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ABSTRACT

Machine learning (ML) methods have gained increasing popularity in exploring and developing new
materials. More specifically, graph neural network (GNN) has been applied in predicting material
properties. In this work, we develop a novel model, GATGNN, for predicting inorganic material
properties based on graph neural networks composed of multiple graph-attention layers (GAT) and a
global attention layer. Through the application of the GAT layers, our model can efficiently learn the
complex bonds shared among the atoms within each atom’s local neighborhood. Subsequently, the
global attention layer provides the weight coefficients of each atom in the inorganic crystal material
which are used to considerably improve our model’s performance. Notably, with the development
of our GATGNN model, we show that our method is able to both outperform the previous models’
predictions and provide insight into the crystallization of the material.

1 INTRODUCTION

Machine learning and deep learning [1, 2] have been increasingly used in materials discovery recently with a variety
of applications [3, 4, 5] such as rechargeable alkali-Ion batteries, photovoltaics, catalysts, thermoelectrics, superhard
materials [6], and superconductors [7]. The two key components of a machine learning model for materials property
prediction is the descriptor or feature set and the machine learning algorithm. Currently, there are two main categories of
descriptors that are widely used including composition based features [8, 9] and structure based features [10, 11, 12, 13].
The former has the benefit of being able to be applied to discover new hypothetical materials while the latter has higher
prediction performance but only applicable to materials with characterized structure information either experimentally
or by computational crystal structure prediction software such as USPEX[14], which, however, can only predict the
structure for relatively simple compositions.

Numerous structural descriptors have been proposed to represent materials such as atom-centered symmetry functions,
Coulomb matrix, smooth overlap of atomic positions, deep tensor neural networks, many-body tensor representation,
and Voronoi tessellation[3]. However, these descriptors all have their own limitations such as not being size-invariant
by construction, or basing their representation of infinite crystals on local neighborhoods of atoms in the material [3].
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Extensive discussions over these structure descriptors and the characteristics of desired structural descriptors such as
invariance to translation, rotation, and permutation of homonuclear atoms can be found in recent reviews [3, 15].

Recently, graph neural networks have gained a lot of attention in materials property prediction [11, 13, 16] due to high
representation learning capabilities and their ability to achieve state-of-the-art results for various problems of classifying
graph entities or graph nodes[17]. Xie et al. [11] were among the first to apply graph neural networks to materials
property prediction by encoding the crystal structures as graphs. Their CGCNN has achieved strong results in a set
of property prediction problems. Notably, the encoding consists of representing the unit cell of the crystal material
as a graph such that nodes would represent the and connecting edges would represent the bonds shared amongst the
atoms. A direct benefit of representing the crystal material as a CGCNN-converted graph is the naturally derived vector
characterization of the atoms and edges. Chen et al. [13] improved the CGCNN model by introducing a global state
input including temperature, pressure and entropy. They also found that the element embeddings in their MEGNet
models encode periodic chemical trends and can be used for transfer learning based training of models for band gaps
and elastic moduli prediction which have limited training data using the embedding learned by models training for
formation energy prediction. In another effort to improve CGCNN, Park et al. [16] proposed an approach to incorporate
information of the Voronoi tessellated crystal structure, explicit 3-body correlations of neighboring constituent atoms,
and an optimized chemical representation of interatomic bonds in the crystal graphs.

While previous graph neural network models for crystal materials property prediction has emphasized capturing
local atomic environment, here we propose GATGNN, a deep graph neural network model based on global attention
mechanism for crystal materials property prediction. The attention mechanism was first introduced into neural networks
for natural language processing (NLP) [5, 18]. Basically, attention is simply a vector, often the outputs of dense layer
using softmax function, which can be used to learn the contribution of different context vector components to the merged
context vector. It has been used to replace the recurrent neural networks and has achieved significant successes in NLP
[19, 20, 21, 22]. In this model, we first use local attention layers to capture properties of local atomic environments and
then a global attention layer is used to make weighted aggregation of all these atom environment vectors to create the
global representation of the whole crystal structure. This allows our model to better capture the fact that different atoms
in the crystal have different contributions to the global material property. In materials science, Coley et. al. [12] firstly
proposed a global attention mechanism with graph neural network for chemical reactivity prediction. In their model,
the global attention coefficient of each atom is calculated by learning a reaction probability of that atom to all other
possible (physically possible) matching . In our work, the coefficient of an atom is calculated by learning either one of
1) its importance based on its location in the graph or 2) its energy contribution to the crystallization of the material.

