separates the facility [31].
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ppendix A. Technical details

We use β0 to denote the vector of true regression coefficients and θ0 to denote the vector of true covariance parameters.
e denote the log-likelihood of (β, θ) in (1), when f (t) is known, as

ℓ0(β, θ) = −(Nn/2) log(2π ) − (1/2) log{detΓ(θ)} − (1/2)(y − Xβ − f )⊤Γ(θ)−1(y − Xβ − f ).

Let ℓ′

0(β) = ∂ℓ0(β, θ)/∂β and ℓ′

0(θ) = ∂ℓ0(β, θ)/∂θ denote the first-order partial derivatives of ℓ0(β, θ) with respect to β
and θ, respectively. For ease of notation, we suppress θ in matrices relying on θ. For example, we write Γ = Γ(θ). Then,
e have ℓ′

0(β) = X⊤Γ−1(y−Xβ− f ) and the kth element of ℓ′

0(θ) is −(1/2)tr(Γ−1Γk)− (1/2)(y−Xβ− f )⊤Γk(y−Xβ− f ),
here Γk = ∂Γ/∂θk and Γk

= ∂Γ−1/∂θk = −Γ−1ΓkΓ
−1 for k ∈ {1, . . . , q}.

Further, let ℓ′′

0(β, β) = ∂2ℓ0(β, θ)/∂β2, ℓ′′

0(θ, θ) = ∂2ℓ0(β, θ)/∂θ2 and ℓ′′

0(β, θ) = ∂2ℓ0(β, θ)/∂β∂θ denote the
econd-order partial derivatives with respect to β and θ. Let J n(β) = E{−ℓ′′

0(β, β)} and J n(θ) = E{−ℓ′′

0(θ, θ)} denote
he information matrices of β and θ, respectively. In particular, ℓ′′

0(β, β) = −X⊤Γ−1X , the kth column of ℓ′′

0(β, θ) is
⊤Γk(y − Xβ − f ), and the (k, k′)th entry of ℓ′′

0(θ, θ) is −(1/2){tr(Γ−1Γkk′ + ΓkΓk′ ) + (y − Xβ − f )⊤Γkk′ (y − Xβ − f )},
here Γkk′ = ∂2Γ/∂θk∂θk′ and Γkk′

= ∂2Γ−1/∂θk∂θk′ = Γ−1(ΓkΓ
−1Γk′ + Γk′Γ

−1Γk − Γkk′ )Γ−1 for k, k′
∈ {1, . . . , q}. It can

e shown that E{ℓ′′

0(β, θ)} = 0, so the information matrix of η is J n(η) = diag{J n(β),J n(θ)}, where

J n(β) = E{−ℓ′′

0(β, β)} = X⊤Γ−1X (13)

nd the (k, k′)th entry of J n(θ) = E{−ℓ′′

0(θ, θ)} is tkk′/2 with tkk′ = tr(Γ−1ΓkΓ
−1Γk′ ) = tr(ΓΓkΓΓk′ ).

For a matrix A = [aii′ ]
Nn
i,i′=1, we let µi(A) denote its ith largest eigenvalue, let ∥A∥2 = µ1(A) denote its spectral

orm, let ∥A∥F =

(∑Nn
i=1
∑Nn

i′=1 a
2
ii′

)1/2
denote its Frobenius norm, let ∥A∥max = maxi,i′ |aii′ | denote its max norm, and

et ∥A∥∞ = max1≤i≤Nn

∑Nn
i′=1 |aii′ | denote the maximum absolute column sum of the matrix. Finally, let

P
−→ denote

onvergence in probability and
D

−→ denote convergence in distribution, as n → ∞.
The theoretical properties of the methods developed in Section 2 are established under the following additional

egularity conditions.

(C.1) There exists a nondecreasing function Q (t) with Q (0) = 0 and Q (1) = 1 such that (i) supt∈[0,1] |QNn (t) − Q (t)| =

O(ζn), where QNn (t) = N−1
n
∑Nn

i=1 I(ti ≤ t); (ii) its first-order derivative function q(t) is bounded away from zero
and infinity and has continuous second partial derivatives.

(C.2) For j ∈ {1, . . . , p}, there exists a function gj(·) on T with a bounded second derivative satisfying

xj(si, ti) = gj(ti) + φij, i ∈ {1, . . . ,Nn},

where {φij} is a sequence of real numbers such that

lim
n→∞

N−1
n Φ⊤Γ−1Φ = Π,

where φi = (φi1, . . . , φiNn )
⊤, Φ = (φ1, . . . ,φp), and Π is a positive definite matrix. In addition, for j ∈ {1, . . . , p},

lim supn→∞(1/an)max1≤k≤Nn

⏐⏐⏐∑k
m=1 φimj

⏐⏐⏐ < ∞ for all permutations (i1, . . . , iNn ) of (1, . . . ,Nn), where an =

N1/2
n logNn.

(C.3) The temporal function f (t) is twice differentiable with a bounded second-order derivative on T .
(C.4) The kernel K (·) is a symmetric, nonnegative, and bounded function with a compact support in R and with a

bounded first-order derivative.
(C.5) The bandwidth h satisfies h → 0, Nnh4

→ ∞, Nnh8
→ 0 and ζnh−1

→ 0 as n → ∞.
(C.6) For k ∈ {1, . . . , q}, ∥Γk∥

−2
F ≤ DkN

−1/2−ι
n for some ι > 0 and Dk > 0.

