

1 **Using a supermatrix approach to explore phylogenetic relationships, divergence times, and**
2 **historical biogeography of Saxifragales**

3

4 **Cara Tarullo^{1,2*}, Jeffrey P. Rose¹, Kenneth J. Sytsma³, Bryan T. Drew^{1*}**

5

6 ¹Department of Biology, University of Nebraska Kearney, Kearney, NE, 68849, USA

7 ²Department of Educational Studies, University of Wyoming, Laramie, WY 82071, USA

8 ³Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA

9

10

11 ***Corresponding authors:**

12 Cara Tarullo

13 caratarullo@gmail.com

14 Bryan T. Drew

15 bdrewfb@yahoo.com

16 **Abstract**

17 The Saxifragales is a morphologically and ecologically diverse clade of flowering plants with a
18 cosmopolitan distribution. Although families and genera within the order exhibit classic
19 biogeographical disjunctions, no studies to date have rigorously examined and described its
20 historical biogeography. Here, we analyze the historical biogeography of Saxifragales by first
21 generating a new chronogram for the order using a supermatrix approach, based on 61 loci from
22 251 representative members of Saxifragales. Our results suggest that Saxifragales originated in
23 the early Albian ~107 Ma and diversified rapidly in the next 15 Ma, with all stem lineages of
24 extant families present by the Campanian at ~75 Ma. The ancestral geographic range of the order
25 is unclear, but ancestral range reconstructions point to an east Asian origin as the most tenable
26 hypothesis. Ancestral ranges of the Haloragaceae/Crassulaceae clade suggest a strong signal for
27 an Australasia origin for all families, and Saxifragaceae shows strong signal for bidirectional
28 movement across the Asian-Alaskan land bridge during the Upper Cretaceous. Disjunct
29 distributions are best explained by long-distance dispersal rather than vicariance, but we
30 demonstrate that timing and directionality within particular disjunctions are similar within
31 Saxifragales and consistent with results from distantly related angiosperm clades.

32

33 **Keywords**

34 Saxifragales, long-distance dispersal, vicariance, disjunction, Bering land bridge

35

36 **1. Introduction**

37 Disjunct distributions of closely related organisms are one of the most curious types of
38 spatial patterns in organismal biology (Darwin, 1859; Wallace, 1880; Raven, 1963, 1972; Wen

39 1999; Simpson et al., 2017). Disjunctions occur when populations or lineages within or between
40 taxa are discontinuous and can be regional (e.g., on either side of a mountain), intracontinental
41 (e.g. on opposite sides of a continent), intercontinental (e.g. on continents which are not
42 presently contiguous), or global (e.g., amphitropical disjunctions). Of these types of disjunctions,
43 intercontinental and global disjunctions have served as classic examples of the phenomenon and
44 are perhaps the best studied, with some of the most notable examples in plants being those
45 between western Africa and South America (Givnish et al., 2004; Renner, 2004), and between
46 eastern Asia and North America (Xiang et al., 1998, Wen, 1999, 2001; Donoghue & Smith,
47 2004; Wen et al., 2010, 2016). Disjunctions may arise through processes such as vicariance via
48 geological processes, long-distance dispersal (i.e. founder event) from propagule movement,
49 and/or short distance dispersal(s) followed by local extinction. Given that similar intercontinental
50 disjunctions are also found across distantly related organisms, it has been argued that these
51 patterns might be best explained as a result of vicariance; however analyses using modern
52 phylogenetic hypotheses well-calibrated with carefully scrutinized fossils across a diversity of
53 plant lineages instead suggest that most of these patterns are better explained by long distance
54 dispersal alone or long distance dispersal in concert with vicariance (Givnish et al., 2004; de
55 Queiroz, 2005; Barker et al., 2007; Clayton et al., 2009; Dupin et al., 2017; Ruhfel et al., 2016;
56 Drew et al., 2017; Simpson et al. 2017).