The contributions of our work include:

1. We propose a global attention mechanism with graph neural network for material’s property prediction.

2. Benchmark studies have shown the state-of-the-art performance of our GATNN algorithm in a variety of
materials property prediction problems.

3. Ablation experiments have been conducted to demonstrate the advantage of GATGNN.

4. We have extracted physical insights by examining the learned weights of the GATGNN.

2 METHODS

2.1 Data Collections

The Materials Project database is used to collect the properties of all the crystal materials originally used in the works
of CGCNN [11] and MEGNET [3]. While the same CGCNN graph-encoding is applied to convert all 46,743 materials
from the CGCNN, we modified the graph constructing parameters for about 69,000 MEGNET inorganic materials. We
set each node’s maximum number of neighbors to 16, the cut-off radius at 4, and the step size for the Gaussian distance
at 0.5.

2.2 Augmented Graph-Attention Layer

First, we define a graph as the tuple (V,E,A) where V defines a set of nodes, E a set of edges, and A the graph’s
adjacency matrix. Letting v ∈ V and e ∈ E be the feature vectors of atoms and edges, we explain the core of our
proposed architecture that is based on the Graph Attention (GAT) Network proposed in 2018 by Velickovice et al. [23].
Introduced as a flexible way to adapt the attention mechanism in graph neural networks, GAT Networks proposed
a viable solution for dealing with unequal importance of neighboring nodes in graph networks. Making use of the
attention heads and context vectors, the GAT architecture makes it possible to learn the importance of the information
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obtained from neighboring nodes. Notably, the GAT network allows each node to weigh the information from each
neighboring node and the learning of these weights can be described by the following operation:

α
(k)
ij = softmax(g(a

(k)
ij )) = softmax(g(aT [W(k)v(k−1)

i ∥ W(k)v(k−1)
j ])) (1)

where a and W define the weight vector and weight matrix of layer k, while v and function g(·) define a node feature
vector and a non-linear function. For two connected nodes i and j, a weight αij is calculated after applying the
softmax function to the attention coefficient aij of their connection. The attention coefficient aij is learned via linear
transformation of the newly transformed feature vectors of nodes i and j combined by a. Once the attention weights are
learned, the updated node feature vector is calculated by the following convolution,

v(k)i = σ

⎛⎝ ∑︂
j∈N(i)∪j

α
(k)
ij W(k)v(k−1)

j

⎞⎠ (2)

, where N(i) defines the neighborhood of node i and σ the sigmoid function. While GAT networks use the information
characterizing neighboring nodes, the original architecture has the limitation of not using any available edge information
when learning the attention weights. As a solution to the latter shortcoming, we augmented the original GAT layer.
Particularly, we improved the learning capability of the GAT layer by adding Batch-Normalization layers and augmenting
the node features vectors with the information from their connecting edge as seen below,

v*(k)
i = v(k)

i ∥ eij (3)

where v*(k)
i defines the augmented feature vector of node i found by combining vi and eij , the feature vector of the

edge connecting node i and its neighbor j. Henceforth, our adaptation of the GAT network for our properties prediction
comprises multiple augmented-GAT (AGAT) layers, a global feature pooling layer, and 2 hidden layers. Compared to the
properties prediction obtained from applying the original layer, the results of our AGAT layer improved the prediction
performance scores by an average of 20%. By using the batch-normalization, softplus non-linear activation function,
and the average of 4 attention heads, we further optimized the learning capability of the AGAT layer. Nonetheless, just
the application of the AGAT layers to extract the node features resulted in much poorer predictive performance than
previous models from CGCNN and MEGNET works. Certainly, graph neural networks provide strong performance
when the main goal is the relationship extraction in a local neighborhood. However, graph neural networks do not
use the position of the nodes within the entire graph. Corresponding to the theoretical work, the location of an atom
with respect to the structure of the material is critically important and not just to the atoms within the vicinity of its
site. Inspired by the works of the [reference below], we propose a global attention layer, before the pooling layer as
seen in Figure1, that is adapted to particularly translate the information directly learned from a local neighborhood to
information at the graph level with meaningful interpretability.
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Figure 1: Architecture of our global attention graph CNN model GATGNN. Each model is composed of either 5 or 7 of
our AGAT layers with 64 neurons. After extracting the node features, a global attention layer is placed before the global
pooling of the node feature vectors. Finally, the weighted sum of the crystal feature vector is afterwards fed to two
hidden fully-connected layers before a final fully-connected layer outputting the predicted property.

