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temporal data with subject-specific heteroscedasticity. Formally, the model employs
latent semiparametric factors to simultaneously account for the subject-specific het-
eroscedasticity and the contemporaneous and/or serial correlations. The subject-specific
heteroscedasticity is modeled as the product of the unobserved factor process and sub-
ject’s covariate effect, which is further characterized via additive models. For estimation,
we propose a two-step procedure. First, the latent factor process and nonparametric
loading are recovered through projection-based methods, and following, we estimate the
regression components by approaches motivated from the generalized least squares. By
scrupulously examining the non-asymptotic rates for recovering the factor process and
its loading, we show the consistency and efficiency of estimated regression coefficients
in the absence of prior knowledge of latent factor process and subject’s covariate effect.
The statistical guarantees remain valid even for finite time points that makes our method
particularly appealing when the subjects significantly outnumber the observation time
points. Using comprehensive simulations, we demonstrate the finite sample performance
of our method, which corroborates the theoretical findings. Finally, we apply our method
to a data set of air quality and energy consumption collected at 129 monitoring sites in
the United States in 2015.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Jointly modeling a large and possibly divergent number of temporally evolving subjects arise ubiquitously in genomics,

proteomics, environmental science, econometrics, clinical studies, and neuroscience. An extensively used statistical model
for explaining the interactions and co-movements among the temporally evolving subjects is y;; = z; B+e, i€
{1,....n}, t € {1,..., T}, where y; is the observation for the ith subject at time point ¢, 8 is a p-dimensional regression
coefficient, z;; is a p-dimensional covariate vector that might evolve in time, and (ey, ..., &y)' iS a vector time series
with possible contemporaneous correlations. Here, the number of subjects n is allowed to diverge much faster than the
number of time points T. To name a few applications, y;; can model the expression level of the ith gene at time point ¢t in
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a time course sequencing experiment, see, e.g., [ 10,40], the concentration of certain air pollutant in county i at day t, see,
e.g., [29], and the measurement from electroencephalograms at brain location i and time point ¢ in a motor-visual task
experiment, see, e.g., [33]. As n rapidly grows, heteroscedasticity across subjects becomes inevitable and brings substantial
challenges to modeling, estimation, and inference [14,46]. First, ignoring the subject-specific heteroscedasticity leads to
inefficient estimation and inference on the regression coefficient g. In addition, in the presence of contemporaneous and
serial correlations, when n rapidly outnumbers T the high dimensionality of data makes it even more difficult to accurately
estimate the covariance of €;, which compromises the estimation efficiency of g.

In this paper, inspired by the approximate factor structure and its variants [11,26,38,44], we introduce a flexible data-
driven model, where the heteroscedasticity across subjects and serial dependence of ¢; are assumed to arise from a
product of the subject-specific effect and some latent stationary process. Specifically, motivated by Connor and Linton
[13], Daye et al. [14], and Fan et al. [19], with additional time invariant covariates x;, we model the subject-specific effect
by g(x;) = (g1(x;), .. ., gk(x;))T with nonparametric functions g1, . . ., gk. For instance, x; could be the genetic information
in a clinical study or the market capitalization in the financial asset allocation. Then, consider a K-dimensional zero-mean
latent process f;, our semiparametric latent factor model with subject-specific heteroscedasticity is

Yie =2 B+ 8x) " f, + e, (1)

where the residual process u; is independent of f,.. Analogous to the traditional factor models, g(x;) and f, can be viewed
as the loading and factor, respectively. Particularly, g(x;) models the heteroscedasticity across subjects and, together with
f., retains the cross-sectional dependence while f, and u;; characterize the serial dependence. Model (1) features a large
number of widely used models. For example, when f; is degenerate, (1) reduces to the partially linear additive models
[41]; when g(+) is known and f; is Gaussian, (1) is the traditional linear mixed model; with i replaced by one-dimensional
spatial locations, (1) is analogous to the spatio-temporal model [31]; and when g(-) reduces to constants, (1) is equivalent
to the traditional factor models [2,11] or the panel data model with unobservable interactive effects [3,4]. It is worth
mentioning that, focusing on the high-dimensional factor analysis, Connor and Linton [13] and Fan et al. [19] consider y;
in addition to g(x;) in the loading to account for that cannot be explained by x;. In contrast, one of our major goals is to
efficiently estimate § in the presence of subject-specific heteroscedasticity and contemporaneous and serial correlations
for any n and T. To that end, it requires recovering f, and g(x;) with satisfactory rates as well as accurate estimation of
the long run variance of residues, while from Theorem 4.1 in Fan et al. [19] and Theorem 1, the desired rate for estimating
the long run variance of residues will not be satisfied in the presence of yj, unless more stringent conditions on n, T and
yir's are imposed.

Like the partially linear model and the linear mixed model, regardless of its consistency, the ordinary least squares
(OLS) estimator of B in (1) is inefficient without taking into account the dependence. Therefore, a careful estimation of
the unobserved g(x;) and f, are needed to guarantee some sort of efficiency in both estimation and inference on 8. In the
literature, there are scatter approaches to estimate f, and its loadings for models similar to (1). For instance, Connor and
Linton [13] employed a kernel method to estimate f; given x; with finite values, and Connor et al. [12] extended such
estimates for general x;. Additionally, the consistency on estimated loading and latent factor shed light on estimating the
large covariance matrix under assumptions of factor structures [18]. Motivated from these pioneering works, we propose
a two-stage projection-based estimator of B, g(x;), and f, in (1). Roughly speaking, adopting a projection-based principal

. ) . =0 L -0 .
component type estimator [2,19], we first estimate g(x;) and f, from y; — zg,B for some preliminary . Using the
estimated g(x;) and f, from the first-stage, we then estimate B with a generalized least squares (GLS) type approach.

Theoretically, the asymptotic properties such as consistency on estimating g(x;) and f, are not sufficient to guarantee
the consistency and, especially the efficiency, of the second-stage estimator of B due to the lack of the finite sample
characterization of errors from the first-stage [6]. In fact, it is known that a naive plug-in GLS type estimator does not
necessarily guarantee the efficiency. To circumvent these challenges, a major contribution of this paper is a careful
non-asymptotic analysis on the projection-based estimator of g(x;) and f;, by which we show that the consistency
on estimating g(x;) and f, is free from restrictions on the relationship between n and T. With the exponential type
concentration inequalities on estimating g(x;) and f,, we are able to obtain the finite sample deviation of the proposed
two-stage estimator of 8 from the oracle GLS that enjoys full access to g(x;) and f,. These nontrivial results show that
our estimator of B is overwhelmingly close to the oracle GLS, which establishes the efficiency of our estimator of §. In
addition, we show the asymptotic normality of our estimator of 8 for drawing inference. The established concentration
results for recovering g(x;) and f, (Theorem 1) are of independent interest for extending the projection-based principal
component analysis (PCA) to other high-dimensional problems such as modeling temporally evolving tensor data or the
segmentation of high-dimensional time series.

After introducing our model with identification conditions in Section 2.1, we detail the two-stage projection-based
estimation of the loading, latent factor process, and regression coefficients in Section 2.2. We carry out the non-asymptotic
analysis of our estimator and explore its efficiency in Section 3. Section 4 presents the inference. Sections 5 and 6 report
simulation studies and an application on air quality and energy consumption data in the United States to demonstrate our
method. After discussing potential extensions of our method in Section 7, we conclude the paper with technical details in
Section 8. Extra numerical results and a detailed discussion on the determination of unknown dimension K are deferred
to the supplement.
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2. Methodology
2.1. A semiparametric latent factor model

Consider an n x 1 vector of temporally evolving subjects y, = (Y1, ...,Yn:)' along with p-dimensional predictors
z; and d-dimensional time invariant covariates x; associated with the ith subject. Our objective is to study the long run
movement of y; with respect to z;; and model the dependence, over time, of each component of y, and across components,
where the heteroscedasticity across subjects is accounted by x;. In our baseline formulation, each subject is modeled
by a multi-factor linear model y;; = z;B + ;¢ [8] fori € {1,...,n} and t € {1,...,T}, where B = (B1,...,Bp)"
is a p-dimensional vector of regression coefficients common across subjects. As discussed in Section 1, we adopt the
semiparametric factor model &; = g(x;)'f, + u;;, where the vector loading function g(x;) : RY — R accounts for
the subject-specific heteroscedasticity and contemporaneous dependence and the K-dimensional latent factor process
f: models the serial dependence. We further model gi(x;) in an additive fashion, i.e., gi(x;) = Z(Z:]gu(xiz). without
losing flexibility yet providing concision in techniques [21]. Function g offers structure that is flexible enough to allow
dependence between {zj }i<nr<r and {X;}i<n, which has also been noted for other high-dimensional heteroscedastic
regression models [14].

For each t, denote Z; = (z1¢, ..., Zn)", Uy = (Uye, ..., Une) ', and the n x K matrix of gi(x;) by G = (g(x1), ..., g(x))".
A more compact form of (1) reads
Vi =ZB+Gf +u. (2)

Similar to the traditional factor models, we impose the following conditions to control the rank and scale of latent loading
function and factor process for model identification.

Condition 1. The rank of G is K. For each ¢, fy, ..., fxr are uncorrelated with each other and have zero mean and
unit variance; uy, ..., Up; are uncorrelated with each other and have zero mean and finite variances; Z;, f, and u, are
uncorrelated from each other.

In addition, we assume that f,, u; are independent from x; so that Cov(y;, yjs|xi, X)) = gx)" Cov(f,.fs)g(x;) +
Cov(uy, ujs) for each i,j, t,s. Our model reaches beyond the existing literature [4,8] in the way that the inter- and
intra-temporal dependence as well as the subject-specific heteroscedasticity are modeled simultaneously by f; and g.
Condition 1 is similar to conditions following (1.1) in Chamberlain and Rothschild [11] and Condition (C1) in Lam and
Yao [26] (with diagonal X', and integer k herein). It guarantees the identifiability of the column space of G. To further
identify G from its column space, consider T potentially dependent replicates Y = (y,...,¥yr) and Z = (Z4, ..., Z7). Let
F=(f....fr)T and U = (uy, ..., ur), (2) reads

Y =71 B)+GF' +U (3)

where ® is the Kronecker product. The following condition assures the identification of G.

Condition 2. Almost surely, T~'F'F = I, and G'G is diagonal with distinct entries.

Same as the PC1 condition of Bai and Ng [5], the first part of Condition 2 has been commonly assumed in factor analysis
[20] and it is compatible with Condition 1 as T~'F'F is an estimator of Var(f,). Under Condition 2, we can identify GH
and FH for some K x K orthogonal matrix H with H = I + o(min(n, T)~"), while the distinction among entries of G' G
further prevents rotational indeterminacy.

