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Abstract: Materials representation plays a key role in machine learning based prediction of materials
properties and new materials discovery. Currently both graph and 3D voxel representation methods
are based on the heterogeneous elements of the crystal structures. Here, we propose to use electronic
charge density (ECD) as a generic unified 3D descriptor for materials property prediction with the
advantage of possessing close relation with the physical and chemical properties of materials. We
developed an ECD based 3D convolutional neural networks (CNNs) for predicting elastic properties
of materials, in which CNNs can learn effective hierarchical features with multiple convolving and
pooling operations. Extensive benchmark experiments over 2,170 Fm3m face-centered-cubic (FCC)
materials show that our ECD based CNNs can achieve good performance for elasticity prediction.
Especially, our CNN models based on the fusion of elemental Magpie features and ECD descriptors
achieved the best 5-fold cross-validation performance. More importantly, we showed that our ECD
based CNN models can achieve significantly better extrapolation performance when evaluated over
non-redundant datasets where there are few neighbor training samples around test samples. As
additional validation, we evaluated the predictive performance of our models on 329 materials of
space group Fm3m by comparing to DFT calculated values, which shows better prediction power of
our model for bulk modulus than shear modulus. Due to the unified representation power of ECD,
it is expected that our ECD based CNN approach can also be applied to predict other physical and

chemical properties of crystalline materials.
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1. Introduction

Due to its time and cost efficiency, data-driven machine learning approaches have been
increasingly used for material property prediction [1,2] and materials screening and discovery [3,4].
Although the great potential of machine learning in material discovery is widely acknowledged, it
has yet to achieve high success as it has in other scientific fields. There are two major challenges to
address to realize their potential. The first one is that in materials science there are usually only a small
amount of characterization/property data (labelled samples) available, the so-called small data set
problem [5]. For example, the number of materials with characterized thermal conductivity are less
than 400 [6] while the number of materials with characterized ionic conductivity are even less than
50 [3]. With limited data, a major challenge for building an accurate prediction model for a target
material property is how to find suitable materials descriptors, which is a key factor that determines
the prediction performance of machine learning models. A descriptor encodes materials’ elemental,
structural, and other physical information into a representation that machine learning algorithms can
map to materials properties [7-10].

In the past decade, a large number of descriptors have been proposed to encode materials
[7-19],which is one of the most critical factors in machine learning applications in materials property
prediction as shown in the review by Liu et al. [20]. In general, those descriptors are based on materials
composition, their electronic or geometric structures as shown by the integrated feature calculation
routines as implemented in the Matminer package [21]. A widely used set of material composition
features is the Magpie features, which are based on the statistics of elemental properties in a material
[8]. Mendeleev numbers (MN) has also been used by P. Villars et al. [12] to classify chemical systems
by using the minimum and maximum MN versus the ratio between the minimum and the maximum
MV. Ghiringhelli et al. [17] developed 23 primary features, based on atomic properties, to explore the
energy difference of zinc blende, wurtzite, and rocksalt semiconductors. Han et al. [22] leveraged three
key factors as the descriptors for classic machine learning methods to predict thermal conductivity
effectively. Logan Ward et al. [8] presented a comprehensive set of features for a wide variety of material
compositions. This set contains four unique categories: stoichiometric attributes, elemental property
statistics, electronic structure attributes, and ionic compound attributes. Elemental descriptors have
achieved great success in predicting band gaps [23], formation energies[24], crystal system([], and etc.
But these descriptors have their severe limitations: elemental descriptors are merely based on material
compositions while most materials properties are strongly dependent on their atomic structures. There
are also materials that share the same composition but exist in completely different structures. It is
a common understanding that the most important information for analyzing a material’s property

is its structure. How atoms coordinate and interact with each other conveys rich information on the
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properties of the materials. Therefore, structural features play a key role in developing prediction
models of materials. Currently, there are several successful applications that use structural features to
predict materials properties [7,9,10,13-16,19]. Rupp and colleagues applied the Coulomb matrix (CM)
features for predicting the atomization energies of small isolated organic molecules [11,13,14]. CM
formulates the electrostatic interaction between nuclei into a matrix representation. Pham et al. [19]
developed the orbital-field matrix (OFM) descriptor, based on the distribution of valence shell electrons,
to predict formation energies and atomization energies with high accuracy. Bartdk et al. [15] proposed
the Smooth overlap of atomic positions (SOAP), which describes the similarity between two atomic
environments to define a metric in the structural cell. The local similarity can be combined further
to form a global measure of similarity for the evaluation of molecular properties [10]. More recently,
voxel grid representation with atom features has been proposed to predict Hartree energies[9]. Atom
density and related continuous representations have also been proposed for materials representation
and are used for crystal structure generation[25,26]. Graph neural networks have also been introduced
to learn structural representation from material structures for predicting formation energy, band gaps,
bulk modulus and etc with great success [27,28]. On the other hand, deep learning has been utilized to
extract three dimensional (3D) spatial features for material property prediction. In [7,9], 3D CNNs
have been applied to extract 3D geometric features from material microstructures represented as 3D
matrices [7]. In this work, a dataset with 5,900 microstructures was created, where a microstructure
is the quantification of the material structure. Each microstructure is represented by a feature matrix
of dimension 51 x 51 x 51, where each feature corresponds to a vector. Kajita et al. [9] developed a
descriptor called Reciprocal 3D Voxel Space Descriptor (R3DVS) from the distributions of the valence
electron density for 680 oxides. The authors enlarge the dataset by rotating R3DVS for testifying
invariance of R3DVS to rotation and translation. R3DVS compacts the density of electrons in the bond
generation.

