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Pollinator foraging decisions shape microbial dispersal, and
microbes change floral phenotypes in ways perceivable by
pollinators. Yet, the role microbes play in the cognitive ecology
of pollination is relatively unexplored. Reviewing recent
literature on floral microbial ecology and pollinator behavior, we
advocate for further integration between these two fields.
Insights into pollinator learning, memory, and decision-making
can help explain their responses to microbially-altered floral
phenotypes. Specifically, considering how pollinators forage
for multiple nutrients, cope with uncertainty, structure foraging
bouts, and move through their environment could inform
predictions about microbial dispersal within plant communities.
We highlight how behavior connects microbial changes in floral
phenotype to downstream effects on both microbial dispersal
and plant fitness.
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Introduction

Pollinator cognition plays a key role in the outcome of
plant—pollinator interactions [1]. Over a century of
research has shown that how pollinators process, learn,
and remember information about floral displays [2] is
affected by the properties of the rewards (usually nectar
and/or pollen) they collect (e.g. [3]). Further, some floral
visitors can sense very fine differences in floral traits such
as scent or color and learn to associate them with floral
rewards (e.g. [4]). In turn, pollinator foraging decisions
can scale up to impact plant reproduction by altering the

frequency or probability of pollen transfer [5]. Although
insights from this long-studied dyad help explain patterns
of floral evolution and aspects of pollinator cognition,
these interactions involve many more organisms than
simply plants and the animals they rely on for reproduc-
tion [6°°].

For example, flowers have an ecologically important
microbiome: bacteria and fungi colonize nectar, pollen
and other floral structures [6°°,7,8]. These microbes can
alter components of floral signals and rewards (Figure 1a,
b), raising the question of how microbially-driven
changes in floral phenotypes shape pollinator decision-
making (Figure 1c). Any shifts in pollinator foraging
behavior could have important consequences
(Figure 1d) for flower-inhabiting microbes that are pri-
marily pollinator-dispersed (though not all flower-inha-
biting microbes are dispersed by pollinators [6°°]) as well
as, potentially, plant reproduction (Figure 2) [9,10]. Here
we share insights from research on pollinator cognition
(perception, learning, memory, and decision-making
[11]) that could help predict (1) how pollinators respond
to microbe-induced shifts in floral signals and rewards
(Figure 1c), and (2) how microbial dispersal and coloni-
zation within a plant community may be shaped by
pollinator behavior (Figure 1d). Although microbial pres-
ence can be relevant to interactions with a wide range of
other pollinator taxa (including flies, moths, and bats
[12]) we focus largely on those whose cognition has
received the most attention, namely generalist bees
(Bombus, Apis) and hummingbirds. We argue that a
synthesis across the disparate fields of microbial and
cognitive ecology has the potential to explain aspects
of both microbial community assembly and pollinator
foraging dynamics.

Microbes affect floral traits pollinators use to
make foraging decisions

Microbes can alter nearly every aspect of nectar chemistry
relevant to pollinators (Figure 1a). In addition to changing
nectar sugar composition, microbes can also impact nectar
secondary metabolites and amino acids [13] which polli-
nators assess [14,15°°]. Any change to nectar’s perceived
quality can shape how well pollinators learn and remem-
ber floral information [16]; likewise, consumption of
chemicals produced or modified by nectar microbes (e.
g. secondary metabolites, ethanol) could have their own
modulating effects on cognition [17].
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Figure 1

Floral Microbes
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Conceptual diagram illustrating the critical role that pollinator cognition
plays in shaping plant-pollinator-microbe interactions. Microbes can
change floral phenotypes in many ways including (a) display and (b)
reward quality. These changes drive important shifts in (c) pollinator
decision-making, which could impact (d) dispersal of microbes and
possibly plant fitness.

Pollen harbors its own unique microbial community
which has been the subject of recent study for its poten-
tial downstream effects on bee fitness [8,18,19]. Although
the macronutrients sought by pollinators are mostly found
within the pollen wall (intine), pollen is surrounded by a
chemically diverse substance, pollenkitt [20]. Pollenkitt
is partially volatile and may be a suitable substrate for
microbial growth but may also contain secondary metab-
olites and fatty acids that protect pollen from some
microbes [21]. Foraging bumblebees may assess pollen-
kitt chemistry, and can discriminate between flowers
based on pollen alone [22]. However, the extent to which
pollen microbes alter pollen surface chemistry remains an
open question.