(C.7) It holds that ∥Γ−1
∥2 < C∗ < ∞ for some constant C∗.

(C.8) limn→∞ N−1
n J n(θ) −→ I0(θ), where I0(θ) is non-singular.

(C.9) Given t ∈ (0, 1), there exists a 2 × 2 matrix ∆t , such that (N−1
n h)k⊤

t Γkt −→ q(t)2∆t , where kt = {Kh(ti − t){(ti −
t)/h}j−1

}
Nn,2
i,j=1 is an Nn × 2 matrix.

(C.10) Define g(s, t) = g(0, 0, s, t). Assume g(s, t) satisfies |g(s, t) − g(s′, t ′)| ≤ C1∥s−s′
∥+C2|t − t ′| for all (s, t), (s′, t ′) ∈

R × T , where C1, C2 are positive constants.
(C.11) There exist two positive nonincreasing functions γ0 and γ1 such that |γn((s, t), (s + u1/An, t + u2/Bn))| ≤

γ0(∥u1∥)γ1(|u2|) for all n and ∥u1∥, |u2| ∈ [0, ∞) such that (s, t), (s + u1/An, t + u2/Bn) ∈ R × T . In addition,∫
∞ d−1

∫
∞

0 u γ0(u)du < ∞ and 0 γ1(u)du < ∞.

12



J. Liu, T. Chu, J. Zhu et al. Journal of Multivariate Analysis 183 (2021) 104735

R
a
2
t
s
f
m
(
a
c
a

A
i

R

i
m

d

L

w

a

P

w

(C.12) The covariance function γn(·, ·; θ) is bounded and is twice continuously differentiable with respect to θ in an open
set.

(C.13) There exist two positive nonincreasing functions γ2 and γ3 such that

max{|γn,k((s, t), (s + u1/An, t + u2/Bn))|, |γn,kk′ ((s, t), (s + u1/An, t + u2/Bn))|} ≤ γ2(∥u1∥)γ3(|u2|)

for all n and ∥u1∥, |u2| ∈ [0, ∞) with (s, t), (s + u1/An, t + u2/Bn) ∈ R × T and 1 ≤ k, k′
≤ q. Further,

∫
∞

0 ud−1

γ2(u)du < ∞ and
∫

∞

0 γ3(u)du < ∞.

In the following proofs, we suppress n in ntkk′ , nakk′ , nΓ, nΓk, nΓkk′ , In, An, n̂η, nβ̂ and n̂θ for ease of notation.

emarks. (C.1) is a condition on fixed time points for the spatio-temporal sampling design. (C.2) is a mild assumption
bout the relationship between the fixed design points and {ti} in the partially linear model, which is similar to Assumption
.2 (i) in Gao and Liang [17]. (C.3)–(C.5) are common assumptions in kernel smoothing. (C.3) ensures the smoothness of
he temporal function [27,43]. (C.4) is a standard assumption for kernel functions and can be relaxed further such that K (t)
atisfies a Lipschitz condition

⏐⏐K (t) − K (t ′)
⏐⏐ ≤ c

⏐⏐t − t ′
⏐⏐ for any t, t ′ ∈ R and some c > 0. In addition, (C.5) is a condition

or the rate of bandwidth with respect to Nn and ζn. (C.6) assures that the first-order partial derivatives of the covariance
atrix have a higher order than root-Nn. (C.7) imposes a lower bound on the smallest eigenvalue of the covariance matrix.

C.8) guarantees that the growth of the information matrix is at the rate of the total sample size [6]. Moreover, (C.9) is
n assumption for the fixed sampling design under the spatio-temporal dependence. Finally, (C.10)–(C.13) are regularity
onditions for locally stationary processes. In (C.11), the covariance function of locally stationary processes is bounded by
product of two functions, whose integrals are finite.

Remark on Assumption (C.2) Here, we will show that if ∥
nΓ

−1
∥∞ = O(1), we have X⊤Γ−1X ⪰ Φ⊤Γ−1Φ, where A ⪰ B

f A − B is positive semi-definite. To see this, we write

X⊤Γ−1X = G⊤Γ−1G + G⊤Γ−1Φ + Φ⊤Γ−1G + Φ⊤Γ−1Φ.

Since ∥
nΓ

−1
∥∞ = O(1), G⊤Γ−1 is uniformly bounded elementwise. Together with (C.2), G⊤Γ−1Φ = O(N1/2

n logNn).
ecall that limn→∞ N−1

n Φ⊤Γ−1Φ = Π. Thus, G⊤Γ−1Φ is dominated by Φ⊤Γ−1Φ, and thus,

X⊤Γ−1X ⪰ Φ⊤Γ−1Φ,

n which the equality holds if g(·) = 0. This result indicates that the asymptotic variances of β̂ in the partially linear
odel are greater than those in the simple linear regression model.
In the following Lemmas 1–6, we generalize some classical results for random sampling designs [14] to fixed sampling

esign, which will be used in the proofs of Theorems 1–3.

emma 1. Under Assumptions (C.1), (C.4) and (C.5), for k ≥ 0,

sup
t∈[0,1]