2.3 Crystal Global Attention mechanism

In this work, two types of global information (GI) are used as additional inputs to construct the Global Attention Layer:
a feature vector characterizing the entire crystal graph and a feature vector denoting the crystal node’s location in the
graph. To represent the feature vector characterizing the entire graph, we used the crystal’s elemental composition E.
On the other hand, we represent node i’s location in the graph by its cluster a: Ci

a, obtained by feeding its coordinates
either the Spectral-Clustering or the K-Means algorithm. In our experiments, only three clusters were used, which
shows the best performance in our experiments. Then, the global information is propagated to the node feature vectors
v(p)i output by the last AGAT layer as defined in table 1. Depending on the choice of the global information, the GI
method of propagation differs on either concatenation or deconvolution.

4
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Table 1: Description of the global information used and the different propagation method throughout the nodes.

Global Information (GI) GI Propagation Formulation Method
Identifier

Graph’s elemental Composition E Concatenation with node
feature

v(p)
i = v(p)i ∥ E GI M-1

Node i’s Cluster
Fixed Cluster Unpooling v(p)

i =
∑︁

j∈Ci
a

v(p)j GI M-2

Random Cluster Unpool-
ing

v(p)
i =

∑︁
j ̸∈Cb

v(p)
j ∋ Cb ̸= Ci

a GI M-3

Concatenation of graph’s
pooled feature vector G,
node features, and one-
hot encoding of node
clusters

v(p)
i = G ∥ v(p)i ∥ Ci

a GI M-4

For the choice of the crystal’s elemental composition E, the GI propagation method consists of concatenating E to
the feature vector of each node v(p)i . Figure 2 provides an illustration of the schema of the propagation method of the
elemental composition. For using the node’s location as global information, we propose two new strategies. The first
strategy defines the concatenation of the pooled feature vector of the crystal graph G (eq. (2.3)), the feature vector of
each node v(p)

i , and the one-hot encoded cluster information of each node Ci
a. The combination of the nodes’ feature

vector and cluster information with G, is then fed to a single feed-forward layer which outputs a new feature vector
encoding the node’s location.

Figure 2: Illustration of the global information propagation for the material’s elemental composition through the nodes
of the crystal. Each crystal node’s feature vector is concatenated with the composition encoded vector, which outputs a
context vector after forwarded to two fully connected layers

G =

N∑︂
i=1

v(p)i (4)

Our last strategy for propagating each node’s position throughout the entire crystal, illustrated in Figure 3, is based on
our operations of pooling and unpooling the cluster features of the graph nodes. Upon separating the crystal nodes into
clusters, we apply our cluster-pooling operation, which is the summation of the feature vector of all nodes belonging
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to that specific cluster. The next operation, the cluster unpooling or deconvolution, consists of replacing the feature
vectors of each node by cluster-pooled feature vectors. Each node’s feature vector can be replaced either randomly or
non-randomly (fixed). In the fixed unpooling method, each node’s feature vector is replaced by the summed feature
vector of the cluster that node belongs to. On the other hand, the random unpooling method defines the method in
which each node’s feature vector is replaced by the summed feature vector of any cluster that the node did not belong to.
Essentially, our proposed global attention layer relies on the distribution of a meaningful and universal information
though all the nodes in the crystal graph. Once all of the graph nodes’ feature vectors are updated, they are fed to
a feed-forward neural network with two fully connected layers and a softmax layer outputting a coefficient vector c.
Notably, that coefficient vector c contains all the corresponding coefficient ci for each node i in the graph. Finally, each
ci is then multiplied by the corresponding feature vector v(p)i of the matching node.

