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Determining the energetically most favorable structure of nanoparticles is a fundamentally important task

towards understanding their stability. In the case of bimetallic nanoclusters, their vast configurational space

makes it especially challenging to find the global energy optimum via experimental or computational

screening. To that end, this work proposes a two-step optimization-based design framework to address

this hard combinatorial problem. Given a nanocluster of fixed shape, a rigorous mixed-integer linear

programming model is formulated based on a bond-centric cohesive energy function to identify the most

cohesive bimetallic configuration for a given composition. This capability is coupled with a metaheuristic

strategy that searches over the space of nanocluster shapes to obtain optimal structures. We apply our

proposed methodology on AgCu, AuAg and CuAu systems, quantifying how the size and composition of a

nanocluster influences its overall cohesion. Furthermore, we observe various synergistic effects between

Cu and Au in promoting cohesive energy, while multiple segregation patterns are identified in all three

studied binary systems. Our methodology serves as an efficient computational tool for investigating

bimetallic nanoclusters stability properties as well as provides model nanoclusters for further investigations.

1 Introduction

Sub-nanometer transition metal clusters exhibit unique
catalytic, magnetic, electronic, and optical properties. They
are promising materials in a wide range of next-generation
technological advances, such as catalysis, electronics, and
optics, among others.1 Compared with their monometallic

counterparts, bimetallic nanoclusters have unique
advantages, including improved performance and cost
reduction. In addition, special additive and synergistic effects
between the two metals may be achieved via tuning the
particle's size, shape, composition, and chemical ordering.2

The flexible design space of bimetallic nanoclusters,
combined with growing synthesizing capability to near-
atomic precision, motivates the research to identify optimal
nano-configurations for target functionalities.

Among all desirable functionalities, stability is of
fundamental importance to nanocluster research. Determining
energetically favorable nanocluster configurations has attracted
particular research interest in understanding stability and other
equilibrium properties at low temperatures.3 This is a hard
problem, given the vast combinatorial design space afforded by
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Design, System, Application

Bimetallic nanoclusters exhibit interesting properties that make them attractive for a wide variety of application contexts. To that end, the identification of
stable bimetallic nanocluster designs of various sizes and compositions is an important first step to enable a multitude of rigorous investigations involving
such materials. However, even for a fixed particle size, the design space of a bimetallic nanocluster is highly complex, as the combinatorics of shape
selection compound with that of chemical ordering. In this manuscript, we develop a computational framework to identify highly cohesive bimetallic
nanocluster designs of various particle sizes and composition ratios. Starting from monometallic nanoclusters obtained via a previously proposed shape
optimization approach, we develop a hybrid “structure-first-order-second” decomposition that enables the efficient exploration of the full design space. In
particular, a metaheuristic search optimization algorithm is tasked with identifying promising nanocluster shapes, iteratively improving upon those, while
a mixed integer linear programming-based algorithm complements the former to identify optimal chemical orderings in light of given shapes.
Comprehensive computational studies on AuAg, AgCu and CuAu nanoclusters reveal highly cohesive configurations as well as instances of alloyed clusters
that possess greater cohesive energy than their monometallic counterparts.

Pu
bl

is
he

d 
on

 1
6 

Ju
ne

 2
02

1.
 D

ow
nl

oa
de

d 
by

 C
ha

lm
er

s T
ek

ni
sk

a 
H

og
sk

ol
a 

on
 8

/2
9/

20
21

 7
:3

3:
32

 P
M

. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-3063-0607
http://orcid.org/0000-0001-5779-2510
https://doi.org/10.1039/d1me00027f
https://pubs.rsc.org/en/journals/journal/ME
https://pubs.rsc.org/en/journals/journal/ME?issueid=ME006007


546 | Mol. Syst. Des. Eng., 2021, 6, 545–557 This journal is © The Royal Society of Chemistry and IChemE 2021

the applicable lattice geometries. For a given number N of
atoms, the number of unique geometrical isomers is estimated
as O(eN).4 In the case of bimetallic nanoclusters, the complexity
increases further due to the existence of homotops, that is,
clusters with the same geometry and composition but featuring
different chemical ordering.5 Consider that, even if a specific
cluster shape is assumed, there are still O N!ð Þ possible ways of
labeling it using two atomic identities. The configurational
space caused by isomers and homotops makes it impossible to
screen every possible nanocluster configuration. Therefore, it is
essential to devise efficient algorithms to guide the optimization
over such complex design spaces.

In the literature, various metaheuristic methods, such as
genetic algorithms, particle swarm optimization, and basin-
hopping have been utilized along with empirical or ab initio
potential energy functions to identify the energetically most
favorable nanoclusters.6–11 Those methods sample the design
space randomly or semi-randomly for better solutions and
terminate after some stopping criterion – often an arbitrary
computation time limit – is met. Although highly stable
nanoclusters may be discovered by those approaches, the
underlying methods lack the ability to provide a metric of
solution optimality. Furthermore, the performance of
metaheuristic methods is profoundly sensitive to hyper-
parameter settings, calling for a careful tuning effort before
they can be applied. In contrast to the above methods, one
can utilize mathematical optimization to explore the design
space more systematically. The main benefit of this approach
is that, once we formulate the design problem as a formal
optimization model, we can employ established numerical
algorithms and powerful commercial implementations to
obtain optimal designs. This approach has been illustrated
in the design of transition metallic surfaces,12,13 doped
perovskites,14 and monometallic nanoclusters,15 in which the
design of transition-metal based nanostructured materials
was modeled in the form of a mixed-integer linear program
(MILP), a well-known class of optimization models. Notably,
in contrast to methods based purely on meta-heuristics, an
MILP-based approach offers the ability to determine the
incumbent solution's quality, including whether or not this
solution is the globally optimal one in light of the objective
metric of choice, as well as how far it can be from the
anticipated global optimum. With such guarantees, those
previous studies were able to discover various non-intuitive
designs and interesting trends. The downside of a
mathematical optimization approach is their generally poor
tractability when addressing highly complex combinatorial
design spaces, limiting the size of the particles, or the unit
cells of periodic structures, that can be designed in this way.