⏐⏐vk,t − Nnµk,tq(t)
⏐⏐ = O(Nnh + Nnζnh−1),

here vk,t = h−k∑Nn
i=1(ti − t)kKh(ti − t), Kh(t) = (1/h)K (t/h),

µk,t =

⎧⎪⎨⎪⎩
∫

∞

−t/h x
kK (x)dx, if t < Mh,∫

∞

−∞
xkK (x)dx := µk, if Mh ≤ t ≤ 1 − Mh,∫ (1−t)/h

−∞
xkK (x)dx, if t > 1 − Mh,

nd [−M,M] is the compact support of K (·).

roof. For any t ∈ [0, 1],⏐⏐vk,t − Nnµk,tq(t)
⏐⏐ ≤

⏐⏐⏐⏐Nnh−k
∫ 1

0
(z − t)kKh (z − t) d(QNn − Q )(z)

⏐⏐⏐⏐
+

⏐⏐⏐⏐Nnh−k
∫ 1

0
(z − t)kKh (z − t) dQ (z) − Nnµk,tq(t)

⏐⏐⏐⏐ ≡ (I1,1) + (I1,2),

here

(I1,1) = Nnh−k
⏐⏐⏐⏐∫ 1

0
(z − t)kKh (z − t) d(QNn − Q )(z)

⏐⏐⏐⏐
= Nnh−k

⏐⏐⏐⏐(z − t)kKh (z − t) (QNn − Q )(z)|10−
∫ 1

(QNn − Q )(z)
[
(z − t)kKh (z − t)

]′
dz
0

13
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= Nnh−2

⏐⏐⏐⏐⏐
∫ 1

0
(QNn − Q )(z)k

(
z − t
h

)k−1

K
(
z − t
h

)
dz +

∫ 1

0
(QNn − Q )(z)

(
z − t
h

)k

K ′

(
z − t
h

)
dz

⏐⏐⏐⏐⏐
≤ Nnh−1 sup

z∈[0,1]
|(QNn − Q )(z)|

(∫ M

−M

⏐⏐kuk−1K (u)
⏐⏐ du +

∫ M

−M

⏐⏐ukK ′(u)
⏐⏐ du) .

he second equality uses the fact that (QNn −Q )(1) = (QNn −Q )(0) = 0. By (C.1),
∫ M

−M

⏐⏐kuk−1K (u)
⏐⏐ du+

∫ M
−M

⏐⏐ukK ′(u)
⏐⏐ du =

(1). Together with (C.4), (I1,1) = O(Nnζnh−1). For (I1,2),

(I1,2) = sup
t∈[0,1]

⏐⏐⏐⏐Nnh−k
∫ 1

0
(z − t)kKh (z − t) dQ (z) − Nnq(t)µk,t

⏐⏐⏐⏐
= sup

t∈[0,1]

⏐⏐⏐⏐⏐Nn

∫ 1−t
h

−
t
h

ukK (u)
(
q(t) + q′(t)uh +

q′′(t̃)u2h2

2

)
du − Nnq(t)µk,t

⏐⏐⏐⏐⏐
≤ Nnh

{
sup

t∈[0,1]
|q′(t)|

∫
|uk+1K (u)|du + (h/2) sup

t∈[0,1]
|q′′(t)|

∫
|uk+2K (u)|du

}
= O(Nnh),

here t̃ ∈ [t, t + uh]. Thus, Lemma 1 holds. □

emma 2. Under Assumptions (C.1) and (C.3)–(C.5), supt∈[0,1] |ω1(t)f − f (t)| = O(h2).

roof. First, straightforward calculation yields D⊤

t K tDt =

(
v0,t v1,t
v1,t v2,t

)
. By Lemma 1, uniformly on [0, 1], we have

0,t = Nnq(t)µ0,t + O(Nnh + Nnζnh−1), v1,t = Nnq(t)µ1,t + O(Nnh + Nnζnh−1) and v2,t = Nnq(t)µ2,t + O(Nnh + Nnζnh−1).
n addition, notice that

(1, 0)(D⊤

t K tDt )−1
=

(
v2,t

v0,tv2,t − v2
1,t

,
−v1,t

v0,tv2,t − v2
1,t

)
.

hus,
v2,t

v0,tv2,t − v2
1,t

= N−1
n (q(t))−1 µ2,t

µ0,tµ2,t − µ2
1,t

+ O(N−1
n h + N−1

n ζnh−1),

−v1,t

v0,tv2,t − v2
1,t

= N−1
n (q(t))−1 µ1,t

µ0,tµ2,t − µ2
1,t

+ O(N−1
n h + N−1

n ζnh−1)

uniformly on [0, 1].
Recall that ω1(t)f − f (t) = (1, 0)(D⊤

t K tDt )−1D⊤

t K t f − f (t). A Taylor’s expansion yields f (ti) = f (t) + f ′(t)(ti − t) +

1/2f ′′(ξi)(ti − t)2, where ξi is between t and ti. Thus,

ω1(t)f − f (t) = (1, 0)(D⊤

t K tDt )−1D⊤

t K tDt (f (t), hf ′(t))⊤ + (1/2)(1, 0)(D⊤

t K tDt )−1D⊤

t K tdξ − f (t)
= (1/2)(1, 0)(D⊤

t K tDt )−1D⊤

t K tdξ ,

where dξ = (f ′′(ξ1)(t1 − t)2, . . . , f ′′(ξNn )(tNn − t)2)⊤. In addition,

sup
t∈[0,1]

⏐⏐(1, 0)(D⊤

t K tDt )−1D⊤

t K tdξ

⏐⏐ ≤ max
x∈[0,1]

|f ′′(x)| sup
t∈[0,1]

(⏐⏐⏐⏐⏐ v2
2,t

v0,tv2,t − v2
1,t

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐ v1,tv3,t

v0,tv2,t − v2
1,t

⏐⏐⏐⏐⏐
)
h2

= O(h2).

hus, Lemma 2 holds. □

emma 3. Suppose that Assumptions (C.1) and (C.3)–(C.5) hold. For any random vector ε of zero mean,

sup
t∈[0,1]

|ω1(t)ε| = Op

{(
logNn

Nnh

)1/2
}

.

