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a b s t r a c t

Large scale temporal data have flourished in a vast array of applications, and their
sophisticated structures, especially the heteroscedasticity among subjects with inter-
and intra-temporal dependence, have fueled a great demand for new statistical models.
In this paper, with covariate information, we consider a flexible model for large scale
temporal data with subject-specific heteroscedasticity. Formally, the model employs
latent semiparametric factors to simultaneously account for the subject-specific het-
eroscedasticity and the contemporaneous and/or serial correlations. The subject-specific
heteroscedasticity is modeled as the product of the unobserved factor process and sub-
ject’s covariate effect, which is further characterized via additive models. For estimation,
we propose a two-step procedure. First, the latent factor process and nonparametric
loading are recovered through projection-based methods, and following, we estimate the
regression components by approaches motivated from the generalized least squares. By
scrupulously examining the non-asymptotic rates for recovering the factor process and
its loading, we show the consistency and efficiency of estimated regression coefficients
in the absence of prior knowledge of latent factor process and subject’s covariate effect.
The statistical guarantees remain valid even for finite time points that makes our method
particularly appealing when the subjects significantly outnumber the observation time
points. Using comprehensive simulations, we demonstrate the finite sample performance
of our method, which corroborates the theoretical findings. Finally, we apply our method
to a data set of air quality and energy consumption collected at 129 monitoring sites in
the United States in 2015.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Jointly modeling a large and possibly divergent number of temporally evolving subjects arise ubiquitously in genomics,
roteomics, environmental science, econometrics, clinical studies, and neuroscience. An extensively used statistical model
or explaining the interactions and co-movements among the temporally evolving subjects is yit = z⊤

it β + εit , i ∈

{1, . . . , n}, t ∈ {1, . . . , T }, where yit is the observation for the ith subject at time point t , β is a p-dimensional regression
coefficient, z it is a p-dimensional covariate vector that might evolve in time, and (ε1t , . . . , εnt )⊤ is a vector time series
with possible contemporaneous correlations. Here, the number of subjects n is allowed to diverge much faster than the
number of time points T . To name a few applications, yit can model the expression level of the ith gene at time point t in
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a
 time course sequencing experiment, see, e.g., [10,40], the concentration of certain air pollutant in county i at day t , see,
e.g., [29], and the measurement from electroencephalograms at brain location i and time point t in a motor–visual task
experiment, see, e.g., [33]. As n rapidly grows, heteroscedasticity across subjects becomes inevitable and brings substantial
challenges to modeling, estimation, and inference [14,46]. First, ignoring the subject-specific heteroscedasticity leads to
inefficient estimation and inference on the regression coefficient β. In addition, in the presence of contemporaneous and
serial correlations, when n rapidly outnumbers T the high dimensionality of data makes it even more difficult to accurately
estimate the covariance of ϵit , which compromises the estimation efficiency of β.

In this paper, inspired by the approximate factor structure and its variants [11,26,38,44], we introduce a flexible data-
driven model, where the heteroscedasticity across subjects and serial dependence of εit are assumed to arise from a
product of the subject-specific effect and some latent stationary process. Specifically, motivated by Connor and Linton
[13], Daye et al. [14], and Fan et al. [19], with additional time invariant covariates xi, we model the subject-specific effect
by g(xi) = (g1(xi), . . . , gK (xi))⊤ with nonparametric functions g1, . . . , gK . For instance, xi could be the genetic information
in a clinical study or the market capitalization in the financial asset allocation. Then, consider a K -dimensional zero-mean
latent process f t , our semiparametric latent factor model with subject-specific heteroscedasticity is

yit = z⊤

it β + g(xi)⊤f t + uit , (1)

where the residual process uit is independent of f t . Analogous to the traditional factor models, g(xi) and f t can be viewed
as the loading and factor, respectively. Particularly, g(xi) models the heteroscedasticity across subjects and, together with
f t , retains the cross-sectional dependence while f t and uit characterize the serial dependence. Model (1) features a large
number of widely used models. For example, when f t is degenerate, (1) reduces to the partially linear additive models
[41]; when g(·) is known and f t is Gaussian, (1) is the traditional linear mixed model; with i replaced by one-dimensional
spatial locations, (1) is analogous to the spatio-temporal model [31]; and when g(·) reduces to constants, (1) is equivalent
to the traditional factor models [2,11] or the panel data model with unobservable interactive effects [3,4]. It is worth
mentioning that, focusing on the high-dimensional factor analysis, Connor and Linton [13] and Fan et al. [19] consider γik
in addition to g(xi) in the loading to account for that cannot be explained by xi. In contrast, one of our major goals is to
efficiently estimate β in the presence of subject-specific heteroscedasticity and contemporaneous and serial correlations
for any n and T . To that end, it requires recovering f t and g(xi) with satisfactory rates as well as accurate estimation of
the long run variance of residues, while from Theorem 4.1 in Fan et al. [19] and Theorem 1, the desired rate for estimating
the long run variance of residues will not be satisfied in the presence of γik, unless more stringent conditions on n, T and
γik’s are imposed.

Like the partially linear model and the linear mixed model, regardless of its consistency, the ordinary least squares
(OLS) estimator of β in (1) is inefficient without taking into account the dependence. Therefore, a careful estimation of
the unobserved g(xi) and f t are needed to guarantee some sort of efficiency in both estimation and inference on β. In the
literature, there are scatter approaches to estimate f t and its loadings for models similar to (1). For instance, Connor and
Linton [13] employed a kernel method to estimate f t given xi with finite values, and Connor et al. [12] extended such
estimates for general xi. Additionally, the consistency on estimated loading and latent factor shed light on estimating the
large covariance matrix under assumptions of factor structures [18]. Motivated from these pioneering works, we propose
a two-stage projection-based estimator of β, g(xi), and f t in (1). Roughly speaking, adopting a projection-based principal
component type estimator [2,19], we first estimate g(xi) and f t from yit − z⊤

it β̂
0
for some preliminary β̂

0
. Using the

estimated g(xi) and f t from the first-stage, we then estimate β with a generalized least squares (GLS) type approach.
Theoretically, the asymptotic properties such as consistency on estimating g(xi) and f t are not sufficient to guarantee

the consistency and, especially the efficiency, of the second-stage estimator of β due to the lack of the finite sample
characterization of errors from the first-stage [6]. In fact, it is known that a naive plug-in GLS type estimator does not
necessarily guarantee the efficiency. To circumvent these challenges, a major contribution of this paper is a careful
non-asymptotic analysis on the projection-based estimator of g(xi) and f t , by which we show that the consistency
on estimating g(xi) and f t is free from restrictions on the relationship between n and T . With the exponential type
concentration inequalities on estimating g(xi) and f t , we are able to obtain the finite sample deviation of the proposed
two-stage estimator of β from the oracle GLS that enjoys full access to g(xi) and f t . These nontrivial results show that
our estimator of β is overwhelmingly close to the oracle GLS, which establishes the efficiency of our estimator of β. In
addition, we show the asymptotic normality of our estimator of β for drawing inference. The established concentration
results for recovering g(xi) and f t (Theorem 1) are of independent interest for extending the projection-based principal
component analysis (PCA) to other high-dimensional problems such as modeling temporally evolving tensor data or the
segmentation of high-dimensional time series.

After introducing our model with identification conditions in Section 2.1, we detail the two-stage projection-based
estimation of the loading, latent factor process, and regression coefficients in Section 2.2. We carry out the non-asymptotic
analysis of our estimator and explore its efficiency in Section 3. Section 4 presents the inference. Sections 5 and 6 report
simulation studies and an application on air quality and energy consumption data in the United States to demonstrate our
method. After discussing potential extensions of our method in Section 7, we conclude the paper with technical details in
Section 8. Extra numerical results and a detailed discussion on the determination of unknown dimension K are deferred
to the supplement.
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. Methodology

.1. A semiparametric latent factor model

Consider an n × 1 vector of temporally evolving subjects yt = (y1t , . . . , ynt )⊤ along with p-dimensional predictors
z it and d-dimensional time invariant covariates xi associated with the ith subject. Our objective is to study the long run
movement of yit with respect to z it and model the dependence, over time, of each component of yt and across components,
here the heteroscedasticity across subjects is accounted by xi. In our baseline formulation, each subject is modeled
y a multi-factor linear model yit = z⊤

it β + εit [8] for i ∈ {1, . . . , n} and t ∈ {1, . . . , T }, where β = (β1, . . . , βp)⊤
s a p-dimensional vector of regression coefficients common across subjects. As discussed in Section 1, we adopt the
emiparametric factor model εit = g(xi)⊤f t + uit , where the vector loading function g(xi) : Rd

→ RK accounts for
the subject-specific heteroscedasticity and contemporaneous dependence and the K -dimensional latent factor process
f t models the serial dependence. We further model gk(xi) in an additive fashion, i.e., gk(xi) =

∑d
ℓ=1 gkℓ(xiℓ), without

losing flexibility yet providing concision in techniques [21]. Function g offers structure that is flexible enough to allow
dependence between {z it}i≤n,t≤T and {xi}i≤n, which has also been noted for other high-dimensional heteroscedastic
regression models [14].

For each t , denote Zt = (z1t , . . . , znt )⊤, ut = (u1t , . . . , unt )⊤, and the n× K matrix of gk(xi) by G = (g(x1), . . . , g(xn))⊤.
A more compact form of (1) reads

yt = Ztβ + Gf t + ut . (2)

Similar to the traditional factor models, we impose the following conditions to control the rank and scale of latent loading
function and factor process for model identification.

Condition 1. The rank of G is K . For each t , f1t , . . . , fKt are uncorrelated with each other and have zero mean and
unit variance; u1t , . . . , unt are uncorrelated with each other and have zero mean and finite variances; Zt , f t and ut are
uncorrelated from each other.

In addition, we assume that f t , uit are independent from xi so that Cov(yit , yjs|xi, xj) = g(xi)⊤ Cov(f t , f s)g(xj) +

Cov(uit , ujs) for each i, j, t, s. Our model reaches beyond the existing literature [4,8] in the way that the inter- and
intra-temporal dependence as well as the subject-specific heteroscedasticity are modeled simultaneously by f t and g .
Condition 1 is similar to conditions following (1.1) in Chamberlain and Rothschild [11] and Condition (C1) in Lam and
Yao [26] (with diagonal Σ ε and integer k herein). It guarantees the identifiability of the column space of G. To further
identify G from its column space, consider T potentially dependent replicates Y = (y1, . . . , yT ) and Z = (Z1, . . . , ZT ). Let
F = (f 1, . . . , f T )⊤ and U = (u1, . . . , uT ), (2) reads

Y = Z(IT ⊗ β) + GF⊤
+ U (3)

here ⊗ is the Kronecker product. The following condition assures the identification of G.

ondition 2. Almost surely, T−1F⊤F = Ik and G⊤G is diagonal with distinct entries.

Same as the PC1 condition of Bai and Ng [5], the first part of Condition 2 has been commonly assumed in factor analysis
[20] and it is compatible with Condition 1 as T−1F⊤F is an estimator of Var(f t ). Under Condition 2, we can identify GH
and FH for some K × K orthogonal matrix H with H = I + o(min(n, T )−1), while the distinction among entries of G⊤G
further prevents rotational indeterminacy.

In contrast to the approximate factor model that allows cross-sectional dependence in ut , the assumption on uit over
i in Condition 1 is designated for efficiently estimating β without any restrictions on n and T . In fact, in the absence of
the modulating component in (3), mild cross-sectional dependence of ut will not affect the estimation of G and F. On the
other hand, without Condition 1 on uit , a consistent estimate of Cov(ut ) is required for efficiently estimating β. This will
demand conditions on n and T , such as

√
n ln(n) = o(T ) [18,43], which is more stringent compared to those in Section 3.

2.2. Two-stage projection-based estimation

2.2.1. First-stage: projection-based estimator of G and F
Let Ỹ = Y − Z(IT ⊗ β̂

0
) and Ũ = U + Z{IT ⊗ (β − β̂

0
)} for some preliminary β̂

0
, (3) can be written as

Ỹ = GF⊤
+ Ũ. (4)

A naive approach is to estimate G and F using PCA. That is, F/
√
T are estimated using eigenvectors corresponding to the

irst K largest eigenvalues of the T ×T matrix Ỹ⊤Ỹ, and G is estimated by right projecting T−1Ỹ onto the estimated F. This
ethod, however, takes into no account for the functional structure of g or the smooth variation of {̃yit}ni=1 from (4) against

i at each t . Fan et al. [19] proposed a projected principal component approach by smoothing {̃yit}ni=1 as a function of xi
at each t before implementing the aforementioned principal component estimation. Motivated by this, we replace Ỹ by
3
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Ỹ for some projection P onto a linear space spanned by a set of basis functions. Not only leveraging the smoothness, but
can also be constructed to be orthogonal to errors Ũ so that the subsequent PCA procedure is approximately errorless.
To begin with, let H be a linear space spanned by a sequence of orthonormal basis functions {φ0(x) ≡ 1, φ1(x),

φ2(x), . . . φJ (x)}, where the number of basis functions J diverges in n. For each k ∈ {1, . . . , K }, i ∈ {1, . . . , n}, and
∈ {1, . . . , d}, we have gkℓ(xiℓ) = b0,kℓ +

∑J
j=1 bj,kℓφj(xiℓ) + Rkℓ(xiℓ), where {bj,kℓ}j≤J are the coefficients and Rkℓ

s the approximation or projection error. Assume Jd + 1 < n so that the coefficients are estimable. Denote bk =

(b0,k, b1,k1, . . . , bJ,k1, . . . , b1,kd, . . . , bJ,kd)⊤ for each k ∈ {1, . . . , K } and i ∈ {1, . . . , n}, where b0,k =
√
J
∑d

ℓ=1 b0,kℓ, and
ϕi = (1/

√
J, φ1(xi1), . . . , φJ (xi1), . . . , φ1(xid), . . . , φJ (xid))⊤ . Then, it admits gk(xi) = ϕ⊤

i bk +
∑d

ℓ=1 Rkℓ(xiℓ) and (4) can
e rewritten as Ỹ = (ΦB + R)F⊤

+ Ũ, where Φ = (ϕ1, . . . ,ϕn)⊤, B = (b1, . . . , bK ), and R = {
∑d

ℓ=1 Rkℓ(xiℓ)}
n,K
i=1,k=1.