In this paper, we propose to leverage convolutional neural networks (CNNs) to learn physically
meaningful features from the three dimensional electronic charge density (ECD) of materials for
elastic property prediction. Since physical and chemical properties of materials are related to the
transferability between atoms (nuclei) and the presence of electronic charges or electronic multipoles
on atoms or molecules [29-32], extraction of informative features from materials ECD can help predict
materials properties. The ECD of a material can be calculated as a 3D matrix that describes the amount
of electronic charge per volume. It represents the charge of electrons in the effective material space.
By explicitly encoding the geometry of materials, ECD is supposed to have high transferability with
respect to different compositions and structures [33]. As ECD captures both geometrical and electronic

structural features, 3D distribution of electronic charge density would have the advantage over classical
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1D and 2D descriptors as well as heterogeneous 3D structural descriptors in terms of the correlation
with the electrochemical properties of materials. Indeed, ECD and its related electronic properties such
as the electrostatic potential, electron localization function and non-covalent interaction index have
been used to analyze many materials characteristics, including bonding, defects, stability,reactivity, and
electron, ion and thermal transport [33]. For example, ECD was used to predict 8 materials properties
by using the Fourier coefficients of the planar averaged Kohn-Sham charge density fingerprint features
[34]. Abraham et al. [35] calculated 2D charge density to predict the chemical bonding and charge
transfer in magnetic compounds. However both approaches failed to take advantage of the flexibility
of the 3D representation [36]. Compared to conventional ML models, 3D CNNs can better link
3D descriptors to the properties efficiently as shown by [7] (linkage between microstructure and
homogenized property) and [9] (linkage between R3DVS and Hartree energies, testify the invariance
to rotation for R3DVS). We believe that the unified representation of ECD makes it easier to learn
unified continuous representation for facilitating downstream prediction tasks by deep convolutional
neural networks [25]. In [37], the authors used the particle packing and the quartet structure generation
set (QSGS) methods to generate microstructures of 3D composites. Instead of directly applying 3D
CNN:s to the 3D matrix, 2D CNNs are used to predict thermal conductivity of composites in the work
by obtaining a series of cross-section slices from the 3D structure, which are stacked in order as the
channel direction. This approach, however, may lead to too much global information loss in our ECD
based elastic property prediction.

We explored two types of convolutional neural network models for ECD based elastic property
prediction. One is the standard 3D CNNs with two convolutional layers. The other one is a projected
2D CNN models, in which the ECD matrix is converted to three different image-like representations
which are then fed to three 2D CNN networks whose outputs are then fused together. The difference
of 2D CNNs used in this work and in [37] is we compressed 3D structures from 3 directions and
this strategy can preserve the global structural information to a large extent, compared to selecting
some slices from the 3D matrix. This allows us to exploit the powerful hierarchical representation
learning capability of 2D CNNs as demonstrated by their success in computer vision. [38-42]. We
then conducted extensive benchmark experiments based on a dataset consisting of 2170 Fcc structured
materials and 11 non-redundant datasets generated by leaving one-element-out at a time.

Our contributions can be summarized as follows:

* We propose to exploit the ECD descriptor as unified 3D materials representation and combine it
with two types of 3D CNNs for materials elastic property prediction. We also developed a fusion
CNN model based on CNN+Magpie and CNN+ECD models.
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¢ We developed a standard benchmark ECD dataset, named “FCC2170” calculated from 2710 Fcc
Structured materials from ICSD. This database is characterized by its highly redundant samples
with very similar compositions. We also developed 11 non-redundant datasets for evaluating the
extrapolation capability of ECD+CNN models.

* We performed extensive prediction experiments over the aforementioned datasets using 5-fold
cross validation. Our results show that our ECD+CNN can be complementary to elemental
Magpie feature based models while can significantly outperform them over non-redundant
datasets, thus demonstrating superior performance on some extrapolation experiments.

* We analyzed the situations when our ECD+CNN models perform better by visually inspecting
the distribution of test samples and training samples in the 2D space mapped from the learned
features.

* We validated the prediction performance of our models by comparison with DFT-calculated bulk
and shear modulus for a set of 329 materials of the space group Fm3m collected from the Open

Quantum Materials Database (OQMD) database.

2. Methods

2.1. Datasets

Here we discuss how we create the benchmark datasets for training and validating our proposed
method. Due to the high computational cost to calculate electronic charge density for all the materials
in the Materials Project database, we decide to focus only on materials of one specific space group. First
we retrieved 2170 material structures of Fm3m space group (excluding Lanthanides and Actinides)
from the Materials Project (MP) database (https:/ /materialsproject.org). We chose the Fm3m structure
because its structure is simple and it takes less time to calculate the related elastic properties using
DFT. Most materials of the Fm3m space group do not have the charge density or elastic properties
available in the MP database. Hence, we calculated both the electronic charge density [43] and the
elastic property [44] using VASP [45-47] for the 2,170 samples to form the “FCC2170” dataset . Table 1
lists top 11 elements that are contained in at least 200 materials of our FCC2070 dataset. Among them,
most are from Group 1 (Lithium, Sodium, Potassium, Rubidium, and Caesium), Group 13 (Indium and
Thallium) and Group 17 (Fluorine, Chlorine, and Bromine). The rest includes Scandium from Group 3.
With this dataset, we then use the commonly used cross-validation method to evaluate our model’s
interpolation performance as done in most machine learning based property prediction studies [28].