A highly complex combinatorial design space arises, for
example, when one seeks to design bimetallic nanoclusters,
where the degrees of freedom associated with the shape and
size of the particles are compounded by the possible
identities of each of their atoms, as dictated by the applicable
composition limits. To that end, we propose in this work a
hybrid optimization approach that integrates mathematical

optimization and metaheuristic search to alleviate the
complexity challenges and identify highly stable bimetallic
nanoclusters that are globally optimal in light of the stability
function one postulates. Conceptually, the optimization
model we seek to solve can be cast as follows:

maximize
d∈D

Stability dð Þ

subject to Size dð Þ ¼ N1 þ N2

Composition dð Þ ¼
N1

N2

" #
;

where variable d abstractly encodes the cluster design, D

represents the associated design space, while N1 and N2 are
the specified number of atoms for each of the cluster's two
elements.

To instantiate a formal design model using the above
conceptual formulation as the basis, a relationship between a
specific configuration d and its stability is needed. Multiple
energetic descriptors can be employed to approximate the
thermodynamic stability of metal nanoparticles,16 with the
surface energy of the particle being a popular consideration.
However, recognizing that subsurface atoms and their
chemical ordering plays an important role in the stability of
the small bimetallic clusters we are targeting to design in this
work, we have chosen to instead focus on a cluster's cohesive
energy as a metric of its stability. To that end, in order to find
the most stable configuration of such a cluster, we will seek
to maximize its cohesive energy, subject to constraints on its
size and composition. Here, we select the simple, yet
sufficiently accurate, bond-centric (BC) cohesive energy
function, which has been shown to predict cohesive energies
in good agreement with density functional theory (DFT)
calculations for a wide range of binary alloy clusters.17 Note
how, in our context, the BC model can be viewed as the
structure–function relationship of interest.

Another important aspect of instantiating a specific design
problem is the choice of the design canvas, which
corresponds to the superstructure of possible lattice locations
that atoms might occupy in any given design. For crystalline
materials, such as the nanoclusters contemplated in this
work, the geometry may be described with standard Bravais
lattices. In the computational investigations of this paper, we
shall utilize the face-centered cubic (FCC) lattice as a
representative canvas geometry via which to illustrate our
design framework, but we highlight that our developed
design methodology is generic and can be easily adapted to
other lattice types. Choosing the geometry and the expanse of
the canvas is often at the discretion of the modeler, but these
choices should not be entirely arbitrary, as they could affect
model accuracy and numerical tractability. For example, the
choice of a canvas geometry that is not consistent with the
specific chemistry (i.e., metal species) of interest, or the
choice of a small canvas compared to the target size of the
nanocluster, could over-constrain the problem and lead to
erroneous results. At the same time, an overly large canvas
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could make the optimization problem harder to solve due to
the much larger combinatorial complexity.

The remainder of the manuscript is organized as follows.
In section 2, we briefly introduce the BC model for bimetallic
cluster cohesive energy evaluation. Using this model as the
basis for evaluating stability, we present in section 3 our
optimization-based methodology for the identification of
highly cohesive particle designs. In section 4, we present our
computational studies to derive stable nanocluster designs,
and we analyze the latter to elucidate the impact of size,
shape, and composition on a nanocluster's stability and
equilibrium segregation patterns. We then conclude with
some final remarks in section 5.

2 Bond-centric cohesive energy
model for bimetallic nanoclusters

The cohesive energy, Ecoh, is defined as the energy difference
between infinitely separated neutral metal atoms and the
crystalline cluster formed by those atoms.18 It measures the
average strength of interatomic bonding, thus indicating the
overall stability of a nanocluster. By identifying the most
cohesive bimetallic nanocluster, we essentially obtain the
thermodynamically most stable bimetallic nanoclusters
configurations at low temperatures.

The following bond-centric cohesive energy function17 is
utilized as the structure–function relationship in this work.

Ecoh ¼ 1
N

X
i;jð Þ∈ℬ

beij (1)

beij ¼
γkℓ E

bulk
coh;kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CNbulk
k

q ffiffiffiffiffiffiffiffi
CNi

p þ γℓk E
bulk
coh;ℓffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CNbulk
ℓ

q ffiffiffiffiffiffiffiffi
CNj

p ∀ i; jð Þ∈ℬ (2)

Given the number of atoms, N, and the complete set of
bonds, ℬ, eqn (1) describes the per-atom cohesive energy Ecoh
of the particle as the summation of each bond i–j's
contribution, beij, to the overall cohesion, while eqn (2)
assumes that such bond contributions only depend on the
bonding atoms' coordination numbers, CNi and CNj, and
their elemental types, k and ℓ, respectively for atoms i and j.
In regards to the various parameters, Ebulkcoh,m is the bulk
cohesive energy and CNbulk

m is the bulk coordination number
of a metal of type m (where m is either k or ℓ in the above
formula). The weighting parameters γkℓ and γℓk are introduced
so as to differentiate contributions from two types of metal
atoms in heterolytic bonds. We note that, when γkℓ = γℓk = 1,
this bond-centric function reduces to the well-established
square root bond-cutting cohesive energy function.19 The
cohesive energy's dependence on the coordination number
can be explained by the inherent nearsightedness in
transition metals, where perturbations beyond one lattice
constant are dampened.20

The above bond-centric model is reported to provide
promising cohesive energy predictions in a wide range of

binary nanoalloy systems using only a small set of
parameters and minimal DFT calculations.17 Its two key
parameters, γkℓ and γℓk, depend on dimer bond dissociation
energies and can be calculated by solving the following
system of equations:

γℓkBDEℓ–ℓ + γkℓBDEk–k = 2BDEk–ℓ (3)

γℓk + γkℓ = 2, (4)

where BDEℓ–ℓ, BDEk–k, and BDEk–ℓ are the dimer bond
dissociation energies of the homolytic bonds ℓ–ℓ and k–k,
and the heterolytic bond k–ℓ, respectively; these energies can
be obtained from either computational or experimental
sources. We note that the underlying assumption of this
calculation is that the dimer bond dissociation energy trends
match bulk cohesive energy trends, which means the bond-
centric model can capture around 85% percent of transition
metal alloys (298 bimetallic nanoalloys out of all 353 possible
binary alloys).17 In addition to describing stability of
bimetallic nanoparticles, this function has also been
successfully used as a descriptor for chemical adsorption on
the surface of bimetallic nanoparticles.21

3 Optimization-based design
framework

As discussed, the inherent complexity of bimetallic
nanoclusters' design space brings challenges for any effort to
rigorously optimize their configuration. The need to decide
on both the presence and type of atoms at each and every site
leads to many combinations of otherwise feasible decisions.
To that end, we develop here a two-step solution approach,
which we refer to as a “structure-first-order-second” strategy.
As its name suggests, the existence of atoms within the
design canvas is first determined without consideration of
the types of atoms at each location. Then, with the shape of
the nanocluster considered fixed, the metal type identities of
the atoms that exist in the provisional design are decided
afterwards (i.e., chemical ordering). The two searches are
integrated in an outer-inner loop scheme, which proceeds
until convergence to an optimal structure is reached. With
this approach, we are essentially decomposing the full
problem into two less complex sub-problems that are more
manageable to address. A similar strategy of identifying
structures without type labels to inform bimetallic
nanocluster discovery was also adopted in a recent study of
Pt–Co systems.22

The remainder of this section discusses our approach in
more detail. More specifically, in section 3.1, we present a
rigorous mixed-integer linear programming (MILP)
optimization model for identifying the chemical ordering of
a particle of given shape and composition that maximizes its
cohesive energy as per the bond-centric model of section 2.
In section 3.2, we discuss how this capability can be
embedded in a two-step search approach to optimize over the

MSDE Paper

Pu
bl

is
he

d 
on

 1
6 

Ju
ne

 2
02

1.
 D

ow
nl

oa
de

d 
by

 C
ha

lm
er

s T
ek

ni
sk

a 
H

og
sk

ol
a 

on
 8

/2
9/

20
21

 7
:3

3:
32

 P
M

. 
View Article Online

https://doi.org/10.1039/d1me00027f


548 | Mol. Syst. Des. Eng., 2021, 6, 545–557 This journal is © The Royal Society of Chemistry and IChemE 2021

space of particle configurations using metaheuristic search
algorithms described in section 3.3.

3.1 Optimal chemical ordering model

Let a bimetallic nanocluster of given size (i.e., number of
atoms N), composition (i.e., partitioning of N into N1 and N2,
the number of atoms of each its two elements), and shape
(i.e., set of bonds connecting the atoms). We denote with I

the set of all locations in this nanocluster, while for each
location i ∈ I, we denote with Ji⊂I all neighboring locations
that are connected with i via an atom–atom bond.

Given this setting, we define binary decision variables xik
to indicate the presence/absence of a particular type-k atom
at each location i. More specifically, if xik = 1, a type k atom
exists at canvas location i; otherwise, when xik = 0, the site i
does not contain a type k atom (and rather contains an atom
of the other element ℓ ≠ k). The search for the best design,
d*, is then equivalent to identifying an optimal set of
decision variables x*ik. Additionally, we define binary variables
zijkℓ to represent the existence of a bond between atom types
k and ℓ that are respectively placed in locations i and j.
Finally, auxiliary continuous variables beij are utilized to
represent the bond (i–j)'s contribution to the overall
cohesion. Eqn (5) through (12) constitute the complete
optimization model.

maximize
xik ;zijkℓ;beij

1
N1 þ N2

X
i∈I

X
j∈Ji

1
2
beij (5)

subject to
X
i∈I

xik ¼ Nk ∀k∈ 1; 2f g (6)

X2
k¼1

xik ¼ 1 ∀i∈ I (7)

xik ∧ xjℓ
� �

⇔ zijkℓ ∀ℓ∈ 1; 2f g ∀k∈ 1; 2f g ∀j∈ Ji ∀i∈ I

(8)

beij ¼
X2
k¼1

X2
ℓ¼1

γkℓ E
bulk
coh;kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CNbulk
k

q ffiffiffiffiffiffiffi
Jij jp þ γℓk E

bulk
coh;ℓffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CNbulk
ℓ

q ffiffiffiffiffiffiffiffi
Jj
�� ��q

0
B@

1
CAzijkℓ

∀j∈ Ji ∀i∈ I

(9)

xik ∈ 0; 1f g ∀k∈ 1; 2f g ∀i∈ I (10)

zijkℓ ∈ 0; 1f g ∀ℓ∈ 1; 2f g ∀k∈ 1; 2f g ∀j∈ Ji ∀i∈ I

(11)

beij ∈þ ∀j∈ Ji ∀i∈ ∈ I (12)

As shown in eqn (5), the model's objective is to maximize
the cohesive energy, as the latter is calculated by the bond-
centric model, normalized per atom of the particle to readily

facilitate comparisons among designs of different sizes. Eqn
(6) specify the cluster composition, while eqn (7) ensure that
exactly one atom type is designated per each location i. Then,
eqn (8) dictate the logic defining the auxiliary variables zijkℓ.
The latter are then referenced in eqn (9), which evaluate beij,
i.e., the contribution of each bond i–j to the total cohesive
energy. We remark that only the appropriate one out of four
possible atom type pairs k–ℓ, namely the one for which zijkℓ =
1 (or equivalently, the one for which xik = 1 and xjℓ = 1 at the
same time) will contribute to the right-hand side summation;
thus, by summing across all possibilities for atom type
assignments, we essentially retrieve bond i–j's contribution to
the objective function in variable beij. Note how, in eqn (9),
the cardinalities of sets Ji correspond to the applicable
coordination number of the atom occupying each location i.
Finally, eqn (10) and (11) declare the binary nature of
decision variables xik and zijkℓ, respectively, while eqn (12)
declare the intermediate quantities beij as non-negative
continuous variables.