Then, we let P = Φ(Φ⊤Φ)−1Φ⊤ and apply the PCA procedure to P̃Y. That is, we estimate F̂ by letting F̂/
√
T be the

eigenvectors corresponding to the first K largest eigenvalues of Ỹ⊤P̃Y and estimate G by Ĝ = T−1P̃ŶF. Moreover, we let
= (Φ⊤Φ)−1Φ⊤Ỹ̂F.

.2.2. Second-stage: GLS-type estimator of β
First, from (3), consider ȳ = Z⊤

0 β + GT−1∑T
t=1 f t + T−1∑T

t=1 ut , where Z0 = T−1∑T
t=1 Zt and ȳ = T−1∑T

t=1 yt .
onditional on Zt ’s and xi’s, Condition 1 implies that the variance of n × 1 vector ȳ is

V = GVar

(
1
T

T∑
t=1

f t

)
G⊤

+ D, (5)

where the n × n diagonal matrix D has diagonal entries Var(T−1∑T
t=1 u1t ), . . ., Var(T−1∑T

t=1 unt ). Then, (5) naturally
leads to the oracle GLS-type estimate of β,

β̃ = (Z⊤

0 V
−1Z0)−1Z⊤

0 V
−1ȳ. (6)

ith the full knowledge on G and F in (3), V in (6) can be estimated as follows. Let f̄ = T−1∑T
t=1 f t , it is known

hat Var(T−1∑T
t=1 f t ) = T−2∑T−1

t=−T+1(T − |t|)Σ f (t), where Σ f (s) = Cov(f t , f t+s) and Σ f (−s) = Cov(f t−s, f t ) can
be estimated by Σ̂ f (s) = (T − s)−1∑T−s

t=1(f t − f̄ )(f t+s − f̄ )⊤ and Σ̂ f (−s) = (T − s)−1∑T
t=s(f t−s − f̄ )(f t − f̄ )⊤ for

≥ 0, respectively. Naturally, V(f t ) = T−2∑T−1
t=−T+1(T − |t|)Σ̂ f (t) estimates Var(T−1∑T

t=1 f t ) in (5), and similarly
(uit ) estimates Var(T−1∑T

t=1 uit ) for each i ∈ {1, . . . , n} and the n× n diagonal matrix with diagonals V(u1t ), . . . ,V(unt )
estimates D.

Though the oracle GLS estimator β̃ is not accessible in practice as it depends on the full knowledge on f t and ut , it
suggests a refined estimator of β by replacing G and F with Ĝ and F̂ in (6), respectively. With F̂ from the first-stage, we
can approximate V(f t ) and V(uit ) in (5) by V (̂f t ) and V (̂uit ) respectively, where f̂ t is the tth row of F̂, and ût is the tth
column of corresponding Û = Ỹ − Ĝ̂F⊤

. In summary, we can estimate V by

V̂ = ĜV (̂f t )̂G
⊤

+ D̂, (7)

where D̂ is the n× n diagonal matrix with diagonals V (̂u1t ), . . . ,V (̂unt ) and we arrive at the TwO-stage Projection-based
Estimator (TOPE) of β, β̄ = (Z⊤

0 V̂
−1

Z0)−1Z⊤

0 V̂
−1ȳ. The procedure is summarized in Algorithm 1 below.

Algorithm 1. TOPE (Two-stage projection-based estimator)

Input: Data {(yit , xi, Zit )}
n,T
i=1,t=1, predetermined K , and matrix of basis functions Φ.

rocedure:
1. For preliminary β̂

0
, compute Ỹ = Y − Z(IT ⊗ β̂

0
).

2. First-stage: estimate F by letting the columns of F̂/
√
T be the eigenvectors corresponding to the first K largest eigenvalues of

Ỹ⊤P̃Y and estimate G by Ĝ = P̃ŶF/T .
3. Second-stage: compute V̂ = ĜV (̂f t )̂G

⊤
+ D̂ as in (7), where f̂ t is the tth row of F̂ and ût is the tth column of Û, and calculate

TOPE β̄.

Output: F̂, Ĝ, β̄, and V̂.

The choice of preliminary β̂
0
for TOPE is quite flexible. Theoretically, the consistency and efficiency of TOPE are

uaranteed whenever ∥̂β
0

− β∥2 = OP (n−1/2+αT−1/2) for α ∈ [0, 1/2), which is not difficult to acquire. Some concrete
hoices of β̂

0
are discussed in depth in Section 8.3. Alternative to TOPE, one can first project Y using (In − P), where

= Φ(Φ⊤Φ)−1Φ. This leads to (In−P)Y = (In−P)Z(IT ⊗β)+RF⊤
+(In−P)U, which is similar to the procedure of profile

ikelihood [16] or restricted maximum likelihood [24]. However, the validity of this approach relies on the assumption
hat Z and Φ are linearly independent, which is more restricted than that of TOPE. Another seemingly straightforward
pproach is to project Y using (In − P̃Z) where P̃Z = Z(Z⊤Z)−1Z⊤ and perform PCA on (In − P̃Z)Y ≈ (In − P̃Z)GF⊤ to
stimate the loading and latent process. Though such an estimate of F remains consistent, as noted by Wang et al. [45],
4
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his approach only identifies the part of the latent structure that is orthogonal to Z. That is, one can only obtain a consistent
stimate of (In − P̃Z)G, and in particular Ĝ + P̃ZA will also be a valid estimator for arbitrary n × K matrix A.

3. Theoretical properties of TOPE

3.1. Preliminaries

We impose the following conditions on our model, in addition to Condition 1.

Condition 3. For any δ > 0, 1− n−1 ln(1/δ) ≲ λmin(n−1G⊤G) ≤ λmax(n−1G⊤G) ≲ 1+ n−1 ln(1/δ) with probability at least
1 − δ.

Condition 4. The density of xi ∈ X d, where X ⊂ R is compact, is bounded away from zero and infinity.

Condition 5 (Accuracy of the sieve approximation).

(i) For each ℓ ∈ {1, . . . , d}, k ∈ {1, . . . , K }, the loading function gkℓ(·) belongs to a Hölder class G = {g :

|g (r)(s) − g (r)(t)| ≤ L|s − t|γ } for some L > 0.
(ii) For κ = 2(r + γ ) ≥ 4, supx∈X |gkℓ(x) −

∑J
j=1 bk,jℓφj(x)|

2
≲ J−κ .

(iii) It admits maxk,j,ℓ b2k,jℓ < ∞.

Condition 3 is similar to the pervasive condition on loading matrix in the traditional factor model [38]. Since GG⊤ and
⊤G have their first K largest eigenvalues in common, the K largest eigenvalues of G⊤G also diverge in n. This condition
nsures that xi has non-vanishing explanatory power on loading so that G⊤G has spiked eigenvalues. Condition 4 is
tandard in the literature of nonparametric and semiparametric statistics [22,23,39]. The accuracy of sieve approximation
n Condition 5 can be obtained by common basis such as polynomial or B-splines [19,30].

ondition 6. For each i ∈ {1, . . . , n}, zit is weakly stationary. Almost surely, for each T we have,

(i) eigenvalues of n−1Z⊤

0 Z0 are bounded away from 0 and infinity;
(ii) ∥PZG∥F = O(nα) for some α ∈ [0, 1/2), where PZ is the projection matrix on Z0.

Condition 6(i) is similar to the standard condition on the design matrix in linear model that Z⊤

0 Z0/n converges in n.
Similar to conditions for semiparametric models in Robinson [35], (ii) guarantees identifications between the parametric
and nonparametric parts in our model. Particularly, it allows consistent identification of the regression component without
enforcing independence between z it and xi. For instance, in Section 8.3, it is employed to show the existence of a legitimate
preliminary estimator β̂

0
.

At last, we impose some widely-used conditions [2,38] regarding the serial dependence and stationarity on {f t , ut} as
well as their tail behavior. Denote F0

−∞
and F∞

T the σ -algebra generated by {(f t , ut ) : t ≤ 0} and {(f t , ut ) : t ≥ T }, and
ecall the α-mixing coefficient as α(T ) = supA∈F0

−∞
,B∈F∞

T
|Pr(A) Pr(B) − Pr(A ∩ B)|.

Condition 7 (Serial dependence, stationarity, and tail behavior).

(i) {ut , f t}t≤T are strictly stationary with zero mean and finite long run variances.
(ii) There exist r1, C1 > 0 such that for all T > 0, α(T ) < exp(−C1T r1 ).
(iii) There exist r2, r3 > 1 with r−1

1 + r−1
2 + r−1

3 > 1 and b1, b2 > 0 such that for each i, k, t and any s > 0,
Pr(|uit | > s) ≤ exp{−(s/b1)r2} and Pr(|ftk| > s) ≤ exp{−(s/b2)r3}.

3.2. Statistical guarantees

To establish the statistical guarantees of TOPE, we first perform a non-asymptotic analysis of F̂ and Ĝ, then obtain the
deviation between β̄ and the GLS estimator β̃ to study the efficiency of TOPE.

Theorem 1. Suppose that Conditions 1, 2, and 3–7 hold. Assume Jd + 1 < n and J = o(n1/2−α) for α ∈ [0, 1/2). With
probability at least 1 − δ for any δ > 0, we have

1
T

∥̂F − F∥2
F ≲

(
1
n

+
p2

n1−2αT
+

1
Jκ

)
ln(1/δ),

1
n
∥̂G − G∥

2
F ≲

(
J
n2 +

p2J
n1−2αT

+
p4J

n2−4αT 2 +
1

Jκ−1

)
{ln(1/δ)}2,

∥̂B − B∥
2
F ≲

(
J
n2 +

p2J
n1−2αT

+
p4J

n2−4αT 2 +
1

Jκ−1

)
{ln(1/δ)}2.
5
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Fig. 1. A schematic illustration about different estimators to β in (1), where β is the TOPE estimator and β̃ is the oracle GLS estimator with full
knowledge on G and F.

In contrast to the known asymptotic properties of F̂ and Ĝ for traditional and semiparametric factor models with
divergent n and T [5,19], Theorem 1 provides finite sample characterization of F̂ and Ĝ. Given a finite p, the rates obtained
n Theorem 1 agree with the asymptotic results in Fan et al. [19]. Also, whenever p = o(n1/2−αT 1/2J−1/2), F̂ and Ĝ are
onsistent in mean squared errors. Especially, for finite p, this consistency does not require T diverging to infinity which
nables our method to be used for modeling a large number of short time series in practice. More importantly, results in
heorem 1 make it possible to establish the following finite sample results on both β̄ and its covariance with respect to
he GLS estimator β̃ as defined in (6).

heorem 2. Under conditions in Theorem 1, with probability at least 1 − δ,

∥β̄ − β̃∥2 ≲
1

√
nT

{√
J

n
+

1
√
n

+
1
T

+
p
√
J

√
n1−2αT

+
1

J (κ−1)/2

}√
ln(1/δ),

where β̃ is the oracle GLS estimator of β with full knowledge of G and F as in Section 2.2.2. In addition,Var(β̄) − Var(̃β)

F ≲

pϑn,T ,J

nT
+

pϑ2
n,T ,J

(nT )3/2
,

where ϑn,T ,J = n−1J1/2 + n−1/2
+ T−1

+ pJ1/2n−1/2+αT−1/2
+ J−(κ−1)/2.