To validate our model’s extrapolation capability, we define a set of leave-one-element-out datasets,
which are better for evaluating the extrapolation capability of ML models [48-50]. For all samples

in FCC2170, we first select those samples containing one specific element E as the test set, and then
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designate the remaining samples as the training set. These datasets are called FCC-E-N datasets, where

E is the element of interest and N is the number of training samples without element E. Statistics of

all these non-redundant datasets generated from FCC2170 for elements contained in more than 200

materials are shown in Table 1.

Table 1. Statistics of non-redundant datasets

Element F K Rb Cs Na Cl
dataset FCC-F-1775 | FCC-K-1800 | FCC-Rb-1802 | FCC-Cs-1814 | FCC-Na-1877 | FCC-CI-1880

train set size 1755 1800 1802 1814 1877 1880

test set size 415 370 368 356 293 290
Element In Br Li Sc T1 -
dataset FCC-In-1937 | FCC-Br-1938 | FCC-Li-2148 | FCC-Sc-1952 | FCC-TI-1966 -

train set size 1937 1938 2148 1952 1966 -

test set size 233 232 222 218 204 -

2.2. Representations of Materials

We studied and compared two material representations for elastic property prediction including

Magpie [8] and electronic charge density(ECD) [51].

¢ Magpie features

Magpie (Materials-Agnostic Platform for Informatics and Exploration) is an extensive set of
features related to the constituent elements in materials. The set covers a broad range of
physical and chemical properties that fall into four different categories: stoichiometric features,
elemental property statistics, electronic structure features, and ionic compound features [8].
Stoichiometric features only contain the number of elements in the compound and their several
L? norms [8]. Elemental property statistics are calculated by computing several statistics (e.g.,
average, minimum, maximum, range and mode) of 22 different elemental properties [8]. These
properties include row and column on the periodic table, average atomic number, the range of
atomic radii between all elements presenting in compositions, Mendeleev number, atomic weight,
covalent radius, electro-negativity. Electronic structure features are the average fraction of s, p, d
and f valence electrons [18]. Ionic compound features include the capability of forming an ionic
compound (when we assume all elements present in a single oxidation state) and two adaptions
for calculating the fractions of a compound based on electronegativity [52].

Electronic charge density

ECD in the form of 3D structural matrix represents the spatial distribution of electronic charge
density in crystalline materials. It can be calculated by local quantum-mechanical functions
related to the Pauli exclusion principle [51]. The ab initio method is used to calculate Hartree-Fock

wavefunction and the electron localization function (ELF) [43]. A single determinant wave
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function is calculated on a grid in the 3D space by hartree Fock or Kohn Sham orbitals ¢; as

following:

ELF=— - 1)

where

P @)

_i 2\5/3 5/3

where ELF has values between 0 and 1, where 1 means the perfect localization. Figure 1 shows
the visualizations for the ECDs of six representative materials, namely SrCalny, Mny3Cg, VSiOsy,
RbI, CsBr, and Rb, TeBrg, where SRCalny, Mny3Cg, and VSiOs; possess high bulk modulus. These
visualizations consist of points that correspond to the values in a material’s ECD matrix. The
color and area of each point represents the size of each value and together show the distribution
of a material’s electron clouds. When the value of these points are plotted, we found that points
appear in both thick and thin clouds, within the cubes, as shown in subfigures 1a, 1b, and 1c.
Subfigures 1d, le, and 1f show a clear difference from the top-row figures. In these figures, there
are some empty spaces in the cubes and some dense clusters present in the remaining area. These
observations correspond to the physical reality that materials with high bulk modulus usually
have active electrons orbiting across the whole space strongly when compared to materials with
lower bulk modulus. Among all six materials, we find that although the ECD visualizations
share many similar characteristics, there are a few distinct differences between them. These
minor variations make it possible for us to employ 3D CNNs to learn the structural and physical

patterns that may characterize the material’s elastic properties.
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(a) SrCalny (32 x 32 x 32) (b) Minp3Cs (40 x 40 x 40) (c) VSiOs; (24 x 24 x 24)

(d) RbI (30 x 30 x 30) (e) CsBr (30 x 30 x 30) (f) VSiOs; (48 x 48 x 48)
Figure 1. Visualization of ECDs for six materials showing clearly contrasting structural features (top
and bottom rows). The top row are materials with high bulk modulus and the bottom row are materials
with low bulk modulus. [ x w x h is the actual length, width and height of each ECD matrix.

2.3. Machine Learning Methods

In this work, we use Random Forest and Convolutional Neural Networks (CNNs) with Magpie
features as the baseline methods. We propose that CNNs with ECD can capture certain characteristic
relationships between material structures and their elastic properties.