Beyond inhabiting pollen and nectar, microbes can also
be found on nearly every other floral structure [6°°,7,23],
where they can alter floral signaling [24°°]. Pollinators
respond to many aspects of floral displays, including
visual, olfactory, gustatory, and tactile stimuli [25,26].
Microbes potentially influence multiple signaling modal-
ities [23], yet most work has focused on the scent of floral
rewards [27-29].

Microbes shape pollinator behavior and
possibly their own dispersal

Most work involving pollinator responses to floral
microbes involves preference assays, which have been
crucial to our understanding of pollinator-microbe—plant

interactions [15°°,27]. Beyond measuring preference,

expanding the questions microbial ecologists ask about
pollinator behavior could create new opportunities to
predict how pollinators respond to microbially-altered
floral phenotypes [24°°]. For example, recent work shows
that even subtle aspects of pollinator flower handling
behaviors can scale up to shape microbial dispersal
[10]. Likewise, pollinators are capable of distinguishing
the complex relationships between floral stimuli and
resources relevant to microbial ecologists [15°°]: amidst
a suite of potentially useful floral information, bees for
example can learn to rely upon the single component of
floral scent that most accurately predicts nectar quality
[30]. Here we highlight four specific areas of possible
further productive integration between behavioral and
microbial perspectives.

Reward complexity

Most research on pollinator foraging behavior (in micro-
bial and non-microbial contexts) measures responses to a
single aspect of reward composition (e.g. sugar content o7
secondary metabolite concentration). However, floral
rewards are chemically complex, and pollinator nutri-
tional needs are multidimensional [31]. Although pollina-
tor responses to reward complexity are not monolithic, it
is increasingly recognized that pollinators trade-off mul-
tiple axes of reward variation when making foraging
decisions. For example, bees’ response to nectar alkaloids
depends on sugar content [32], and likewise, their
response to pollenkitt alkaloids and fatty acids may
depend on the presence and concentration of nectar
[33,34]. These insights highlight the utility of considering
a flower’s entire reward phenotype when trying to predict
how pollinators might respond to microbial changes in a
single resource (e.g. nectar). For example, microbial shifts
in nectar chemistry should also impact bees’ pollen for-
aging [35], with possible downstream impacts on plant
fitness (Figure 2). From the microbial dispersal perspec-
tive, bees predictably forage on plants with particular
ratios of protein:lipids in their pollen [31] which suggests
that nutritionally similar plants might share communities
of pollinator-dispersed microbes. Testing this prediction
would require researchers to consider and characterize
more than one aspect of reward composition.

Signals and uncertainty

Pollinators forage amidst environmental and floral vari-
ability that can make detection of and discrimination
among flowers a challenge. Microbial third parties are
often studied for their ability to alter a given component
of a floral display (e.g. scent) with concomitant changes in
pollinator preference. More broadly, microbial alteration
of the floral display has the potential to enhance or impair
foragers’ ability to distinguish it from background stimuli
or from other co-flowering plant species.

One approach used to study how pollinators make deci-
sions about flowers under conditions of uncertainty is
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Floral microbes alter floral traits, which may in turn affect plant reproduction and population structure via changes in pollinator behavior. Here, we
visualize pathways by which microbially-altered floral reward quality could impact plants. Listed below each component of the process (bold text,
top) are non-exhaustive examples. To illustrate the complexity of this endeavor, links between some components (solid gray arrows) are well-
described in pollination ecology literature; however, how they function in the context of floral microbes (dashed gray arrows) is largely unexplored,
particularly with regard to pollen rewards. Colored pathways represent examples where this process has been investigated. Solid arrows represent
published results, while dashed arrows represent linkages inferred from the data. Blue pathway: In Herrera et al. [52], nectar yeasts promoted
higher bumble bee visitation to Helleborus foetidus (Ranunculaceae); however, this did not translate into increased pollen transfer. Instead, pollen
transfer and fruit production were reduced, presumably because of high self-fertilization. Pink pathway: By contrast, Yang et al. [29] found
increased fruit production in Clematis akebioides (Ranunculaceae), the result of increased visitation by bumble bees, presumably in response to an
increase in sugar and amino acid content in the nectar. Green pathway: Vannette et al. [53] found that nectar bacteria, on the other hand, reduced

pH and sugar content in Mimulus aurantiacus (Phrymaceae), which deterred hummingbird pollinators and reduced seed set.