57 The angiosperm order Saxifragales consists of 15 families that encompass about 2,500
58 species (APG IV, 2016), and are sister to rosids (Soltis et al., 2011; APG IV, 2016). Saxifragales
59 are diverse ecologically and morphologically, and also possesses an intriguing extant
60 geographical distribution that features several different types of intercontinental disjunctions.
61 Although Saxifragales are most species-rich in the Northern Hemisphere, several families within

62 the order are either more diverse or currently restricted to the Southern Hemisphere, with some
63 narrowly endemic and ostensibly relictual in the Southern Hemisphere (e.g. Aphanopetalaceae
64 and Tetracarpaeaceae).

65 The diverse morphology and distribution within *Saxifragales*, along with a lack of clear
66 synapomorphies, has caused considerable taxonomic uncertainty regarding relationships amongst
67 the constituent families in the past, but during the past 25 years major progress has been made in
68 understanding relationships within *Saxifragales* and in circumscribing families within the order
69 (Morgan & Soltis, 1993; Soltis et al., 1990, 2000, 2013; Soltis & Soltis, 1997; Hoot et al., 1999;
70 Fishbein et al., 2001). With the recent addition of the previously controversially placed
71 holoparasitic *Cynomoriaceae* in *Saxifragales* (Nickrent et al., 2005; Jian et al., 2008; Zhang et
72 al., 2011; Bellot et al., 2016; Folk et al., 2019, 2021), the order now seems taxonomically stable
73 at the familial level. However, the exact placement of *Cynomoriaceae* within *Saxifragales* is still
74 unclear (APG IV, 2016; Bellot et al., 2016; Folk et al., 2019). Some of these studies have also
75 shown weak support for the placement of *Peridiscaceae*, an enigmatic family atypical for the
76 order due to the presence of large seeds and an exclusively tropical distribution (Davis & Chase,
77 2004; Soltis et al., 2007), but which is possibly sister to the remainder of the order (Soltis et al.,
78 2007; Jian et al., 2008; Folk et al., 2019). Excluding *Peridiscaceae*, *Saxifragales* can be grouped
79 into three major clades. A clade of largely woody plants comprised of families *Altingiaceae*,
80 *Cercidiphyllaceae*, *Daphniphyllaceae*, *Hamamelidaceae*, and *Paeoniaceae* (which are non-
81 woody) sister to the rest of the families within this clade (Moore et al., 2011; Soltis et al., 2011;
82 but see Folk et al., 2019, 2021), hereafter referred to as the PWC (*Paeoniaceae* + woody clade).
83 The PWC is sister to the Core *Saxifragales* (Jian et al., 2008), which contains the remaining two
84 major subclades. The first of these subclades is comprised of *Aphanopetalaceae*, *Crassulaceae*,

85 Haloragaceae, Penthoraceae, and Tetracarpaceae (Morgan & Soltis, 1993) and has been
86 referred to as the Haloragaceae/Crassulaceae clade (Jian et al., 2008). The second subclade
87 includes Grossulariaceae, Iteaceae, and Saxifragaceae (Soltis et al., 2007), commonly called the
88 Saxifragaceae Alliance (Fishbein et al., 2001; Soltis et al., 2007; Jian et al., 2008; Stubbs et al.,
89 2020).

90 As with several other angiosperm orders such as Caryophyllales (Cuénoud et al., 2002;
91 Brockington et al., 2009; Walker et al., 2018), Ericales (Schönenberger et al., 2005; Rose et al.,
92 2018), Lamiales (Olmstead et al., 2001; Schäferhoff et al., 2011; Refulio-Rodriguez & Olmstead,
93 2014), and Malpighiales (Wurdack & Davis, 2009; Xi et al., 2012), Saxifragales appears to have
94 undergone an ancient and rapid diversification (Fishbein et al., 2001; Fishbein & Soltis, 2004;
95 Jian et al., 2008). As a result, it has proven challenging to resolve deep-level relationships within
96 the order (Magallón et al., 1999; Moore et al., 2007, 2010; Wang et al., 2009; Smith et al., 2010;
97 Soltis et al., 2011; Folk et al., 2019). Based upon fossil evidence, Saxifragales clearly began to
98 diversify at least 89.5 million years ago (Ma; Magallón et al., 1999; Wikström et al., 2001) but
99 crown age estimates from molecular dating have varied widely from 83-118 Ma (Hermsen et al.,
100 2006; Jian et al., 2008; Magallón et al., 2015; Tank et al., 2015; Folk et al., 2019).