Figure 3: Illustration of two propagation methods for the node’s cluster. The Cluster-Pooling * defines the aggregation
of the feature vectors of all nodes that belong to each of the three clusters. The clusters feature vectors are redistributed
through the all the nodes in the unpooling method, which is either fixed or random. After feeding the crystal graph with
updated node feature vectors, a context vector is output. The context vector, which contains the weight relating to each
node’s location, is then multiplied with the input crystal node feature vectors to provide a graph with Structure aware
nodes.

2.4 Model Construction and Training

To construct our models, we used the open-source library of Pytorch [24] and its geometric deep learning extension of
Pytorch-geometric [25]. A model for each designated property was trained for a total of 500 epochs using early-stopping
with a patience parameter 150. The additional model hyper-parameters describe a learning rate initiated at 5 · 10−3

which later reduces to 5 · 10−4 and then to 5 · 10−5, a batch-size of 256, 5 or 7 of our AGAT layers with 64 neurons, 4
attention-heads, the Glorot uniform weight initialization, the SmoothL1loss as loss function, and the AdamW optimizer.

The separation of the data into training, testing, and validation sets were carried as described in the original works
[11, 13]. A split of 60:20:20 of the whole datasets in CGCNN study was used to train and evaluate our models while a
split of 80:10:10 was used for training and evaluating our models as is done in MEGNET study. All of the models were
trained on Nvidia GeForce RTX 2080 Ti GPUs. During the training process, the model parameters leading to the lowest
validation error are saved to construct the final model.

3 Results

3.1 Prediction Performance Improvements over MEGNET and CGCNN

Table 2 provides a summary of the comparison between our models’ performance and the models of CGCNN. From
the reported mean absolute error (MAE) scores, our models outperform the CGCNN models in nearly all properties
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prediction problems. Except for the formation-energy prediction problem for which the scores matched, the absolute
amount in performance improvement over the previous CGCNN results range from 2.3% to 33%. Material properties
with 10% score improvement were observed including Absolute-Energy, Band-Gap, and Bulk-Moduli as shown in the
table.

Table 2: Performance (MAE) comparison over seven materials property prediction problems of our model compared to
CGCNN. The number of training samples used for each model is indicated in parentheses.

Properties CGCNN GATGNN(this work) Units

Formation Energy 0.039 (28,046) 0.039 (28,046) eV/atom
Absolute Energy 0.072 (28,046) 0.048 (28,046) eV/atom

Fermi Energy 0.363 (28,046) 0.33 (21,885) eV/atom
Band Gap 0.388 (16,485) 0.322 (16,485) eV

Bulk-Moduli 0.054 (2,041) 0.047 (2,041) log(GPa)
Shear-Moduli 0.087 (2,041) 0.085 (2,041) log(GPa)
Poisson-ratio 0.030 (2,041) 0.029 (2,041) –

Consistent with the performance comparison with CGCNN, our GATGNN models likewise outperform the MEGNET
models in the predictions of three out of four properties as shown in Table 3, which displays the side-by-side comparison
of the MEGNET results compared to our models. While our models improves the prediction results reported by
MEGNET in predicting the Band-Gap, Bulk-Moduli, and Shear-Moduli properties, our models underperformed in the
prediction of the Formation Energy property. The lower performance of our model for the Formation Energy prediction
compared to those of both CGCNN and MEGNET suggests one potential limitation of our models.

Table 3: MAE comparison of four materials properties prediction of our GATGNN model compared to MEGNET. The
number of training samples used for each model is indicated in parentheses.