Signal Detection Theory (SDT, Figure 3a , [36°]). This
framework could be used to ask pollinators whether
colonization by scent-producing microbes makes differ-
ent flowers as a whole seem more or less similar
(Figure 3b); it also might be used to explain why, despite
evidence of strong preferences in relation to floral traits
altered by microbes [15°°], pollinators will inevitably
make certain kinds of errors (e.g. ‘incorrectly’ visiting a
flower with poor rewards or bypassing high quality floral
resources). Signal Detection Theory could also be used to
take a ‘microbe’s eye view’ on how pollinators’ tolerance
for different error types might influence spread among co-
flowering plants (Figure 3c,d).

Further, pollinators use multimodal floral signals to help
cope with uncertainty when making decisions about which
flowers to visit [37]. Some of this work shows that when
environmental noise obscures floral stimuli in a given
modality (e.g. wind affecting scent), foraging bees shift
to rely on information in an unaffected modality (e.g.
relying on color over scent when wind increases) [38].
Microbes might increase olfactory noise in a number of
ways: making different flower types smell more similar
than they would otherwise, masking floral scents that

otherwise usefully indicate resource quality, or increasing
variation in floral headspace within a species making it
harder to learn that a given floral scent predicts reward. If
microbial influence on floral phenotypes is largely
restricted to the olfactory modality, we might expect bees
challenged by too noisy a decision context when using
scent alone to increase their reliance on stimuli in other
modalities, such as vision. More generally, the literature on
pollinators’ use of multimodal floral stimuli suggests that,
as with many behavioral experiments, there is a difference
between what an animal caz do (e.g. when responding to
olfactory stimuli in a behavioral assay) and what it actually
does when confronted with more sensorially complex floral
displays. Thus, care should be taken extrapolating the
findings of unimodal experiments (e.g. those which only
assay pollinator behavior in relation to microbial or floral
stimuli in a single sensory modality) to real-world, or even
free-flying, foraging scenarios. Could knowledge about
how pollinators use multimodal floral signals have implica-
tions for microbial dispersal? Research on discrimination
learning in bumblebees suggests that one effect of the
mere presence of microbial scent cues, even if they do not
differ across floral options, could be an enhancement of
certainty about floral color [37]. This could limit microbial
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Microbial changes to floral displays present a problem that can be modeled in a Signal Detection Theory (SDT) framework. (@) Two flower types
(either co-occurring species or conspecifics colonized vs. uncolonized by microbes) share partially overlapping distributions of sensory
characteristics (e.g. hue, headspace) but vary in reward quality. Pollinators use a threshold decision rule to either land on (accept) or bypass
(reject) flowers that fall to one side of the threshold (). If microbe-colonized flowers are of lower quality, four decision outcomes are possible,
with relative probabilities represented by shading: correct rejections (light gray), missed detections (gray), correct detections (dark gray), and false
alarms (black). (b) SDT offers a tool to ask pollinators how similar they find floral displays: when bees are uncertain in discriminating flowers and
false alarms are costly, they show conservative shifts in preference away from aversive flowers (i shifts to A4). The magnitude of this shift gives
an estimate of uncertainty about floral identity: for example, bees show stronger shifts when less certain about the identity of flower types [37].
The optimal location of a decision threshold can be predicted by a number of parameters including the relative payoffs associated with each
flower type, the frequency of each type, and signal variation [54]. Using this paradigm, scientists could assess the similarity of microbe-colonized
versus uncolonized plants’ floral displays, or estimate how aversive microbe-colonized rewards are. (c)/(d): SDT could also be used to predict the
degree of change to a floral display that would benefit microbial dispersal under different circumstances. Microbes that change the sensory
display of flowers and decrease nectar quality [53] may face a tradeoff between being picked up by a pollinator and being dispersed to suitable,
non-colonized flowers. In SDT terms, a false alarm (a visit to a colonized flower, blue region) is required to pick up microbes, but subsequently
risks bringing them to an already-colonized flower where they face competition. Alternatively, a correct detection (visit to a non-colonized flower,
green region) disperses microbes to suitable (and competitor-free) habitat ([55°] offers a relevant case study). If a given microbe does not change
the floral display very much (c; M4) they have a high likelihood of being picked up, but also a high probability of being dispersed to a flower that is
already colonized. Alternatively, if a microbe makes a floral display easily discriminable (d; M,) their odds of being picked up by pollinators are
lower, but the probability of reaching a non-colonized flower increases.

exchange across visually similar co-flowering plant species
that differ in reward value.