Proof. For a random vector ε = (ε1, . . . , εNn )
⊤, we have ω1(t)ε = (1, 0)(D⊤

t K tDt )−1D⊤

t K tε = (I3,1) − (I3,2), where
I3,1) =

v2,t
2

∑Nn
i=1 Kh(ti − t)εi and (I3,2) =

v1,t
2

∑Nn
i=1 Kh(ti − t)(ti − t)h−1εi.
v0,tv2,t−v1,t v0,tv2,t−v1,t

14
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i

Note that (I3,1) =
v0,tv2,t

v0,tv2,t−v21,t

∑Nn
i=1 Kh(ti−t)εi∑Nn
i=1 Kh(ti−t)

, by Lemma 5,

sup
t∈[0,1]

⏐⏐⏐⏐⏐
∑Nn

i=1 Kh(ti − t)εi∑Nn
i=1 Kh(ti − t)

⏐⏐⏐⏐⏐ = Op

{(
logNn

Nnh

)1/2
}

, sup
t∈[0,1]

⏐⏐⏐⏐⏐
∑Nn

i=1(ti − t)h−1Kh(ti − t)εi∑Nn
i=1 Kh(ti − t)

⏐⏐⏐⏐⏐ = Op

{(
logNn

Nnh

)1/2
}

.

Following similar arguments in Lemma 2, supt∈[0,1]

⏐⏐(I3,1)⏐⏐ = Op

{(
logNn
Nnh

)1/2}
and supt∈[0,1]

⏐⏐(I3,2)⏐⏐ = Op

{(
logNn
Nnh

)1/2}
. □

Lemma 4. Under Assumptions (C.1) and (C.3)–(C.5),

sup
t∈[0,1]

⏐⏐̃f (t) − f (t)
⏐⏐ = Op

{
h2

+

(
logNn

Nnh

)1/2
}

,

where f̃ (t) = ω1(t)y∗
= ω1(t)(y − Xβ).

roof. First, f̃ (t)− f (t) = ω1(t)
{
f + ε − f (t)1Nn

}
since ω1(t)1Nn −1 = 0. Next, we have supt∈[0,1]

⏐⏐̃f (t) − f (t)
⏐⏐ ≤ supt∈[0,1]

ω1(t)(f − f (t)1Nn )| + supt∈[0,1] |ω1(t)ε|. The desired result follows from Lemmas 2 and 3. □

Lemma 5. Suppose Assumptions (C.1), (C.4) and (C.5) hold. For any random vector ε of zero mean,

sup
t∈[0,1]

⏐⏐⏐⏐⏐
∑Nn

i=1(ti − t)jh−jKh(ti − t)εi∑Nn
i=1 Kh(ti − t)

⏐⏐⏐⏐⏐ = Op

{(
logNn

Nnh

)1/2
}

, j ∈ {0, 1}.

roof. Let Ik be the interval centered at ck with the length ιNn = {logNn/(Nnh)}1/2 h3+j. There exist rNn = ⌊ι−1
Nn

⌋ + 1

ntervals satisfying [0, 1] ⊂
⋃rNn

k=1 Ik. First, supt∈[0,1]

⏐⏐⏐⏐∑Nn
i=1(ti−t)jh−jKh(ti−t)εi∑Nn

i=1 Kh(ti−t)

⏐⏐⏐⏐ ≤ (I6,1) + (I6,2), where

(I6,1) = max
1≤k≤rNn

sup
t∈Ik

⏐⏐⏐⏐⏐
∑Nn

i=1(ti − t)jKh(ti − t)εi
hj
∑Nn

i=1 Kh(ti − t)
−

∑Nn
i=1(ti − ck)jKh(ti − ck)εi
hj
∑Nn

i=1 Kh(ti − ck)

⏐⏐⏐⏐⏐ ,
(I6,2) = max

1≤k≤rNn

⏐⏐⏐⏐⏐
∑Nn

i=1(ti − ck)jh−jKh(ti − ck)εi∑Nn
i=1 Kh(ti − ck)

⏐⏐⏐⏐⏐ .
For (I6,1),

(I6,1) ≤ max
1≤k≤rNn

sup
t∈Ik

⏐⏐⏐⏐⏐ 1
v0,t

[
Nn∑
i=1

K̄ (t, ti, ck)(ti − t)jh−jεi

]⏐⏐⏐⏐⏐
+ max

1≤k≤rNn
sup
t∈Ik

⏐⏐⏐⏐⏐ 1
v0,t

[
Nn∑
i=1

{(ti − t)j − (ti − ck)j}h−jKh(ti − ck)εi

]⏐⏐⏐⏐⏐
+ max

1≤k≤rNn
sup
t∈Ik

⏐⏐⏐⏐⏐ 1
v0,tv0,ck

Nn∑
i=1

K̄ (t, ti, ck)
Nn∑
i=1

(ti − ck)jh−jKh(ti − ck)εi

⏐⏐⏐⏐⏐
= (I6,1A) + (I6,1B) + (I6,1C ),

where K̄ (t, ti, ck) = Kh(ti − t) − Kh(ti − ck).
By Lemma 1, it can be shown that supt∈[0,1]