In order to formulate a model of MILP form, the logical
constraints (eqn (8)) need to be first equivalently transformed
into their linear counterparts using the well-known Glover
linearization technique, resulting into the following
constraints (eqn (8′)).

zijkℓ ≤ xik
zijkℓ ≤ xjℓ

zijkℓ ≥ xik þ xjℓ −1

9>=
>;∀ℓ∈ 1; 2f g ∀j∈ Ji ∀k∈ 1; 2f g ∀i∈ I

(8′)

The reformulated model can now be instantiated and
solved by well-established MILP solvers. More specifically, to
do so for a given system of interest, the modeler has to
define: (1) the nanocluster shape, namely the locations I and
their bond connectivity Ji for all i ∈ I; (2) the applicable
metal types and overall cluster composition, N1 and N2, as
well as collect bulk cohesive energies and calculate
parameters γkℓ and γℓk from dimer bond dissociation energies.
We highlight how the above model is presented generically
and independently of lattice type. In particular, it is implied
that the sets I and Ji have been chosen consistently with the
lattice geometry one expects to apply given the chemistry of
interest. For example, if one targets the design of FCC
clusters, one should choose sets that encode FCC patterns,
and should do so similarly for any other lattice geometries.

If solved to algorithmic termination by a suitable MILP
solver, this bimetallic nanocluster chemical ordering model
can provide the mathematically guaranteed global optimal
solution, up to the accuracy imposed by the bond-centric
model. This optimal solution would then correspond to the
most cohesive bimetallic design for a given shape, size, and
bimetallic system composition. In this work, we solved our
model instances using one of the most popular commercially-
available MILP solvers, namely CPLEX version 12.9.23

Our experience suggests that the numerical tractability of
this model is very good, as we were able to reliably obtain
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provable optimal solutions within seconds of CPU time and
for systems with up to several hundreds of atoms. Hence, the
above model is deemed amenable to serve as the evaluator of
an iterative algorithm searching in the space of nanocluster
shapes at an outer loop.

3.2 Two-step solution strategy

Before we present our proposed solution strategy, we would
like to remark that we conducted extensive investigations
using a full-space MILP model that attempted to co-optimize
directly on the space of shapes and homotops, i.e., to
simultaneously determine the presence of atoms on a lattice
superstructure as well as the types of atoms in each occupied
location. However, the observed numerical tractability of
such a full-space model was not promising. More specifically,
for many of the instances under consideration and across a
wide range of nanocluster sizes and compositions,
attempting to solve the full-space model monolithically using
the state-of-the-art CPLEX code did not yield algorithmic
termination in a reasonable amount of time. In particular,
we found that the solver could not always converge to a
provably globally optimal solution before the CPU time limit
of one hour, while instead the solver returned feasible
solutions with optimality gaps that in some cases exceeded
100%, which means that the true global optimum cluster
could have featured more than double the cohesive energy of
the solution at hand. Furthermore, by inspecting the
bimetallic nanocluster designs corresponding to those
feasible solutions, we observed a high degree of randomness
in terms of nanocluster shapes and chemical ordering, which
suggests that the feasible solutions obtained by the solver at
the imposed time limit were not the optimal solutions we
were looking for.

These empirical observations led us to pursue a
“structure-first-order-second” two-step computational strategy
to overcome these limitations. As discussed, the main idea is
to decompose the bimetallic nanocluster design problem into
a shape optimization step and an chemical ordering step,
integrating the two steps in an iterative co-optimization
process. Another benefit brought by this strategy is that the
shape optimization step can leverage previously developed
capabilities for the design of stable monometallic
nanoclusters.15 More specifically, the work of ref. 15 has
demonstrated how an MILP model can be used to design
monometallic nanoclusters of given size that maximize their
dimensionless cohesive energy, E  coh :¼ Ecoh=Ecoh

bulk. We note
here that the work of ref. 15 utilizes the square root bond-
cutting (SRBC) cohesive energy function as the objective of
focus. However, since this metric does not account for the
differences in interactions between different elemental types,
it cannot be applied to optimizing chemical ordering, which
is why we have chosen the bond-centric cohesive energy
function instead. Regardless, the highly cohesive shapes that
stem from the use of the SRBC model can still be considered
as candidates for bimetallic particle shapes. To that end, by

employing an MILP code like CPLEX on the monometallic
design model, one may obtain a hierarchy of P optimal
solutions (a.k.a. a solution pool) that consist of the distinct
nanocluster shapes featuring cohesive energies from the
highest to the Pth-highest possible values. Here, P is a
predefined small integer that constitutes an algorithmic
parameter (we will later select the value of P = 20). All the
shapes in this hierarchy are collected as they are likely to
exhibit a high degree of cohesiveness in a bimetallic setting
as well, and whereas the shape corresponding to the most
cohesive monometallic cluster might not be the one
corresponding to the most cohesive bimetallic cluster, the
latter is likely to be found among those in this solution pool.