The nontrivial finite sample results in Theorem 2 imply that the deviation between β̄ and β̃ is due to: (i) the errors
in estimating G with rate n−1/2T−1/2(n−1J1/2 + pJ1/2n−1/2+αT−1/2

+ J−(κ−1)/2), (ii) the errors in estimating F with rate
n−1/2T−1/2(n−1/2

+ T−1
+ pn−1/2+αT−1/2

+ J−κ/2), and (iii) the deviation between V(f t ) and Var(T−1∑T
t=1 f t ) with rate

n−1/2T−3/2.
Let ∥A∥S := n−1/2

∥S−1/2AS−1/2
∥2 for any positive definite S and define the class of estimators to β with respect to

working covariance Vζ by Θζ = {qβζ = (Z⊤

0 V
−1
ζ Z0)−1Z⊤

0 V
−1
ζ ȳ : ∥Vζ − V∥V ≲ ζ }, where the oracle GLS estimator β̃ ∈ Θ0,

TOPE β̄ ∈ Θϑn,T ,J by Theorem 1, and OLS estimator β̂
OLS

∈ Θnα by Proposition 5. From the proof of Theorem 2, ∥qβζ −β̃∥2 =

Op(n−1/2T−1/2ζ ) for any qβζ ∈ Θζ . Thus, ∥qβζ − β̃∥2 = Op(n−1/2T−1/2) if ζ = O(1) and ∥qβζ − β̃∥2 = op(n−1/2T−1/2) if
ζ = o(1). In the presence of heteroscedasticity across subjects and/or autocorrelation, the oracle GLS estimator is known
to be efficient in general [6]. Particularly, the GLS estimator β̃ is unbiased and efficient in Θζ given the full information
on G and Σ f (t) for each t ∈ {1− T , . . . , T −1}. Therefore, Theorem 2 implies that TOPE β̄ is asymptotically unbiased, and
given pϑn,T ,J = o(1), the non-asymptotic difference between the variances of β̄ and β̃ is bounded by a rate smaller than
(nT )−1, which is the rate of Var(̃β). That is, the TOPE β̄ is asymptotically efficient in Θζ . This discussion is visualized in
Fig. 1.

Remark 1. Though Theorems 1 and 2 are implicitly related to a legitimate preliminary estimator β̂
0
via α, the existence

of such a β̂
0
is easily guaranteed under Conditions 1, 2, and 6. In fact, as shown in Proposition 5, the OLS estimator

β
OLS

automatically satisfies ∥̂β
OLS

− β∥ = Op(n−1/2+αT−1/2) and is therefore legitimate. Technically, β̂
0
contributes to

Theorem 2 through ϑn,T ,J , more specifically via p
√
n−1+2αT−1J . For a better β̂

0
with decreasing α, its contribution through

ϑn,T ,J diminishes and achieves p
√
n−1/2T−1 when α ≈ 0. On the contrary, when α = 1/2 − 2c for any small c > 0,

n,T ,J = o(n−c(κ−1)
+ pn−cT−1/2) and does not alter the conclusion in Theorem 2. Hence, measured by α, β̂

0
only affects

n how ϑn,T ,J = o(1) converges to zero as n and T increase, and it does not alter the conclusion about the efficiency of
OPE β̄ as long as α ∈ [0, 1/2). These are also demonstrated by numerical studies in Section A.4 in the supplement.
6
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As a final remark, Theorem 3 establishes results analogous to Theorem 1 in the max norm and shares common
bservations with Wang and Fan [43] and Barigozzi et al. [7].

heorem 3. For model (3), under the same conditions of Theorem 1, with probability at least 1 − δ, ∥̂F − F∥max ≲ {n−1/2
+

2(n1−αT )−1/2
+ J−κ/2

}{ln(T )}2/r3 ln(1/δ), ∥̂G − G∥max ≲ [{(T + p2nα) ln(n)T−2
}
1/2

+ n−1/2
+ p2(n1−αT )−1/2

+ J−κ/2
] ln(1/δ),

nd ∥̂B − B∥max ≲ [{(T + p2nα) ln(n)n−1T−2
}
1/2

+ n−1/2
+ p2(n1−αT )−1/2

+ J−κ/2
] ln(1/δ).

. TOPE-based inference

The following theorem provides inference on β based on TOPE. In general, the expectation with respect to {Zt , xi} is
nknown as their distribution is not accessible, therefore the asymptotic distribution of β̄ conditional on {Zt , xi} in (2)
elow is more practical.

heorem 4. Under conditions in Theorem 1, we have

(i) with Σ = EZt ,X{(Z
⊤

0 V
−1Z0)−1

}, Σ−1/2(β̄ − β)
d

−→ N(0, Ip);
(ii) conditional on Zt and xi, (Z⊤

0 V
−1Z0)1/2(β̄ − β)

d
−→ N(0, Ip).

Replacing V in Theorem 4 (ii) by V̂ = ĜV (̂f t )̂G
⊤

+ D̂ from (7), for any estimable Cβ with q × p matrix C and q < p,
SC = {Cβ : (Cβ−Cβ̄)⊤{C(Z⊤

0 V̂
−1

Z0)−1C⊤
}
−1(Cβ−Cβ̄) < χ2

q,1−η} defines a 100(1−η)% confidence set, where χ2
q,1−η is the

00(1−η)% quantile of χ2
q distribution. When rows of C are the natural basis of Rp, CSC provides a confidence set of a subset

f β. Alternatively, denote σ̂ 2
ℓ the ℓth diagonal entry of (Z⊤

0 V̂
−1

Z0)−1 for each ℓ ∈ {1, . . . , p}, a 100(1 − η)% confidence
nterval for the ℓth entry of β is CIℓ = [̂βℓ−σ̂ℓΦ

−1(1−η/2), β̂ℓ+σ̂ℓΦ
−1(1−η/2)], where Φ(·) is the cumulative distribution

unction of standard normal distribution. Moreover, Theorem 4 implies that Pr(∥β̄−β∥∞ > ε) < p exp(−ε2p−1σ−2), where
2 can be estimated by the minimum diagonal of (Z⊤

0 V̂
−1

Z0)−1. Thus, it also leads to a uniform confidence set for β at
evel 100(1 − η)%, denoted as CI′ = {β : |βℓ − β̂ℓ| ≤ σ̂

√
p ln(p/η), ℓ ∈ {1, . . . , p}}.

To draw inference on the explaining power of covariates xi on the dependence structure of data, Fan et al. [19]
proposed a semiparametric specification testing statistic SG = tr{(̃F⊤Ỹ⊤Ỹ̃F)−1̃F⊤Ỹ⊤P̃ỸF}, where F̃/

√
T are the eigenvectors

corresponding to the K largest eigenvalues of Ỹ⊤Ỹ. In addition to Condition 3–7, assuming T 2/3
= o(n), n{ln(n)}4 = o(T 2),

J = o(min{n1/2−α,
√
T }), and max{T

√
n, n} = o(Jκ ), we have (nSG − JdK )(2JdK )−1/2 d

−→ N(0, 1) whenever G(X) = 0. Thus,
we can test H0 : G(X) = 0 almost surely. Hence, SG provides a diagnostic tool for the proposed model.

5. Numerical studies

5.1. Simulation settings

We demonstrate the finite sample performance of TOPE for both estimation and inference in comparison to three
competing methods: the OLS estimator, which ignores heteroscedasticity across subjects and dependence; the GLS
estimator, which naively utilizes the first K components of T−1∑T

t=1(yt − ȳ)(yt − ȳ)⊤ as V̂; and last, the oracle estimator,
hich is TOPE with known G without using approximation. To implement TOPE, we employ the OLS estimator as
reliminary β̂

0
.

The mean squared error (MSE) and the empirical coverage probability (ECP) of the confidence region for β are employed
o compare different methods. In addition, ∥̂F − F∥F/

√
T and ∥̂G − G∥F/

√
n are displayed to demonstrate estimations on

G and F by TOPE. The maximum marginal length of the confidence set (MML) is used to demonstrate the efficiency. That
is, the confidence set with ECP agreeing to the nominal level and small MML is preferable. For a clear presentation, we
display MML of different methods normalized by the largest one (the MML of OLS, in general).

We consider n ∈ {50, 100, 200, 500, 1000, 2000} and T ∈ {20, 50, 100, 200, 500}; also, we set p = 4 with β =

(1, 1, 1, 1)⊤ and generate i.i.d. ziℓ,t ∼ N(3 exp(t/30), 1) for each i ∈ {1, . . . , n}, ℓ ∈ {1, . . . , p}, and t ∈ {1, . . . , T }. A
imilar setting was used in Huang et al. [23]. For the loading, we set d = 3 and generate i.i.d. xi ∼ U([0, 1]d), then let
1(x) = x1, g2(x) = x21 + x22 − 1, and g3(x) = x23 − 2x1 + x2 for K = 3. As suggested by [19], with the initial realization G0
or g1, g2 and g3, we further compute HG = G⊤

0 G0 and set G = G0HG in simulations so that Condition 2 is satisfied.
The latent process f t = (f1t , f2t , f3t )⊤ consists of K = 3 independent univariate time series governed by the same

model with one of the following three settings: independent in t , AR(1) with autoregressive coefficient ρ = 0.5, or
ARMA(1, 1) with autoregressive coefficient ρ = 0.5 and moving average coefficient θ = 0.5. Also, three innovations are
considered: the standard normal, centered χ2

5 , and t8. After generating f t , F = (f 1, . . . , f T )⊤ is further transformed so
that T−1F⊤F = IK in Condition 2 is satisfied. Similar to f t , we generate n independent ui from the same model, which
includes two dependence structures: independent in t and AR(1) with autoregressive coefficient ρ = 0.5, as well as two
innovations: N(0, 0.01) and (χ2

− 5)/10. For each setting, 500 simulations are conducted.
5
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Fig. 2. Comparisons of the logarithm of MSE for estimating β by TOPE (‘‘–◦–") along those of the oracle estimator (‘‘–□–"), the GLS estimator (‘‘–♢–"),
nd the OLS (‘‘–△–"). Results are about T = 20. In plots (a1)–(a4), fkt ∼ N(0, 1) is independent in k, t . In plots (b1)–(b4), fkt ∼ t8 is independent in
, t . In plots (c1)–(c4), fkt follows the ARMA(1, 1) model with N(0, 1) innovation for each k = 1, 2, 3. In plots (d1)–(d4), fkt follows the ARMA(1, 1)
odel with t8 innovation for each k = 1, 2, 3. Distributions and serial correlations of ui are displayed in the plots.

.2. Results

Fig. 2 displays the MSE with respect to ln(nT ) on the logarithm scale when T = 20 and f t is independent in t or follows
the ARMA(1, 1) model with N (0, 1) or t8 innovations. In Fig. 2, the MSEs of all estimators reduce as n increases. Both TOPE
and GLS perform similarly as the oracle estimator when f t is independent in t ((a1)–(a4) and (b1)–(b4)), and outperform
OLS; on the other hand, temporal dependence in ut slightly increases the MSE but does not alter the convergence rate
((c1)–(c4) and (d1)–(d4)). In the presence of temporal dependence in f t , GLS is outperformed while TOPE’s performance
remains comparable to the oracle estimator ((c1)–(c4) and (d1)–(d4)). In the supplementary files, additional results for
settings similar to Fig. 2 but with T = 100, 500 are reported in Figs. S.1–S.4, and results for f following the AR(1) model
t

8
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Fig. 3. Comparisons of the ECP and MML of 95% confidence region of TOPE (‘‘–◦–" for ECP and ‘- -◦- -" for MML) along those of the oracle estimator
(‘‘–□–" for ECP and ‘‘- -□- -" for MML), the GLS estimator (‘‘–♢–" for ECP and ‘‘- -♢- -" for MML), and the OLS (‘‘–△–" for ECP and ‘‘- -△- -" for
MML). In simulations, fkt ∼ N(0, 1) is independent in k, t; n = 100, 500, 2000 for the first, second, and third row, respectively. In plots (a1)–(a3)
uit ∼ N(0, 0.01) is independent in i, t . In plots (b1)–(b3), uit ∼ (χ2

5 − 5)/10 is independent in i, t . In plots (c1)–(c3) ui follows the AR(1) model with
N(0, 0.01) innovation while the same model is used for ui in plots (d1)–(d3) with (χ2

5 − 5)/10 innovation.

are displayed in Figs. S.5 and S.7. Similar observations are obtained for different settings of f t , and the differences among
estimators decrease as T increases.

Fig. 3 displays the ECP and MML with respect to different T and n. The nominal level is 0.95. In Fig. 3, the confidence
region of TOPE has ECP close to the nominal level with a small MML. Meanwhile, the coverage probabilities of OLS
and GLS are both deviated from the nominal level and the deviations are substantial when n increases. In the presence
of temporal dependence in ut , TOPE still outperforms GLS and OLS. The MML of TOPE substantially improves when n
increases, particularly for large T , which reflects the fact that the estimation of F in TOPE prefers large n (see (c1) and
(c2), (d1)–(d2) in Fig. 3 for example). In the presence of the dependence of f t in t , TOPE performs remarkably well in terms
of maintaining small MML and its ECP quickly converges to the nominal level in T (for example, Figs. S.17 and S.18 in the
supplementary file). Meanwhile, due to the heteroscedasticity across subjects and the serial/cross-sectional correlations,
both GLS and OLS fail to maintain the nominal coverage probability. As MML reflects the largest marginal variance of an
estimator, OLS has large marginal variance in the presence of serial correlations in ut (Fig. 3 (d1)–(d3)). However, the ECP
of OLS substantially deviates from the nominal level, which reflects the inconsistent covariance estimate of OLS. Also, it is
interesting to notice that both the ECP and MML of GLS are smaller than those of others (Fig. 3 (c1)–(c3) and (d1)–(d3)),
which shows that the naive GLS tends to ignore the serial correlations and greatly underestimate the variance that results
in the poor confidence sets with low ECP. More simulation results are retained in the supplementary files and provide
similar observations. Specifically, Figs. S.9 and S.12 in the supplementary files display results for fkt independent in k, t
with either independent uit in i, t or ui following the AR(1) model with different innovations. Results for f t following the
AR(1) model or the ARMA(1, 1) model with different innovations are included in Figs. S.13–S.24 in the supplementary
files.