⏐⏐v−1
0,t

⏐⏐ = O(N−1
n ). In addition, by (C.4), for any t ∈ Ik, |K̄ (t, ti, ck)| ≤

h−1 maxx∈R |K ′(x)|
⏐⏐ ti−t

h −
ti−ck
h

⏐⏐ = O(h−2ιNn ). Therefore,

(I6,1A) = max
1≤k≤rNn

sup
t∈Ik

⏐⏐⏐⏐⏐ 1
v0,t

[
Nn∑
i=1

K̄ (t, ti, ck)(ti − t)jh−jεi

]⏐⏐⏐⏐⏐
≤ max

1≤k≤rNn
sup
t∈Ik

|K̄ (t, ti, ck)| max
1≤k≤rNn

sup
t∈Ik

{
1

v0,t

Nn∑
i=1

⏐⏐(ti − t)jh−jεi
⏐⏐} = O(N−1

n ιNnh
−2−j)

Nn∑
i=1

|εi| .
15
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We further note that

(I6,1B) = max
1≤k≤rNn

sup
t∈Ik

⏐⏐⏐⏐⏐ 1
v0,t

[
Nn∑
i=1

{(ti − t)j − (ti − ck)j}h−jKh(ti − ck)εi

]⏐⏐⏐⏐⏐
=

{
0, if j = 0,
O(N−1

n ιNnh
−1−j)

∑Nn
i=1 |εi| , if j = 1.

Moreover,

(I6,1C ) = max
1≤k≤rNn

sup
t∈Ik

⏐⏐⏐⏐⏐ 1
v0,tv0,ck

Nn∑
i=1

K̄ (t, ti, ck)
Nn∑
i=1

(ti − ck)jh−jKh(ti − ck)εi

⏐⏐⏐⏐⏐
≤ max

1≤k≤rNn
sup
t∈Ik

{
1

v0,tv0,ck

Nn∑
i=1

|K̄ (t, ti, ck)|

}
max

1≤k≤rNn

{
Nn∑
i=1

|(ti − ck)jh−jεi|Kh(ti − ck)

}

= O(N−2
n )O(NnιNnh

−2)O(h−1−j)
Nn∑
i=1

|εi| = O(N−1
n ιNnh

−3−j)
Nn∑
i=1

|εi| .

Since
∑Nn

i=1 |εi| = Op(Nn), (I6,1) = Op

{(
logNn
Nnh

)1/2}
.

For (I6,2), let e = Γ−1/2ε be a sequence of iid N(0, 1), and we have
∑Nn

i=1(ti − t)jKh(ti − t)εi = hjk⊤

t,j+1Γ
1/2e, where kt,j+1

s the (j + 1)th column of kt , j ∈ {0, 1}. For any λ > 0 and t ∈ [0, 1], by Bernstein inequality,

P

(⏐⏐⏐⏐⏐
Nn∑
i=1

(ti − t)jKh(ti − t)εi

⏐⏐⏐⏐⏐ > 2λv0,t

(
logNn

Nnh

) 1
2
)

< exp

{
−λ2v2

0,t
logNn
Nnh

h2jk⊤

t,j+1Γkt,j+1

}
.

In addition, we have h2jk⊤

t,j+1Γkt,j+1 ≤ ∥Γ∥2
∑Nn

i=1(ti−t)2jKh(ti−t)2 ≤ ∥Γ∥2
∑Nn

i=1 Kh(ti−t)2. By similar arguments as in

emma 1, we can show that, supt∈[0,1]

⏐⏐⏐∑Nn
i=1 Kh(ti − t)2

⏐⏐⏐ = O(Nnh−1). From Lemma 1, we also have inft∈[0,1] v
2
0,t = O(N2

n ),
nd therefore, by choosing a large enough λ,

sup
t∈[0,1]

P

(⏐⏐⏐⏐⏐
Nn∑
i=1

(ti − t)jKh(ti − t)εi

⏐⏐⏐⏐⏐ > λv0,t

(
logNn

Nnh

)1/2
)

= O(N−2
n ).

Since

P

(
(I6,2) > λ

(
logNn

Nnh

)1/2
)

≤

rNn∑
k=1

P

(⏐⏐⏐⏐⏐
∑Nn

i=1(ti − ck)jKh(ti − ck)εi
v0,ck

⏐⏐⏐⏐⏐ > λ

(
logNn

Nnh

)1/2
)

= O(rNnN
−2
n ) = o(1),

we have (I6,2) = Op

{(
logNn
Nnh

)1/2}
. Thus, we have the result. □

Lemma 6. Suppose that Assumptions (C.1)–(C.5) hold, we have supt∈[0,1] |ω(t)X | = O(1).