In contrast to the approximate factor model that allows cross-sectional dependence in u;, the assumption on u;; over
i in Condition 1 is designated for efficiently estimating 8 without any restrictions on n and T. In fact, in the absence of
the modulating component in (3), mild cross-sectional dependence of u; will not affect the estimation of G and F. On the
other hand, without Condition 1 on u;, a consistent estimate of Cov(u,) is required for efficiently estimating 8. This will
demand conditions on n and T, such as /nIn(n) = o(T) [18,43], which is more stringent compared to those in Section 3.

2.2. Two-stage projection-based estimation

2.2.1. Flrst stage: prolectlon based estimator of G an lio -
LetY=Y— (It ® B ) and U=U+ Z{Ir ® (B — B )} for some preliminary §, (3) can be written as

Y=GF +U. (4)

A naive approach is to estimate G and F using PCA. That is, F/f T are estimated using elgenvectors corresponding to the

first K largest eigenvalues of the T x T matrix YTY and G is estimated by right projecting T~ 1Y onto the estimated F. This
method, however, takes into no account for the functional structure of g or the smooth variation of {yn}l , from (4) against
x; at each t. Fan et al. [19] proposed a projected principal component approach by smoothing {37” _, as a function of ¥
at each t before implementing the aforementioned principal component estimation. Motivated by thls we replace Y by
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PY for some projection P onto a linear space spanned by a set of basis functions. Not only leveraging the smoothness, but
P can also be constructed to be orthogonal to errors U so that the subsequent PCA procedure is approximately errorless.
To begin with, let H be a linear space spanned by a sequence of orthonormal basis functions {¢o(x) = 1, ¢1(x),
@2(x), ... ¢;(x)}, where the number of basis functions ] diverges in n. For each k € {1,...,K},i € {1,...,n}, and
£ e {1,...,d}, we have g (xi) = boke + Z b ke@j(Xie) + Rie(Xie), where {bj}j<; are the coefficients and Ry,
is the approx1mat10n or projection error. Assume ]d + 1 < n so that the coefficients are estimable. Denote b, =
(bok> b1k, - - - b],d,.. yDikds -, byka)" foreach k € {1,...,K} and i € {1,...,n}, where bOk = \[Z( 1 boke, and
o; = (1/J], o1( (Xi1), -, y(xin), - Pa(Xia), - . #y(xig))" . Then, it admits gk(xl) = ¢/ b + Zz 1Rkl(x1() and (4 ) can
be rewritten as Y = (@B + R)FT + U where b = (gol,...,(pn) = (bq,...,bg), and R = {Ze 1ng Xrl)}, L=
Then, we let P = &($"#)"'& ' and apply the PCA procedure to PY That is, we estimate F by letting F//T be the
elgenvectors corresponding to the first K largest eigenvalues of Y PY and estimate G by = T~'PYF. Moreover, we let
=(®"®) ' YF.

2.2.2. Second-stage: GLS-type estimator of B

First, from (3), consider y = ZJB + GT' Y _,f. + T~'Y|_,u;, where Zo = T"'Y/_ Z, andy = T 'Y, y..
Conditional on Z;'s and x;'s, Condition 1 implies that the variance of n x 1 vector y is

1 T
V = GVar (T gft> G' +D, (5)

where the n x n diagonal matrix D has diagonal entries Var(T ! ZtT=1 Uge), ..., Var(T™! ZL] Une ). Then, (5) naturally
leads to the oracle GLS-type estimate of S,

B =25V 'Zo) 25 V7. (6)
With the full knowledge on G and F in (3), V in (6) can be estimated as follows. Let f = T~! ZtT 1f¢, it is known
that Var(T 1Zt ) =T ZZt_—TJr] |t|)2f( ), where X(s) = Cov(f,,f.) and Z'f( s) = Cov(f,_s.f,) can
be estimated by Z‘f( ) = (T —5s) Zt e - (ftﬂ -7 and Z‘f( s) = (T —s)” Zt_s(ft s —f)(ft )T for
s > 0, respectively. Naturally, V(f;) = T~ 2Zr:—T+1 — |t|)2f( ) estimates Var(T 1Zt=1ft in (5), and similarly
V(u;) estimates Var(T ! ZrTzl u;) for eachi € {1, ..., n} and the n x n diagonal matrix with diagonals V(uy,), ..., V(un)

estimates D. _

Though the oracle GLS estimator B is not accessible in practice as it depends on the full knowledge on f, and u, it
suggests a refined estimator of 8 by replacing G and F with G and Fin (6), respectively. With F from the flrst stage, we
can approximate V(f;) and V(u; ) in (T) by V(ft) and V(1) respectively, where f[ is the tth row of F and u; is the tth

column of corresponding U =Y — GF . In summary, we can estimate V by

V=G6V{F,)G +D. (7)
where D is the n x n diagonal matrix with diagonals V(iiy,), ..., V(i) and we arrive at the TwO-stage Projection-based

Estimator (TOPE) of 8, B = (ZJ"TIZ()T]ZOT,\TI}_'. The procedure is summarized in Algorithm 1 below.

Algorithm 1. TOPE (Two-stage projection-based estimator)

Input: Data {(y;, x;, Z,'r)},f’glh], predetermined K, and matrix of basis functions &.
Procedure:
I -0 ~ -~0
1. For preliminary 8, compute Y =Y — Z(I; ® ).
2. First-stage: estimate F by letting the columns of ’F\/ﬁ be the eigenvectors corresponding to the first K largest eigenvalues of
Y'PY and estimate G by G= Pﬁ/T.
3. Second-stage: compute V = Gv(ﬁ )GT + D as in (7), where f[ is the tth row of F and 1, is the tth column of ﬁ, and calculate
TOPE B.

Output: F, G, B, and V.

The choice of preliminary ﬁo for TOPE is quite flexible. Theoretically, the consistency and efficiency of TOPE are
guaranteed whenever ||]§0 — Blla = Op(n~12*+*T=1/2) for o € [0, 1/2), which is not difficult to acquire. Some concrete
choices of ﬁo are discussed in depth in Section 8.3. Alternative to TOPE, one can first project Y using (I, — P), where
P= &(P' ) 'd. This leads to (I, —P)Y = (I, —P)Z(I; ® B)+RF " +(I, —P)U, which is similar to the procedure of profile
likelihood [16] or restricted maximum likelihood [24]. However, the validity of this approach relies on the assumption
that Z and @ are linearly independent, which is_more restricted than that of TOPE. Another seemingly straightforward
approach is to project Y using (I, — Pz) where P; = Z(Z7Z)~'Z" and perform PCA on (I, — P)Y ~ (I, — Pz)GE" to
estimate the loading and latent process. Though such an estimate of F remains consistent, as noted by Wang et al. [45],
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this approach only identifies the part of the latent structure that is orthogonal to Z. That is, one can only obtain a consistent
estimate of (I, — Pz)G, and in particular G 4+ PzA will also be a valid estimator for arbitrary n x K matrix A.

3. Theoretical properties of TOPE
3.1. Preliminaries
We impose the following conditions on our model, in addition to Condition 1.

Condition 3. Foranyd > 0, 1—n""In(1/8) < Amin(n"'GTG) < Amax(n~'GTG) < 14+ n~'In(1/8) with probability at least
1-56.

Condition 4. The density of x; € X9, where X C R is compact, is bounded away from zero and infinity.

Condition 5 (Accuracy of the sieve approximation).

(i) For each ¢ € {1,...,d}, k € {1,...,K}, the loading function g.(-) belongs to a Hoélder class ¢ = {g
1g(s) — g(t)| < L|s — t|”} for some L > 0. ,
(ii) For k = 2(r + ) = 4, sup,cx [8ke(x) — Y1y brjedy(®)|” <J7.
(iii) It admits maxy ¢ by ;, < oo.

Condition 3 is similar to the pervasive condition on loading matrix in the traditional factor model [38]. Since GG' and
G'G have their first K largest eigenvalues in common, the K largest eigenvalues of G' G also diverge in n. This condition
ensures that x; has non-vanishing explanatory power on loading so that G'G has spiked eigenvalues. Condition 4 is
standard in the literature of nonparametric and semiparametric statistics [22,23,39]. The accuracy of sieve approximation
in Condition 5 can be obtained by common basis such as polynomial or B-splines [19,30].

Condition 6. For eachi € {1,...,n}, z; is weakly stationary. Almost surely, for each T we have,

(i) eigenvalues of n~'Z; Zo are bounded away from 0 and infinity;
(ii) ||PzGl|lr = O(n*) for some « € [0, 1/2), where P; is the projection matrix on Z.

Condition 6(i) is similar to the standard condition on the design matrix in linear model that ZJ Zo/n converges in n.
Similar to conditions for semiparametric models in Robinson [35], (ii) guarantees identifications between the parametric
and nonparametric parts in our model. Particularly, it allows consistent identification of the regression component without
enforcing independence between z;; and x;. For instance, in Section 8.3, it is employed to show the existence of a legitimate
preliminary estimator g8 .

At last, we impose some widely-used conditions [2,38] regarding the serial dependence and stationarity on {f, u;} as
well as their tail behavior. Denote }‘EOO and 77° the o-algebra generated by {(f,, u;) : ¢ <0} and {(f,, u;) : t > T}, and
recall the o-mixing coefficient as a(T) = SUPc 0 peree |Pr(A) Pr(B) — Pr(A N B)|.

Condition 7 (Serial dependence, stationarity, and tail behavior).

(i) {u,f }i<r are strictly stationary with zero mean and finite long run variances.
(ii) There exist r;, C; > 0 such that for all T > 0, «(T) < exp(—C{T™).
(iii) There exist r,r3 > 1 with r;" + ;' +r;' > 1and by, b, > 0 such that for each i,k,t and any s > 0,
Pr(fuie| > s) < exp{—(s/b1)"?} and Pr(|fu| > s) < exp{—(s/b2)"}.

3.2. Statistical guarantees

To establish the statistical guarantees of TOPE, we first perform a non-asymptotic analysis of Fand E then obtain the
deviation between B and the GLS estimator 8 to study the efficiency of TOPE.

Theorem 1. Suppose that Conditions 1, 2, and 3-7 hold. Assume Jd + 1 < n and ] = o(n'/>=%) for o € [0, 1/2). With
probability at least 1 — § for any § > 0, we have

L 1)mmwx

pizar 1

! G-G|2< i ] Py

n” - “JF ~\ 2 + nl—2aT n2—4aT2 +JK71
pY pY

ni=2«T | p2-4aT2 +]"_1

L
T F~A\p

) {In(1/8))?,

|@_m@5<#+- )umuwﬁ
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Fig. 1. A schematic illustration about different estimators to 8 in (1), where B is the TOPE estimator and ’B is the oracle GLS estimator with full
knowledge on G and F.