6. Study on air quality and energy consumption data using TOPE

In this section, we apply our method to analyze air quality data collected in the United States in 2015. The data
consists of the mean PM2.5 concentration (in µg/m3) from 129 monitoring sites on each Tuesday and Thursday in 2015
(https://www.epa.gov/outdoor-air-quality-data). We also include daily max 1-hour concentration of three common air
pollutants, including NO2, SO2, and ozone, and the latitude and longitude of each monitoring site in our analysis. Sources
of energy consumption are known as a potential factor to affect concentration of air pollutants. For this study, as covariates,
we include the annual state-level energy consumption proportions of three major sources out of all possible resources,
9
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Fig. 4. Data display, resulting confidence intervals, and prediction comparison for the real data analysis. Panel (a), (b), and (c) are the 95% confidence
intervals of the effects of different explanatory variables on the PM2.5 concentrations, the prediction errors for different methods, and the variance
of the mean PM2.5 concentration across different monitoring sites, respectively.

namely coal, natural gas, and petroleum, in 2015 (https://www.eia.gov/electricity/data/browser/). For analysis, we log-
transform the air pollutant data and remove potential seasonality. Also, we transform the latitude and longitude to keep
their values within [0, 1].

From Figs. 4(c) and S.29 in the supplement, it is observed that both geographical variables and energy consumption
proportions help explaining the observed heteroscedasticity across monitoring sites so that we consider them as xi in (1).
n this analysis, the daily max 1-hour concentration of NO2, SO2, and ozone, as well as the energy consumption proportions
f coal, natural gas, and petroleum are considered as z it in (1).
To determine the dimension K of latent factor process, we apply both the eigenvalue-ratio procedure and the HDWN

esting-based procedure proposed in the supplementary files. Ratios of the first ten adjacent eigenvalues of Ỹ⊤P̃Y are
.13, 5.26, 6.58, 1.27, 1.68, 1.17, 1.29, 1.21, 1.10 such that the ratio between the third and fourth eigenvalues are the
argest. On the other hand, for the HDWN testing-based procedure, the p-values for testing (B.1) with K0 = 1, 2 and 3
re 0.026, 0.040 and 0.104, respectively. That is, we reject H0(1) and H0(2) but fail to reject H0(3) for (B.1). Thus, both
igenvalue-ratio procedure and the proposed HDWN testing-based procedure suggest K̂ = 3. Also, by the procedure
iscussed at the end in Section 4, we test H0 : G(X) = 0 to further explore the statistical evidence to include geographical
ariables and energy consumption proportions to explain the heteroscedasticity across monitoring sites. We obtain
G = 2.34 with p-value 4.84 × 10−14; thus, these covariates are included for modeling. Then, the complete model in
he form of (1) for performing analysis on this data is

ln(PM2.5it ) = β1 ln(NO2,it ) + β2 ln(SO2,it ) + β3 ln(Ozit ) + β4Cli + β5Ngi + β6Pei

+

3∑
k=1

{
gk1(Lai) + gk2(Loi) + gk3(Cli) + gk4(Ngi) + gk5(Pei)

}
fkt + uit ,

here ln(PM2.5it ) is the log concentration of PM2.5 from the monitoring site i at time t; ln(NO2,it ), ln(SO2,it ), and ln(Ozit )
re the log daily max 1-hour concentration of NO2, SO2, and ozone, respectively, from the same monitoring site i at time t;
li,Ngi and Pei are the state-level energy consumption proportions of coal, natural gas, and petroleum out of all possible
nergy resources for the monitoring site i, respectively; and Lai and Loi are the latitude and longitude of the monitor site
, respectively.

For gkℓ in the above model, ℓ ∈ {1, . . . , 5}, we use cubic spline with 11 knots to construct Φ for projection. We fit
he above model using TOPE and draw inference as proposed in Section 4 to inspect the effects of covariates on the
M2.5 concentration. As an expected advantage, no further restrictions need to be imposed to model (1) and TOPE. In
ig. 4(a), the 95% confidence intervals for estimated coefficients using TOPE, the OLS estimator (by ignoring the variance
10
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omponents), and the traditional factor model (using A instead of g(xi) in the above model) are displayed for comparison.
t reflects the efficiency of TOPE in the presence of heteroscedasticity across monitoring sites and serial/contemporaneous
orrelations discussed in Section 3. Specifically, the confidence intervals constructed by TOPE are the shortest among all
hree methods for all the six covariates. All methods suggest significant positive correlation between daily max 1-hour
oncentration of NO2 and PM2.5 concentration and significant negative correlation between ozone concentration and
M2.5 concentration. TOPE reveals a significant positive correlation between coal consumption and PM2.5 concentration,
hich agrees with Liang et al. [28] that coal consumption positively contributes to PM2.5 concentration. However, this is
issed by both the OLS estimator and the traditional factor model. In Fig. S.30 in the supplement, the recovered gk for
∈ {1, 2, 3} displays clear non-linearity.
In addition, we examine the prediction performance of TOPE, the OLS estimator, and the traditional factor model.

or the 104 time points, we select 10 (from the 9th to the 99th, apart by 10 points) as the testing set and train the
forementioned three models using the remaining data points. With the estimated β from each method, the squared
rediction errors at the testing points are displayed in Fig. 4(b). Compared with OLS and the traditional factor model, our
odel, alone with TOPE, has smaller prediction errors across all testing points, which demonstrates its superior prediction
ccuracy.

. Discussions

Methodologically, we propose a flexible subject-specific heteroscedasticity model with latent semiparametric factor
tructures for analyzing large scale data with both intertemporal and intratemporal dependence. The model simulta-
eously accounts for the heteroscedasticity across subjects as well as the contemporaneous and serial correlations. We
dvocate a two-stage projection-based estimator for both the modulating and dependence components of the model, and
stablish an inference procedure for regression coefficients. We study the non-asymptotic rates for recovering the latent
actor process and estimating the nonparametric loading function, which leads to the non-asymptotic properties of the
stimated regression coefficients. As a result, we show that our proposed TOPE is asymptotically efficient within a fairly
road class of estimators including both the OLS and naive GLS estimators.
The widely-used Condition 2 essentially restricts F to subspace {F ∈ RT×K

: T−1F⊤F = IK }, which might be stringent
or some applications. In fact, we notice that it can be greatly relaxed by a concentration assumption of T−1F⊤F to IK ,
hich can be derived from Condition 7 with the help of the so-called τ -mixing coefficient. As a result, this will alter the

convergence rate of F̂− F in Theorem 1. Furthermore, as noted after Condition 2, we assume that the residual process uit
is uncorrelated over i to establish the statistical guarantee of TOPE on estimating β. This condition is similar to that of the
traditional PCA that assumes uncorrelated samples. It can be further relaxed to, for example, maxj≤n

∑n
i=1 |E(uitujt )| < C2,

maxi≤n
∑n

k=1
∑n

m=1
∑T

t=1
∑T

s=1 |cov(uitukt , uisums)| < C2, and (nT )−1∑n
i=1
∑n

j=1
∑T

t=1
∑T

s=1 |E(uitujs)| < C2 for some
C2 > 0. However, as a result, the n × n covariance matrix Cov(ut ) must be used in place of D in (5) to retain the
efficiency of TOPE. For that purpose, both the weighted PCA [25] and the estimator using thresholding principal orthogonal
complements [18] can be employed in conjunction with TOPE. Then, in addition to some more stringent conditions on
n and T , the non-asymptotic results must be re-established to obtain the similar conclusions in Section 3. Finally, from
its construction, TOPE also paves a potentially effective way to model high-dimensional temporal data with multiple
responses and simultaneously draw inference on the heteroscedasticity. We will explore these questions in future efforts.

8. Proofs of main theorems and technical results

We begin by presenting some notation. For a matrix M = (mij)1≤i,j≤p ∈ Rp×p, denote ∥M∥F = (
∑p

i=1
∑p

j=1 m
2
ij)

1/2 the
Frobenius norm, ∥M∥max = maxi,j |mij| the maximum norm, and ∥M∥∞ = maxi

∑
j |mij| the induced ℓ∞ norm. The spectral

norm of M corresponds to its largest singular value, defined as ∥M∥2 = supa∈S ∥Ma∥2, where S = {a ∈ Rp
: ∥a∥2 = 1}

and the ℓq-norm of p-dimensional vector a = (a1, . . . , ap)⊤ is defined by ∥a∥q = (
∑p

j=1 |aj|q)1/q with 1 ≤ q < ∞. Denote
the minimum and maximum eigenvalues of M by λmin(M) and λmax(M), respectively. Let tr(M) =

∑p
j=1 mjj and vec(M) be

the trace and vectorization of M, and ⊗ be the Kronecker product. We write I for an identity matrix. For sequences {an}
and {bn}, an = o(bn) if an/bn → 0 as n → ∞ and an = O(bn) if lim supn→∞ |an|/bn < ∞; Xn = op(an) and Xn = Op(an)
are similarly defined for a sequence of random variables Xn; an ≲ bn if and only if an ≤ Cbn for some C independent of
n; and an ≍ bn if and only if there exist C,D independent on n such that C |bn| ≤ |an| ≤ D|bn|. Denote

p
−→ and

d
−→ the

convergence in probability and in distribution, respectively. Unless specified otherwise, δ > 0 and C > 0 denote absolute
constants independent of n, T , p.

Remark 2. The techniques in this section primarily depend on the derivation of a series of nontrivial exponential type
concentration inequalities for preliminary estimators (such as β̂

0
or F̂) and their approximations (such as F̂ − FH =∑8

i=1(Ai)K−1 before Lemma 6). Together with the union bounds, it avoids entangling with the correlations between any
preliminary estimators and the data.
11
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8

8

I
t

L

P
n
E
L

8

P

P

l

w
E

.1. Proof of the main results

.1.1. Invertibility of the projection matrix
Without loss of generality, we take X d

= [0, 1]d. Consider coefficients ak = (a(k)0 , a(k)11 , . . . , a
(k)
J1 , . . . , a(k)1d , . . . , a

(k)
Jd )⊤ ∈

RJd+1 for k ≥ 1, and define

⟨a1, a2⟩n =
1
n

∑
i

{a(1)0 +

∑
j

∑
ℓ

a(1)jℓ φj(Xiℓ)}{a
(2)
0 +

∑
j

∑
ℓ

a(2)jℓ φj(Xiℓ)}. (8)

n the literature, conditions on the largest and smallest eigenvalues of n−1Φ⊤Φ are usually stated as key assumptions for
heoretical guarantees, see, e.g., [19]. Under standard nonparametric settings, we can establish it as follows.

emma 1. Under Condition 4, whenever J = o(
√
n) and d < J−1n, with probability at least 1 − δ,

n
{
1 −

J
n
ln(J2/δ)

}
≲ λmin

(
Φ⊤Φ

)
< λmax

(
Φ⊤Φ

)
≲ n

{
1 +

J
n
ln(J2/δ)

}
,

where, as defined in Section 2.2,

Φ =

⎡⎢⎣1/
√
J φ1(x11) . . . φJ (x11) . . . φ1(x1d) . . . φJ (x1d)

...
...

...
...

...

1/
√
J φ1(xn1) . . . φJ (xn1) . . . φ1(xnd) . . . φJ (xnd)

⎤⎥⎦ .

roof. From (8), ⟨a, a⟩n = a⊤
(
n−1Φ⊤Φ

)
a for any a ∈ RJd+1. For any δ > 0, let Aδ = {|⟨a, a⟩n − E(⟨a, a⟩n)| ≳

−1J ln(J2/δ) E(⟨a, a⟩n)}. On Ac
δ , we have {1−n−1J ln(J2/δ)} E(⟨a, a⟩n) ≲ ⟨a, a⟩n ≲ {1+n−1J ln(J2/δ)} E(⟨a, a⟩n). By Lemma 2,

(⟨a, a⟩n) ≍ ∥a∥2
2. Thus, {1 − n−1J ln(J2/δ)}∥a∥2

2 ≲ a⊤(n−1Φ⊤Φ)a ≲ {1 + n−1J ln(J2/δ)}∥a∥2
2. The conclusion follows

emma 3, which implies Pr{Aδ} < δ. □

.1.2. Proof of main theorems

roof of Theorems 1 and 3. Theorems 1 and 3 readily follow from Propositions 1–4. □

roof of Theorem 2. Recall that V̂ = ĜV (̂f t )̂G
⊤

+ D̂, similarly to the proof of Lemma 14, we have

λmin (̂V) ≳
1
T

[
1 +

1
√
nT

+

√
T + p2n2α

n3T
+

{(T + p2n2α) ln(n)}1/4
√
n2T

+
1

nJκ/2

]
{1 +

√
ln(1/δ)},

with probability at least 1 − δ. Then, by Lemma 14, with probability at least 1 − δ,V̂−1
− V−1


2

=

V̂−1
(V − V̂)V−1


2

≤

V̂−1

2

V−1 (̂V − V)

2

≲ T
{√

J
n

+
1

√
n

+
1
T

+
p
√
J

√
n1−2αT

+
1

J (κ−1)/2

}
{1 +

√
ln(1/δ)}.