At a first pass, one may select any and all of the designs
from this solution pool, use it to define the set of locations I,
and apply the chemical ordering MILP model introduced in
the previous section to rigorously search over the space of
bimetallic homotops corresponding to the same particle
shape. Below, we propose an efficient workflow for an
integrated two-step decision-making process whereby the
provisional shape is iteratively updated based on some
metaheuristic search algorithm and the chemical ordering
model is successively applied to optimize across all
corresponding homotops, leading to an improved design that
features highest cohesive energy. We remark that the iterative
scheme might not reach a globally optimal solution with
respect to both shape and ordering; however, as we will
demonstrate later in our computational studies, the two-step
solution strategy that utilizes a purpose-built metaheuristic
search algorithm is able to identify highly cohesive bimetallic
designs.

The overall two-step optimization process is synopsized in
Fig. 1. Given specifications for the target nanocluster size
and composition, as well as given applicable values for all
atom type-related parameters, the process begins by
obtaining the pool of the P most cohesive monometallic
nanocluster shapes from the work of ref. 15. Using each of
the shapes as the input, we apply the above presented
chemical ordering MILP model to obtain the best possible
bimetallic nanocluster design conforming to each given
shape. By comparing all such designs, we pick the one with
the highest cohesive energy as our initial design.

However, the shapes represented in the pool of highly
cohesive monometallic nanoclusters might not contain the
optimal shape for a bimetallic cluster. To that end, we
expand our search effort to the full space of cluster shapes by
utilizing a purpose-built metaheuristic search process that is
detailed in the next subsection of this paper. For any new
shape iterate that is postulated via this process, we apply
again our MILP model to evaluate its cohesiveness in light of
the optimal chemical ordering afforded by this shape. The
process iterates until we reach some termination condition,
which could be a limit on the CPU time and/or iterations
through the loop or a detection that the solution progress
has stagnated (e.g., not having identified a better design
within a predefined number of recent iterations).
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3.3 Metaheuristic search for optimal cluster shapes

Given early bimetallic designs, as obtained by optimizing
chemical ordering of nanoclusters that are known to be highly
cohesive as monometallics, we can now apply an appropriate,
purpose-built metaheuristic search algorithm to improve those
designs further. Metaheuristic search is an optimization
paradigm that aims to iteratively modify provisional solutions
according to a suitably defined local neighborhood, which
constitutes a direction of search in the problem's decision
space, into potentially better solutions.24,25 Proper strategies to
initialize solutions, modify existing solutions, decide the
acceptance or not of new solutions, and terminate the search
are essential for designing efficient metaheuristic search
algorithms. There exist a lot of algorithmic frameworks that
follow this paradigm of search, including genetic algorithms,
simulated annealing, variable neighborhood search, ant colony
optimization and particle swarm optimization, to name but a
few.26 As also mentioned in the introduction, however,
metaheuristic search algorithms provide no optimality proof at
termination. Hence, selecting a scheme that is found to
perform efficiently in each application and properly tuning its
hyperparameters, is important. There in fact exists a lot of prior
work that utilizes such methods to search for stable
nanoclusters.6–11 Our algorithm differs from the literature work
in the sense that each iterate in our search constitutes a large
collection of bimetallic designs to include all possible
homotops, the best of which is selected after optimizing the
chemical ordering via the MILP model presented earlier. In
effect, our proposed approach may also be classified as a

matheuristic algorithm,27,28 which to the best of our
knowledge, constitutes the first employment of such an
algorithm in the context of designing nanostructured
materials.

After some numerical experimentation with other options,
we decided to pursue the development of a simulated
annealing (SA) scheme to guide the search in terms of
particle shapes. The SA scheme is inspired by the annealing
process followed in metallurgy, where heating and controlled
cooling are coupled to improve material properties. In an SA
guided search, improving solutions are always accepted,
while worsening solutions are accepted with specific
probabilities. A parameter T (mimicking the temperature that
constantly drops in the real annealing process) determines
those probabilities via a Boltzmann factor. Initially, the
parameter T is larger, enabling more frequent acceptances of
worsening local search moves to diversify the search, but as
the search progresses, T decreases and the likelihood of
accepting worsening solutions diminishes, intensifying the
search around the locally applicable optimum. In essence, at
each iteration the algorithm evolves across the spectrum
from random sampling (accepting all moves) to greedy search
(only accepting improving modifications). The initial
temperature setting and the rate of cooling are hyper-
parameters that require careful tuning, while a search
trajectory may undergo multiple cycles of cooling followed by
subsequent reheating to the initial temperature. For further
details on how to set up an efficient SA implementation, we
refer interested readers to a multitude of literature on the
topic (see, e.g., ref. 26 and 29).

Fig. 1 Two-step solution strategy for the identification of highly cohesive bimetallic nanoclusters.
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The local moves applied during each SA iteration are
proposed based on the applicable neighborhood of search,
which is usually purposely defined in each application. In
our case, we define this neighborhood as the repositioning of
a single surface atom. We focus on repositioning only surface
atoms due to the underlying hypothesis that the less
coordinated surface atoms will have a more significant
impact on the cohesive energies. Furthermore, it is important
to highlight that this specific neighborhood of search does
not restrict the accessible search space, as all transitions
from any shape to any other shape can be achieved via
successive single surface atom repositionings. After each
surface atom repositioning, the CPLEX code is applied to re-
determine the chemical ordering that is most cohesive in
light of all homotops of the new shape. Indeed, the ability to
consider all homotops at once reduces the number of needed
iterations and improves search efficiency compared to a less
sophisticated implementation that would have incorporated
atom labeling as part of the SA neighborhood definition.

4 Computational results

Three bimetallic systems, namely AuAg, AgCu and CuAu are
chosen based on the assumption that they tend to form at
equilibrium face centered cubic (FCC) crystalline solids,
where CNbulk = 12. Bulk cohesive energies, as found in
literature for the three types of metals involved, are taken as
Ebulkcoh,Au = 3.81 eV, Ebulkcoh,Cu = 3.49 eV, and Ebulkcoh,Ag = 2.95 eV.30

Weighting parameters are calculated via eqn (3) and (4),
using dimer bond dissociation energies obtained from
experimental data in the literature.31 The applicable
parameters are γAuAg = 1.281 and γAgAu = 0.719 for the AuAg
system, γAgCu = 1.389 and γCuAg = 0.611 for the AgCu system,
and γCuAu = −0.357 and γAuCu = 2.357 for the CuAu system.