Constancy
Floral constancy is the phenomenon whereby pollinators
visit a single species or morph of a flower repeatedly,

bypassing co-flowering options [39,40]. Rather than being
all-or-nothing, a pollinator’s constancy reflects the task at
hand: both properties of floral rewards and displays can
increase or decrease constancy. For example, bumblebees
become more constant when floral options differ in an
increasing number of display elements and handling
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requirements [41]. Correspondingly, microbial shifts in
scent that alter the similarity of floral options should have
predictable effects on constancy (independent of any
effects on pollinator preference). A key insight from
research into the cognitive basis of constancy is that a
pollinator may avoid visiting a flower not because it is
repelled by a microbial scent present on some (but not all)
individuals within a community, but simply because the
flower possesses a scent that is different.

Individual-level floral specialization associated with con-
stancy characterizes many plant—pollinator networks [42],
and the details of these behavioral patterns could impact
microbial dispersal. For example, theoretical models of
pollinator pathogens suggest that individual-level special-
ization can increase microbial pathogen prevalence in
multi-species plant—pollinator-microbe systems [43°°].
In the context of beneficial or commensal microbes,
one testable prediction from this model is that the preva-
lence of a focal microbe should be highest when individ-
ual pollinator preferences last longer than half the life-
time of microbes on pollinators. This is because
pollinators and the plants they temporarily specialize
on might act as variable sources and sinks for microbial
persistence. Intriguingly, because pollinators’ floral con-
stancy is sensitive to floral traits, constancy offers a
mechanism by which microbes could influence their
own dispersal destination: if microbial alterations to a
floral trait increase constancy, microbes would be moved
more frequently between flowers of a given type. Alter-
natively, microbes could alter floral traits in a way that
disrupts floral constancy to maximize their own preva-
lence across different members of a plant community.

Spatial cognition

Members of key taxa studied for their role in microbial
dispersal (bees and hummingbirds) do not move ran-
domly through space [44]. Instead, they learn foraging
routines and employ specific and often idiosyncratic
movement rules that could both be influenced by micro-
bial presence and help explain patterns of microbial
community structure. For example, bees fly farther after
experiencing low-quality rewards [45]; microbial changes
in reward quality should induce similar movements. From
a dispersal perspective, bees respond to the spatial struc-
ture of a flower patch in ways that could bias microbial
dispersal away from plants on the edge [46]. Similarly,
traplining, defined as repeated, ordered visitation to a
given sequence of plants or flowers [47] could give rise to
strong spatial structuring of the floral microbial commu-
nity. For example, a study of microbial community struc-
ture in Mimulus aurantiacus found that spatial location was
a stronger predictor of nectar yeast Merschnikowia reukaufii
colonization than light availability, nectar volume, or
floral density [48]. The pattern was attributed to the
spatial foraging patterns of hummingbird pollinators. At
much broader spatial scales (e.g. continental), proximity is

a significant but much weaker predictor of microbial
community than other aspects of the biotic and abiotic
environment, perhaps as a result of limitations to long
distance dispersal [49]. We argue that integrating insights
from behavioral ecology about animals’ decision making
about ‘where’ and ‘how far’ to forage will help generate
hypothesis regarding the scales at which microbes are
dispersal-limited. Spatial memory and site fidelity of birds
and bees [50] show that beyond our emphasis on the
perceptual similarity of floral displays, simply inhabiting
the same space could also be a strong determinant of
shared microbial communities (e.g. plants that are inter-
mingled are more likely to be sequentially visited [51]),
even in the face of phenological separation.

Conclusion

The cognitive and microbial ecology of pollination rep-
resent two somewhat disparate literatures. Yet, they both
revolve around the mechanisms and outcomes of pollina-
tor choice in the floral marketplace. After all, the decisions
pollinators make while foraging have the potential to
shape microbial communities, and vice versa. This inter-
play has downstream effects on plant fitness and even
larger, critical community-level processes, such as dis-
persal. We encourage behavioral biologists with expertise
in the study of plant—pollinator interactions to consider
increasing the ecological realism of their experiments by
including a microbial component. Likewise, we have
highlighted several areas where microbial ecologists
might build on the rich pollinator behavior literature to
inspire questions about the causes and consequences of
microbial signaling in relation to dispersal. An integrated
effort has the potential to better predict the microbial
patterns we see in the floral marketplace.
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