By Lemmas 16 and 17, ∥Z⊤

0 (Gf̄ + ū)∥2 ≲ ∥Z0∥FT−1/2√ln(1/δ) with probability at least 1 − δ. Thus, with probability at
east 1 − δ,β̄ − β̃


2 ≤∥{(Z⊤

0 V̂
−1

Z0)−1
− (Z⊤

0 V
−1Z0)−1

}Z⊤

0 V
−1(Gf̄ + ū)∥2

+ ∥(Z⊤

0 V̂
−1

Z0)−1Z⊤

0 (̂V
−1

− V−1)(Gf̄ + ū)∥2

≲
1

√
nT

{√
J

n
+

1
√
n

+
1
T

+
p
√
J

√
n1−2αT

+
1

J (κ−1)/2

}
{1 +

√
ln(1/δ)}.

Therefore, for any a > 0,

E(∥β̄ − β̃∥
2
2) =

∫
∞

0
Pr(∥β̄ − β̃∥

2
2 > s)ds =

∫ a

0
Pr(∥β̄ − β̃∥

2
2 > s)ds +

∫
∞

a
Pr(∥β̄ − β̃∥

2
2 > s)ds

≤ a + e
∫

∞

a
exp{−snT (Cϑ2

n,T ,J )
−1

}ds

= a + Ceϑ2
n,T ,J (nT )

−1 exp{−anT (Cϑ2
n,T ,J )

−1
},

ith ϑn,T ,J = J1/2n−1
+ n−1/2

+ T−1
+ pJ1/2n−1/2+αT−1/2

+ J−(κ−1)/2 and constant C > 0. Letting a = (nT )−1Cϑ2
n,T ,J gives

(∥β̄ − β̃∥
2) ≤ 2(nT )−1Cϑ2 . For TOPE β̄ and the oracle GLS estimator β̃ whose jth components are denoted by β̄ and
2 n,T ,J j

12
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β̃

a
n

a
n

f
b

E

B

j respectively, repeatedly employing Cauchy–Schwarz inequality to each of the (i, j) pair with i, j ∈ {1, . . . , p} leads to

|Cov(β̄i, β̄j) − Cov(̃βi, β̃j)| = |E{(β̄i − βi)(β̄j − β̃j)} + E{(β̄i − β̃i)(̃βj − βj)}|

≤ [E{(β̄i − βi)2}]1/2[E{(β̄j − β̃j)2}]1/2 + [E{(̃βj − βj)2}]1/2[E{(β̄i − β̃i)2}]1/2

≲
ϑn,T ,J

nT
+

ϑ2
n,T ,J

(nT )3/2
,

which yields

∥Var(β̄) − Var(̃β)∥F = [

p∑
i,j=1

{Cov(β̄i, β̄j) − Cov(̃βi, β̃j)}2]1/2 ≲
pϑn,T ,J

nT
+

pϑ2
n,T ,J

(nT )3/2
. □

Proof of Theorem 4. (i) For the oracle GLS estimator β̃, it holds

β̃ − β = (Z⊤

0 V
−1Z0)−1Z⊤

0 V
−1

(
G
1
T

T∑
t=1

f t +
1
T

T∑
t=1

ut

)
:= A

(
G
1
T

T∑
t=1

f t +
1
T

T∑
t=1

ut

)
,

where A = (Z⊤

0 V
−1Z0)−1Z0V−1 and V = GVar(T−1∑T

t=1 f t )G
⊤

+ Var(T−1∑T
t=1 u1t )In as defined in (5). For any p-

vector c , (nT )1/2c⊤ (̃β − β) :=
∑T

t=1(Wnt + W̃nt ), where Wnt = n1/2T−1/2c⊤Aut and W̃nt = n1/2T−1/2c⊤AGf t . Then∑T
t=1 E[|Wnt |

3
] = n3/2T−1/2

∥c∥3
2 E[∥A∥

3
2 ∥] E[∥u1∥

3
2] < ∞ for any n, and since ∥A∥2 ≤ ∥A∥F ≤ p∥A∥2 we have∑T

t=1 E[|Wnt |
3
]

(
∑T

t=1 E[W
2
nt ])3/2

≤
T−1/2

∥c∥3
2 E
[
∥A∥

3
2

]
E
[
∥u1∥

3
2

]{
c⊤ E

[
AVar(u1)A⊤

]
c
}3/2 ≤

T−1/2 E
[
∥A∥

3
2

]
E
[
∥u1∥

3
]

{maxi Var(ui1)}3/2
{
E
[
∥A∥

2
F

]}3/2 → 0

s T diverges to infinity. By the Lyapunov central limit theorem [Theorem 27.3 in [9],
∑T

t=1 Wnt is hence asymptotically
ormal. Similarly, under Condition 6, we can show that W̃nt is asymptotically normal. In addition,

∑T
t=1 Wnt and

∑T
t=1 W̃nt

re uncorrelated since {ut} and {f t} are uncorrelated mean zero processes. Therefore, n1/2T 1/2c (̃β − β) is asymptotically
ormal for any c , and we have Σ−1/2 (̃β − β)

d
−→ N(0, Ip), where Σ = E[(Z⊤

0 V
−1Z0)−1

]. By Theorem 2, we have
√
nT (β̄ − β̃)

p
−→ 0. Notice that ∥Σ∥

2
F = OP (nT ), Slutsky’s theorem yields Σ−1/2(β̄ − β)

d
−→ N(0, Ip).

(ii) Similar to (i) and conditional on Zt and X, the Lyapunov central limit theorem yields (Z⊤

0 V
−1Z0)1/2 (̃β − β)

d
−→

N(0, Ip), and Slusky’s theorem leads to (Z⊤

0 V
−1Z0)1/2(β̄ − β)

d
−→ N(0, Ip). □

8.2. Technical results

We first collect some preliminary results for spline estimators in Lemmas 2 and 3.

Lemma 2. Under Condition 4, there exist constants c1, c2 such that c1∥a∥2
2 ≤ E(⟨a, a⟩n) ≤ c2∥a∥2

2.

Proof. It follows from Condition 4 that, for any ℓ = 1, . . . , d, the marginal density of Xℓ on its support is bounded away
rom 0 and ∞. Without loss of generality, we assume that, the support of X is [0, 1]d and density h(X) is bounded from
elow and above by m1 and m2 with 0 < m1 ≤ m2 < ∞.
Denote fℓ(Xℓ) =

∑
j ajℓφj(Xℓ), ℓ ∈ {1, . . . , d} and f0 ≡ a0. Then, we have E(⟨a, a⟩n) = E[{a0 +

∑
j
∑

l ajℓφj(Xℓ)}2] =

[{a0 +
∑d

ℓ=1 fℓ(Xℓ)}2]. Since the basis functions are centralized,

E(⟨a, a⟩n) =

∫
X

{a0 +

d∑
ℓ=1

fℓ(Xℓ)}2h(X)dX ≍

∫
X

{a0 +

d∑
ℓ=1

fℓ(Xℓ)}2dX = a20 +

∫
X

{

d∑
ℓ=1

fℓ(Xℓ)}2dX

y Lemma 1 of Stone [39], we obtain∫
X

{

d∑
ℓ=1

fℓ(Xℓ)}2dX ≥

(
C0

2

)d−1 d∑
ℓ=1

∫ 1

0
f 2ℓ (x)dx =

(
C0

2

)d−1

(
∑

ℓ

∑
j

a2jℓ),

where C0 = 1 − (1 − m1/m2)1/2. Consequently, we have E(⟨a, a⟩n) ≥ a20 + (C0/2)d−1(
∑

ℓ

∑
j a

2
jℓ) ≥ min{1, (C0/2)d}

∥a∥2. Similarly, we can establish that
∫ 1
0 {
∑d

ℓ=1 fℓ(Xℓ)}2dX ≤ d2
∑d

ℓ=1

∫ 1
0 f 2ℓ (x)dx = d2(

∑
ℓ

∑
j a

2
jℓ), and consequently,

E(⟨a, a⟩n) ≤ a20 + d2(
∑

ℓ

∑
j a

2
jℓ) ≤ (1 + d2)∥a∥2. □
13
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P

emma 3. Under Condition 4, for some constant C1, C2 > 0, we have

Pr

{
sup

a1,a2∈RJd+1

|⟨a1, a2⟩n − E(⟨a1, a2⟩n|)
√
E(⟨a1, a1⟩n) E(⟨a2, a2⟩n)

> s

}
≤ C1J2 exp

{
−C2

n
J

s2

1 + s

}
.

roof. The proof is similar to that of Lemma A.2 in Huang et al. [23]. First, notice that ⟨a1, a2⟩n − E(⟨a1, a2⟩n) =

n−1∑
ℓ,ℓ′

∑
j,j′ a

(1)
jℓ a(2)j′ℓ′{e⊤

jℓΦ
⊤Φej′ℓ′ − E(e⊤

jℓΦ
⊤Φej′ℓ′ )}, where ejℓ is the (Jℓ+ j+ 1)th natural basis of RJd+1. Hence, we have

ejℓ = {φj(X1ℓ), . . . , φj(Xnℓ)}⊤. For any j, j′, ℓ, ℓ′, Var(n−1e⊤

jℓΦ
⊤Φej′ℓ′ ) ≤ n−2∑

i E{φ
2
j (Xiℓ)φ2

j′ (Xiℓ′ )} ≲ n−1. As |φj(Xℓ)| ≤ M
or each j, ℓ for some M > 0,

Pr
{⏐⏐⏐⏐1ne⊤

jℓΦ
⊤Φej′ℓ′ − E

(
1
n
e⊤

jℓΦ
⊤Φej′ℓ′

)⏐⏐⏐⏐ > c2s
}

≤ exp
{
−

ns2

M1 + M2s

}
, s > 0

by Bernstein’s inequality with constants M1, M2 > 0. By the union bound,

Pr

⎡⎣ ⋃
j,j′,ℓ,ℓ′

{⏐⏐⏐⏐1ne⊤

jℓΦ
⊤Φej′ℓ′ − E

(
1
n
e⊤

jℓΦ
⊤Φej′ℓ′

)⏐⏐⏐⏐ >
c2s
Jd

}⎤⎦ ≤ C1J2 exp
{
−

C2ns2

J2 + sJ

}
, s > 0

or constants C1, C2 > 0. Denote B =
⋃

j,j′,ℓ,ℓ′{|n−1e⊤

jℓΦ
⊤Φej′ℓ′ − E(n−1e⊤

jℓΦ
⊤Φej′ℓ′ )| > c2s(Jd)−1

}, so that Pr(B) <

1J2 exp
{
−C2ns2(J2 + sJ)−1

}
. For each s > 0, on Bc , |⟨a1, a2⟩n − E(⟨a1, a2⟩n)| ≤

∑
j,ℓ
∑

j′,ℓ′ |a(1)jℓ ||a(2)j′ℓ′ |c2s/(Jd) ≲ s
√
E(⟨a1, a1⟩n) E(⟨a2, a2⟩n), where the last inequality is due to Lemma 2. The conclusion follows. □

Next, we document technical results for the proof of Theorem 1 in Lemmas 4–10 and Propositions 1–4.

emma 4. Under Conditions 3 and 5, for each n, with probability at least 1 − δ,

1 − n−1 ln(1/δ) ≲ λmin

(
1
n
G⊤PG

)
< λmax

(
1
n
G⊤PG

)
≲ 1 + n−1 ln(1/δ).

roof. Denote R = G−PG, and we have G⊤PG = G⊤G−G⊤R. Thus, λmin
(
n−1G⊤PG

)
≥ λmin

(
n−1G⊤G

)
+λmin

(
−n−1G⊤R

)
,

nd λmax
(
n−1G⊤PG

)
≤ λmax

(
n−1G⊤G

)
+ λmax

(
−n−1G⊤R

)
. Note that ∥R∥

2
F ≲ nJ−κ by Condition 5. Thus, combining

ondition 3, it holds that, with probability at least 1 − δ,

∥n−1G⊤R∥
2
F =

1
n2 tr(R

⊤GG⊤R) ≤ λmax

(
1
n
GG⊤

)
1
n
tr(R⊤R) ≲ J−κ

{1 + n−1 ln(1/δ)}

nd |λ(G⊤R/n)| ≲ J−κ
{1+ n−1 ln(1/δ)}. By Condition 3, with probability at least 1− δ, 1− n−1 ln(1/δ) ≲ λmin

(
n−1G⊤G

)
<

λmax
(
n−1G⊤G

)
≲ 1 + n−1 ln(1/δ). The conclusion follows. □

Lemma 5. Consider β̂
0
satisfying ∥̂β

0
−β∥2 = OP (n−1/2+αT−1/2) for α ∈ [0, 1/2), such as the estimator in (14) in Section 8.3.

Under Conditions 1 and 4–7, for Ũ = U + Z{IT ⊗ (β − β̂
0
)} defined in Section 2.2,

(i) E(∥F⊤Ũ⊤
∥
2
F) = O((n + p2n2α)T ), E(∥Ũ⊤

Φ∥
2
F) = O(nJ(T + p2n2α)), E(∥Φ⊤ŨF∥2

F) = O(p2n1+2αTJ), E(∥Ũ⊤
ΦB∥

2
F) ≲

n(T + p2n2α), and E(∥B⊤Φ⊤ŨF∥2
F) ≲ p2n1+2αT .