Random Forest (RF) [53] is a widely used machine learning model in material informatics because
of its high accuracy and robustness [54-56]. As an ensemble learning algorithm, a RF aggregates the
results from different decision trees (50 in this work). The decision trees are randomly trained based
on subsets of training samples and features. Within a decision tree, a set of decision rules (e.g. Melting
temperature > 200.0) is learned by minimizing the variance of the decision tree. For predicting elastic
properties, RF calculates the final results by averaging outputs of all decision trees.

Convolutional Neural Networks are a type of feed-forward neural network interleaved with
convolutional, pooling, and fully connected layers. It has achieved state-of-the-art(SOTA) performance
when applied to computer vision and natural language processing [39,42,57]. The convolutional
unit is the core building block of CNNs, which is inspired by the multi-layered organization of the
visual cortex. The unit consists of multiple learnable filters with a given receptive field and weight
parameters. In our case, the filters are convolved across the full depth of the input volume of the

ECD [58]. The filters are learned hierarchically, where low-level features generate more condensed
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representations. The computational unit can be constructed by a transformation U = Fr(X), X €
]RL/XW,XH,XCI, U € REXWxHXC F  denotes the convolutional operation. Let V = [v1,0vy,...,0¢] be
the learnable convolutional filters. Then the outputs of F;, can be written as U = [ul, U, ..., uc], where

c’ . .

uC:vC*Xzzv’c*xl (3)

i=1
Here * denotes the dot product, v, = [0},72,.. ., v€'], X = [x1,x2,...,x%]. We removed the bias terms
for simplicity. v'. is a 3D spatial filter convolving on a single channel of X. Stacked outputs of filters
produce a 4D tensor activation map [58]. A pooling layer is used to do non-linear downsampling.
It partitions the 3D input into a set of rectangular boxes. In max-pooling, the pooling layer outputs
the maximum value of each sub-region. Then a 3D tensor is activated through a rectified linear unit
(ReLu) [42]. The ReLu operation can be denoted by max(0, P), where P is the tensor generated by
the max-pooling operation. The same procedure can be applied repeatedly to the whole activation
map. Finally, the output of the convolutional layers is fed to one or more fully connected layers to
accomplish the regression step. Similar procedures are applied in the CNN block in Figure 3.

We implemented two types of convolutional neural networks for learning ECD based features for
elastic property prediction. Figure 2 depicts the 3D CNN architecture in our work. This model has
two consecutive convolutional layers followed by a max pooling layer, and then seven fully connected
layers. For simplicity, we did not show the ReLu [42] activation for all neural layers in Figure 2. The
filter size of 2 convolution layers are 5 x 5 x 5 and 4 x 4 x 4, respectively and the stride has the same
size as that of the convolution filters. For all max pooling layers, the sizes of filters and strides are
2 x 2 x 2. The ECD matrices are fed to the 3D convolutional and pooling layers, and then the output

matrix is flattened and passed to succeeding fully connected layers to calculate final predictions.

200@(5x5X5)

Scalar

1000
400@(yxyxy) 128 128 128
S ;’E()
rad P

3x3x3

000000 *
000000 7
000

2x2x2

60x60x60

12x12x12

ECD matrix 3D CONV1 3D CONV2  Max-pooling Fully connected layers

Figure 2. The architecture of 3D CNN with ECD representation. The "Scalar" stands for the bulk or
shear modulus. The numbers above each convolutional layers are its parameter settings. For instance,
200@(5 x 5 x 5) means 200 filters with size of 5 x 5 x 5. Unless it is specified, the stride is always
the same with the filter size. Two consecutive convolutional layers are followed by a max-pooling
with pooling size and strides both of 2 x 2 x 2. The number below are outputs of each layer. For fully
connected layers, the numbers above them are the number of neurons.
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Figure 3 shows the architecture of our 2D CNNis for elastic property prediction. The ECD matrix
does not have the concept of channel as images. Thus, we rotated the ECD matrix so that we can face
the cube from x,y,z axes as shown in different colors of cubes in Figure 3. Then the direction facing
to us is considered as the channel direction. To model the inter-dependencies between channels, we
used the Squeeze-and-Excitation (SE) network [59], which can exploit this inter-dependency by feature
recalibration. This model selectively highlights the informative features and suppresses less useful
ones. A SE block is shown in the left corner of Figure 3. In this module, 24 filters of size of 1 x 1 are
used to down-sample the ECD matrix, which was first proposed in [60]. A nonlinearity operation
is performed on each pixel across the channels. After the nonlinear projection, the ECD matrix X of
size 60 X 60 x 60 is reduced to the feature map U of size 60 x 60 x 24. A global average pooling is
then used to shrink the feature map into a vector of size 24 along with the dimensions of width and
height. Then we use a small set of fully connected layers to transform this vector into higher level
features. The number of neurons on each layers are 4 and 24, respectively. The output s of the last fully
connected layer is reshaped into size of 1 x 1 x 24. The last step is nonlinear excitation and the final

output U’ of block is achieved by rescaling the U with the activated s:

U =Uco(s) 4)

where ¢ is the Sigmoid activation function that implements the nonlinear transformation. And ©®
denotes the channel-wise multiplication between the scalar s and the feature map U’.