For each of these bimetallic systems of interest, we
consider a particle size range N between 6 and 65, as well as
all applicable compositions from pure metal type A to pure
metal type B. In total, we consider 6570 different test
instances that were generated for these computational
experiments. The exact atomic coordinates of all optimal
structures are provided as XYZ files in the ESI.† In the
remainder of the paper, a unique combination of size,
composition, and bimetallic system is referred to as AmBn,
where A and B are the metal species, while m and n are the
number of atoms for each respective type.

4.1 Correlation between monometallic and bimetallic
solutions

For each AmBn system, we shall apply the monometallic
nanocluster design methodology from ref. 15 and compute
the pool of the P = 20 best solutions and their corresponding
dimensionless cohesive energies, E  coh . These solutions
represent different nanocluster shapes of size m + n that we
can now rank from one to twenty in terms of the above
energies. Then, focusing on each of these shapes, one at a
time, we solve the chemical ordering MILP model to obtain

corresponding optimal bimetallic designs and the associated
cohesive energy values, Ecoh, according to the bond-centric
model. With these results at hand, we shall first investigate
the extent to which the optimality of a cluster shape in the
monometallic case correlates to the cohesiveness of
bimetallic clusters.

Fig. 2a presents a histogram of the monometallic solution
ranks from which the various best cohesive bimetallic
designs were obtained. In other words, each bar in the
histogram represents the count of AmBn systems for which
the best (out of twenty) bimetallic clusters originated from a
monometallic cluster shape (among the twenty such shapes)
with a given rank (from the highest to the twentieth highest
in terms of dimensionless cohesive energy). From this
histogram, we can observe that around 80% of the best
bimetallic designs can be derived from nanocluster shapes
that ranked first in the monometallic solution pool. We can
thus utilize the occurrence frequency of a given rank in this
histogram to approximate the probability of generating an
optimal bimetallic design from a monometallic solution of
this rank. Since the occurrence frequency shows a general
decreasing trend for all three chemistries of interest, we
conclude that the probability of a given shape corresponding
to the optimal bimetallic design decreases rapidly, as the
monometallic optimality of a cluster shape decreases, while
it is relatively unlikely that the optimal bimetallic cluster
shape is not represented in one of the first four or five
monometallic optimal shapes. This observation motivates
our algorithmic choice of P = 20 as the size of the collection
of monometallic clusters that are to be considered when
initializing the search for optimal bimetallic designs.

We now seek to establish a direct quantitative metric of
the correlation between E  coh and Ecoh. To do so, we expand
our focus to a total of 100 cluster shapes for each AmBn,
consisting of the original P = 20 ranked ones as well as an
additional 80 shapes obtained via the CPLEX code's solution
pool facility applied on the monometallic nanocluster model
from ref. 15. Following the previous procedure, we apply the
chemical ordering MILP model and calculate Ecoh for all
resulting bimetallic clusters. These are then compared
against the dimensionless cohesive energies of the
monometallic clusters, E  coh . With all AmBn systems we
studied, we noticed generally positive correlations between
E  coh and Ecoh. Fig. 2b plots such correlations for an example
composition of A19B18, for the three chemistries of interest.
In particular, the AuAg clusters show a near perfect
correlation with an R2 value of 0.997, the AuCu clusters show
strong correlation with an R2 value of 0.921, while the CuAu
system exhibits a relatively weaker correlation with an R2

value of 0.558. We remark that similar correlation trends are
observed for the other compositions The correlations
between E  coh and Ecoh suggest that, for the systems we have
investigated, the shape of a bimetallic nanocluster plays a
important role in determining its cohesive energy. Arguably,
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a highly cohesive monometallic nanocluster shape is a good
starting place for designing a highly cohesive bimetallic
nanocluster, motivating our decision to pursue the proposed
two-step solution strategy.

4.2 Improving designs via metaheuristic search

In this section, we discuss our computational experiments to
validate the effectiveness of our purpose-built SA
metaheuristic scheme for searching over the design space of
nanocluster shapes. More specifically, we compare the
cohesive energies of the best identified cluster before and
after applying the two-step solution strategy. Furthermore, in
order to validate the utility of applying the chemical ordering
MILP at each step of the metaheuristic search, we also
implemented a bare-bones version of the SA search whereby
the repositioned surface atoms retain their atomic labels,
skipping the chemical ordering step to relabel every atom of
the new cluster. In the following, we refer to these two
approaches as “SA-MILP” and “SA-only”, respectively.

Fig. 3 presents example computational results for the case
of 39-atom CuAu clusters, using a CPU time limit of 100
seconds in all cases. We should highlight that, just like many
other metaheuristic algorithms, simulated annealing invokes
a random number generator to decide whether any non-
improving designs are accepted as part of the solution
trajectory. To that end, in order to avoid any randomness
effects due to the choice of the random number generator
seed, the cohesive energies presented in this figure
correspond to the best values among 10 runs of the SA
process, each time utilizing a different seed for the random
number generator.

The plot reveals that, compared to the initial solutions
(“no SA”) corresponding to shapes of monometallic
nanoclusters, both the “SA-MILP” and “SA-only” approaches

help to improve solution quality. The improvements are most
significant in composition ratios between 0.3 and 0.5, when
the amounts of the two metals are comparable and where the
combinatorial complexity is the greatest. In addition, we note
that the “SA-MILP” approach tends to find better solutions
than the “SA-only”, suggesting that the MILP chemical
ordering step indeed accelerates the search process. For
example, focusing on the Cu14Au25 system (singled-out in
Fig. 3), we notice that the best cluster considering only
optimal orderings of monometallic nanocluster shapes (i.e.,
the green dot) exhibits noticeably lower cohesiveness than
what can be achieved by subjecting those structures to atom
rearrangements via the SA search process (i.e., the red dot),
while with the integration of MILP-based chemical ordering

Fig. 2 (a) Histogram of E  coh ranks of optimal bimetallic cluster shapes. (b) Parity plot between E  coh and Ecoh for representative test instances
Au19Ag18, Ag19Cu18 and Cu19Au18.