101 Biogeographically, Saxifragales exhibit several different, classic, and/or striking inter-
102 and intracontinental disjunction patterns including eastern North America/eastern Asia
103 (Hamamelidaceae: *Hamamelis*, Penthoraceae: *Penthorum*), South America/western Africa
104 (Peridiscaceae), eastern/western Australia (Aphanopetalaceae), eastern North America/eastern
105 Asia/South Africa (Hamamelidaceae, Iteaceae), and western North
106 America/Mediterranean/eastern Asia (Paeoniaceae), making it an ideal clade to examine the
107 timing and drivers (long-distance dispersal vs. vicariance) of these disjunctions. Despite the

108 striking number and types of disjunctions within the order, previous phylogenetic studies that
109 have included or focused on Saxifragales have not rigorously explored or clarified divergence
110 times and biogeographic history of the entire order using broad taxon and gene sampling (but see
111 Folk et al., 2021). Here, we employ a supermatrix alignment consisting of plastid (cpDNA),
112 nuclear ribosomal (nrDNA), and mitochondrial DNA (mtDNA) to elucidate intra-ordinal
113 phylogenetic relationships within Saxifragales. We use this supermatrix in conjunction with
114 multiple fossil calibration points to produce a robust chronogram to examine divergence times of
115 major lineages of Saxifragales and make ancestral range estimations. Specifically, we focus on
116 the following questions: (1) Is Peridiscaceae sister to the remaining Saxifragales? (2) Is the
117 current distribution of Peridiscaceae a result of vicariance or long-distance dispersal? (3) What is
118 the geographic origin of Saxifragales and are Australasian families Aphanopetalaceae and
119 Tetracarpaeaceae relictual? and (4) Are there similarities in timing and underlying
120 biogeographical process across lineages of Saxifragales with similar disjunct distributions?

121

122 **2. Methods**

123

124 *2.1. Taxon sampling and supermatrix assembly*

125 Initially, we compiled a supermatrix that consisted of 918 taxa. We iteratively reduced
126 our sampling to 351 samples. This sampling strategy largely eliminated taxa that were redundant
127 geographically (e.g., Haloraceae, South African Crassulaceae), and was employed so the
128 dataset would be small enough to make analyses using BEAST (Drummond & Rambaut, 2007)
129 tractable. Our final dataset of 351 taxa included 251 within Saxifragales and an additional 100
130 taxa to serve as an outgroup. The high proportion of outgroup taxa relative to the ingroup served

131 the dual purposes of providing calibration points outside the order as well as providing a broad
132 dating framework. The outgroup consisted of representatives from the orders Ranunculales
133 (Berberidaceae [1 accession], Eupteleaceae [1 accession], Lardizabalaceae [1 accession],
134 Menispermaceae [1 accession], Papaveraceae [1 accession], Ranunculaceae [1 accession]),
135 Proteales (Nelumbonaceae [2 accessions], Platanaceae [3 accessions], Proteaceae [36 accessions]
136 Sabiaceae [4 accessions]), Trochodendrales (Trochodendraceae, 2 accessions), Buxales
137 (Buxaceae, 7 accessions), Gunnerales (Gunneraceae [6 accessions], Myrothamnaceae [2
138 accessions]), Dilleniales (Dilleniaceae, 14 accessions), and Vitales (Vitaceae, 18 accessions).
139 Ranunculales served as the ultimate outgroup for rooting purposes. The 251 accessions within
140 Saxifragales represented all families within Saxifragales with the exception of Cynomoriaceae.
141 Species level sampling within Saxifragales was chosen to encompass as much geographic
142 breadth as possible. Our intrafamilial sampling was as follows: Altingiaceae (11 species),
143 Aphanopetalaceae (2 species), Cercidiphyllaceae (2 species), Crassulaceae (60 species),
144 Daphniphyllaceae (3 species), Grossulariaceae (8 species), Haloragaceae (29 species),
145 Hamamelidaceae (35 species), Iteaceae (including Pterostemonaceae, 5 species), Paeoniaceae
146 (12 species), Penthoraceae (2 species), Peridiscaceae (3 species), Saxifragaceae (78 species), and
147 Tetracarpaeaceae (1 species).