The SE block in our 2D CNN architecture is followed by CNN blocks. A CNN block has two
regular convolutional layers followed by a max-pooling layer. The first convolution neural has the
same filter size and strides of 6 x 6 and there are 64 filters in this layer. The second CNN layer has a
filter size of 5 x 5 and stride of 2 x 2 and there are 128 filters in total. All max-pooling layers have the
same pooling size and strides of 2 X 2, respectively.

For each of the projection map of x, y, and z, there is a SE and CNN block for feature extraction.
The outputs of them are concatenated into a vector of size 384. Six fully connected layers are then
used to map this learned features into elastic property values. The number of neurons on these fully

connected layer are 4096, 4096, 128, 128, 128 and 32 respectively.
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Figure 3. The architecture of the 2D CNN with ECD representation. The "Scalar" stands for the bulk
or shear modulus. The model includes three parts: mainframe, SE block and CNN block. In the
mainframe, we have three branches whose outputs are concatenated and fed into six fully connected
layers. The numbers above each component/layer are the number of neurons of that layer. In SE block,
the labels of R and S are reshape and channel-wise multiplication operations. For simplicity, we ignore
the max-pooling layers following every convolutional layer in the CNN block. Numbers below each
component are the output dimension of that layer.

For the baseline algorithm, we also train a 2D CNN model with the Magpie features. To do that,
we append 12 zeros to the Magpie features to get a vector of 1x144, which is then reshaped into a 2D
matrix of size 12 x 12. The CNN model for Magpie features has two consecutive convolutional layers
followed by an average pooling layer. Then an additional convolutional layer is added followed by
two fully connected layers. The model parameters are set as follows: the kernel size and strides of
the first convolutional layer are 3x3 and 1x1 and the number of filters is 32; the kernel size and strides
of the second convolutional layer are 3x3 and 1x1 and the number of filters is 48; the pooling size
and strides of the average pooling layer are both set as 2x2; the kernel size and strides of the third
convolutional layer are 3x3 and 1x1 and the number of filters is 64; the number of neurons of the two

fully connected layers are 48 and 32, respectively.

2.4. Training and Implementation

Figure 2 shows the detailed architecture of our 3D CNN and its parameters. The models are
implemented using the open-source libraries of TensorFlow (https://www.tensorflow.org) and Keras
(https:/ /keras.io). The performance of the models are evaluated using 5-fold cross validation. The
input ECD has a shape of 60 x 60 x 60 by interpolation for smaller matrices. The CNN for Magpie
is also trained using the Adam optimizer [61] with a batch size of 32 and learning rate of 0.001. The
3D CNN model parameters are learned using the Adam optimizer [61] with a initial learning rate of

0.0005. For the 2D CNNs with ECD, we use the SGD optimizer to learn the model parameters. The
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epoch
initial learning rate is 0.001 and it drops by 0.51"07), where epoch is the current epoch. The mean
absolute error (MAE) is used as the loss function for all three CNN models. The open source matminer

(https:/ /hackingmaterials.lbl.gov/matminer/) is utilized to calculate the Magpie features.

3. Results and Discussions

In this section, we discuss the experiments demonstrating the potential of ECD for material
representation and elastic property prediction. The experiments are separated into two parts in terms
of the evaluation approaches: experiments with 5-fold cross validation and experiments focusing on
extrapolation performance evaluation. All experiments of CNN models are repeated 5 times and the

result presented herein is the average of their outputs.

3.1. 5-fold cross validation experiments with redundant dataset

Table 2 shows the results from 5-fold cross validation on the whole dataset with 2170 samples.
We find that the baseline models using Magpie features are better than CNNs with ECD across all
evaluation metrics for predicting bulk and shear moduli. Overall, RF with Magpie performs slightly
better than CNNs with Magpie. Although R? of RF with Magpie is 0.001 lower than that of CNN’s
with Magpie in predicting bulk modulus, RF with Magpie achieves much better results in predicting
shear modulus (R? is 0.049 higher). Similar observations apply to performance evaluated in terms
of Root Mean Square Error (RMSE). This better performance of Magpie based RF models are not
unexpected. First, all samples in this FCC2170 dataset belong to the Fm3m space group. By sharing
similar structures, the Magpie features are able to capture most of the elastic property variation due
to composition difference. The high structural similarity of the dataset helps the baseline methods
based on composition Magpie features predict the elastic properties well. Another reason is that the
FCC2170 contains many similar samples in terms of compositions. The high redundant samples also
makes the baseline models with Magpie features to make precise predictions by exploiting redundant
neighbor samples in the training set when evaluated on the test set during cross-validation. However,
the machine learning models trained with a redundant training set can lead to low extrapolation
performance as shown in our previous study [48]. In terms of dimension size of the Magpie and ECD
descriptors, ECD has a much larger dimension of 60 x 60 x 60 compared to 132 of the Magpie features.
Since higher input data dimensions usually lead to machine learning models with more parameters,
and more training samples are needed to achieve good prediction performance. From this perspective,
the limited dataset size in our problem actually favors the baseline models with Magpie features.