In contrast to the known asymptotic properties of F and G for traditional and semiparametric factor models with
d1vergent nand T [5,19], Theorem 1 provides finite sample characterization of Fand G. Given a finite p, the rates obtained
in Theorem 1 agree with the asymptotic results in Fan et al. [19]. Also, whenever p = o(n'/2=T1/2]=1/2) F and G are
consistent in mean squared errors. Especially, for finite p, this consistency does not require T diverging to infinity which
enables our method to be used for modeling a large number of short time series in practice. More importantly, results in
Theorem 1 make it possible to establish the following finite sample results on both B and its covariance with respect to
the GLS estimator f as defined in (6).

Theorem 2. Under conditions in Theorem 1, with probability at least 1 — §,

1 [, 1 pVJ 1
1B~ ﬂllzwr{—+7+ +\/ﬁ+jk1 } In(1/3),

where ﬁ is the oracle GLS estimator of f with full knowledge of G and F as in Section 2.2.2. In addition,

pPonry pl?nz,r,]
nT (nT)3/2’

where ¥1; = N2 g 12 4§ T-1 4 pp12p=1/24e =172 | j=lke=1)/2

The nontrivial finite sample results in Theorem 2 imply that the deviation between B and E is due to: (i) the errors
in estimating G with rate n=/2T~1/2(n=1J1/2 4 pj1/2p~1/24eT=1/2 4 j=W=1/2) (jj) the errors in estimating F with rate
n~V2T=Y2(n=1/2 4 T=1 4 pn~1/2+eT=1/2 4 =%/2) and (iii) the deviation between V(f;) and Var(T~' 3"[_, f,) with rate

~1/27-3/2.
n T™

Let [|Alls := n~'/2||S"/*AS~"/2||, for any positive definite S and define the class of estimators to B with respect to

working covariance V; by &; = {8, = (ZTV’1ZO) lZTV y : IVe = Vllv £ ¢}, where the oracle GLS estimator g € ®,

TOPE B € Oy, , by Theorem 1, and OLS estimator ﬁOLS € Ope by Proposition 5. From the proof of Theorem 2, ||,B§ ﬁ”z =
0p(n~"2T=Y2¢) for any B, € ©,. Thus, ||B, — Blla = 0,(n~'2T=12)if ¢ = 0(1) and I8, — Blla = o,(n~12T-172) if
¢ = o(1). In the presence of heteroscedasticity across subjectg and/or autocorrelation, the oracle GLS estlmator is known
to be efficient in general [6]. Particularly, the GLS estimator B is unbiased and efficient in ®, given the full information
on G and Xy(t) foreacht e {1— — 1}. Therefore, Theorem 2 implies that TOPE g is asymptotically unbiased, and
given pd, r; = o(1), the non- asymptotlc dlfference between the variances of B and ﬂ is bounded by a rate smaller than
(nT)~!, which is the rate of Var(f8). That is, the TOPE ﬂ is asymptotically efficient in ©,. This discussion is visualized in
Fig. 1.

[Var(B) — var(®)], <

Remark 1. Though Theorems 1 and 2 are implicitly related to a legitimate preliminary estimator ﬁo via «, the existence
of such a ﬁo is easily guaranteed under Conditions 1, 2, and 6. In fact, as shown in Proposition 5, the OLS estimator
ﬁOLS automatically satisfies ||//§OLS — BIl = O,(n~2+*T=Y2) and is therefore legitimate. Technically, ﬁo contributes to
Theorem 2 through 9, 1 ;, more specifically via py/n=1+2¢T~1]. For a better/;éO with decreasing «, its contribution through
Up,r, diminishes and achieves pv/n=1/2T—1 when o ~ 0. On the contrary, when « = 1/2 — 2¢ for any small ¢ > 0,

Onry = o(n=“=D 4 pn=¢T~Y2) and does not alter the conclusion in Theorem 2. Hence, measured by «, B° only affects
on how ¥, r; = o(1) converges to zero as n and T increase, and it does not alter the conclusion about the efficiency of
TOPE B as long as « € [0, 1/2). These are also demonstrated by numerical studies in Section A.4 in the supplement.
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As a final remark, Theorem 3 establishes results analogous to Theorem 1 in the max norm and shares common
observations with Wang and Fan [43] and Barigozzi et al. [7].

Theorem 3. For model (3), under the same conditions of Theorem 1, with probability at least 1 — 6, ||/I':— Fllimax < {072 +
pA(n'T)~ 2 4 J=2HIn(T)}*/" In(1/5), G — Gllmax < (T + p*n®)In(m)T =2}/ 4 n=1/2 4 p2(n'=*T) =12 + ] */>]In(1/8),
and |[B — Bllmax < [{(T + p*n®) In(n)n~'T~2}1/2 4 n=1/2 4 p2(n'=*T)~V/% 4 J7*/*]In(1/3).

4. TOPE-based inference

The following theorem provides inference on 8 based on TOPE. In general, the expectation with respect to {Z;, x;} is
unknown as their distribution is not accessible, therefore the asymptotic distribution of B conditional on {Z, x;} in (2)
below is more practical.

Theorem 4. Under conditions in Theorem 1, we have

(i) with 3 = Ez, x{(Z]V"'Z)"1}, V2B — B) > N(0.1,);
(i) conditional on Z; and x;, (ZJ V~'Zo)"*(B — B) Y N(O, I).

Replacing V in Theorem 4 (ii) by V= Ev(ft )ET + D from (7), for any estimable C8 with g x p matrix C and q < p,
CSc = {CB: (CB—CB)T(C(Z,V 76y €T} 1(CB—CB) < XZ1_,) defines a 100(1—n)% confidence set, where x2,_, is the
100(1—n)% quantile of qu distribution. When rows of C are the natural basis of RP, CS¢ provides a confidence set of a subset

of B. Alternatively, denote b}z the ¢th diagonal entry of (z{v“zo)—l for each ¢ € {1, ..., p}, a 100(1 — )% confidence
interval for the ¢th entry of Bis Cl, = [Be—o, @~ '(1—1/2), Be+0: @~ '(1—n/2)], where &(-) is the cumulative distribution
function of standard normal distribution. Moreover, Theorem 4 implies that Pr( ||B—ﬁ||00 > ¢) < pexp(—e?p~'o~2), where
o2 can be estimated by the minimum diagonal of (ZJ Gilzo)”. Thus, it also leads to a uniform confidence set for 8 at
level 100(1 — )%, denoted as ClI' = {B : |Be — B¢l < o/pIn(p/n), £ €{1,...,p}}.

To draw inference on the explaining power of covariates x; on the dependence structure of data, Fan et al. [19]
proposed a semiparametric specification testing statistic Sg¢ = tr{(FT?Tﬁ)‘liTT{TPﬁ}, where F/ VT are the eigenvectors
corresponding to the K largest eigenvalues of Y'Y. In addition to Condition 3-7, assuming T%/3 = o(n), n{In(n)}* = o(T?),
J = o(min{n'/2~%, \/T}), and max{T/n, n} = o(J*), we have (nS¢ — JdK )(2JdK )~ /2 < N(0, 1) whenever G(X) = 0. Thus,
we can test Hp : G(X) = 0 almost surely. Hence, S provides a diagnostic tool for the proposed model.

5. Numerical studies
5.1. Simulation settings

We demonstrate the finite sample performance of TOPE for both estimation and inference in comparison to three
competing methods: the OLS estimator, which ignores heteroscedasticity across subjects and dependence; the GLS
estimator, which naively utilizes the first K components of T~! ZtT:](y[ —¥)¥, —¥)" as V; and last, the oracle estimator,
which is TOPE with known G without using approximation. To implement TOPE, we employ the OLS estimator as
preliminary ﬁo

The mean squared error (MSE) and the empirical coverage probability (ECP) of the confidence region for 8 are employed
to compare different methods. In addition, ||F — Fllp/ﬁ and |G — G||g/+/n are displayed to demonstrate estimations on
G and F by TOPE. The maximum marginal length of the confidence set (MML) is used to demonstrate the efficiency. That
is, the confidence set with ECP agreeing to the nominal level and small MML is preferable. For a clear presentation, we
display MML of different methods normalized by the largest one (the MML of OLS, in general).

We consider n € {50, 100, 200, 500, 1000, 2000} and T € {20, 50, 100, 200, 500}; also, we set p = 4 with 8 =
(1,1,1,1)T and generate iid. zi, ~ N(3exp(t/30),1) for eachi € {1,...,n},¢ € {1,...,p},and t € {1,...,T}. A
similar setting was used in Huang et al. [23]. For the loading, we set d = 3 and generate ii.d. x; ~ U([0, 1]9), then let
21(%) = x1, £2(x) = x3 + x5 — 1, and g3(x) = x3 — 2x; + X, for K = 3. As suggested by [19], with the initial realization Go
for g1, g2 and g3, we further compute Hg = G, Go and set G = GoHg in simulations so that Condition 2 is satisfied.

The latent process f, = (fi, far, f3r)" consists of K = 3 independent univariate time series governed by the same
model with one of the following three settings: independent in t, AR(1) with autoregressive coefficient p = 0.5, or
ARMA(1, 1) with autoregressive coefficient p = 0.5 and moving average coefficient & = 0.5. Also, three innovations are
considered: the standard normal, centered sty and tg. After generating f,, F = (f;,...,fr)" is further transformed so
that T"'F'F = Ix in Condition 2 is satisfied. Similar to f,, we generate n independent u; from the same model, which
includes two dependence structures: independent in t and AR(1) with autoregressive coefficient p = 0.5, as well as two
innovations: N(0, 0.01) and ( st — 5)/10. For each setting, 500 simulations are conducted.
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Fig. 2. Comparisons of the logarithm of MSE for estimating 8 by TOPE (“-o-") along those of the oracle estimator (“--"), the GLS estimator (“-0-"),

and the OLS (“-A-"). Results are about T = 20. In plots (a1)-(a4), fix ~ N(0, 1) is independent in k, t. In plots (b1)-(b4), fyx ~ ts is independent in
k, t. In plots (c1)-(c4), fic follows the ARMA(1, 1) model with N(0, 1) innovation for each k = 1, 2, 3. In plots (d1)-(d4), fir follows the ARMA(1, 1)
model with tg innovation for each k = 1, 2, 3. Distributions and serial correlations of u; are displayed in the plots.