148 The supermatrix dataset was compiled from multiple sources. The supermatrix of Soltis
149 et al. (2013) provided the bulk of our sampling. This was augmented by samples from Deng et al.
150 (2015) and 1 KP data (Matasci et al., 2014). The dataset was enlarged through GenBank searches
151 based on gene regions added post-2012 (i.e., after the submission of Soltis et al. [2013]). Finally,
152 plastome data from 13 early-diverging eudicots were included for outgroup taxa (Sun et al.,
153 2016). When multiple species were found for the same gene region on GenBank, we included

154 only the one with the longest sequence. In total, we assembled a data matrix of 68 gene regions
155 that represented all three plant genomes, chloroplast (63 gene regions; 56,970 nucleotides),
156 nuclear (3 regions; 6,973 nucleotides) and mitochondrial (2 regions; 3,190 nucleotides;
157 Appendix 1). The external transcribed spacer (ETS) and *trnL-trnF* regions were difficult to align
158 across different families, so family-specific alignment blocks were created for each region (ETS–
159 Crassulaceae, Grossulariaceae, Hamamelidaceae, Saxifragaceae; *trnL-trnF*– Crassulaceae,
160 Saxifragaceae; Appendix 1). Each gene region was compiled and aligned in Mesquite v. 3.61
161 (Maddison & Maddison, 2019). Preliminary trees to confirm the orthology of gene regions were
162 computed using maximum likelihood as implemented RAxML (Stamatakis, 2014) using the
163 Black Box tool on CIPRES (Miller et al., 2010). The concatenated supermatrix consisted of
164 67,133 aligned nucleotides. After removing 519 missing data characters (missing across all taxa),
165 and 780 characters due to ambiguous alignment, the final supermatrix was composed of 65,834
166 characters.

167

168 *2.2. Phylogeny and divergence time estimation*

169 Phylogeny and divergence times were estimated simultaneously in BEAST v. 1.8.4
170 (Drummond & Rambaut, 2007) on the concatenated, unpartitioned supermatrix with indels
171 treated as missing data. We used an uncorrelated relaxed lognormal clock and a birth-death
172 branching process under the GTR + I + G model of sequence evolution as suggested by
173 JModeltest2 (Darriba et al., 2012). We used six fossil calibration points based on their
174 justification in Magallón et al. (2015), Hermsen (2013; Iteaceae), and Manchester (2013;
175 Vitaceae), five of which were within Saxifragales and one within Vitales. Dates were based on
176 the 2019-05 version of ChronostratChart (Cohen et al., 2019). Fossil calibrations were given a

177 truncated lognormal prior with mean = 2 (mean = 2.5 for stem of Cercidiphyllaceae) and
178 standard deviation = 1 with an offset corresponding to the age estimate of the fossil, and a
179 maximum date of 133.4 Ma (see below). Fossil priors constrained the stem of Altingiaceae with
180 an offset of 89.8 Ma, stem of Cercidiphyllaceae with an offset of 56.0 Ma, stem of Haloragaceae
181 with an offset of 72.1 Ma, stem of Iteaceae with an offset of 89.8 Ma, and crown Vitaceae to
182 66.0 Ma. Magallón *et al.* (2015) constrained crown Hamamelidoideae with an offset of 83.6 Ma,
183 but we more conservatively placed their fossil on crown Hamamelidaceae with the offset of 83.6
184 Ma. Lastly, we constrained the root (eudicot crown) with a uniform prior from 129.7–133.4 Ma
185 based on a secondary date from Magallón *et al.* (2015) with minima and maxima corresponding
186 to the 95% highest posterior density (HPD) for this node. We ran 12 MCMC chains for 3.5×10^8
187 generations each with sampling every 10,000 generations. Convergence was assessed using
188 TRACER v. 1.7.1 (Rambaut *et al.*, 2014). Runs were combined using LogCombiner v. 1.8.4 after
189 excluding samples from each run as a burn-in as appropriate following assessment using
190 TRACER, with the burn-in varying from 4.0×10^7 to 2.0×10^8 generations. The posterior
191 distribution of trees was summarized as a maximum clade credibility (MCC) tree in
192 TreeAnnotator v. 1.8.4 (Drummond *et al.*, 2012).