Here we show that ECD can be used as a complementary materials descriptor for elastic property
prediction together with the Magpie features. To verify this, We pre-trained a CNN model with Magpie

features and a 2D CNN model with ECD. Then we fused these two models by concatenating the
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outputs of the penultimate layers of these two models to generate a output latent feature vector of
dimension 64, which is then fed to three fully connected layers with 128, 64, and 32 neurons respectively.
The Adam optimizer [61] is used for training with a learning rate of 0.001. This fusion neural network
model with mixed Magpie and ECD descriptor yielded the best R? and RMSE of 0.955 (0.804) and
16.530 (15.780) in predicting bulk (shear) modulus respectively as shown in Table 2 . This confirms
that ECD and Magpie can work together to achieve better performance for elastic property prediction.
In addition, our experiments also showed that the projected 2D CNN achieved significantly better
performance than the basic 3D CNN models. The R? and RMSE of 2D-CNN with ECD are 0.912 and
23.401 in predicting bulk modulus compared to 0.884 and 26.819 of 3D-CNNs with ECD. The R? and
RMSE of 2D CNN with ECD are 0.768 and 17.192 in predicting shear modulus compared to 0.745 and
17.944 of 3D-CNNs with ECD.

Table 2. Performance Comparisons of models with Magpie and ECD descriptors using 5-fold cross
validation

Tvpe RF+Magpie CNN-+Magpie | 3D-CNN+ECD | 2D CNN+ECD Fusion

yp RZ T RMSE | RZ | RMSE | RZ? RMSE R? RMSE RZ | RMSE
bulk | 0943 | 18.721 | 0.944 | 18.423 | 0.884 | 26.819 | 0.912 | 23.401 | 0.955 | 16.530
shear | 0.794 | 16.142 | 0.745 | 17.959 | 0.745 | 17.944 | 0.768 | 17.192 | 0.804 | 15.780

3.2. Extrapolation Experiments with non-redundant datasets

ML models with elemental descriptors such as Magpie can achieve good cross-validation
performance for datasets consisting of redundant (computationally very similar samples) such as
FCC2170. However, the better performance of the fusion model with CNN with Magpie and 2D-CNN
with ECD implies that for the ECD descriptor can help to make better predictions over a certain subset
of test samples. In this section, we aim to construct non-redundant dataset and show that our CNN
models with the ECD descriptor can achieve better performance on non-redundant datasets or for test
samples with few highly similar neighbor samples.

For these extrapolation experiments, we trained and tested the prediction models over the
FCC-E-N datasets as described in Section 2.1. The performance comparison results of the extrapolation
experiments for bulk and shear modulus prediction are shown in Table 3. There are 22 sets of
experiments with 11 of them for predicting bulk modulus and the other 11 for predicting shear modulus
by five different algorithms including RF+Magpie, CNN+Magpie, 3D-CNN+ECD, 2D-CNN+ECD,
and the latest crystal graph convolutional neural network (CGCNN) [27], which also uses structural
information. We highlighted the best performance scores for each experiments and count how many
experiments each algorithm achieved the best scores. As shown in Table 3, the RF with Magpie and
CNN with Magpie worked the best for 5 and 6 experiments respectively. However, impressively,

for these non-redundant training/testing experiments, our ECD descriptor based 3D-CNN-ECD and
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2D-CNN-ECD outperformed the others for 4 and 5 experiments respectively, which reflecting the
importance of the structure based ECD descriptor for elastic property prediction. In contrast, the
popular CGCNN only achieved the best performance out of 2 experiments, which demonstrated the

advantage of our ECD based atomic structure representation.

Table 3. Extrapolation prediction performance comparison on non-redundant leave-one-element-out

datasets
Elem | Type RF+Magpie CNN+Magpie | 3D-CNN+ECD | 2D-CNN+ECD CGCNN
R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE
F bulk | -0.529 | 26.797 | -0.809 | 29.102 | -0.051 | 22.212 | -0.448 | 26.080 | -2.217 | 35.554
shear | -3.350 | 18.117 | -6.912 | 24.315 | -1.202 | 12.878 | -1.293 | 13.151 | -0.548 | 10.657
K bulk 0.776 6.067 0.646 7.573 0.510 8.969 0.570 8.397 0.474 9.055
shear | 0.810 2.641 0.548 4.014 0.389 4.733 0.367 4.817 0.146 5.523
Rb bulk 0.867 4.603 0.869 4.579 0.753 6.287 0.777 5.966 0.275 | 10.290
shear | 0.778 2.767 0.727 3.064 0.608 3.657 0.719 3.111 0.268 4.944
Cs bulk | -0.128 | 11.232 | 0.760 5.166 0.448 7.818 0.067 | 10.158 | -0.144 | 10.934
shear | -4.327 | 11.199 | 0.492 3.446 0.014 4.743 | -1.137 | 7.083 0.344 3.881
Na bulk | 0.630 | 16.398 | 0.833 | 11.013 | 0.660 | 15.708 | 0.616 | 16.689 | 0.605 | 16.223
shear | 0545 | 8.366 | 0.386 | 9.716 | 0.548 | 8340 | 0451 | 9.196 | 0.351 | 9.863
al bulk | 0.410 | 15935 | 0.529 | 14.151 | 0.591 | 13.009 | 0.716 | 11.05 | 0.534 | 13.119
shear | -0.477 | 10.715 | 0.213 7.765 0.339 7.160 0.093 8.394 | -0.197 | 9.366
In bulk | 0.829 | 20.780 | 0.780 | 23.550 | 0.725 | 26.326 | 0.773 | 23.908 | 0.761 | 24.460
shear | 0.791 8.250 0.771 8.618 0.683 | 10.136 | 0.793 8.207 0.655 | 10.416
Br bulk 0.921 4.464 0.923 4.585 0.912 4.700 0.923 4411 0.631 9.245
shear | 0.630 2290 | -0.078 | 3.857 0.755 1.861 0.824 1.579 | -2.661 6.975
Li bulk 0.418 | 29.869 | 0.867 | 14.253 | 0.519 | 27.142 | 0.454 | 28.937 | 0.732 | 20.121
shear | -0.232 | 17.799 | 0.416 | 12.239 | 0.428 | 12.126 | 0.451 | 11.881 | 0.388 | 12.488
S bulk | 0.855 | 23.276 | 0.908 | 18.538 | 0.756 | 30.195 | 0.850 | 23.688 | 0.818 | 25.983
shear | 0.781 | 12.996 | 0.707 | 15.024 | 0.682 | 15.650 | 0.635 | 16.786 | 0.667 | 16.007
Tl bulk | -0.370 | 24.574 | 0.421 | 15973 | 0.219 | 18.529 | 0.501 | 14.833 | 0.550 | 14.040
shear | 0.456 6.745 0.437 6.815 0.559 6.068 0.557 6.084 0.427 6.818
# of the best 5 6 4 5 2