5.2. Results

Fig. 2 displays the MSE with respect to In(nT) on the logarithm scale when T = 20 and f, is independent in t or follows
the ARMA(1, 1) model with A/(0, 1) or tg innovations. In Fig. 2, the MSEs of all estimators reduce as n increases. Both TOPE
and GLS perform similarly as the oracle estimator when f, is independent in ¢ ((a1)-(a4) and (b1)-(b4)), and outperform
OLS; on the other hand, temporal dependence in u, slightly increases the MSE but does not alter the convergence rate
((c1)=(c4) and (d1)-(d4)). In the presence of temporal dependence in f,, GLS is outperformed while TOPE’s performance
remains comparable to the oracle estimator ((c1)-(c4) and (d1)-(d4)). In the supplementary files, additional results for
settings similar to Fig. 2 but with T = 100, 500 are reported in Figs. S.1-S.4, and results for f, following the AR(1) model
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Fig. 3. Comparisons of the ECP and MML of 95% confidence region of TOPE (“~o-" for ECP and ‘- -o- -" for MML) along those of the oracle estimator
(“~0-" for ECP and “- -0- -" for MML), the GLS estimator (“-0-" for ECP and “- -0- -" for MML), and the OLS (“-~A-" for ECP and “- -A- -" for
MML). In simulations, fi; ~ N(0, 1) is independent in k, t; n = 100, 500, 2000 for the first, second, and third row, respectively. In plots (a1)-(a3)
u; ~ N(0, 0.01) is independent in i, t. In plots (b1)-(b3), u; ~ (XSZ —5)/10 is independent in i, t. In plots (c1)-(c3) u; follows the AR(1) model with
N(0, 0.01) innovation while the same model is used for u; in plots (d1)-(d3) with (st —5)/10 innovation.

are displayed in Figs. S.5 and S.7. Similar observations are obtained for different settings of f,, and the differences among
estimators decrease as T increases.

Fig. 3 displays the ECP and MML with respect to different T and n. The nominal level is 0.95. In Fig. 3, the confidence
region of TOPE has ECP close to the nominal level with a small MML. Meanwhile, the coverage probabilities of OLS
and GLS are both deviated from the nominal level and the deviations are substantial when n increases. In the presence
of temporal dependence in u;, TOPE still outperforms GLS and OLS. The MML of TOPE substantially improves when n
increases, particularly for large T, which reflects the fact that the estimation of F in TOPE prefers large n (see (c1) and
(c2),(d1)~(d2) in Fig. 3 for example). In the presence of the dependence of f, in t, TOPE performs remarkably well in terms
of maintaining small MML and its ECP quickly converges to the nominal level in T (for example, Figs. S.17 and S.18 in the
supplementary file). Meanwhile, due to the heteroscedasticity across subjects and the serial/cross-sectional correlations,
both GLS and OLS fail to maintain the nominal coverage probability. As MML reflects the largest marginal variance of an
estimator, OLS has large marginal variance in the presence of serial correlations in u, (Fig. 3 (d1)-(d3)). However, the ECP
of OLS substantially deviates from the nominal level, which reflects the inconsistent covariance estimate of OLS. Also, it is
interesting to notice that both the ECP and MML of GLS are smaller than those of others (Fig. 3 (c1)-(c3) and (d1)-(d3)),
which shows that the naive GLS tends to ignore the serial correlations and greatly underestimate the variance that results
in the poor confidence sets with low ECP. More simulation results are retained in the supplementary files and provide
similar observations. Specifically, Figs. S.9 and S.12 in the supplementary files display results for f; independent in k, t
with either independent u; in i, t or u; following the AR(1) model with different innovations. Results for f, following the
AR(1) model or the ARMA(1, 1) model with different innovations are included in Figs. S.13-S.24 in the supplementary
files.

6. Study on air quality and energy consumption data using TOPE

In this section, we apply our method to analyze air quality data collected in the United States in 2015. The data
consists of the mean PM2.5 concentration (in wg/m?) from 129 monitoring sites on each Tuesday and Thursday in 2015
(https://www.epa.gov/outdoor-air-quality-data). We also include daily max 1-hour concentration of three common air
pollutants, including NO,, SO, and ozone, and the latitude and longitude of each monitoring site in our analysis. Sources
of energy consumption are known as a potential factor to affect concentration of air pollutants. For this study, as covariates,
we include the annual state-level energy consumption proportions of three major sources out of all possible resources,
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Fig. 4. Data display, resulting confidence intervals, and prediction comparison for the real data analysis. Panel (a), (b), and (c) are the 95% confidence
intervals of the effects of different explanatory variables on the PM2.5 concentrations, the prediction errors for different methods, and the variance
of the mean PM2.5 concentration across different monitoring sites, respectively.

namely coal, natural gas, and petroleum, in 2015 (https://www.eia.gov/electricity/data/browser/). For analysis, we log-
transform the air pollutant data and remove potential seasonality. Also, we transform the latitude and longitude to keep
their values within [0, 1].

From Figs. 4(c) and S.29 in the supplement, it is observed that both geographical variables and energy consumption
proportions help explaining the observed heteroscedasticity across monitoring sites so that we consider them as x; in (1).
In this analysis, the daily max 1-hour concentration of NO,, SO,, and ozone, as well as the energy consumption proportions
of coal, natural gas, and petroleum are considered as z; in (1).

To determine the dimension K of latent factor process, we apply both the eigenvalue-ratio procedure and the HDWN
testing-based procedure proposed in the supplementary files. Ratios of the first ten adjacent eigenvalues of Y'PY are
4.13,5.26,6.58,1.27, 1.68, 1.17, 1.29, 1.21, 1.10 such that the ratio between the third and fourth eigenvalues are the
largest. On the other hand, for the HDWN testing-based procedure, the p-values for testing (B.1) with K, = 1,2 and 3
are 0.026, 0.040 and 0.104, respectively. That is, we reject Ho(1) and Ho(2) but fail to reject Ho(3) for (B.1). Thus, both
eigenvalue-ratio procedure and the proposed HDWN testing-based procedure suggest K = 3. Also, by the procedure
discussed at the end in Section 4, we test Hy : G(X) = 0 to further explore the statistical evidence to include geographical
variables and energy consumption proportions to explain the heteroscedasticity across monitoring sites. We obtain
Sc = 2.34 with p-value 4.84 x 10~'4; thus, these covariates are included for modeling. Then, the complete model in
the form of (1) for performing analysis on this data is

In(PM2.5;:) = 81 In(NO; ;) + B2 In(SO3;¢) + B3 In(0z;) + B4Cl; + BsNg; + BsPe;

3
+ Y {ga(la) + gu(lo) + gis(Cl) + 2u(Ng;) + gis(Pei)} fie + e,
k=1

where In(PM2.5; ) is the log concentration of PM2.5 from the monitoring site i at time ¢; In(NOx ;;), In(SO3 ;;), and In(Oz;)
are the log daily max 1-hour concentration of NO,, SO,, and ozone, respectively, from the same monitoring site i at time t;
Cl;, Ng; and Pe; are the state-level energy consumption proportions of coal, natural gas, and petroleum out of all possible
energy resources for the monitoring site i, respectively; and La; and Lo; are the latitude and longitude of the monitor site
i, respectively.

For gy, in the above model, £ € {1, ..., 5}, we use cubic spline with 11 knots to construct ¢ for projection. We fit
the above model using TOPE and draw inference as proposed in Section 4 to inspect the effects of covariates on the
PM2.5 concentration. As an expected advantage, no further restrictions need to be imposed to model (1) and TOPE. In
Fig. 4(a), the 95% confidence intervals for estimated coefficients using TOPE, the OLS estimator (by ignoring the variance
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components), and the traditional factor model (using A instead of g(x;) in the above model) are displayed for comparison.
It reflects the efficiency of TOPE in the presence of heteroscedasticity across monitoring sites and serial/contemporaneous
correlations discussed in Section 3. Specifically, the confidence intervals constructed by TOPE are the shortest among all
three methods for all the six covariates. All methods suggest significant positive correlation between daily max 1-hour
concentration of NO, and PM2.5 concentration and significant negative correlation between ozone concentration and
PM2.5 concentration. TOPE reveals a significant positive correlation between coal consumption and PM2.5 concentration,
which agrees with Liang et al. [28] that coal consumption positively contributes to PM2.5 concentration. However, this is
missed by both the OLS estimator and the traditional factor model. In Fig. S.30 in the supplement, the recovered g, for
k € {1, 2, 3} displays clear non-linearity.

In addition, we examine the prediction performance of TOPE, the OLS estimator, and the traditional factor model.
For the 104 time points, we select 10 (from the 9th to the 99th, apart by 10 points) as the testing set and train the
aforementioned three models using the remaining data points. With the estimated f from each method, the squared
prediction errors at the testing points are displayed in Fig. 4(b). Compared with OLS and the traditional factor model, our
model, alone with TOPE, has smaller prediction errors across all testing points, which demonstrates its superior prediction
accuracy.

7. Discussions

Methodologically, we propose a flexible subject-specific heteroscedasticity model with latent semiparametric factor
structures for analyzing large scale data with both intertemporal and intratemporal dependence. The model simulta-
neously accounts for the heteroscedasticity across subjects as well as the contemporaneous and serial correlations. We
advocate a two-stage projection-based estimator for both the modulating and dependence components of the model, and
establish an inference procedure for regression coefficients. We study the non-asymptotic rates for recovering the latent
factor process and estimating the nonparametric loading function, which leads to the non-asymptotic properties of the
estimated regression coefficients. As a result, we show that our proposed TOPE is asymptotically efficient within a fairly
broad class of estimators including both the OLS and naive GLS estimators.

The widely-used Condition 2 essentially restricts F to subspace {F € RT*X : T~IFTF = I}, which might be stringent
for some applications. In fact, we notice that it can be greatly relaxed by a concentration assumption of T~'F'F to I,
which can be derived from Condition 7 with the help of the so-called r-mixing coefficient. As a result, this will alter the
convergence rate of F—Fin Theorem 1. Furthermore, as noted after Condition 2, we assume that the residual process u;;
is uncorrelated over i to establish the statistical guarantee of TOPE on estimating 8. This condition is similar to that of the
traditional PCA that assumes uncorrelated samples. It can be further relaxed to, for example maxXj<p Zl 1 [E(uieuje)l < Gy,
MaXi<n Y p_1 D omei ZtT:1 ZST:] |cov(uielige, Uisthms)] < Cp, and (nT)™' Y 1L 1ZJ ]Zt 125 L IE( u,[u]5)| < C, for some
C; > 0. However, as a result, the n x n covariance matrix Cov(u[) must be used in place of D in (5) to retain the
efficiency of TOPE. For that purpose, both the weighted PCA [25] and the estimator using thresholding principal orthogonal
complements [18] can be employed in conjunction with TOPE. Then, in addition to some more stringent conditions on
n and T, the non-asymptotic results must be re-established to obtain the similar conclusions in Section 3. Finally, from
its construction, TOPE also paves a potentially effective way to model high-dimensional temporal data with multiple
responses and simultaneously draw inference on the heteroscedasticity. We will explore these questions in future efforts.