Fig. 3 Comparison of solutions obtained via different search
strategies for representative clusters CumAun with m + n = 39.
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optimization at each step of the search, an even better
structure is identified (i.e., the blue dot). Noting that these
results are representative of other instances we have tested,
we conclude that our purpose-built SA-based algorithm to
search over cluster shapes, combined with an MILP-based
search over chemical orderings, constitutes an efficient
strategy for designing highly cohesive, and hence stable,
bimetallic nanoclusters. The optimality boost provided by the
metaheuristic is especially helpful for systems with a
relatively weaker E  coh − Ecoh correlations, such as the CuAu
case.

4.3 Trends among bimetallic solutions

The two-step methodology we presented in this paper is a
powerful tool for systematically exploring the design space
and understanding bimetallic nanoclusters' stability. The
framework's most direct usage is to identify optimally stable
designs for given sizes, compositions, and bimetallic systems.
The obtained designs can then serve as model nano-
structures for further experimental and theoretical
investigations. At the same time, when considered
collectively, the complete library of stable bimetallic
nanoclusters can build intuition on how different factors
interact and affect stability.

In our previous study on the stability of monometallic
nanoclusters,15 we observed that, as the particle size
increases, its cohesive energy asymptotically approaches the
bulk value but with noteworthy discontinuities of the trend
at certain so-called magic numbers. In general, magic
number effects may be arising in highly symmetrical
structures and based on enhanced stability of their electronic
structure. To investigate the size effect for bimetallic
nanoclusters, we compare here results across various sizes of

the same specified compositions. As shown in Fig. 4a, a
similar trend of asymptotically increasing cohesive energies
applies. We also notice deviations from a purely monotonic
increase at specific sizes and compositions (e.g., CuAu system
at N = 10), which may be explained by applicable magic
number effects that are however far less understood in
bimetallic systems.

With bimetallic nanoclusters, it is also important to
investigate how composition affects their stability.
Researchers are especially interested in minimum
compositions of noble metal in catalysts32 and magic
compositions of additive or synergistic effects. To that end,
we can scan our results library at given sizes and compare
structures along various compositions. As Fig. 4b shows,
among the three systems investigated, AuAg and AgCu show
direct additive effects between their two metals in terms of
cohesive energy, where adding atoms of higher bulk cohesion
(Au and Cu, respectively) increases the particle's total
cohesive energy linearly. In contrast, for the CuAu system, we
observe nonlinear synergistic effects between those two
metals, whereby mixed nanoclusters tend to have higher
cohesive energy than their pure counterparts. More
specifically, for the range of sizes represented in this plot, an
most cohesive composition arises at approximately 40% Cu
to Ag ratio where the highest cohesive energy is attained.

In addition to investigating optimal solutions in terms of
the cohesive energy values, we can also study their structure
features qualitatively. We are particularly interested in the
segregation patterns exhibited by stable designs, because
these patterns significantly affect catalytic reactivity and
magnetic properties. In our studies, we observed that nearly
all of the optimal solutions are quasi-spherical, and hence,
we employ the mean distance to the geometric center (MDG)
as a suitable metric for the level of segregation. For example,

Fig. 4 Impact on optimal cohesive energies of bimetallic nanoclusters of (a) size N at three composition ratios R ∈ {25%, 50%, 75%) (b)
composition ratios R at three sizes N ∈ {26, 39, 55}.
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if a certain type of atoms tends to segregate to the surface,
then we should observe a divergence of the MDG of the two
atom types in the cluster.

Fig. 5a reports MDG calculations for our optimal solutions
across all composition ratios and for the representative
cluster size N = 39. From these plots, we can clearly infer the
corresponding segregation patterns. More specifically, in the
CuAu system, the Au atoms tend to have larger MDG than
the Cu atoms, indicating that the Au atoms tend to distribute
at the surface, while the Cu atoms aggregate into the center
of the particle. Similar trends also appear in the AgCu
system, with the Ag atoms preferentially distributing at the
surface. The AuAg system shows a more complicated pattern.
When fewer Au atoms are in the particle, Ag atoms tend to
have larger MDG values. However, as the number of Au
atoms increases, the pattern shifts to having more Au atoms
on the surface. Those observations suggest interesting
configurations of optimally stable bimetallic nanoclusters. By
inspecting detailed AgCu configurations more closely, we can
note Cu@Ag core–shell structures for instances with a few
Cu, when Ag tends to segregate to the surface. When more
Cu atoms and a few Ag atoms exist in the particle, highly
symmetric Cu-core Ag-decorated structures are identified.
Similar configurations are observed in the CuAu system. It
should be noted that those configurations are highly
symmetric. For the AuAg system, Ag tends to segregate to the
surface at low Au composition, while Au@Ag core–shell
structures are observed. In contrast, at high Au composition,
Au tends to segregate to the surface, and Ag@Au core–shell
structures are found. These structural trends have been also
observed on minimum-energy structures of larger bimetallic
nanoparticles (sizes reaching 4000 atoms) by combining the
bond-centric model with a genetic algorithm, where Cu
resides in the core of AuCu and AgCu nanoparticles and
AgAu particles show well-mixed behavior.11 This could be

partially explained by the fact that the bulk cohesive energy
value of copper is higher than that of silver and, hence,
optimal designs tend to form many Cu–Cu bonds in the core.
In general, the final designs result from an optimized trade-
off between many factors, such as number of bonds, strength
of bonds, and the overall geometry of the lattice.