Properties MEGNET GATGNN(this Work) Units

Formation Energy 0.028 ±0.000 (60,000) 0.048 (60,000) eV/atom
Band Gap 0.33 ±0.01 (36,720) 0.31 (36,720) eV

Bulk-Moduli 0.050 ±0.002 (4664) 0.045 (4664) log(GPa)
Shear-Moduli 0.079 ± 0.003 (4664) 0.075 (4664) log(GPa)

3.2 Ablation experiments

In Table 4, we provide the MAE comparison for the prediction of the Band-Gap, Bulk-Moduli, and Shear-Moduli
properties for all the attention models investigated in this work. Without our minor improvements and the usage of edge
information, the original GAT demonstrated a very poor predictive ability for the three tested properties. While the
AGAT model recorded comparable results to CGCNN, all of our global information propagation solutions improved
its performance with the added attention coefficient vector. For each one of the three properties predictions, the
four solutions provided very similar results. The reported descriptive statistics for the Band-Gap, Bulk-Moduli, and
Shear-Moduli properties listed as 0.33± 0.005, 0.0495± 0.002, and 0.0868± 0.0015 indicate that the application of
the weight coefficients from any GI-propagation method would yield better prediction than without its usage. Even
though the third GI-Method of Random Unpooling didn’t yield the lowest MAE for either one of the properties, it
should be noted that this method showed the most consistency of improving the AGAT performance. In two out of the
three properties, the usage of the crystal elemental composition provided the lowest prediction errors. In two out the
three properties prediction problems,the learning of the node position through our GI M-4 method of properties yielded
the worst result. Figure 4 displays the performance of our model for the GI M-4 method. For none of the properties did
the learning of the position with our GI M-4 method of propagation outperform either the fixed or the random unpooling
propagation.
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Table 4: Performance (MAE) comparison over three properties prediction for graph networks with original GAT layer,
our AGAT layer, and our four proposed methods of GI propagation.

Properties GAT AGAT GI M-1 GI M-2 GI M-3 GI M-4 Units # Training Samples
Band Gap 0.466 0.345 0.329 0.322 0.332 0.337 eV 16,485

Bulk-Moduli 0.081 0.054 0.047 0.051 0.048 0.052 log(GPa) 2,041
Shear-Moduli 0.121 0.094 0.085 0.089 0.086 0.087 log(GPa) 2,041

4 Discussion

The architecture of our graph neural network offers the inherent benefits of improved accuracy and interepretability.
With the use of either one of our proposed global attention layers for properties prediction, we observed a minimum
reduction of prediction error of 7% for all property prediction problems evaluated in this study including band gap,
bulk modulus and Shear modulus as shown in Table4. Even though our models were trained using a larger number
of parameters than CGCNN and a comparable number of parameters to MEGNET, our models have the advantage of
a much faster convergence than the latter. For most of the models, about 160 epochs are enough for our GATGNN
models to reach comparable results to CGCNN and MEGNET which usually take 500 to 2000 epochs or more with the
same batch sizes. Using the bulk-moduli property as an example, Figure 4 displays the resulting training and parity
plots from our models. Figure 4 a) provides the details of the predictive performance from our GI M-1 attention model.
Our model recorded its lowest validation loss at epoch 252 at which point its parameters were saved. Then, the latter
model, with its saved parameters from epoch 252, is later evaluated on the testing set to display the parity plot shown in
Figure 4 b) for a MAE of 0.048. While our reported results come from the performance of the model with five AGAT
layers for our CGCNN comparison models and seven for our MEGNET models, using a minimum of three layers with
four attention heads would also provide a similar behavior of faster convergence and similar state-of-the-art results.

(a) Training plot (b) Parity plot

Figure 4: Training plot (a) and parity plot (b) for the CGCNN Bulk-Moduli trained model; with property on the log
scale.

To obtain additional insight from our GATGNN model, Table 5 provides a detailed analysis of the extracted context
vector from the prediction of the material mp-20452 which is displayed in Figure 5. The table lists the interpretable
coefficient corresponding to each atom in the unit cell by comparing the results of our proposed model without global
attention to the results of the four global attention mechanisms discussed in this work. The last row in the table
corresponds to the predicted bulk-moduli property for the material with formula (Ba(MgPb)2). Except for the model
trained without the global attention layer, each global attention method provides a meaningful weight to each node with
respect to the global information used.