8. Proofs of main theorems and technical results

We begin by presenting some notation. For a matrix M = (m;)i<ij<, € R, denote [[M[lz = (3__; -7, m?)"/ the
Frobenius norm, ||[M||max = max;j |m;;| the maximum norm, and ||M|| o = max; Zj |m;;| the induced £, norm. The spectral
norm of M corresponds to its largest singular value, defined as ||[M|; = sup,cs [|[Ma||,, where S = {a € R? : |a|, = 1}
and the £4-norm of p-dimensional vector a = (ay, .. ., ap)T is defined by |lallq = (Zle |aj|q)1/q with 1 < g < oco. Denote
the minimum and maximum eigenvalues of M by Ampin(M) and Anax(M), respectively. Let tr(M) = Zf:] m;; and vec(M) be
the trace and vectorization of M, and ® be the Kronecker product. We write I for an identity matrix. For sequences {a,}
and {b,}, a, = o(by) if a,/b, — 0 as n — oo and a, = O(b,) if limsup,,_, o, |a,|/b, < 00; X, = 0p(a,) and X, = Oy(ay,)
are similarly defined for a sequence of random variables X,;; a, < b, if and only if a, < Cb, for some C independent of
n; and a, =< b, if and only if there exist C, D independent on n such that C|b,| < |a,| < D|by|. Denote L and 2 the
convergence in probability and in distribution, respectively. Unless specified otherwise, § > 0 and C > 0 denote absolute
constants independent of n, T, p.

Remark 2. The techniques in this section primarily depend on the derlvatlon of a series of nontrivial exponent1a1 type

concentration inequalities for preliminary estimators (such as ﬂ or F) and their approximations (such as F—FH =
Zf;l(A )K~! before Lemma 6). Together with the union bounds, it avoids entangling with the correlations between any
preliminary estimators and the data.
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8.1. Proof of the main results

8.1.1. Invertibility of the projection matrix
Without loss of generality, we take x¢ = [0, 1]°. Consider coefficients a, = (aE)), a(ll), .. a;’;), co a(l’;), . a;lj)) €
R+ for k > 1, and define

(a, az), Z{a + Z Z (1)([’] (Xie)} {a(ZJ + Z Z ¢] Xie)} (8)

In the literature, conditions on the largest and smallest eigenvalues of n=! &' & are usually stated as key assumptions for
theoretical guarantees, see, e.g., [19]. Under standard nonparametric settings, we can establish it as follows.

Lemma 1. Under Condition 4, whenever ] = o(/n) and d < J~'n, with probability at least 1 — §,
n {1 - iln(/z/(S)} < min (27 ®) < Amax (87 @) <1 {1 - % 1n(]2/8)} ,

where, as defined in Section 2.2,

1V ¢ix1) ... @yxi1) ... di(x1a) ... Py(x1q)
& . : } ) )

UV ¢xm) o @(xn1) o d1(Xna) .. By(Xna)
Proof. From (8), (a,a), = a' (n"'®' P)a for any @ € R For any § > 0, let A5 = {|(a, @), — E((a, @),)| 2
n~'In(J?/8)E({(a, a),)}. On A5, we have {1—n~'J In(J?/8)} E({a, a);) < (a, a), < {1+n~']In(j?/8)} E({a, @),). By Lemma 2,
E((a,a),) < |lal3. Thus, {1 —n~JIng?/8)}al? < a"(n"'@®" ®)a < {1+ n~'JIn(?/8)}lal?. The conclusion follows
Lemma 3, which implies Pr{4;} < §. O

8.1.2. Proof of main theorems

Proof of Theorems 1 and 3. Theorems 1 and 3 readily follow from Propositions 1-4. O

Proof of Theorem 2. Recall that V = Ev@ ¢ )ET + D, similarly to the proof of Lemma 14, we have

~ 1 1 T + p2n2 T + p?n®*)In(n)}!/4 1
Amin(V)zT[HﬁTJr / Jrnan LA +p\/%()} +njk/2}{1+~/1n(1/5)},

with probability at least 1 — §. Then, by Lemma 14, with probability at least 1 — §,

v -v| =V < [V v -wl,
2 2 2
Vi1 1 pv/J 1
< 4
T{ +I+T+W o | {1+ VIn(1/8)
By Lemmas 16 and 17, ||Z¢ (Gf + i)ll2 S |1ZollsT~"/24/In(1/8) with probability at least 1 — 8. Thus, with probability at
least 1 — 3§,

1B =B, <IZgV 2oy = (2JV"'Z0) " )Zg VI (GF + )]l
+ (ZIV ') 2L (VT = VTYGF + @)l

IR/ p/J
5?{?+7+*+ o T o 1)/2}{1+\/ (1/6)}.

Therefore, for any a > 0,

E(nB—En%):f Pr(||is—ﬁ||§>s)ds=[ Pr(||is—ﬁ||§>s)ds+/ Pr(IB - BI2 > s)ds
0 0

a

o0
<a+ ef exp{—snT(CV; ;)" }ds
a
= a+ Cev2;,(nT) ' exp{—anT(C¥2; )"},

with 9,7y =JV2n~ +n~V2 4 T 4 pj/2p~V/2HeT=1/2 4 J=c=1/2 and constant C > 0. Letting a = (nT)~ ‘Cﬁﬁ” gives
E(IB — BIIZ) < 2(nT)~ 1C193” For TOPE B and the oracle GLS estimator 8 whose jth components are denoted by B and

12
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E]‘ respectively, repeatedly employing Cauchy-Schwarz inequality to each of the (i, j) pair with i,j € {1, ..., p} leads to
|Cov(By, By) — Cov(Bi, B)l = IE((Bi — Bi)B; — B} + El(Bi — BB — B))
< [E((Bi — B N'IEWB; — B N2 + [E((B; — BN IE((B: — BN
Unry on TJ

nT (TP

S
which yields

PUnry pﬂim
nT (nT)3/2"

14
IVar(B) — Var(B)ls = [Y_{Cov(B:. B) — Cov(Bi. B2 <

ij=1

Proof of Theorem 4. (i) For the oracle GLS estimator ﬁ it holds
1o 1w 1o 1
oot (6 ) <a(s S 3e)

where A = (ZTV”ZO) 1ZOV and V = GVar(T~ Zt JOGT + Var(T- Zt 1 tie)l_as defined in (5). For any p-
vector c, (nT)l/2 (B — B) Zt (W + Wye), where Wy, = n'2T=2¢TAu, and W,, = n'/2T~/2¢TAGf,. Then
> ElWieP] = n®2T~ 1/2||C||2 E[|IA[I3 II1E[llu1]3] < oo for any n, and since ||A|lz < [|Allz < pl|A|lz we have

>t E[Wie ] - T2\ c|3E[IAIZ] E [llu 3] - T=Y2E[|IAI3] E[llu1]®]

(C EIW2DP2 T {eTE[AVaru)AT|e}”? 7 (max; Var(un )2 {E[1A12]}

as T diverges to infinity. By the Lyapunov central limit theorem [Theorem 27.3 in [9], Zt 1 Wy is hence asymptotically
normal. Similarly, under Condition 6, we can show that Wm is asymptotically normal. In addition, Z[ 1 Wy and Z[ W

are uncorrelated since {u;} and {f,} are uncorrelated mean zero processes. Therefore, n'/2T1/2¢(B — B) is asymptotlcally
normal for any ¢, and we have X~2(B — 8) % N(o, I,), where ¥ = E[(ZJV 'Zy)']. By Theorem 2, we have
VnT(B — B) 5 0. Notice that || 3|12 = Op(nT), Slutsky’s theorem yields X~ /(8 — B) 2 N(o, I,).

(ii) Similar to (i) and conditional on Z; and X, the Lyapunov central limit theorem yields (7] V~'Z0)"/2(8 — B) LY
N(0, I,), and Slusky’s theorem leads to (Z V~'Zo)"/?(8 — B) N N(0,1,). O

8.2. Technical results

We first collect some preliminary results for spline estimators in Lemmas 2 and 3.
Lemma 2. Under Condition 4, there exist constants cy, ¢, such that c; ||a||§ <E({a,a),) < cz||a||§.

Proof. It follows from Condition 4 that, for any £ = 1, ..., d, the marginal density of X, on its support is bounded away
from 0 and co. Without loss of generality, we assume that, the support of X is [0, 1]¢ and density h(X) is bounded from
below and above by m; and m; with 0 < m; < m, < oo.

Denote f,(X;) = Zj aedi(Xe), € € {1,...,d} and fy = ao. Then, we have E((a, a),) = E[{ap + Zj > aiedi(X)Y] =
E[{ap + Zle fo(X¢))?1. Since the basis functions are centralized,

d d d
= [ tao+ Y hoeorxiax < [ a0+ onoxorax=at+ [ (3 nxorax
X =1 X =1 X =1

By Lemma 1 of Stone [39], we obtain

d . G\ L i G\ O )
[ rxorax = (5) > [ o= <2> N
Y= =10 ¢

where Cp = 1 — (1 — m;/my)"/%. Consequently, we have E((a, a),) > af + (Co/2)"""(X_, Y a3) = min{1,(Co/2)"}
llal?. Similarly, we can establish that fol{zﬁ JeXPdX < d? Zz 1f0 fé x)dx = d*(), y ]z), and consequently,
E((a, @),) < aj + d*(X_, > ;a) < (1+d)lla|®>. O

13
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Lemma 3. Under Condition 4, for some constant C;, C; > 0, we have

[{a1, ax)n — E({(ay, a3)n]) 2 n_ s }
Pr{m,f;i@w VE(@, @) Bz, @) } = exp{ s

Proof. The proof is similar to that of Lemma A.2 in Huang et al. [23]. First, notice that (a, ay), — E({aq, a3),) =

Y e D j(z}) j(,zé),{e o' Pejy — E(e;, &' Pej )}, where ey is the (J¢ +j+ 1)th natural basis of R+!, Hence, we have

dejy = {¢j(X1), . ... j(Xne)} . For any j,j', €, ¢, Var(n‘le}; &' Peyy)<n2Yy, E{¢J'2(Xiz)¢ﬁ(xie’)} <n~LAs (X))l =M

for each j, £ for some M > 0,
ns?
> Sy <expy——— ¢, s$>0
Ml +M25

by Bernstein’s inequality with constants M;, M, > 0. By the union bound,

1
Pr ‘ eﬂsﬁ ¢ej/[’—E< ][45 dseﬂ/>

1 1
rr| | HnejE &' Pejy — E <Eej; o' Qeﬂ/>

LiJ.ev

o) Cyns?