193

194 *2.3. Ancestral range estimation*

195 We determined the geography of extant tips using Tropicos
196 (<https://www.tropicos.org/home>), Flora of China
197 (http://www.efloras.org/flora_page.aspx?flora_id=2), GBIF (<https://www.gbif.org/>), Flora of
198 Australia (<https://www.environment.gov.au/science/abrs/online-resources/flora-of-australia->
199 [online](http://www.efloras.org/flora_page.aspx?flora_id=1)), and Flora of North America (http://www.efloras.org/flora_page.aspx?flora_id=1). GBIF

200 records were checked as necessary following established protocols to ensure accurate species
201 distributions from this data depository (Maldonado et al., 2015; Spalink et al., 2016a, b).
202 Terminals were initially scored for presence/absence in the following 12 regions delimited on the
203 location of present geographic barriers and previous tectonic activity: (1) Northwestern North
204 America west of the Rocky Mountains and north of Mexico, (2) eastern North America east of
205 the Rocky Mountains and north of Mexico including Greenland, (3) southwestern North America
206 including Mexico and Central America, (4) western South America including the Andes, (5)
207 Guiana Shield, (6) southeastern South America, (7) Europe to the Russian border including the
208 Mediterranean, (8) northern Africa including the Sahara and the Middle East, (9) southern Africa
209 south of the Sahara Desert including tropical west Africa, east Africa, South Africa, and
210 Madagascar, (10) northern Asia west of the Caucasus, north of the Himalaya and north of the
211 Indo-China peninsula, (11) southern, tropical Asia including India, and Papua New Guinea, and
212 (12) Australasia. Given the paucity of occupancy in areas (5) and (6), we combined these two
213 areas into one (eastern South America) for downstream analyses for a total of 11 areas.

214 Ancestral range estimation (ARE) was conducted in BioGeoBEARS v. 1.1.2 (Matzke,
215 2012, 2013) on the MCC tree with outgroups removed, given the cosmopolitan distribution of all
216 rosids, the sister clade of Saxifragales. To better model geological history, we conducted a time-
217 stratified analysis with dispersal multipliers. We implemented the Dispersal-Extinction-
218 Cladogenesis (DEC) model (Ree & Smith, 2008), testing between models with and without
219 founder events (jump dispersal, j parameter in the BioGeoBEARS super model). Recent criticism
220 of this parameter and other aspects of the model (Ree & Sanmartín, 2018) have been countered
221 and thus remain as valid (Klaus & Matzke, 2019; Matzke, 2021). The significance of the fit of
222 the DEC and DECj models were tested using a likelihood ratio test. We allowed a maximum

223 range size of up to four areas (the maximum found in any extant tip). Dispersal probabilities
224 between pairs of areas were specified for the following five separate time slices (see below)
225 based on known geological events affecting geographic distributions within *Saxifragales* and that
226 have been similarly modeled in DEC and DECj analyses in other ancient and widespread
227 lineages (e.g., Buerki et al., 2011; Berger et al., 2016; Cardinal-McTeague et al., 2016; Spalink et
228 al., 2016a, b; Rose et al., 2018). Dispersal probabilities among areas were specified for five
229 separate time slices: 0–10, 10–35, 25–65, 65–90, 90–113 Ma, with dispersal multipliers modified
230 in each time slice based on adjacency of landmasses at each time. These time slices allowed for
231 testing of the importance of continental vicariance and collision as well as the role of possible
232 Northern Hemisphere land bridges (Tiffney, 1985, 2000; Tiffney & Manchester, 2001; Graham,
233 2011). Additionally, we conducted biogeographical stochastic mapping (Matzke, 2016; Dupin et
234 al., 2017) in BioGeoBEARS with 100 stochastic maps under both DEC and DECj models to
235 examine the timing, type, and number of biogeographical events, and the number of each class of
236 event (e.g., vicariance, sympatry, subset-sympatry, and jump dispersals) given the DEC or DECj
237 model was summarized using the “count_ana_clado_events” function in BioGeoBEARS .
238 Details regarding model development, temporal stratification, and dispersal probabilities among
239 the geographical regions through time, as well as alignment and BEAST files, are provided in the
240 supplementary material available on Dryad (<https://doi.org/10.5061/dryad.ffbg79cvg>).