Next, we attempt to validate that the structures obtained
via our design approach retain their stability characteristics
as well as the associated trends even when subjected to DFT
relaxations. In order to apply DFT calculations, we note that
there exists systematic deviations of ab initio calculated and
experimental bulk cohesive energies, which are essential
parameters in the bond-centric model. Thus, for a fair
comparison, we feed the DFT-calculated key parameters to
our methodologies. The identified optimal bimetallic
configurations are then relaxed with DFT calculations. More
specifically, for each structure, we pre-optimized by scaling
the atomic coordinates to minimize the energy according to
effective medium theory (EMT), as implemented in the
atomic simulation environment (ASE).33 A full DFT
optimization was then carried out on the pre-optimized
structure. We utilized CP2K34,35 in conjunction with the PBE
functional36 and the DZVP basis sets of VandeVondele and
Hutter,37 along with the pseudopotentials of Goedecker,
Teter, and Hutter38 and a planewave cutoff of 500 Ry. The
self-consistent field (SCF) procedure was converged to within
10−8 Ha, and geometries were optimized until forces were
below 4.5 × 10−4 Ha per Bohr.

We then take the final DFT-relaxed structures and report
their MDG values in Fig. 5b. As can be observed by
comparing the respective MDG values, there exists a good
quantitative agreement between the DFT-relaxed and FCC
optimal solutions, while qualitatively, we also confirm the
DFT-relaxed structures maintain the mixing patterns
observed previously. We acknowledge that DFT optimization

Fig. 5 MDG values and standard deviations for size N = 39 (a) FCC optimal designs, and (b) DFT-relaxed designs; gold, silver, and copper colors
encode the respective metals.
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is always contingent to the initial structure that is provided
as input. However, if the optimization methodology would
result to unrealistic bimetallic nanocluster designs, this
should be depicted in the DFT optimization where significant
cluster reconstruction should occur. Thus, Fig. 5b
demonstrates that the clusters retain their structural trends
after DFT optimization. These results further illustrate the
ability of the two-step approach presented in this paper to
yield bimetallic nanocluster structures that are indeed highly
stable and that retain their general shape and associated
segregation pattern under lattice relaxation.

4.4 Effect of lattice type on segregation patterns

Given our framework's amenability to consider various lattice
types, we provide here a brief investigation of how the choice
of lattice might affect the optimal chemical orderings and
resulting segregation patterns expected in highly stable
clusters. More specifically, we reran our chemical ordering
optimization model on N = 13 and N = 55 perfect icosahedron
enclosure shapes, for various compositions, and compared
the results with the corresponding designs based on a
cuboctahedron lattice (i.e., FCC). As illustrated in Table 1,
optimal orderings within icosahedral clusters show slightly
higher cohesiveness than optimal orderings in their
cuboctahedral counterparts. This can be explained by the fact
that, for the same size, there are more bonds in icosahedral
clusters than in cuboctahedral ones. Among the five example
instances, Ag12Cu1 exhibits the highest cohesive energy ratio
between icosahedron and cuboctahedron shapes, suggesting
that, at this size and composition, the AgCu system has a
greater tendency to form icosahedron shaped
nanoclusters rather than FCC ones. Despite these absolute
differences in cohesive energies, the optimal orderings are
similar, exhibiting the same segregation patterns. For
example, Ag12Cu1, Ag42Cu13, Cu1Au12, and Cu13Au42 all form
core–shell structures with Cu cores, while highly symmetric
Cu-core/Au-decorated structures of Cu43Au12 are observed, in
both icosahedron and cuboctahedron shapes. Overall, the
above analyses support the conclusion that the segregation

patterns observed earlier in this paper for FCC clusters would
not change significantly, if icosahedron shapes are in effect.

5 Conclusions

We have a rigorous design framework, hybridizing exact
MILP-based and metaheuristic search optimization, for
identifying highly stable bimetallic nanoclusters. To alleviate
obvious tractability challenges when faced with a highly
combinatorially complex design space such as those arising
for bimetallic particles, we proposed a clever “structure-first-
order-second” decomposition of the full design task into two
steps, namely the optimization of the particle shape followed
by the optimization of chemical ordering within a given
shape. To that end, we applied simulated annealing to guide
the search across nanocluster shapes, coupled with an MILP
model to identify the optimal homotop associated with each
nanocluster shape visited in the search trajectory.

In the course of our computational experiments, we
obtained an excess of six thousand optimal solutions of
AuAg, AgCu and CuAu nanoclusters with up to 65 atoms,
demonstrating that our design framework can identify highly
cohesive bimetallic nanocluster configurations. The latter can
serve as model particles for further investigations, enabling
the efficient and systematic exploration of their stability
properties. Many unintuitive bimetallic configurations were
obtained, including core–shell structures and symmetric
core-decorated structures. We also looked at how size and
composition affect a cluster's cohesion, revealing many
interesting instances whereby alloyed clusters demonstrated
greater cohesive energy than their monometallic
counterparts. Furthermore, we observed various interesting
segregation patterns that remained unaffected when
submitting the clusters to DFT relaxations. Most notably, we
confirmed that Cu atoms tend to segregate into the core in
both AgCu and CuAu systems.
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Table 1 Comparison of optimal designs under cuboctahedron (FCC) and icosahedron geometries

Lattice Ag12Cu1 Ag42Cu13 Cu1Au12 Cu13Au42 Cu43Au12

Icosahedron

Eicocoh(eV) 1.89 2.30 2.29 2.65 2.84
Cuboctahedron (FCC)

Ecubcoh(eV) 1.76 2.21 2.17 2.58 2.74
Eicocoh/E

cub
coh 1.07 1.04 1.05 1.03 1.04
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