3.3. Visualization Study of when ECD descriptor works better

To understand on why our ECD based CNN models worked better than Magpie features on some
datasets but not others, we conducted a visualization study for all the extrapolation experiments. For
magpie features, we directly apply the t-distributed Stochastic Neighbor Embedding (t-SNE) [62] to
the dataset. For the ECD based features, directly applying t-SNE is not feasible due to the memory
limit. So we first applied max-pooling to the 3D ECD matrices with strides of (6, 6,6) and pooling
size of (6,6, 6) before feeding them into t-SNE. Hence the final size of the ECD matrices is (10, 10, 10),
which are then flattened to a 1D vector of 1,000 elements. Then we applied t-SNE to this 1D vector to

reduce the dimension to 2.
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(c) 2D map of Magpie features for FCC-T1-1966 dataset (d) 2D map of ECD features for FCC-T1-1966 dataset
Figure 4. Visualization of high-dimensional features for elements Chlorine and Thallium by t-SNE.
Blue dots are training data and red dots are test data. (a):In dataset FCC-CI-1880, materials of the
training set(blue dots) are separate with materials in the test set(red dots), which makes it difficult

for ML models with Mapgpie features to achieve good performance due to their low extrapolation

capability. (b): the training samples and test samples are mixed together with the learned representation

from ECD, which makes it easy for ML models to achieve good performance. (c): the training samples

and test samples are mixed better than in (a), which leads to better ML prediction performance. (d):

the training samples and test samples are mixed better than in (c), which allows the ML to get even

better prediction performance.

Figure 4 shows 2D visualization of the high-dimension Magpie and ECD features for two datasets:

FCC-Chlorine-1880 and FCC-Thallium-1966 over which the ECD based models outperform Magpie

feature based models. The training samples are labelled as blue points while the test samples are

red points. First, Figure 4 (a) and (b) show the distribution of training and test samples with Magpie
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features and with ECD features respectively for the FCC-Chlorine-1880 dataset. In subfigure 4a, we
found that there exist three large clusters of test samples (red points) that have few similar training
samples around. This corresponds to the low prediction performance for Magpie based models. The
best performance for both bulk and shear modulus prediction is achieved by CNN-+Magpie with R2
of 0.529 and 0.213 respectively. In contrast, subfigure 4b shows the 2D distribution of the samples
represented with ECD features. It can be found that the test samples are mostly mixed with training
samples, leading to much better prediction performance: the best performance for bulk modulus
prediction is achieved by 2D-CNN+ECD with R2 of 0.716, which is significantly better (35%)than 0.529,
the best prediction performance achieved by Magpie based models. The best performance for shear
prediction is achieved by 3D-CNN+ECD with R2 of 0.339, which is also 59% better than 0.213, the best
R2 score of Magpie based models.

Figure 4 (c) and (d) show the distribution of training and test samples with Magpie features and
with ECD features respectively for the FCC-Thallium-1966 dataset. In subfigure 4c, we found that
clusters of test samples (red points) are closer to training samples compared to subfigure 4a. There
is no large clusters of isolated test samples. The best performance for bulk modulus is achieved by
CNN+Magpie with R2 of 0.421. The best performance for shear modulus prediction is achieved by
RF+Magpie with R2 of 0.456. In contrast, subfigure 4d shows the 2D distribution of the samples
represented with ECD features. It can be found that the test samples are better mixed with training
samples than subfigure 4a, leading to better prediction performance. The best performance for both
bulk modulus prediction is achieved by 2D-CNN+ECD with R2 of 0.501 and the best shear modulus
prediction performance is achieved by 3D-CNN+ECD with R2 of 0.559. In this dataset, the best ECD
based model is (0.559-0.421)/0.421 = 19% better than the best Magpie based model for bulk modulus
prediction. The performance gap is much smaller compared to that (35%) on the FCC-Chlorine-1880
dataset. The best ECD based model is also (0.559-0.456) /0.456 = 24.9% better than the best Magpie
based model for shear modulus prediction, which is however much smaller than the performance
gap over the FCC-Chlorine-1880 dataset, which is 59%. These findings can partially explain why
ECD based models are superior to Magpie based models in predicting elastic properties for these
two datasets. It shows the structure based ECD descriptor can be a complementary descriptor to
elemental Magpie features for elastic property prediction due to their better neighborhood structure
of the samples. This analysis is consistent to those observation that neighbor sample distribution

significantly affects the performance of neural network based prediction models [63].
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3.4. Visualization of averaged SE block outputs