(ii) With probability at least 1− 5δ, ∥F⊤Ũ⊤
∥F ≲ {(n+ p2)T }

1/2
{1+

√
ln(1/δ)}, ∥Ũ⊤

Φ∥F ≲ {nJ(T + p2)}1/2{1+
√
ln(1/δ)},

∥Φ⊤ŨF∥F ≲ (p2nTJ)1/2{1+
√
ln(1/δ)}, ∥Ũ⊤

ΦB∥F ≲
√
n(T + p2n2α){1+

√
ln(1/δ)}, and ∥B⊤Φ⊤ŨF∥F ≲ p

√
n1+2αT {1+

√
ln(1/δ)}2{1 +

√
ln(1/δ)}.

(iii) With probability at least 1 − 4δ, ∥PŨ∥F ≲
√
J(T + p2n2α){1 + n−1J ln(J2/δ)}3/2{1 +

√
ln(1/δ)}.

roof.

(i) By Lemma B.1 of [19], E(∥F⊤U⊤
∥
2
F) = O(nT ), E(∥U⊤Φ∥

2
F) = O(nJT ), E(∥Φ⊤UF∥2

F) = O(nTJ), and E(∥PU∥
2
F) = O(JT ),

and by Lemma C.6 in Fan et al. [19], E
(
∥UΦB∥

2
F

)
= O(nT ) and E

(
∥BΦ⊤UF∥2

F

)
= O(nT ). Thus, it suffices to show

E[∥Z{IT ⊗ (β − β̂
0
)}F∥2

F] = O(p2T ), (9)

E[∥Φ⊤Z{IT ⊗ (β − β̂
0
)}∥2

F] = O(p2nJ), (10)

E[∥Φ⊤Z{IT ⊗ (β − β̂
0
)}F∥2

F] = O(p2nTJ), (11)

E[∥Z{I ⊗ (β − β̂
0
)}⊤ΦB∥

2
] = O(p2n1+2α), (12)
T F

14
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L

a

E[∥B⊤Φ⊤Z{IT ⊗ (β − β̂
0
)}F∥2

F] = O(p2n1+2αT ). (13)

By Proposition 5, E[∥Z{IT ⊗ (β − β̂
0
)}∥2

F] ≤ E(∥Z∥
2
F)∥IT∥2

2 E(∥β − β̂
0
∥
2
F) = O(p2n2α). Then (9) follows from Cauchy–

Schwarz inequality that E[∥Z{IT ⊗ (β − β̂
0
)}F∥2

F] ≤ E[∥Z{IT ⊗ (β − β̂
0
)}∥2

F] E(∥F∥2
F) = O(p2n2αT ). As a consequence

of Lemma 2, we have E(∥Φ∥
2
2) = O(n), and consequently E(∥Φ∥

2
F) ≤ (Jd+ 1) E(∥Φ∥

2
2) = O(nJ), and (10) holds since

E[∥Φ⊤Z{IT ⊗ (β− β̂
0
)}∥2

F] ≤ E[∥Z{IT ⊗ (β− β̂
0
)}∥2

F] E(∥Φ∥
2
F) = O(p2n1+2α J). Applying Cauchy–Schwarz inequality,

(11) follows E[∥Φ⊤Z{IT ⊗ (β − β̂
0
)}F∥2

F] ≤ E[∥Z{IT ⊗ (β − β̂
0
)}∥2

F] E(∥Φ∥
2
F) E(∥F∥2

F) = O(p2n1+2αTJ). Also, (12) and
(13) follow E[∥Z{IT ⊗ (β − β̂

0
)}⊤ΦB∥

2
F] ≤ E[∥Z{IT ⊗ (β − β̂

0
)}G∥

2
F] + E[∥Z{IT ⊗ (β − β̂

0
)}R∥

2
F] = O(p2n1+2α), and

E[∥B⊤Φ⊤Z{IT ⊗(β−β̂
0
)}F∥2

F] ≤ E[∥G⊤Z{IT ⊗(β−β̂
0
)}F∥2

F]+E[∥R⊤Z{IT ⊗(β−β̂
0
)}F∥2

F] = O(p2n1+2αT ), respectively.
(ii) By Condition 7 (iii), for r6 ∈ (0, 1) and any x ≥ 1,

τ (x) ≤ 4max(b1, b2)2r6{max(r2, r3)(1 − r6)/2}2/min(r2,r3) exp[2/{max(r2, r3)(1 − r6)}]{2α(x)}r6 ,

which implies that (ftk, uit ) is τ -mixing [32] by Condition 7 (ii). Then, following Theorem 1 in Merlevède et al.
[32] and Davydov’s inequality [Corollary 16.2.4 in [1]], for each k ∈ {1, . . . , K } and i ∈ {1, . . . , n} and any x > 0,
Pr(|

∑T
t=1 ftk̃uit | > x) ≤ T exp(−Cxrfu )+ exp{−Cx2/E(

∑T
t,s=1 ftk̃uit fsk̃uis)}, where rfu = {r−1

1 +min(r2, r3)−1
}
−1. Let e−s

be the maximum of T exp(−Cxrfu ) and exp{−Cx2/E(
∑T

t,s=1 ftk̃uit fsk̃uis)}]. By Bonferroni inequality, with probability
at least 1 − 2e−s, |

∑T
t=1 ftk̃uit | ≲ max[{s + ln(pT )}1/rfu , {E(

∑T
t,s=1 ftk̃uit fsk̃uis)}1/2

√
s + ln p] uniformly for each k ∈

{1, . . . , K } and i ∈ {1, . . . , n}. Then, by (i), with probability at least 1 − δ, ∥F⊤Ũ⊤
∥F ≲

√
(n + p2n2α)T (s + ln p). The

remaining two bounds follows similarly.
(iii) By Lemma 1, with probability at least 1 − δ, ∥Φ∥

2
2 = λmax(Φ⊤Φ) ≲ n{1 + n−1J ln(J2/δ)} and ∥(Φ⊤Φ)−1

∥2 =

λ−1
min(Φ

⊤Φ) ≲ n−1
{1 + n−1J ln(J2/δ)}. Hence, with probability at least 1 − 4δ,

∥PŨ∥F ≤ ∥Φ∥2∥(Φ⊤Φ)−1
∥2∥Φ

⊤Ũ∥F ≲
√
J(T + p2n2α)

{
1 + Jn−1 ln(J2/δ)

}3/2
{1 +

√
ln(1/δ)}. □

Denote K a K×K diagonal matrix whose diagonals are the first K eigenvalues of (nT )−1Ỹ⊤P̃Y. Then (nT )−1Ỹ⊤P̃ŶF = F̂K.
et H = (nT )−1B⊤Φ⊤ΦBF⊤F̂K−1. Using Ỹ = (ΦB + R)F⊤

+ Ũ from Section 2.2.1, we have F̂ − FH = (
∑8

i=1 Ai)K−1 where
A1 = (nT )−1FB⊤Φ⊤Ũ̂F, A2 = (nT )−1Ũ⊤

ΦBF⊤F̂, A3 = (nT )−1Ũ⊤PŨ̂F, A4 = (nT )−1FB⊤Φ⊤RF⊤F̂, A5 = (nT )−1FR⊤ΦBF⊤F̂,
A6 = (nT )−1FR⊤PRF⊤F̂, A7 = (nT )−1FR⊤PŨ̂F, and A8 = (nT )−1Ũ⊤PRF⊤F̂. Next, in Lemmas 6–10, we will provide a bound
on ∥H − I∥F in probability.

Lemma 6. With probability at least 1 − 5δ, ∥K−1
∥2 ≲ 1 + n−1 ln(1/δ).

Proof. The K largest eigenvalues of (nT )−1Ỹ⊤P̃Y are the same as those of W = (nT )−1(Φ⊤Φ)−1/2Φ⊤Ỹ̃Y⊤
Φ(Φ⊤Φ)−1/2.

Substituting Ỹ = GF⊤
+ Ũ and T−1F⊤F = IK , we have W =

∑4
i=1 Wi where W1 = n−1(Φ⊤Φ)−1/2Φ⊤GG⊤Φ(Φ⊤Φ)−1/2,

W2 = (nT )−1(Φ⊤Φ)−1/2Φ⊤GF⊤Ũ⊤
Φ(Φ⊤Φ)−1/2, W3 = W⊤

2 , and W4 = (nT )−1(Φ⊤Φ)−1/2Φ⊤ŨŨ⊤
Φ(Φ⊤Φ)−1/2. By

Lemma 1, with probability at least 1 − δ, ∥Φ∥
2
2 = λmax(Φ⊤Φ) ≲ n

{
1 + n−1J ln(J2/δ)

}
and ∥(Φ⊤Φ)−1

∥2 = λ−1
min(Φ

⊤Φ) ≲
n−1

{1 + n−1J ln(J2/δ)}. By Lemma 4, with probability at least 1 − δ, ∥PG∥
2
2 = λmax

(
G⊤PG

)
≲ n(1 + J−κ ){1 + n−1 ln(1/δ)}.

Hence, with probability at least 1 − 5δ,

∥W2∥2 ≤
1
n
∥(Φ⊤Φ)−1/2

∥
2
2∥Φ∥2∥PG∥2 ∥

 1T F⊤Ũ⊤
Φ


F

≲ p
√
Jn2α−1T−1(1 + J−κ ){1 + n−1J ln(J2/δ)}3/2{1 +

√
ln(1/δ)}{1 + n−1 ln(1/δ)},

nd by Lemma 5, with probability at least 1 − 4δ,

∥W4∥2 ≤
1
nT

∥(Φ⊤Φ)−1/2
∥
2
2∥Φ

⊤Ũ∥
2
F ≲

J(T + p2n2α)
nT

{1 + J ln(J2/δ)/n}{1 +

√
ln(1/δ)}.

By Weyl’s Theorem, |λk(W) − λk(W1)| ≤ ∥W − W1∥2 for each k ∈ {1, . . . , K }. Hence, with probability at least 1 − 5δ,

|λk(W) − λk(W1)| ≲ [p
√
J(n1−2αT )−1/2

+ {J(T + p2n2α)}/(nT )]{1 + J ln(J2/δ)/n}3/2{1 +

√
ln(1/δ)}.

Note that the K largest eigenvalues of W1 is also the K largest eigenvalues of n−1G⊤PG. Thus, by Lemma 4, with probability
at least 1 − 5δ, ∥K−1

∥2 ≲ 1 + n−1 ln(1/δ). □

Lemma 7. With probability at least 1−7δ, (i) ∥A1∥F, ∥A2∥F ≲
√
n−1(T + p2n2α){1+

√
ln(1/δ)}, (ii) ∥A3∥F ≲ n−1T−1/2J(T +

p2n2α){1 +
√
ln(1/δ)}, (iii) ∥A4∥F, ∥A5∥F ≲ (J−κ/2

√
T ){1 +

√
ln(1/δ)}, (iv) ∥A7∥F, ∥A8∥F ≲

√
(T + p2n2α)(nJκ−1)−1{1 +

√
ln(1/δ)}; and ∥A6∥F ≲ J−κ

√
T .
15
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roof. Notice that ∥F∥F =
√
KT with probability 1 and ∥̂F∥F =

√
KT . Then, both (i) and (ii) follow from Lemma 5. By

ondition 5 that ∥R∥
2
F ≲ nJ−κ , (iii) follows from Lemma 4 and ΦB = PG. Part (iv) follows from Lemma 5 and ∥R∥

2
F ≲ nJ−κ .

esult on A6 follows similarly to (iii) given ∥P∥2 = 1. □

emma 8. With probability at least 1 − 3δ, (i) ∥A1∥max, ∥A2∥max ≲ n−1/2T−1
√
T + p2n2α{ln(T )}2/r2{1 + ln(1/δ)}, (ii)

A3∥max ≲ n−1/2T−1
√
T + p2n2α{ln(T )}1/r2{1 + ln(1/δ)}, (iii) ∥A4∥max, ∥A5∥max ≲ n−1T−1

{ln(T )}3/r2 J−κ
{1 + ln(1/δ)}, (iv)

A7∥max, ∥A8∥max ≲ (nT )−1J−κ
√
J(T + p2n2α){ln(T )}2/r2{1 + ln(1/δ)}; and ∥A6∥max ≲ (nT )−1J−2κ

{ln(T )}3/r2 .

roof. By Lemma B.1 in Fan et al. [17], with probability at least 1 − δ, ∥ŨPŨ∥max ≲
√
n(T + p2n2α){1 + ln(1/δ)}. Also,

he proof of Lemma D.2 in Wang and Fan [43] implies that ∥U⊤ΦB∥∞ ≲
√
nT . Hence, with probability at least 1 − δ,

∥Ũ⊤
ΦB∥∞ ≲

√
n(T + p2n2α){1 + ln(1/δ)} by Lemma 5. Then, the results follow from that ∥F∥max ≲ {ln(T ) + ln(1/δ)}1/r2

with probability at least 1 − δ. □

Proposition 1. Given Jd + 1 < n and κ ≥ 1,

(i) With probability at least 1 − 12δ, T−1
∥̂F − FH∥

2
F ≲ (n−1

+ {n1−2αT }
−1p2 + J−κ ){1 +

√
ln(1/δ)}2{1 + n−1 ln(1/δ)}.