2 p—
>J—d} <GJ exp{ ]2+sj}’ s>0

for constants C;, C; > 0. Denote B = J;;, ,{In""e;, &' deyy —E(n""e;, QT @ejw)l > czs(]d)* so that Pr(B) <
s

J,
CJ%exp {—Cons?(J2 +s])7'}. For each s > 0, on B, |{a;, az), — E((ay, a3), < D Z//ﬂ ||a(,2€),|c25/(/d) <
JVE({(a, a1),)E({(az, a3),,), where the last inequality is due to Lemma 2. The conclusmn follows. D

Next, we document technical results for the proof of Theorem 1 in Lemmas 4-10 and Propositions 1-4.

Lemma 4. Under Conditions 3 and 5, for each n, with probability at least 1 — 4,

1 1
—n7'In(1/8) < Amin (EGTPG> < Amax <EGTPG) < 14n"'In(1/8).

Proof. Denote R = G—PG, and we have G' PG = G'G— G'R. Thus, Amin (17'G'PG) > Amin (17'G"G) + Amin (—n"'G'R),
and Amax (n‘lcTPG) < Amax (n‘lcTG) + Amax (—n‘l(;TR). Note that |[R|2 < nJ™ by Condition 5. Thus, combining
Condition 3, it holds that, with probability at least 1 — 4,

1 1 1
In"'GTR|I2 = ﬁtr(RTGGTR) < Amax (HGGT) Etr(RTR) <J7{14+n""In(1/8)}

and [A(G'R/n)| < J7{14n~"In(1/8)}. By Condition 3, with probability at least 1 —8, 1—n~"In(1/8) < Amin (17'G"G) <
Amax (177G G) < 1+ n~"In(1/8). The conclusion follows. O

~

Lemma 5. Consider ,B satisfying ||ﬁ —Bll2 = 0p(n ‘1/2+"‘T‘1/2)for(x € [0, 1/2), such as the estimator in (14) in Section 8.3.
Under Conditions 1 and 4-7, for U=U+ ZIr ® (B — ﬂ )} defined in Section 2.2,

() (”FT || ) ((n + p2 2‘1) ), E(”U é”%) O(nj(T + p2 20()) E(” ¢TﬁF||%) _ O(p2n1+2‘1'17), E(”ﬁT QB”E%) §
n(T + p?n®), and E(| BT & UF|%) < p?n'+2T.

(ii) With probability at least 155, |FTT " lle < {(n+p)T) {1+ VIR(T/8), [T @lle < (0T +p2)) (1 + V/I(T/5)),
| @7 UFlx < (p*nT))"2(1+/I(1/8)), U @Blls < /(T + p>n2)(1+/IN(1/5)), and BT & UF|lz < pv/n T {1+
VIN(T/8)2{1 + /In(1/8)}. N

(i) With probabity t ekt 1 45, |PBl < VT FFN1 + - /11 + IR,

Proof.

(i) By Lemma B.1 of [19], E(|[FTU"||2) = O(nT), E(|U" @||3) = O(wT), E(| " UF|%) = O(nT)), and E(||PU|?) = O(T),
and by Lemma C.6 in Fan et al. [19], E (|[U®B||2) = O(nT) and E (|[B® "UF||2) = O(nT). Thus, it suffices to show

E[IZ{Ir ® (B — B*)FIZ] = O(p?T), 9)
E[l 27 Z{l ® (8 — B NIIZ] = O(p*n)), (10)
E[l 27 Z{l; ® (8 — B )IF|2] = O(p*nTy), (11)
E[IZ{Ir ® (B — B*))T #BI2] = O(p*n'+2*), (12)

14
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E[IBT T Z{l; ® (B — B*)IF|12] = O(p>n"+>T), (13)

By Proposition 5, E[||Z{l; ® (8 — BO)}||%] < E(|ZI2)I 12 E(IB — EOH%) 0(p*n?*). Then (9) follows from Cauchy-

Schwarz inequality that E[||Z{I; ® (8 — ?)}FH%] <ElZ{r @B —B MHIZ1E(|[F||2) = O(p*n®*T). As a consequence

of Lemma 2, we have E(|| #]|3) = O(n), and consequently E(|| ®|2) < (Jd + 1)E(|| @]|3) = O(nJ), and (10) holds since

E[I| & Z{lr ® (B —ﬁo)}llﬁ] <E[Z{l; ® (B — ﬁo)}llfyl E(|| #113) = O(p®n'*2*]). Applying Cauchy-Schwarz inequality,

(11) follows E[|| &' Z{l; ® (B _EO)}F”]%‘] <ElZ{l: ® (B —ﬁo)}||§] E(|| ®1|2) E(|[F||3) = O(p?n'*2*T]). Also, (12) and

(13) follow E[|Z{lr ® (8 — ")) ®BI3] < E[IZ{k ® (8 — B )GIZ] + E[IZ{I; ® (B — B IR|Z] = O(p>n'+>*), and

EIB" &7 Z{I; ®(8—B*WFI2] < EIIG" Z{k @ (B~ B )IFIZ1+ELIR Z{lr @ (B~ B )IFI2] = O(pn'+2T), respectively.
(ii) By Condition 7 (iii), for rs € (0, 1) and any x > 1,

t(x) < 4max(by, by)*re{max(ry, r3)(1 — r6)/2}/™""273) exp[2/{max(r, r3)(1 — 16)}{2a(x)}"s,

which implies that (fi, u;) is T-mixing [32] by Condition 7 (ii). Then, following Theorem 1 in Merlevéde et al.
[32] and Davydov’s inequality [Corollary 16.2.4 in [1]], for each k € {1,...,K}and i € {1,...,n} and any x > 0,
Pr(|ZtT=1f[kﬂ,-[| > Xx) < T exp(—Cx") + exp{—sz/E(Z£5=lj}kﬁitfskﬂ,-s)}, where ry, = {r; ' +min(ry, r3)71} 7. Let e~
be the maximum of T exp(—Cx") and exp{—Cx?/E( Z[TS ] futiefsUis)}]. By Bonferroni inequality, with probability
at least 1 — 2e~%, |Y/_, fully| < max[{s + In(pT)}"/™, { Z[s falliefolis)} /2 4/s + Inp] uniformly for each k €
{1,...,K}andi € {1,...,n}. Then, by (i), with probability at least 1 — §, ||FTl~JT||F < /(n+ p?n2)T(s + Inp). The
remaining two bounds follows similarly.

(iii) By Lemma 1, with probability at least 1 — &, [| B[2 = Amax(®' ) S n{1 +n~JIn(?/8)} and (ST &), =

1(®7 &) < n~'{1+n""JIn(J2/8)}. Hence, with probability at least 1 — 48,

IPUle < [ 1187 &) l2| 8 Ulle < VJ(T + p2n2@) {1+ 0" Ing?/8)}" (1 + /In(1/6)}.

Denote K a K x K diagonal matrix whose diagonals are the first K eigenvalues of (nT)~ 1Y PY. Then (nT) 1y’ PYF FK.
Let H= (nT)"'B" &' #BF FK . Using Y = (#B + R)F' + U from Section 2.2.1, we have F — FH = (Y., A)K ™' where
A; = (nT)"'FB" & UF, A, = (nT)"'U' #BF'F, A; = (nT)"'U PUF, A, = (nT)"'FB" & RF'F, As = (nT)"'FR' #BF F,
Ag = (nT)"'FR'PRF'F, A; = (nT)"'FR' PUF, and Ag = (nT)"'U ' PRE'F. Next, in Lemmas 6-10, we will provide a bound
on ||[H — I||r in probability.

mm

Lemma 6. With probability at least 1 — 58, K™ '|2 < 14+ n~"In(1/8).

Proof. The K. largest eigenvalues of (nT)~ 1Y"PY are the same as those of W = (nT) Y& &) 123TYY' &(&' &) 12,
Substituting Y = GF' + U and T~'F'F = I, we have W = Z, ,W; where W; = n~ (&7 &)"2H7GC &(d" &)7'/2,
W, = (nT)" (& &) 128 GF U (&' &)2, Ws = W], and W, = (nT)" (' &) 128 UU' &($ &) /2. By
Lemma 1, with probability at least 1 — 8, | @2 = Amax(®' ) <n{1+n71 anz/(S)}rand (T @) = A (P D)<
n~'{1+n~"JIn(?/8)}. By Lemma 4, with probability at least 1 — 8, [PG||2 = Amax (G'PG) < n(1+J7){1+ n~"In(1/8)}.
Hence, with probability at least 1 — 56,

1 _ 1 _+~71
W22 < *II(SFT?) V221 @12 IPGl; | HFTU ¢

F
< pVJn2e I T=1(1 4+ J 7)1 +n T Ing?/8)1>2{1 + /In(1/8)}{1 +n~ " In(1/8)},
and by Lemma 5, with probability at least 1 — 46,

21200
f(”n%)“ +JIng?/8)/m}{1 + /In(1/6)}.

By Weyl’s Theorem, |1 (W) — A (W1)| < ||[W — W], for each k € {1, ..., K}. Hence, with probability at least 1 — 54,
(W) = A(W1)| < [py/J(n'2T) ™2 4 (T + p*n®*)}/(nT {1 +J In(j?/8)/n}* (1 + \/In(1/8)}.

Note that the K largest eigenvalues of W; is also the K largest eigenvalues of n~'G' PG. Thus, by Lemma 4, with probability
atleast 1 — 56, |[K™ ', <1+n""'In(1/8). O

1 B ~
Wyl < En(@%) V231012 <

Lemma 7. With probability at least 1—78, (i) || A1lr, |Azllr < /0= UT + p2n2*){14 /In(1/8)}, (ii) ||As]lz < n~ T~ V2)(T +
P21 + In(1/8)}, (iii) [|Aalle, 1Aslle < U~>VT){1 + /In(1/8)}, (iv) |A7llr, 1Aslle < V(T + p2n2e)(nj<—1)-1{1 +
Wn(l/an: and ||Asllz < J<VT.
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Proof. Notice that ||F|lr = +/KT with probability 1 and |Fll= = +/KT. Then, both (i) and (ii) follow from Lemma 5. By
Condition 5 that ||R||§ < nJ7*, (iii) follows from Lemma 4 and #B = PG. Part (iv) follows from Lemma 5 and ||R||]F < nJ7*.
Result on Ag follows similarly to (iii) given |P|l, = 1. O

Lemma 8. With probability at least 1 — 38, (i) |A1llmac A2 lmax < n~V2T~1/T 4 p2n2¢{In(T)}*/2{1 + In(1/8)}, (ii)
IAsllmax < 2T 1/T + p2n2¢{In(T)}/"2{1 + In(1/8)}, (iii) |Asllmax- 1AslImax < n~'T~HIN(T)}/2] {1 + In(1/8)}, (iv)
A7 | max- 148 lImax < (nT)™1J~*\/J(T 4 p2n2*{In(T)}*/2{1 4 In(1/8)}; and ||As|lmax < (nT)~"J > {In(T)}*/"™.