241

242 **3. Results**

243

244 *3.1. Phylogenetic inference*

245 Our analysis of the supermatrix of 351 taxa and 65,834 aligned bp resulted in a well-
246 supported and resolved phylogenetic hypothesis of Saxifragales, with all major backbone nodes
247 having posterior probabilities (PP) > 0.99 and generally 1.0. All families were recovered as
248 monophyletic with PP = 1.0 (Fig.1). Our topology recovers the three major clades consistently
249 recovered within Saxifragales as monophyletic, all with PP = 1.0: Peridiscaceae, the PWC, and
250 Core Saxifragales. We also recover the two subclades of Core Saxifragales with PP = 1.0: the
251 Haloragaceae/Crassulaceae clade and the Saxifragaceae Alliance. Our tree resolves backbone
252 Saxifragales, strongly suggesting that Peridiscaceae is sister to the remainder of the order (PP >
253 0.99).

254 Within the PWC, Paeoniaceae is sister to Altingiaceae + Cercidiphyllaceae +
255 Daphniphyllaceae + Hamamelidaceae (PP = 1.0), Altingiaceae is sister to Cercidiphyllaceae +
256 Daphniphyllaceae + Hamamelidaceae (PP > 0.99), and Cercidiphyllaceae is sister to
257 Daphniphyllaceae (PP = 0.86). Within the Haloragaceae/Crassulaceae clade, Crassulaceae is
258 sister to the remaining families (PP = 1.0), Aphanopetalaceae is sister to Haloragaceae +
259 Penthoraceae + Tetracarpaeaceae (PP = 0.96), and Tetracarpaeaceae is sister to Haloragaceae +
260 Penthoraceae (PP = 1.0). Finally, within the Saxifragaceae Alliance, we recover Iteaceae
261 (including Pterostemonaceae) as monophyletic (PP = 1.0) and sister to Saxifragaceae +
262 Grossulariaceae (PP = 1.0).

263

264 *3.2. Major divergence times*

265 Crown Saxifragales dates to ~107 Ma (95% HPD = 100.87–112.30 Ma) and diversified
266 rapidly, with the crown ages of the three major Saxifragales clades dating > 94 Ma (Figure 1).
267 All stem lineages of extant families were dated to the Upper Cretaceous at ~75 Ma (youngest

268 stem ages are Haloragaceae and Penthoraceae), although the crown ages for most families were
 269 much younger. The stem age of Australasian Aphanopetalaceae was ~87 Ma, while the crown of
 270 the family is relatively recent at ~13 Ma (95% HPD = 1.90–28.98 Ma). The stem age of the
 271 similarly distributed Tetracarpaeaceae dates to ~83 Ma. Crown Iteaceae, excluding
 272 Pterostemonaceae which marks the divergence of *Choristylis* Harv. and *Itea* L., dates to ~34 Ma
 273 (HPD = 14.45–55.80 Ma). Within Peridiscaceae *Soyauxia* Oliv. diverged from *Peridiscus* Benth.
 274 ~29 Ma, although there is a wide error bar around this age estimate (95% HPD = 8.16–52.85
 275 Ma).