(ii) With probability at least 1 − 8δ, ∥̂F − FH∥max ≲ (n−1/2
+ {

√
n1−2αT }

−1p){ln(T )}2/r2{1 + ln(1/δ)}.

roof. By Lemma 6, ∥K−1
∥2 ≲ 1 + n−1 ln(1/δ) with probability at least 1 − 5δ. The result follows from Lemmas 7 and

. □

emma 9. With probability at least 1−20δ, (i) T−1
∥A1∥

2
F ≲

{
n−2

+ n−1+2αT−1p2 + (nTJκ )−1(T + p2n2α)
}
{1+

√
ln(1/δ)}2{1+

−1 ln(1/δ)}, (ii) T−2
∥F⊤A2∥

2
F ≲ n−1+2αT−1p2{1 +

√
ln(1/δ)}2, (iii) T−2

∥F⊤ (̂F − FH)∥2
F ≲

{
n−2

+ n−1+2αT−1p2 + J−κ
}
{1 +

√
ln(1/δ)}2, and (iv) T−2

∥̂F⊤
(̂F − FH)∥2

F ≲ {n−2
+ n−1+2αT−1p2 + J−κ

}{1 +
√
ln(1/δ)}2.

roof. (i) First, by Lemmas 4 and 6, with probability at least 1−6δ, ∥H∥2 ≤ (nT )−1
∥PG∥

2
F∥F∥F∥̂F∥F∥K−1

∥2 ≲ 1+n−1 ln(1/δ).
hen, by Lemma 5 and Proposition 1, with probability at least 1 − 20δ,

∥B⊤Φ⊤Ũ̂F∥2
F ≤ 2∥B⊤Φ⊤Ũ(̂F − FH)∥2

F + 2∥B⊤Φ⊤ŨFH∥
2
F

≲
{
T 2

+ p2n2αT + p4n4α
+ nT (T + p2n2α)/Jκ

}
{1 +

√
ln(1/δ)}2{1 + n−1 ln(1/δ)}.

he result follows that ∥F∥F = ∥̂F∥F =
√
KT with probability 1.

(ii) By Lemma 5, with probability at least 1 − 4δ, T−2
∥F⊤A2∥

2
F ≤ n−2T−4

∥F⊤Ũ⊤
ΦB∥

2
F∥F∥2

F∥̂F∥2
F ≲ (nT )−1p2

1 +
√
ln(1/δ)}2.

(iii) Combining (i) and (ii), the result follows from Lemma 7.
(iv) The result follows from T−1

∥̂F⊤
(̂F − FH)∥F ≤ T−1

∥̂F − FH∥
2
F + T−1

∥H⊤F⊤ (̂F − FH)∥F. □

emma 10. With probability at least 1 − 20δ,

∥H⊤H − IK∥
2
F ≲

(
1
n2 +

p2

n1−2αT
+

1
Jκ

)
{1 +

√
ln(1/δ)}2{1 + n−1 ln(1/δ)}.

roof. By Condition 2, F⊤F = T IK with probability 1 and F̂⊤F̂ = T IK . So H⊤H = T−1(FH)⊤FH = T−1(FH − F̂)⊤FH +

T−1̂F⊤
(FH − F̂) + IK and ∥H⊤H − IK∥F ≤ T−1

∥(̂F − FH)⊤F∥F∥H∥2 + T−1
∥F⊤ (̂F − FH)∥F, which gives the desired result. □

Define B̂ = T−1(Φ⊤Φ)−1Φ⊤Ỹ̂F so that Ĝ = T−1P̃ŶF = ΦB̂, we have B̂ − BH =
∑4

i=1 Ci where C1 =

T−1(Φ⊤Φ)−1Φ⊤RF⊤F̂, C2 = T−1(Φ⊤Φ)−1Φ⊤ŨFH, C3 = T−1(Φ⊤Φ)−1Φ⊤Ũ(̂F − FH), and C4 = T−1BF⊤ (̂F − FH).

Proposition 2. With probability at least 1 − 20δ,

(i) ∥̂B − BH∥
2
F ≲

{
n−2J + n−1+2αT−1p2J + n−2+4αT−2p4J + J−κ+1

}
{1 + J ln(J2/δ)/n}3{1 +

√
ln(1/δ)}4,

(ii) n−1
∥̂G − GH∥

2
F ≲

(
n−2J + n−1+2αT−1p2J + n−2+4αT−2p4J + J−κ+1

)
{1 + J ln(J2/δ)/n}4{1 +

√
ln(1/δ)}4.

roof. (i) By Lemmas 1, 5 and 9, with probability at least 1 − 20δ,

∥C1∥
2
F ≲

1
Jκ

{1 + J ln(J2/δ)/n}3,

∥C2∥
2 ≲

p2J
{1 + J ln(J2/δ)/n}2{1 +

√
ln(1/δ)}2,
F n2αT

16
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∥C3∥
2
F ≲

(
J
n2 +

p2J
n2−2αT

+
p4J

n2−4αT 2 +
T + p2

nTJκ−1

)
{1 + J ln(J2/δ)/n}2{1 +

√
ln(1/δ)}4,

∥C4∥
2
F ≲

(
J
n2 +

p2J
n1−2αT

+
1

Jκ−1

)
{1 + J ln(J2/δ)/n}3{1 +

√
ln(1/δ)}2.

o ∥̂B − BH∥
2
F ≲

{
n−2J + n−1+2αT−1p2J + n−2+4αT−2p4J + J−κ+1

}
{1 + J ln(J2/δ)/n}3{1 +

√
ln(1/δ)}4.

(ii) The result follows from n−1
∥̂G − GH∥

2
F ≤ n−2

∥Φ (̂B − BH)∥2
F + n−2

∥RH∥
2
F. □

roposition 3. With probability at least 1 − 20δ, (i) ∥̂B − BH∥max ≲ n−1/2T−1
{(T + p2n2α) ln(n)}1/2{1 + ln(1/δ)}, (ii)

Ĝ − GH∥max ≲ T−1
{(T + p2n2α) ln(n)}1/2{1 + ln(1/δ)}, and (iii) ∥̂G − GH−1

∥max ≲ T−1
{(T + p2n2α) ln(n)}1/2{1 + ln(1/δ)}.

Proof. (i) By Lemma B.1 in Fan et al. [17], with probability at least 1 − δ, ∥FŨ∥max ≲
√
(T + p2) ln(n){1 + ln(1/δ)}.

Then, by Lemmas 1, 5, and 9, with probability at least 1 − 20δ, ∥C1∥max ≲ {
√
nTJκ}−1

{ln(T )}2/r2{1 + ln(1/δ)}, ∥C2∥max ≲
√
nT }

−1
√
(T + p2n2α) ln(n){1+ln(1/δ)}, ∥C3∥max ≲ {nT 2

}
−1(T+p2n2α){ln(T )}2/r2{1+ln(1/δ)}δ, and ∥C4∥max ≲ {

√
nT 2Jκ}−1

T + p2n2α){ln(T )}2/r2{1 + ln(1/δ)}δ. So ∥̂B − BH∥max ≲ n−1/2T−1
{(T + p2n2α) ln(n)}1/2{1 + ln(1/δ)}.

(ii) The result follows from ∥̂G − GH∥max ≤ n−2
∥Φ (̂B − BH)∥max + n−2

∥RH∥max.δ

(iii) The result follows from Ĝ − GH−1
= T−1GH−1(HF⊤

− F̂⊤
)̂F + T−1PŨ(̂F − FH) + T−1PÛFH. □

roposition 4. With probability at least 1 − 20δ,

∥H − IK∥
2
F ≲

(
1
n2 +

p2

n1−2αT
+

1
Jκ

)
{1 +

√
ln(1/δ)}2{1 + n−1 ln(1/δ)}.

roof. Note that HK = n−1B⊤Φ⊤ΦB(T−1F⊤F̂ − H) + n−1B⊤Φ⊤ΦBH. By Lemma 9, with probability at least 1 − 20δ,

∥n−1B⊤Φ⊤ΦB(T−1F⊤F̂ − H)∥F ≲ {n−1
+ p(n1−2αT )−1/2

+ J−κ/2
}{1 +

√
ln(1/δ)}

√
1 + n−1 ln(1/δ).

n addition, by Conditions 3 and 5, ∥G⊤G − B⊤Φ⊤ΦB∥F ≲ nJ−κ/2. Therefore, with probability at least 1 − 20δ,

∥n−1G⊤GH − HK∥F ≲ {n−1
+ p(n1−2αT )−1/2

+ J−κ/2
}{1 +

√
ln(1/δ)}

√
1 + n−1 ln(1/δ).

This implies that with probability at least 1 − 20δ, H (up to an error term) is a matrix consisting of eigenvectors of
n−1G⊤G. By Condition 2, G⊤G is a diagonal matrix with distinct eigenvalues with probability 1. Thus, each eigenvalue is
associated with a unique unitary eigenvector up to a sign change and each eigenvector has a single non-zero entry. Thus,
with probability at least 1 − 20δ,

∥H − D∥F ≲ {n−1
+ p(n1−2αT )−1/2

+ J−κ/2
}{1 +

√
ln(1/δ)}

√
1 + n−1 ln(1/δ)

or some diagonal matrix D. By Lemma 10, with probability at least 1 − 20δ, for each k ∈ {1, . . . , K },

|λk(H) − η| ≲ {n−1
+ p(n1−2αT )−1/2

+ J−κ/2
}{1 +

√
ln(1/δ)}

√
1 + n−1 ln(1/δ),

here η is either 1 or −1. Without loss of generality , we can assume that all entries of H is positive (otherwise we can
ultiply the corresponding columns of F̂ and Ĝ by −1). Hence, with probability at least 1 − 20δ,

∥H − IK∥
2
F =

∑
i̸=j

h2
ij +

K∑
i=1

(hii − 1)2 ≲ {n−2
+ p2(n1−2αT )−1

+ J−κ
}{1 +

√
ln(1/δ)}2{1 + n−1 ln(1/δ)}. □

Finally, we present technical results for establishing Theorem 2 in Lemmas 11–14. Recall that V(f t ) = T−2∑T−1
t=−T+1(T−

|t|)Σ̂ f (t) as defined in Section 2.2.2, where Σ̂ f (s) = (T −s)−1∑T−s
t=1(f t − f̄ )(f t+s− f̄ )⊤ and Σ̂ f (−s) = (T −s)−1∑T

t=s(f t−s−
¯)(f t − f̄ )⊤ for s ≥ 0, respectively.

emma 11. Under Condition 2, with probability at least 1 − δ,

∥V (̂f t ) − V (f t) ∥F ≲
1
T

(
1

√
n

+
p

√
n1−2αT

+
1

Jκ/2

)
{1 +

√
ln(20/δ)}.

roof.
Note that V(f t ) = T−2∑T

t,s=1(f t − f̄ )(f s − f̄ )⊤ = T−2F⊤P1F, where P1 is the projection matrix onto (1, . . . , 1)⊤ ∈ RT .
hus, by Theorem 1

∥V (̂f t ) − V(f t )∥
2
F =

1
4 ∥̂FP1̂F

⊤
− FP1F⊤

∥
2
F ≲

1
2

(
1

+
p2

1−2α +
1
κ

)
{1 +

√
ln(20/δ)}2.
T T n n T J
17
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he conclusion follows. □

emma 12. Under Conditions 1, 2, and 7, ∥V(f t ) − Var(T−1∑T
t=1 f t )∥F ≲ T−2.

Proof. Recall that Var(T−1∑T
t=1 f t ) = T−2∑

t,s Cov(f t , f s) and V (f t) = T−2∑
t,s(f t − f̄ )(f s− f̄ )⊤. By Davydov’s inequality

1], for each k ∈ {1, . . . , K } and t, s ∈ {1, . . . , T }, |E(ftkfsk)2| ≲ {α(|t − s|)}1/r1{E(|ftk|2q1 )}1/q1{E(|fsk|2q2 )}1/q2 , for some
q1, q2 > 0 such that 1/r1 +1/q1 +1/q2 = 1, where α(·) is the α-mixing coefficient. By Condition 7, E(|ftk|q1 ) and E(|fsk′ |q2 )
exist for each t ∈ {1, . . . , T } and α(|t − s|) < exp(−C1|t − s|r1 ), so |E(ftkfsk)2| ≲ exp(−|t − s|). Thus, ∥ Cov(f t , f s)∥F ≲

xp(−|t − s|) and ∥V(f t ) − Var(T−1∑T
t=1 f t )∥F = ∥T−2∑

t,s Cov(f t , f s)∥F ≲ T−2∑T
t=1 exp(−t) ≲ T−2. □

Lemma 13. For each i ∈ {1, . . . , n}, with probability at least 1−δ, |V (̂uit ) − Var(T−1∑T
t=1 uit )| ≲ T−1

[{
√
nT }

−1
+n−3/2+α

+

T 1/2n3/2
}
−1p + {

√
n2T }

−1
{(T + p2) ln(n)}1/4 + n−1J−κ/2

]{1 +
√
ln(21/δ)}, where V (̂u1t ) is defined in Section 2.2.2.

roof. Denote Û = {̂uit}
n,T
i=1,t=1. Note that U − Û = (̂G − GH−1)(̂F⊤

− HF⊤) + GH−1 (̂F⊤
− HF⊤) + (̂G − GH−1)HF⊤. By

ropositions 1 and 3, with probability at least 1 − 20δ, T−1
∥Û − U∥

2
F ≲ {n−1

+ {n1−2αT }
−1p2 + T−1

√
(T + p2n2α) ln(n) +

−κ
}{1 + ln(1/δ)}2. Thus, similarly to the proof of Lemmas 11 and 12, with probability at least 1 − δ, |V (̂uit ) − V(uit )| ≲

nT )−1
[n−1/2

+ (n1−2αT )−1/2p + T−1/2
{(T + p2n2α) ln(n)}1/4 + J−κ/2

]{1 +
√
ln(20/δ)} and |V(uit ) − Var(T−1∑T

t=1 uit )| ≲
√
nT 2

}
−1

{1 +
√
ln(1/δ)}. The conclusion follows. □

Lemma 14. With probability at least 1 − δ,

∥V−1 (̂V − V)∥2 ≲

{√
J

n
+

1
√
n

+
1
T

+
p
√
J

√
n1−2αT

+
1

J (κ−1)/2

}
{1 + ln(21/δ)}.

roof. Recall that V = GVar(T−1∑T
t=1 f t )G

⊤
+ D, so λmin(V) ≥ λmin{GVar(T−1∑T

t=1 f t )G
⊤
} + λmin(D) ≳ T−1. Note that

V − V = G{V (̂f t ) − Var(T−1∑T
t=1 f t )}G

⊤
+ (̂G − G)V (̂f t )̂G

⊤
+ GV (̂f t )(̂G − G)⊤ + (D̂ − D). In addition, by the proof of

Theorem 2 in Fan et al. [15], ∥GV−1G∥2 = O(T ). Thus,

∥V−1 (̂V − V)∥2 ≤ ∥V (̂f t ) − Var(T−1
T∑

t=1

f t )∥F + 2∥V (̂f t )∥F∥̂G − G∥F + ∥D̂ − D∥F.