Proof. By Lemma B.1 in Fan et al. [17], with probability at least 1 — 4, ||UPU||maX < /(T + p?n?*){1 + In(1/6)}. Also,
the proof of Lemma D.2 in Wang and Fan [43] implies that ||UT &B| < 4/nT. Hence, with probability at least 1 — §,

10" @Bl < /(T + p?n?){1 + In(1/8)} by Lemma 5. Then, the results follow from that ||F|lmax < {In(T) + In(1/8)}1/2
with probability at least 1 —§. O

Proposition 1. Given Jd+ 1 <nand k > 1,

(i) With probability at least 1 — 125, T IF— FH|)2 < (n™" + (n"22T}1p? + J=){1 + /In(1/8)}2(1 + n~' In(1/8)}.
(ii) With probability at least 1 — 88, |[F — FH||max < (n™V2 + {~/n1=2¢T}~1p){In(T)}?/"2{1 + In(1/8)}.

Proof. By Lemma 6, |[K~!||; < 14 n~'In(1/8) with probability at least 1 — 58. The result follows from Lemmas 7 and
8. O

Lemma 9. With probability at least 1-208, (i) T |Aq 13 < {n™2 + n= 2T~ 1p? + (nT)*)"(T + p?n®>*)} {1+/In(T/5)}*{1+
n~'In(1/8)}, (ii) T~ 2||FTAz||IF < n~2er-1p200 4 /In(1/8))?, (iii) T~ 2||FT(F FH)||IF S{n 242 e 1+
4/ln(1/3 12, and (iv) T2|[F" (F—FH)|2 < {n™2 + n= 72T~ 1p2 4 =11 + /In(1/8)}2.

Proof. (i) First, by Lemmas 4 and 6, with probability at least 1—64, |H||; < (nT)~ 1||PG||[F||F||]F||F||]F||l( Il < 14+n~'In(1/8).
Then, by Lemma 5 and Proposition 1, with probability at least 1 — 206,
IBT & UF| < 2||B” ¢ U(F — FH)||2 + 2(1B” & UFH|?
<AT? 4+ p?n®*T + p*n™ + nT(T + p*n**)/J* } {14 /In(1/8)}*{1 + n~ " In(1/8)}.
The result follows that ||F||r = ||F||]F = /KT with probability 1. .
(ii) By Lemma 5, with probability at least 1 — 48, T~2|F'Ayl|2 < n2T~4|E'U &B|2|F|2|F|2 < (nT) 'p?

{1+ VIn(1/8))2. B
(iii) Combining (i) and (ii), the rest%lt follows from Lemma 7.
(iv) The result follows from T~'|[F (F — FH)|z < T~'|[F — FH|2 + T '|H"F' (F — FH)||z. O

Lemma 10. With probability at least 1 — 204,

) {1+ /In(1/8)}*{1 +n"'In(1/3)}.

p2

1
T 2
”H H_IK”]FE (ﬁ‘f‘m

Proof. By Condition 2, F'F = Tl with probability 1 and F'F = TI¢. SO H'H = T~ '(FH)'FH = T~'(FH — F)TFH +

T~'F (FH—F)+Ix and |[H'H — I ||z < T~'||((F — FH)TF||z|[H||> + T~ "||F" (F — FH)||, which gives the desired result. O

Define B = T‘i\(éT@)‘ldiTﬁ ) that’:G\ — T 'PYF = &B, we have B — BH = Z: .G where ¢; =
“(@TP) ' RFF,C, =T (S &) & UFH,C; =T~ (& &) & U(F — FH), and C4 = T~ 'BF' (F — FH).

Proposition 2. With probability at least 1 — 2056,

(i) IB— BHI: < {n~% +n~"+22T~1p2] 4 n-2Ha=2p4) 4 j=+11 (1 4 JIn(2/8)/n}* {1 + In(T/5)}",
(i) n G — cH||§ < (n7 + nT TP 4 2T 2pA] 4 [ (1 4+ T In(?/8)/n* (1 + /In(T/8))*

Proof. (i) By Lemmas 1, 5 and 9, with probability at least 1 — 204,

1
[(SYERS J—K{l +JIn(j?/8)/n}’,

p*
n2«T

IICzII§N {14J1In(?/8)/n{1 + /In(1/8)}?
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2 4 T 2
||c3||%s(,{2+ D+ e + “’){H}lnu /8)/myP(1+ /I(1/8)}*,

n2 2ozT nTJK 1

> 1
IC4l1% < (r{—z+%+ﬂ 1){1+]lr1(]2/5 /(14 /In(1/8))%.

So B — BH|2 < {n2) + n~1#2¢T~1p?] 4 p2+4a—2pd) 4 |- "“}{l—i—jlnuz/é)/n *(1+ /In(1/8)1*.
(ii) The result follows from n~'||G — GH||2 < n7?| (B — BH)||2 + n~2|RH|2. O

Proposition 3. With probability at least 1 — 208, (i) |[B — BH||max < n~2T=1(T + p?n®®)In(n)} /{1 + In(1/8))}, (ii)
IG — GHllmax < T~H(T + p*n®*) In(n)}"/2{1 + In(1/8)}, and (iii) |G — GH " [lmax < T~H{(T + p?n®*)In(n)}'/2{1 + In(1/8)}.

~ ~

Proof. (i) By Lemma B.1 in Fan et al. [17], with probability at least 1 — §, ||Fﬁ||max < VAT +p?)In(n){1 + In(1/8)}.
Then, by Lemmas 1, 5, and 9, with probability at least 1 — 208, [|C1|lmax < {+/NTJ<} " H{In(T)}>/2{1 + In(1/8)}, IC2lImax <
{VNTY (T + p?n2*) In(n){1+1n(1/8)}, Cllmax S (0T} 1(T+p?n®* HIn(T)}*/"2{1+1In(1/5)}8, and [|Callmax < {+/nT2J<} "
(T + p*n®* ){In(T)}*/"2{1 +1n(1/8)}8. So |IB — BHl|max < 1~ V2T=Y(T + p*n®*) In(n)}/2{1 + In(1/8)}.

(ii) The result follows from [|G — GH||max < n~2|| ®(B — BH)||max + n7?||RH|| max.8

(iii) The result follows from G — GH™ ! = T~'GH '(HF" — )F +T~'PU(F — FH) + T~'PUFH. O

Proposition 4. With probability at least 1 — 206,
1 p’ _
||H—1K||§g(ﬁ+m ) {1+ /In(1/8)}*{1 +n"'In(1/8)}.
Proof. Note that HK = n~'B' & #B(T~'F'F — H) + n~'B' &' &BH. By Lemma 9, with probability at least 1 — 20,
In"'BT &T SB(T'F'F —H)|lz < {n~ ' + p(n'2*T)"2 + J7*2}{1 + /In(1/8)}y/1 + n—" In(1/8).
In addition, by Conditions 3 and 5, |G'G — BT & ®B||x < nJ~*/2. Therefore, with probability at least 1 — 208,
In"'G"GH — HK ||z < {n~' + p(n'~22T)~"2 4 J=/2}{1 4+ /In(1/8)}/1 + n—"In(1/8).

This implies that with probability at least 1 — 205, H (up to an error term) is a matrix consisting of eigenvectors of
n~'G'"G. By Condition 2, G'G is a diagonal matrix with distinct eigenvalues with probability 1. Thus, each eigenvalue is
associated with a unique unitary eigenvector up to a sign change and each eigenvector has a single non-zero entry. Thus,
with probability at least 1 — 208,

IH = DJls < {n~" 4 p(n'2*T)""2 + J7/*}{1 + /In(1/8)}y/1 + n~"n(1/¢)
for some diagonal matrix D. By Lemma 10, with probability at least 1 — 208, for each k € {1, ..., K},
IM(H) =l S (" p(n' =2 T) 72 4 721+ /In(1/8)}v/1 + n~In(1/8),

where 7 is either 1 or —1. Without loss of generality , we can assume that all entries of H is positive (otherwise we can
multiply the corresponding columns of F and G by —1). Hence, with probability at least 1 — 206,

K
IH=Tl2 =) h5+ Y (hi— 1) < {n7> +p°(n" T + ] H1 + /In(1/6)*{1 4+ 0" In(1/8)}. O
i i=1
Flnally, we present technical results for establlshmg Theorem 2 in Lemmas 11-14. Recall that V(f, ) = T 2 Zt_7T+1(T

|_t|)2f(t) as defined in Section 2.2.2, where Z‘f( s)= Z[T S —F)F s —F)T and Ef( 5) = Zt:s(f[—s
F)F. —f)T for s > 0, respectively.

Lemma 11. Under Condition 2, with probability at least 1 — §,

~ 1/ 1 p
||vun)—v(m||m¥(ﬁ+WT W) (14 /in(20/9)}.

Proof.
Note that V(f,) = T2 er (fe —F)Fs —F)T = T2F"P,F, where P; is the projection matrix onto (1,...,1)" € R'.
Thus, by Theorem 1
Q - Ly e L (12 1+ /In(20/8))
”V(ft) - V(ft)”}‘ = F” 1 - 1 ”]F ~ ﬁ E + === nl—2eT ]K { + /
17



L. Zhang, W. Zhou and H. Wang Journal of Multivariate Analysis 186 (2021) 104786
The conclusion follows. O

Lemma 12. Under Conditions 1, 2, and 7, |V(f,) — Var(T~! Zt Jolr S T2

Proof. Recall that Var(T ! Zt JO=T723 Cov(fe.f)and vV (F) =T 2 Y (f, — f)fs—f)". By Davydov's inequality
[1], for each k € {1,....K} and t,s € {1,.... T}, [Efafu)®| < fe(]t — s)}/r{E(Ufu 2 )} /91 {E(Lfi[2%2)) /%2, for some
q1, G2 > 0 such that 1/r1 + 1/q1+1/q2 =1, where a(-) is the a-mixing coefficient. By Condition 7, E(|fg|?") and E(|fy |%2)
exist for each t € {1,...,T} and a(|t —s|) < exp(—Ci|t —s|"), so [E(fufs)*| < exp(—|t — s|). Thus, || Cov(f,,f)lr <
exp(—|t —s|) and [[V(f,) — Var(T~" 3 folle = T2 2, Covi(Fe. fllls S T2 Y[ exp(—t) S T2 O

Lemma 13. Foreachi € {1,..., n}, with probability at least 1—8, |V(tli) — Var(T ™' 31_, wie)| S T~'[{y/nT) 1432 4
{TV2n3/2)71p + {(Vn2T} (T + p?) In(n)} V4 4+ n~YJ~*/2]{1 + /In(21/8)}, where V(i) is defined in Section 2.2.2.