276

277 *3.3 Ancestral range estimation*

278 The BioGeoBEARS analysis selected the DECj ($\text{LnL} = -604.2$, $d = 4.3 \times 10^{-3}$, $e = 1.0 \times$
 279 10^{-8} , $j = 0.064$) model over the DEC model ($\text{LnL} = -660.4$, $d = 6.7 \times 10^{-3}$, $e = 6.1 \times 10^{-4}$) ($D =$
 280 112.3, $df = 1$, $P = 3.1 \times 10^{-26}$), so we report the results of DECj only (Figure 2; S1). The
 281 biogeographic origin of Saxifragales, the order excluding Peridiscaceae, and the Core
 282 Saxifragales is ambiguously reconstructed, with the area with the highest probability for all three
 283 nodes being both highly polymorphic and discontinuous (joint Central America + southern
 284 Africa + east Asia + Oceania) but with low probability ($P = 0.24$, 0.20 , and 0.13 respectively).
 285 Most other major nodes show high probabilities of one or more areas: crown Peridiscaceae is
 286 reconstructed as found in southern Africa ($P = 0.80$) and crown *Peridiscus* + *Soyauxia* is
 287 reconstructed as joint southern Africa and South America ($P = 0.50$) with stem *Peridiscus*
 288 originating in South America.

289 In the PWC all nodes representing super-familial ancestors are clearly reconstructed as
 290 found in northern Asia, excepting stem and crown Hamamelidaceae which were reconstructed as

291 originating in southern Asia (crown $P = 0.61$). In addition, most family stems or crowns in the
292 PWC are Asian, and particularly northern Asian, in origin, with the exception of stem and to a
293 lesser extent the crown Altingiaceae, with an inferred European origin ($P = 0.56$).

294 Crown Haloragaceae/Crassulaceae clade is ambiguously reconstructed as originating in
295 Australasia ($P = 0.28$), but with a clear signal for an Australasian origin of all super-familial
296 ancestors in the Haloragaceae/Crassulaceae Clade excluding Crassulaceae ($P = 0.98$). Crown
297 Crassulaceae itself is ambiguously reconstructed as originating in southern Africa ($P = 0.18$).

298 Finally, the biogeographic history of the deepest nodes of the Saxifragaceae Alliance are
299 ambiguously reconstructed, with the highest ancestral ranges of the crown of the clade being
300 either northern Asia ($P = 0.30$) or northwestern North America ($P = 0.11$). The stem and crown
301 of the Saxifragaceae Alliance excluding Iteaceae + Pterostemonaceae arose in northern Asia
302 (crown $P = 0.41$), with stem and crown Grossulariaceae + Saxifragaceae arising in either
303 northwestern North America or northern Asia (crown $P = 0.42$ and 0.38, respectively), with a
304 clearer signal of a northern Asian origin of stem and crown Saxifragaceae (crown $P = 0.54$) but
305 with some probability for northwestern North America ($P = 0.25$) or joint origin in northern Asia
306 + northwestern North America ($P = 0.17$). There is extensive movement from northern Asia to
307 northwestern North America along the backbone of Saxifragaceae, with movement back to
308 northern Asia within the last 35 Ma. The distribution of Iteaceae + Pterostemonaceae is best
309 explained as long distance dispersal from northern Asia to Central America when the lineage
310 diverged from Grossulariaceae + Saxifragaceae, followed by dispersal to eastern North America
311 at the divergence of stem Iteaceae, and finally with long distance dispersal from eastern North
312 America to Africa giving rise to *Choristylis*.

313

314 3.4. Biogeographical stochastic mapping

315 Stochastic mapping of ancestral ranges indicates that there is an average of 327.0
316 biogeographical events across our representative sample of Saxifragales. Of these, a mean of
317 136.5 (42%) are dispersal events. An average of 59.5 (44%) of all dispersal events are
318 cladogenetic dispersal (founder events, parameter j) and the remaining 56% of dispersal events
319 are anagenetic dispersal (parameter d). An average of 17.7 (5.4%) of all events are vicariant
320 events (parameter v).

321 Most cladogenetic dispersal and vicariance events occur before the early Eocene, with the
322 vast majority of all cladogenetic events occurring 65–105 Ma (Figure 3). Most cladogenetic
323 events since the Eocene are reconstructed as being jump dispersal events. Of 21 notable
324 infrafamilial disjunctions highlighted in Table 1, most are best explained by jump dispersal
325 rather than vicariance. The timing and directionality within disjunction types is variable, but
326 some temporal and directional similarities emerge, notably multiple jump dispersals from east
327 Asia to western North America 15–25 Ma, jump dispersals from Europe to North America 6–9
328 Ma, and jump dispersal from Asia to Eastern North America 3–18 Ma (Table 1).