From Lemmas 11 and 12, with probability at least 1 − δ,V (̂f t ) − Var

(
1
T

T∑
t=1

f t

)
F

≲
1
T

(
1

√
n

+
1
T

+
p

√
n1−2αT

+
1

Jκ/2

)
{1 +

√
ln(21/δ)},

and

∥D̂ − D∥F ≲
1
T

[
1
T

+
1
n

+
p

n1−2αT 1/2 +
{(T + p2n2α) ln(n)}1/4

√
nT

+
1

√
nJκ/2

]
{1 +

√
ln(21/δ)}

hich leads to the desired assertion by Lemma 13 and Theorem 1. □

As a straightforward corollary to Lemma 14, with probability at least 1 − δ, ∥̂V − V∥V,F ≲ {n−1√J + n−1/2
+ T−1

+√
n1−2αT )−1p

√
J + J−(κ−1)/2

}
√
ln(1/δ), where ∥A∥S,F := n−1/2

∥S−1/2AS−1/2
∥F. If f t and ut are independent across t , then

∥̂V − V∥V,F ≲ {n−1√J + p
√
Jn−1/2+αT−1/2

+ J−(κ−1)/2
}
√
ln(1/δ), which mimics the optimal rate from Fan et al. [18] and

Wang and Fan [43].

8.3. Discussions on legitimate preliminary β̂
0

In this section, we will discuss some preliminary estimators β̂
0
that satisfy the condition of TOPE, i.e., ∥̂β

0
− β∥2 =

OP (n−1/2+αT−1/2) for α ∈ [0, 1/2) in Section 2.2.2. In fact, Conditions 1, 2, and 6 guarantee the existence of such a
reliminary β̂

0
. We start with an OLS estimator based on an average version of (3) over time,

β̂
OLS

= (Z⊤

0 Z0)−1Z⊤

0 ȳ. (14)

efore showing that β̂
OLS

is a legitimate preliminary in Proposition 5, we first collect some technical results in
Lemmas 15–17.

Lemma 15. Under Condition 7, vi(T ) = T−1/2∑T
t=1 uit is sub-exponential for each i ∈ {1, . . . , n}.
18
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P
T
i

f

s
f

L
P

a

(

L
c

P

P

c
o
g

roof. Note that E(|uit |
4+δ1 ) < ∞ for any t ∈ {1, . . . , T }, i ∈ {1, . . . , n} and δ1 > 0 and

∑
∞

T=0 α(T )1/3 <
∑

∞

t=0 exp(−C
r1/3) < ∞. By Theorem 4 in Tikhomirov [42], |Pr{vi(T ) < s} − Pr(Wi < s)| ≤ C1T−1/2(1 + |s|)−4

{ln(T )}3 for each
∈ {1, . . . , n} and any s, where W ∼ N(0, σ 2

i ) and σ 2
i = E(u2

i1) + 2
∑

∞

t=2 E(ui1uit ). Thus, we have

Pr{|vi(T )| > s} = Pr(|T−1/2
T∑

t=1

uit | > s) ≤ 2 exp{−s2/(2σ 2
i )} + C1T−1/2(1 + s)−4

{ln(T )}3

or any T and constants C1 > 0. Furthermore, for any k ∈ {1, 2, . . .},

E{|vi(T )|k} =

∫ 1

0
Pr{|vi(T )| > s1/k}ds +

∫
∞

1
Pr{|vi(T )| > s1/k}ds

≤ 1 + 2(2σ 2
i )

k/2kΓ (k/2) + C1πT−1/2
{ln(T )}3k!,

o that E [exp{svi(T )}] ≤ 1+
∑

∞

k=2 |s|k E{|vi(T )|k}/k! ≲ exp{2σ 2
i s

2
+C1πT−1/2

{ln(T )}3} for |s| < min{1/σi, 1}. The assertion
ollows from the definition of sub-exponential distributions. □

emma 16. Under Conditions 1 and 7, for any s > 0, p × n matrix A and σ 2
= maxi σ 2

i with σ 2
i defined in Lemma 15,

r{∥A
∑T

t=1 ut/T∥2 > s∥A∥F/
√
T } < 2p exp{−s2/(2σ 2)}.

Proof. Write A = (a1, . . . , ap)⊤, where a1, . . . , ap are n-dimensional vectors. For each m ∈ {1, . . . , p} and w ≥ 0,
by Conditions 1, 2, and 7, Lemma 15, and Corollary 4 in Samson [36], Pr(|a⊤

m
∑T

t=1 ut/T | ≥ s) = Pr(|
∑n

i=1 amivi(T )| ≥

s
√
T ) ≤ 2 exp{−s2T/(2σ 2

∥am∥
2
2)}. Hence, Pr{|a

⊤
m
∑T

t=1 ut/T | > ∥am∥2s/
√
T } ≤ 2 exp{−s2/(2σ 2)} for any m ∈ {1, . . . , p}

nd Pr{∥A
∑T

t=1 ut/T∥2 > ∥A∥Fs/
√
T } ≤ 2p exp{−s2/(2σ 2)}. □

Conclusion in Lemma 16 remains valid for correlated {uit}
T
t=1 over i. In fact, if one assumes cross-sectional dependence

of {uit} over i by letting maxj≤n
∑n

i=1 |E(uitujt )| < C2, maxi≤n
∑n

k=1
∑n

m=1
∑T

t=1
∑T

s=1 |cov(uitukt , uisums)| < C2, and
nT )−1∑n

i=1
∑n

j=1
∑T

t=1
∑T

s=1 |E(uitujs)| < C2 for some C2 > 0, Corollary 4 in Samson [36] still applies.

emma 17. For p × K matrix A, under Conditions 1 and 7, Pr{∥A
∑T

t=1 f t/T∥2 > s∥A∥F/
√
T } ≤ 2pC3 exp(−C4s2/2) for

onstants C3, C4 > 0.

roof. The proof is similar to that of Lemma 16 and omitted here. □

Proposition 5. Under Conditions 1, 2, and 6, with probability at least 1 − δ,

∥̂β
OLS

− β∥
2
2 ≲

p2

n1−2αT
ln(1/δ).

Proof. Combining (14) and ȳ = Z⊤

0 β + GT−1∑T
t=1 f t + T−1∑T

t=1 ut , we have β̂
OLS

= β + (Z⊤

0 Z0)−1Z⊤

0 G(T
−1∑T

t=1 f t ) +

(Z⊤

0 Z0)−1Z⊤

0 (T
−1∑T

t=1 ut ) ≡ β + (I) + (II), where (I) = (Z⊤

0 Z0)−1Z⊤

0 G(T
−1∑T

t=1 f t ) and (II) = (Z⊤

0 Z0)−1Z⊤

0 (T
−1∑T

t=1 ut ). By Condition 6, with probability 1, ∥PZG∥
2
F ≲ n2α . In addition, eigenvalues of n−1Z⊤

0 Z0 is bounded away
from 0 and infinity almost surely by Condition 6(i). Thus, eigenvalues of (n−1Z⊤

0 Z0)−1 are bounded away from 0 and
infinity almost surely. That is, ∥(Z⊤

0 Z0)−1Z⊤

0 ∥
2
F = tr{(Z⊤

0 Z0)−1
} ≲ n−1p, and thus, ∥(Z⊤

0 Z0)−1Z⊤

0 G∥
2
F ≤ ∥(Z⊤

0 Z0)−1Z⊤

0 ∥
2
F

∥PZG∥
2
F ≲ n−1+2αp2 by Cauchy–Schwarz inequality. In light of Lemma 17, we have Pr{∥(I)∥2 > sT−1/2

∥(Z⊤

0 Z0)−1

Z⊤

0 G∥F} < C1 exp(−C2s2). By Lemma 16, it holds Pr{∥(II)∥2 > sT−1/2
∥(Z⊤

0 Z0)−1Z⊤

0 ∥F} < C1 exp(−C2s2). Thus, we have
r[∥̂β

OLS
− β∥2 > sT−1/2

{∥(Z⊤

0 Z0)−1Z⊤

0 G∥F + ∥(Z⊤

0 Z0)−1Z⊤

0 ∥F}] < 2C1 exp(−C2s2). □

Proposition 5 implies that β̂
OLS

is a legitimate preliminary for TOPE. Alternatively, one may consider the following
hoice on β̂

0
. Rewrite g(xi) as g(xi) = Az i· + g0(xi), where A is a K × p matrix and z i· = T−1∑T

t=1 z it is the average of z it
ver time. Then, model (1) can be rewritten as yit = z⊤

it β+ z⊤

i· ηt + g0(xi)⊤f t + uit , where ηt = A⊤f t . Under Condition 1,
(x )⊤f +u is uncorrelated with the regressors z . Hence, we can use the following random-effects GLS [37] to estimate
0 i t it it
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(
β, η1, . . . , ηT ) by (̂β
⊤
, η̂⊤

1 , . . . , η̂⊤

T )
⊤

= (W⊤Σ̂
−1
R W)−1W⊤Σ̂

−1
R y, where y = (y11, . . . , yn1, . . . , y1T , . . . , ynT )⊤,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z⊤

11 z⊤

1·
...

...

z⊤

n1 z⊤
n·

...
. . .

z⊤

1T z⊤

1·
...

...

z⊤

nT z⊤
n·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and Σ̂ R is an estimator of Σ R, the covariance matrix of v = (g0(x1)⊤f 1 + u11, . . . , g0(xn)⊤f 1 + un1, . . . , g0(x1)⊤f T +

u1T , . . . , g0(xn)⊤f T + unT )⊤. Under Condition 1, Σ R is a block diagonal matrix diag(Σ R,1, . . . ,Σ R,T ) with Σ R,t =

E{(g0(x1), . . . , g0(xn))⊤(g0(x1), . . . , g0(xn))} + σ 2
u In for each t ∈ {1, . . . , T }, where var(uit ) = σ 2

u . There are a variety of
estimators of Σ̂ R,1. For instance, Bai [3] and Schmidheiny and Basel [37] estimated Σ̂ R,1 by first estimating v, which is
achieved via the OLS estimator. This is the so-called feasible GLS estimator [3,26,27] and can be extended to the iterative
feasible GLS estimator [3,34]. That is, we can update Σ̂

new
R,1 using (̂β

old
, η̂old1 , . . . , η̂oldT ) from the previous step and iteratively

update (̂β
new

, η̂new1 , . . . , η̂newT ) using the update Σ̂
new
R,1 . The update (̂β

new
, η̂new1 , . . . , η̂newT ) admits the following shrinkage

of errors.

Proposition 6 (Lemma 1 in Phillips [34]). Under Conditions C1 to C3 in Phillips [34], if T ≥ p + 1 and A0 = E(W⊤Σ−1
R W) is

nonsingular,
√
n{((̂β

new
)
⊤

, (̂ηnew1 )⊤, . . . , (̂ηnewT )⊤)
⊤

− (β⊤, η⊤

1 , . . . , η⊤

T )
⊤
} = 2(T −1)−1√nT {((̂β

old
)
⊤

, (̂ηold1 )
⊤
, . . . , (̂ηoldT )

⊤
)
⊤

−

(β⊤, η⊤

1 , . . . , η⊤

T )
⊤
}ψA−1

0 ψ + oP (1), where ψ is given in Phillips [34].

Together along with ∥̂β − β∥2 ≤ ∥(̂β
⊤
, η̂⊤

1 , . . . , η̂⊤

T )
⊤

− (β⊤, η⊤

1 , . . . , η⊤

T )
⊤
∥2, Proposition 6 implies that the iterative

feasible GLS estimator improves as the iteration grows. Thus, upon some iterations, the iterative feasible GLS estimator
also provide a legitimate preliminary estimator for TOPE.
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