Proof. Using similar arguments as in Lemma 2, vk,t/(v0,tv2,t − v2
1,t ) = O(N−1

n ), for k ∈ {0, 1, 2}. The ith element of
the first row of ω(t) is v2,t/(v0,tv2,t − v2

1,t )Kh(ti − t) − v1,t/(v0,tv2,t − v2
1,t )Kh(ti − t)(ti − t)/h = O(N−1

n h−1). Similarly,
he ith element of the second row of ω(t) is O(N−1

n h−1). Thus, ω(t)φj = O(N−1/2
n h−1 logNn). Using similar arguments

n Lemma 2, we obtain (0, 1)ω(t)g j − hg ′

j (t) = (0, 1/2)(D⊤

t K tDt )−1D⊤

t K tdξ,j = O(h2), where ξi is between t and ti and
ξ,j = (g ′′(ξ1)(t1 − t)2, . . . , g ′′(ξNn )(tNn − t)2)⊤. Thus, ω(t)X j = ω(t)(φj + g j) = O(1). □

roof of Theorem 1. By Mardia and Marshall [32], the convergence property of ℓ′

0(β), ℓ
′

0(θ), ℓ
′′

0(β, β), ℓ′′

0(β, θ) and ℓ′′

0(θ, θ)
an be established. By (C.6)–(C.7), together with proof of Theorem 1 in Chu et al. [5], we have

N−1/2
n ℓ′

0(θ)
D

−→ N (0,I0(θ)) ,N−1
n ℓ′′

0(θ, θ)
p

−→ −I0(θ).

nder (C.1)–(C.9), we first show the following results

N−1/2
n ℓ′(β)

D
−→ N (0,Π) ,N−1/2

n ℓ′(θ)
D

−→ N (0,I0(θ)) ,N−1
n ℓ′′(β, β)

p
−→ −Π, (14a)

N−1ℓ′′(θ, θ)
p

−→ −I (θ),N−1ℓ′′(β, θ)
p

−→ 0. (14b)
n 0 n

16
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First, straightforward calculation yields

ℓ′(β) =X⊤(I − S)⊤Γ−1(I − S)(Y − Xβ)

=X⊤(I − S)⊤Γ−1(I − S)ε + X⊤(I − S)⊤Γ−1(I − S)f ≡ (I1) + (I2).

By Assumption (C.2),

(I1) =N−1/2
n {φj + g j}

⊤(I − S)⊤Γ−1(I − S)ε
=N−1/2

n φ⊤

j Γ
−1ε + N−1/2

n φ⊤

j Γ
−1Sε + N−1/2

n g⊤

j (I − S)⊤Γ−1Sε+

N−1/2
n φ⊤

j S
⊤Γ−1ε + N−1/2

n g⊤

j (I − S)⊤Γ−1ε + N−1/2
n φ⊤

j S
⊤Γ−1Sε

≡(I11) + (I12) + (I13) + (I14) + (I15) + (I16).

For (I11), it can be shown that N−1/2
n φ⊤

j Γ
−1ε

D
−→ N(0,N−1

n φ⊤

j Γ
−1φj). In addition, we have

N−1
n E(φ⊤

j Γ
−1Sε)2 ≤ N−1

n ∥Γ−1
∥
2
2 E |φ⊤

j Sε|
2

= O((logNn)3N−1
n h−1),

N−1
n E(g⊤

j (I − S)⊤Γ−1Sε)2 ≤ N−1
n ∥g⊤

j (I − S)⊤Γ−1
∥
2 E ∥Sε∥

2
= O(h3 logNn),

N−1
n E(φ⊤

j S
⊤Γ−1ε)2 ≤ N−1

n ∥φ⊤

j S
⊤
∥
2
∥Γ−1

∥
2
2 = O(N−1

n h−2(logNn)2),

N−1
n E(g⊤

j (I − S)⊤Γ−1ε)2 ≤ N−1
n ∥g⊤

j (I − S)⊤∥
2
∥Γ−1

∥
2
2 = O(h4).

By Lemma 1 and Assumption (C.2), ∥Sφj∥ = O(N1/2
n N−1

n h−1N1/2
n logNn) = O(h−1 logNn). Thus, for (I16),

N−1
n E(φ⊤

j S
⊤Γ−1Sε)2 ≤ N−1

n ∥φ⊤

j S
⊤
∥
2
∥Γ−1

∥
2
2 E ∥Sε∥

2
= O(N−1

n h−3(logNn)3).

Similarly, for (I2), we obtain

N−1/2
n g⊤

j (I − S)⊤Γ−1(I − S)f = O(N−1/2
n N1/2

n h2N1/2
n h2) = O(N1/2

n h4),

N−1/2
n φ⊤

j Γ
−1(I − S)f = O(N−1/2

n N1/2
n logNnh2) = O(h2 logNn),

N−1/2
n φ⊤

j S
⊤Γ−1(I − S)f = O(N−1/2

n h−1 logNnN1/2
n h2) = O(h logNn).

hus, N−1/2
n ℓ′(β)

D
−→ N (0,Π). The kth column of −ℓ′′(β, θ) is X⊤(I − S)⊤Γk(I − S)(y −Xβ) = X⊤(I − S)⊤Γk(I − S)(f +ε).

he same argument can be used to show N−1
n ℓ′′(β, θ)

p
−→ 0.

Similarly, we can show

N−1
n ℓ′′(β) = −N−1

n X⊤(I − S)⊤Γ−1(I − S)X
p

−→ −N−1
n Φ⊤Γ−1Φ = −Π.

herefore, N−1
n ℓ′′(β, β)

p
−→ −Π.

By Lemmas 2–3,

∥(I − S)f ∥2
= NnO(h4) = O(Nnh4), ∥Sε∥

2
= NnOp

(
logNn

Nnh

)
= Op

(
logNn

h

)
.