8
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Table 5: Context vectors obtained in predicting bulk modulus (KV RH ) of material mp-20452 (with KV RH = 1.5051)
obtained from each method discussed in our work. Each row lists the rounded weight contribution of an atom in the unit
cell for each proposed method. The last row: Predicted KV RH lists the obtained predicted property from each method.

Atom AGAT GI M-1 GI M-2 GI M-3 GI M-4
Ba 1.0 0.353 0.05 0.1 0.185
Ba 1.0 0.353 0.185 0.1 0.185
Mg 1.0 0.056 0.05 0.098 0.12
Mg 1.0 0.056 0.185 0.1 0.12
Mg 1.0 0.017 0.037 0.1 0.033
Mg 1.0 0.017 0.037 0.1 0.033
Pb 1.0 0.06 0.05 0.098 0.124
Pb 1.0 0.06 0.037 0.1 0.124
Pb 1.0 0.013 0.185 0.1 0.037
Pb 1.0 0.013 0.185 0.1 0.037

Predicted KV RH 1.5977 1.5024 1.5528 1.5085 1.5204

Figure 5: Ba(MgPb)2 Crystal structure. (Material-Project id: mp-20452). Orange nodes represent the Mg sites, green
the Ba sites, and grey the Pb sites.

With all of its weights fixed at 1.0, the AGAT model trained without our global attention had the largest error of 0.09.
On the other hand, each one of the other global attention methods returned a mixture of weights per node which offer a
different level of information regarding the GI and GI propagation method. The GI M-1 weighted the by their types.
Barium (Ba) accounted for about 70% of the sum of the context vector while Lead (Pb) and Magnesium (Mg) had a
similar weight totaling to 0.146. Particularly, we note that for the four Mg and four Pb atoms, two of each type have
half of the weight assigned to the remaining two. The three other global attention methods weight assigned the weights
to the nodes based on their location in the graph.

The GI M-4 had a similar distribution of weights as the GI M-1 method. The global attention layer values the sites of Ba
sites as the most critical locations attributing a total weight of 0.37 to its atoms. The Lead and Magnesium had weights
totaling to 0.322 and 0.304. As in GI M-1, half of the Lead and half of the Magnesium had much more significant
weights than the remaining. The GI M-2 and GI M-3 methods weighted the nodes based on the node clusters of the
graph. For the GI M-2 method, weights are attributed to the nodes based on their corresponding clusters. For the three
clusters formed for the mp-20542 material, their corresponding weights correspond to 0.185, 0.05, and 0.037. The
cluster that contains the second Ba, the first Mg, and the last two Lead atoms has a cumulative weight of 0.74. The next
most important cluster, containing the first Ba, Mg, and Pb, has a cumulative weight of 0.15 while the last cluster totals
a weight of 0.11. Lastly, the GI M-3 method provides weights on the basis that the nodes belonged to a different site.
With the exception of the first Mg and Pb , all of the are attributed the same weight of 0.1.

Ultimately, with the application of our graph attention layers from which we can extract the nodes’ weights, we are able
to derive a more effective representation of the crystal feature vector. After that, our global attention layer transforms
each node’s feature vector to the graph scale by multiplying it with the learned weight to extract the pooled crystal
feature vector. In a set of experiments that we conducted with the Random Forest (RF) algorithm, we noted that the
extracted pooled crystal feature could allow RF to achieve lower prediction error than the well-known Magpie features
[26]. Essentially, our graph network model allows us to extract the pooled crystal feature as a good representative
set of features for that crystal, which can be used for property prediction, classification, or other downstream tasks.
Furthermore, like MEGNET [16], our GATGNN model also provides the ability to transfer the learned node relationships
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and weights from a previously built model trained with large amount of labelled data to training models with limited
property data.

5 Conclusions

We proposed GATGNN, a novel graph convolutional neural network model with global attention mechanisms for
accurate materials property prediction. Evaluations on standard materials projects dataset over multiple materials
properties such as band gap, bulk-moduli, shear-moduli, formation energy and etc show that our global attention based
graph convolutional network models can achieve better performance compared to both CGCNN and its improved
MEGNET model. Further analysis shows the importance of global information in accurate prediction of crystal
materials properties, which has been sought in both MEGNET and the improved CGCNN [16].
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