Proof. Denote U = {ii;}"’ \.c_1- Note that U — U=(G—GH ' F —HF)+GHI(F HFT)+(E— GH )HF'. By
Propositions 1 and 3, with probability at least 1 — 208, T~'|[U — U||2 < {n~' + {n" 2T} 'p2 + T- /(T +p nz"‘)ln( )+
J7“}{1 4 In(1/68)}2. Thus, similarly to the proof of Lemmas 11 and 12, with probability at least 1 — §, |V(A,[ V(uie)l <
(nT)~'[n~12 4 (n'72*T)~12p + T=V2((T + p?n®*)In(n)}/* + J™/2){1 + /In(20/8)} and [W(uyx) — Var(T~1 Y ¢ uie)| <
{v/nT?}~ {1 + /In(1/5)}. The conclusion follows. O

Lemma 14. With probability at least 1 — 4,

= Vi pvJ 1
WV I(V=-w), < :— + 7 + —+ o= + } {1+ 1In(21/8)}.

Proof. Recall that V.= GVar(T~'Y1_, f,)G" + D, 50 Amin(V) > Amin{GVar(T" Y.1_, £)G'} + Amin(D) = T~". Note that
V-V =G{F,) - Var(T ' " FIGT + (G — GW({F,)G + GV{F.)G — G)T + (D — D). In addition, by the proof of
Theorem 2 in Fan et al. [15], |GV~ G|, = O(T). Thus,

.
V'V = V)lla < IVEF) = Var(T™ Y Flls + 2IVEDIEIG — Glls + 1D — Dl

t=1

From Lemmas 11 and 12, with probability at least 1 — g,

11 1
Var( Zf) §;<ﬁ+¥+\/]p7 Jk/z){wm/ n(21/3)},

and

~ 11 1 p {(T + p*n®*)In(n)}/* 1
ID=Dlz < ¢ [f t ot s T i + \/ﬁ]wz] {1+ /In(21/8)}

which leads to the desired assertion by Lemma 13 and Theorem 1. O

As a straightforward corollary to Lemma 14, with probability at least 1 — 8, [V — V|jys < {n" '] +n"12 +T-1 +
(+/n1=22T)"1p /] + J~®=1/2} /In(1/5), where ||Al|s = := n~'/2||S""2AS™/2||. If f, and u, are independent across ¢, then
IV = Ve < {n'] + p/Jn~1/2H«T=1/2 4 j==1/2} /In(1/8), which mimics the optimal rate from Fan et al. [18] and
Wang and Fan [43].

. . . - ~0
8.3. Discussions on legitimate preliminary f

In this section, we will discuss some preliminary estimators ﬁo that satisfy the condition of TOPE, i.e., ||ﬁO — Bl =
Op(n~1/2+«T=1/2) for & € [0, 1/2) in Section 2.2.2. In fact, Conditions 1, 2, and 6 guarantee the existence of such a

. -0 . . . .
preliminary B . We start with an OLS estimator based on an average version of (3) over time,

—~O0LS _ -
B = (ZyZo) 'Zyy. (14)

. ~0LS . - . . . ) . .
Before showing that §~ is a legitimate preliminary in Proposition 5, we first collect some technical results in
Lemmas 15-17.

Lemma 15. Under Condition 7, vi(T) = T~ Y2 Y_[_, uy is sub-exponential for each i € {1, ..., n}.
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Proof. Note that E(Ju;|*"®1) < oo forany t € {1,...,T}, i€ {1,...,n}and & > 0and > o, a(T)3 < 377 exp(—C
T"/3) < oo. By Theorem 4 in Tikhomirov [42], |Pr{v-( Yy < s} —Pr(Wi <) < GT™ 21 + |s|)"*{In(T)}® for each

ie{l,...,n}and any s, where W ~ N(0, o; 2) and 0 = E(u,l +232, E(uiuye). Thus, we have
T

Pr{|vi(T)| > s} = Pr(IT™2 ) " | > 5) < 2exp{—s>/(207)} + ;T /(1 +5)"{In(T)}’
t=1

for any T and constants C; > 0. Furthermore, for any k € {1, 2, ...},

1 o0
Elu() = [ P> 5" ds+ [ e > 7¥)ds

0 1
1422022k (k/2) + Cie T~ {In(T)}3k!,

IA

so that E [exp{svi(T)}] < 1+ 3 72, IsI*E{|ui(T)|*} /k! < exp{202s? +Ciw T~V2{In(T)}*} for |s| < min{1/o;, 1}. The assertion
follows from the definition of sub-exponential distributions. O

Lemma 16. Under Conditions 1 and 7, for any s > 0, p x n matrix A and o> = max; aiz with oiz defined in Lemma 15,
Pr{lAY{_, u/Tl2 > s|Alls/~/'T} < 2pexp{—s/(202)}.

Proof. Write A = (aq, . ..,ap)T, where ay, ..., a, are n-dimensional vectors. For each m € {1,...,p} and w > 0,
by Conditions 1, 2, and 7, Lemma 15, and Corollary 4 in Samson [36], Pr(|a; ZET=1 u,/T| > s) = Pr(|2?=] Amivi(T)| >
sv'T) < 2exp{—s’T/(202||an|%)}. Hence, Pr{|a;, ZL] U /T| > ||@mll2s/~/T} < 2exp{—s%/(202)} for any m € {1,...,p}
and Pr{|AY{_, u;/T|> > [|Allzs/v/T} < 2pexp{—s?/(202)}. O

Conclusion in Lemma 16 remains valid for correlated {u,[} _; over i. In fact, if one assumes cross-sectional dependence

of {u,t} over i by lettmg maxj<,1 S IE(uieue)l < G, MaXicn 3 p_g Dome 12[ 125 1 lcov(uietige, Uistims)] < Co, and
D Z] 1 Zt 1 ZS 1 [E(uieujs)| < G, for some C; > 0, Corollary 4 in Samson [36] still applies.

Lemma 17. For p x K matrix A, under Conditions 1 and 7, Pr{||A Zthlft/Tllz > s||Allg/~T} < 2pC; exp(—Cus?/2) for
constants C3, C4 > 0.

Proof. The proof is similar to that of Lemma 16 and omitted here. O

Proposition 5. Under Conditions 1, 2, and 6, with probability at least 1 — §,

2

~OLS p
187 = B3 S 57 In(1/9).

Proof. Combining (14) andjl = 2] B+GT 'Y f +T 'Y u, we have B°° = B+ (2] Zo) 'ZIG(T ' YT f) +
(Z§ Zo) "Zg (T 12 ) = B+ (1) + (), where (I) = (Z]Zo) 'ZyG(T™! thlf yand (I) = (Z]Zo) 'Zg(T™!
Z[T:1 u,). By Condition 6, with probability 1, |[P,G[|2 < n**. In addition, eigenvalues of n*]ZOTZO is bounded away
from O and infinity almost surely by Condition 6(i). Thus, eigenvalues of (n‘lngo)‘l are bounded away from 0 and
infinity almost surely. That is, [|(Zg Zo)~'Z] |2 = tr{(Z] Zo)™'} < n~'p, and thus, |[(Z] Zo) 'Zg GlI2 < (Z Zo)~'Z |12
IP;G|I2 < n~'+2*p? by Cauchy-Schwarz inequality. In light of Lemma 17, we have Pr{||()[> > sT~"2||(Z]Zo)"!
ZyGllz} < Crexp(—Cys?). By Lemma 16, it holds Pr{||(IN[2 > sT~Y2|(Z] Zo) 'Zg llr} < Ciexp(—C,s®). Thus, we have
PrLIB”" — Blla > ST"2(I(Z Zo)"'Zg Gllz + I(Zg Zo) ' Z§ lls}] < 2Cy exp(—Cos?). OO

Proposition 5 implies that 3OLS is a legitimate preliminary for TOPE. Alternatively, one may consider the following
choice on ﬁo Rewrite g(x;) as g(x;) = Az;. + go(x;), where A is a K x p matrix and z;, = T~! ZL z; is the average of z;
over time. Then, model (1) can be rewritten as y; = z;; B+ 2 n, + go(%:)"f; + uie, where 5, = A' f,. Under Condition 1,
go(x;))"f,+u; is uncorrelated with the regressors z;;. Hence, we can use the following random-effects GLS [37] to estimate
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NS ~ | _ -1
B.nys-oosmp)by (B 71, ... 1) = (WX, W)Wy, wherey = (Vi1 -+ Vnts oo s ViTs - -5 Vo) s

(2], z]
z, z,
w=| : ,

zj; z]

|z, z, |
and Xy is an estimator of X, the covariance matrix of v = (go(X1)"f1 + U11s ..., 8o(Xn) F1 + Un1, ..., 8o&1) fr +
uir, ..., 8o(®n) fr + unr)T. Under Condition 1, Xy is a block diagonal matrix diag(Xg1,..., Xgr) with Xp, =
E{(go(®1). ... Zo(®n)) " (8o(%1). - .., &o(%n))} + 071, for each t € {1,..., T}, where var(u;) = o7. There are a variety of

estimators of X'y ;. For instance, Bai [3] and Schmidheiny and Basel [37] estimated X ; by first estimating v, which is
achieved via the OLS estimator. This is the so-called feasible GLS estimator [3,26,27] and can be extended to the iterative

feasible GLS estimator [3,34]. That is, we can update E‘EE;N using (Fﬂd,’ﬁ‘]’ld, - ,ﬁ‘;ld) from the previous step and iteratively
update (ﬁnew,ﬁ?ew, oo, 7)) using the update 22?}” . The update (ﬁnew,'ﬁ’]’e"", <o, V) admits the following shrinkage
of errors.

Proposition 6 (Lemma 1 in Phillips [34]). Under Conditions C1 to C3 in Phillips [34], if T > p+ 1 and Ay = E(W" Z‘E]W) is
T

i T T T _ 1d, T T T
nonsingular, /Al((B"") @) ... @) —(BTa7.owD) )= 2T = )TWVATIE™) @G L @) -
(BT, ni,....n7) WAy'¥ + op(1), where ¥ is given in Phillips [34].

Together along with ||]§ — Bl < ||(’ET,77‘1T, . ,ﬁTT)T - (ﬂT, nI, R nI)Tllz, Proposition 6 implies that the iterative

feasible GLS estimator improves as the iteration grows. Thus, upon some iterations, the iterative feasible GLS estimator
also provide a legitimate preliminary estimator for TOPE.
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