Since the kth element of −2ℓ′(θ) is tr(Γ−1Γk) + (f + ε)⊤(I − S)⊤Γk(I − S)(f + ε), we can further show that

N−1/2
n f ⊤(I − S)⊤Γk(I − S)f ≤ N−1/2

n ∥Γk
∥2∥(I − S)f ∥2

= O(N1/2
n h4),

N−1/2
n f ⊤(I − S)⊤Γkε ≤ N−1/2

n O(h2)1⊤

Nn
ε

p
−→ 0,

N−1/2
n |f ⊤(I − S)⊤ΓkSε| ≤ N−1/2

n Op
(
N1/2

n h3 logNn
)
,

E
⏐⏐N−1/2

n ε⊤S⊤ΓkSε
⏐⏐ ≤ N−1/2

n ∥Γk
∥2 E ∥Sε∥

2
= Op

(
logNn

N1/2
n h

)
.

By Lemma 3, N−1/2
n ε⊤S⊤Γkε = N−1/2

n 1⊤

Nn
εop(1)

p
−→ 0. Therefore, N−1/2

n ε⊤(I − S)⊤Γk(I − S)ε D
−→ N−1/2

n ε⊤Γkε. Thus,

N−1/2
n ℓ′(θ)

D
−→ N (0,I0(θ)), and similar argument can be applied to show that N−1

n ℓ′′(θ, θ)
p

−→ −I0(θ).
Next, we show the consistency and asymptotic normality of parameter estimates. To establish ∥̂η − η0∥ = Op(N

−1/2
n ),

it suffices to show that, for a given constant ϵ > 0, there is a constant C such that, for a sufficiently large n,

P
{

sup
∥u∥=C

ℓ(η0 + N−1/2
n u) < ℓ(η0)

}
≥ 1 − ϵ, (15)

where u ∈ Rp+q. By Taylor’s expansion, we obtain

ℓ(η + N−1/2u) − ℓ(η ) = N−1/2ℓ′(η )⊤u − (1/2)N−1u⊤ℓ′′(η )u{1 + o (1)}. (16)
0 n 0 n 0 n 0 p
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y (14a)–(14b), we have N−1/2
n ℓ′(η0) = Op(1) and N−1

n ℓ′′(η0) = Op(1). Therefore, for a sufficiently large C , the second
erm dominates the first term in (16), and therefore, (15) holds.

To further establish the asymptotic normality of η̂, it can be shown that η̂ = (̂β
⊤
, θ̂

⊤
)⊤ satisfies

0 = ℓ′(η)
⏐⏐
η=̂η

= ℓ′(η0) + {ℓ′′(η0) + op(1)}(̂η − η0).

ogether with (14a)–(14b), Theorem 1 holds. □

roof of Theorem 2. Write F̂ (t)− F (t) = ω(t)
{
f + ε − X (̂β − β)

}
− F (t) = (II1)+ (II2)− (II3), where (II1) = ω(t)f − F (t),

(II2) = ω(t)ε and (II3) = ω(t)X (̂β − β).
For (II1), a Taylor’s expansion yields

f (ti) = f (t) + f ′(t)(ti − t) + 1/2f ′′(t)(ti − t)2 + 1/6f (3)(ξi)(ti − t)3

=

(
1,

ti − t
h

)
F (t) + 1/2f ′′(t)(ti − t)2 + 1/6f (3)(ξi)(ti − t)3,

where ξi is between t and ti. Therefore, (II1) = (1/2)ω(t)d2f ′′(t) +
1
6ω(t)d3,ξ , where d2 = ((t1 − t)2, . . . , (tNn − t)2)⊤ and

3,ξ = (f (3)(ξ1)(t1 − t)3, . . . , f (3)(ξNn )(tNn − t)3)⊤. Given t ∈ (0, 1), by Lemma 1,

ω(t)d2f ′′(t) =

(
v2
2,t − v1,tv3,t

v0,tv3,t − v1,tv2,t

)
h2f ′′(t)

v0,tv2,t − v2
1,t

= h2
(

µ2f ′′(t)
0

)
+ o(h2).

Moreover, we have⏐⏐ω(t)d3,ξ
⏐⏐ ≤ max

x∈R

4|f (3)(x)|h3

v0,tv2,t − v2
1,t

{⏐⏐⏐⏐( v2,tv3,t − v1,tv4,t
−v1,tv3,t + v0,tv4,t

)⏐⏐⏐⏐} = O(h3).

Therefore, (II1) = h2

(
µ2f ′′(t)

0

)
+ o(h2).

For (II2), let A(ε) =
∑Nn

i=1 Kh(ti − t)εi and B(ε) =
∑Nn

i=1 Kh(ti − t) ti−t
h εi, we have

ω(t)ε =
1

v0,tv2,t − v2
1,t

(
v2,tA(ε) − v1,tB(ε)

−v1,tA(ε) + v0,tB(ε)

)
.

or t ∈ (0, 1), by Lemma 1, we have Nnv0,t
v0,tv2,t−v21,t

→ µ−1
2 q(t)−1, Nnv1,t

v0,tv2,t−v21,t
→ 0 and Nnv2,t

v0,tv2,t−v21,t
→ q(t)−1. Since ε is a

Gaussian process, by (C.9) and Slusky’s Theorem,

(Nnh)1/2ω(t)ε
D

−→ N
(
0,
(
1 0
0 µ−1

2

)
∆t

(
1 0
0 µ−1

2

))
.