(d) x direction (e) y direction (f) z direction
Figure 5. Visualization of average output of 24 channels of the SE block for three directions for SrCaln;

and K3YIg. From left to right are x, y and z directions, respectively. SrCaln; (top row) and K3YIg
(bottom row) are materials with high and low bulk modulus, respectively.

Figure 5 shows the visualization of the average output of the 24 channels of the SE block as shown
in Figure 3 from X, y, and z directions. On the top row, bright and dark areas/patterns overlap together
in the SrCalny with high bulk modulus with fuzzy boundaries. However, clear boundaries (four clear
ovals in each direction) between dark and bright regions can be found on the bottom row, which are the
patterns for the material with low bulk modulus. These findings are consistent with the patterns as we
have discussed in the sub-section 2.2. This distinct patterns extracted by 2D CNNs help to differentiate
materials and effectively predict their elastic properties. Moreover, although visualizations for three
directions share many similar patterns for the same materials, there are variations among them. For
example, the darkness of subfigures 5d, 5e, and 5f is different. Among them, overall Figure 5e has the
darkest area and 5d has the brightest ones. We believe that the slight variations detected by the 2D

CNNs might be one of the reasons that 2D CNNs outperform 3D CNNs in predicting elastic properties.

3.5. DFT validation

To further validate our neural network models, we predict the bulk and shear modulus of a set of
external materials from the OQMD [64] database and compare them to DFT calculated ones. We first
collect all the materials of the space group Fm3m from OQMD and then remove the duplicates existing
in the Material Project database that we used as the training set. We also filter out the materials having

more than 40 atoms in the unit cell. We finally obtain 329 materials as our test set. Then we apply the
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trained fusion model (Magpie + ECD features) trained with Material Project samples to predict the
bulk and shear modulus of the 329 samples in the test set and compared them with DFI-calculated
ones as shown in Figure 6. We find that our fusion model successfully predicted the bulk modulus for
the 329 materials with good alignment with DFT calculated values. The R? and RMSE in predicting
bulk are 0.93 and 21.331 as shown in Figure 6a. However, we also find that the ML-predicted the
predicted shear modulus values deviate much more from the DFT calculated ones compared to the
bulk modulus, which reflects the fact that it is more difficult to predict shear modulus than bulk
modulus. We also observe that most of the deviations of the predicted values compared with DFT
calculated ones are from the regions with low bulk or shear modulus and the predicted values usually

are larger than the DFT calculated ones.

3001 R2=0.93,RMSE =21.331 o © R? =0.636, RMSE = 22.322
200 1

250
200 1504

150 4
100 -

ML predicted bulk(GPa)
ML predicted shear(GPa)

50

T T T T T T T y T T T
0 50 100 150 200 250 300 0 50 100 150 200
DFT calculated bulk(GPa) DFT calculated shear(GPa)

(a) (b)
Figure 6. Panels (a) and (b) show ML-predicted versus DFT-calculated bulk and shear modulus
respectively.

4. Conclusions

We propose to combine deep convolutional neural networks and electronic charge density (ECD)
for materials elasticity prediction. We demonstrate that the ECD descriptor can be used to predict
bulk and shear modulus with CNNs model. We created a benchmark dataset named “FCC2170” with
2,170 materials of Fm3m space group from Materials Project database and derived 11 non-redundant
leave-one-element-out datasets for benchmarking the proposed ML models with ECD and elemental
Magpie features. Our computational experiments showed that due to the structural similarity among
the samples of the FCC2170 dataset, the elemental Magpie feature with CNN models achieved the best
results, which however, can be enhanced by the fusion models with both Magpie and ECD features. In
addition, our benchmark studies on the non-redundant datasets showed that the structure-based ECD
feature with CNNs can achieve better extrapolation prediction performances over half prediction tasks

out of the total 22 experiments for prediction bulk and shear modulus.
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To further understand the power of the ECD descriptor, we visualized the distribution of training
and test datasets of two descriptor types using t-SNE. It shows that when the training set and testing set
of the non-redundant datasets have higher level of mixing, the Magpie-based CNN models work better.
When they have lower level of mixing, the ECD descriptor based models significantly outperform the
Magpie based CNN models. The results demonstrate the importance of structure based features for
achieving higher extrapolation and generalization prediction capability. It is expected that our ECD
descriptor with CNN models can also be applied to a variety of problems in material science, especially
with the development of algorithms for predicting ECD [33]. Currently, we are generating more ECD

dataset with more space groups to extend this method to more materials with diverse structures.
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