For (II3), by Lemma 6, ω(t)X = O(1). By Theorem 1, we have β̂ − β = Op(N
−1/2
n ), and therefore, (II3) = Op(N

−1/2
n ). □

Proof of Theorem 3. Let ω
(−i)
1 (t) = (1, 0)

[{
D(−i)
t

}⊤

K (−i)
t D(−i)

t

]−1 {
D(−i)
t

}⊤

K (−i)
t , where D(−i)

t is the matrix of Dt with ith

row deleted, and K (−i)
t is the matrix Kt with both ith row and column deleted. In addition, we let y∗(−i) denote the vector

of response variables with the ith entry left out. Straightforward calculation reveals

f̂ (−i)(ti) = ω
(−i)
1 (ti)y∗(−i)

=

(
v
(−i)
2,ti

−v
(−i)
1,ti

)
v
(−i)
2,ti

v
(−i)
0,ti

− (v(−i)
1,ti

)2

{
D(−i)
t

}⊤

K (−i)
ti y∗(−i)

=

∑
j̸=i

a(−i)
j (ti)y∗

j ,

where a(−i)
j (ti) =

(
v
(−i)
2,ti

−v
(−i)
1,ti

)
v
(−i)
2,ti

v
(−i)
0,ti

−(v(−i)
1,ti

)2

{
D(−i)
t

}⊤

K (−i)
ti , v(−i)

0,ti
=
∑

j̸=i Kh(tj − ti) = v0,ti − Kh(0), v
(−i)
1,ti

=
∑

j̸=i Kh(tj − ti)
tj−ti
h = v1,ti

nd v
(−i)
2,ti

=
∑

j̸=i Kh(tj − ti)
(

tj−ti
h

)2
= v2,ti .

By Lemma 1,

a(−i)
j (ti) =

v
(−i)
2,ti

Kh(tj − ti)

v
(−i)
2,ti

v
(−i)
0,ti

− (v(−i)
1,ti

)2
−

v
(−i)
1,ti

Kh(tj − ti)(tj − ti)/h

v
(−i)
2,ti

v
(−i)
0,ti

− (v(−i)
1,ti

)2
=

v2,tiKh(tj − ti){
v0,ti − Kh(0)

}
v2,ti − v2

1,ti

−
v1,tiKh(tj − ti)(tj − ti)/h{
v0,ti − Kh(0)

}
v2,ti − v2

1,ti

=

K
(

tj−ti
h

)
−

µ1,ti
µ2,ti

K
(

tj−ti
h

)(
tj−ti
h

)
Nnhq(ti)(µ0,tiµ2,ti − µ2

1,ti
)/µ2,ti − K (0)

+ O
(
N−1

n + N−1
n ζnh−2) .
18
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T

s

hus, for the leave-one-out cross-validation (CV) score function,

E{CV(h)} = E

[
1
Nn

Nn∑
i=1

{f (ti) + εi − f̂ (−i)(ti)}2
]

=
1
Nn

Nn∑
i=1

E{f (ti)− f̂ (−i)(ti)}2+
1
Nn

Nn∑
i=1

Var(Yi)−
2
Nn

Nn∑
i=1

Cov{̂f (−i)(ti), εi}.

Denote A(h) =
2
Nn

∑Nn
i=1 Cov

{̂
f (−i)(ti), εi

}
, we have

A(h) =
2
Nn

Nn∑
i=1

∑
j̸=i

K
(

tj−ti
h

)(
1 −

µ1,ti
µ2,ti

(
tj−ti
h

))
b(ti) − K (0)

Cov(εi, εj) + O
(
N−1

n

)
,

since ∥Γ∥∞ = O(1) as shown in the proof of Theorem 1 in Chu et al. [5]. Under the asymptotic framework (A.1), and
since K (·) has a bounded first-order derivative at the origin, we obtain

2
Nn

Nn∑
i=1

∑
j̸=i

|tj−ti |≤Cn

K
(

tj−ti
h

)(
1 −

µ1,ti
µ2,ti

(
tj−ti
h

))
b(ti) − K (0)

Cov(εi, εj) =
K (0)

b(ti) − K (0)

⎛⎜⎜⎝ 2
Nn

Nn∑
i=1

∑
j̸=i

Bn |tj−ti |<Cn

Cov(εi, εj)

⎞⎟⎟⎠+ o
(

1
Nnh

)
.

Note that∑
j̸=i

|tj−ti |>Cn

Cov(εi, εj) =

∑
m′=⌊

(
BnCn
b

)
⌋

O
(

b
Bnζn

)
max

mb≤|u2|≤(m+1)b
γ1(|u|) ≤ O

(
b

Bnζn

)∫
∞

BnCn
γ1(u)du → 0,

o we have

2
Nn

Nn∑
i=1

∑
|tj−ti|>Cn

K
(

tj−ti
h

)(
1 −

µ1,ti
µ2,ti

(
tj−ti
h

))
b(ti) − K (0)

Cov(εi, εj) = o
(

1
Nnh

)
.

Therefore, A(h) = K (0)
(

2
Nn

∑Nn
i=1
∑

j̸=i
|tj−ti |<Cn

Cov(εi,εj)
b(ti)−K (0)

)
+ o

(
1

Nnh

)
. Thus, the desired results are shown. □

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2021.104735.
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