329

330 **4. Discussion**

331

332 Our results represent one of the most comprehensive phylogenetic analyses of
333 Saxifragales and is the most comprehensive study to date to provide both divergence times with
334 an estimate of statistical uncertainty surrounding node ages and a formal analysis and discussion
335 of the biogeographic history of the order to clarify the causes of disjunct geographic

336 distributions. This dataset has provided a new, well-resolved phylogenetic framework to clarify
337 the 107 Ma history of the order.

338

339 *4.1. Progress towards a robust phylogenetic hypothesis of Saxifragales*

340

341 *4.1.1. Ancient Saxifragales divergences*

342 Until recently, the ordinal and family placement of genera now included in Peridiscaceae
343 was controversial (Davis & Chase, 2004; Wurdack & Davis, 2009). Subsequently, phylogenetic
344 studies have suggested that Peridiscaceae is sister to the rest of Saxifragales, but generally
345 without strong statistical support (Soltis et al., 2007, 2013). However, Jian et al. (2008), who
346 used ~50kb for 25 Saxifragales, recovered Peridiscaceae as sister to the remaining Saxifragales
347 with high statistical support. More recently, Folk et al. (2019), using 301 protein-coding nuclear
348 loci, placed Peridiscaceae as sister to the PWC in a concatenated analysis with poor support, and
349 recovered Peridiscaceae in a polytomy with the PWC and Core Saxifragales in a coalescent
350 analysis. This polytomy was also found in the dated tree of Folk et al. (2021). Our results are
351 more consistent with the results of Jian et al. (2008), but it remains unclear whether there is a
352 lack of phylogenetic information about this relationship present in the dataset of Folk et al.
353 (2019, 2021) or the sister relationship of Peridiscaceae/PWC represents a true topological
354 conflict between datasets (primarily nuclear data in Folk et al. [2019, 2021] and primarily
355 chloroplast data in Jian et al. [2008] and the dataset presented in this paper). One major
356 difference between this paper and that of Folk et al. (2019, 2021) is the number of outgroup taxa
357 used in each study. We included 100 outgroup taxa (251 ingroup) here whereas Folk et al. (2019,
358 2021) included 14 (627 ingroup). The different taxon sampling in outgroups may influence the

359 different placement of Peridiscaceae in the two studies. Apart from the placement of
360 Peridiscaceae, the monophyly of and relationships among the major clades of Saxifragales are
361 largely congruent with those of previous studies (Jian et al., 2008, Soltis et al., 2013; Folk et al.,
362 2019, 2021).

363

364 4.1.2. PWC (*Altingiaceae*, *Cercidiphyllaceae*, *Daphniphyllaceae*, *Hamamelidaceae*, and
365 *Paeoniaceae* clade)

366 Familial relationships within the PWC are identical to those in Soltis et al. (2013) and
367 Jian et al. (2008). However, those previous studies and this study differ considerably from
368 relationships recovered by Folk et al. (2019) in both the concatenated and coalescent analyses,
369 where Cercidiphyllaceae is sister to Altingiaceae + Hamamelidaceae with strong support in the
370 concatenated analysis and nested within Altingiaceae or forming a polytomy with
371 Hamamelidaceae and Altingiaceae in the coalescent analysis. While our data are uncertain about
372 the exact relationships of Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae (Figure 1),
373 they clearly contradict the placement of Altingiaceae in Folk et al. (2019). Again, the source of
374 this discordance remains unclear, but merits further study. Relationships within the PWC
375 families are consistent with relationships around supported nodes in previous studies focusing on
376 intrafamilial relationships: Altingiaceae (Ickert-Bond & Wen, 2006; with the exception that
377 Indochinese *Altingia* appear nested in the East Asian clade), Paeoniaceae (Sang et al., 1997), and
378 Hamamelidaceae (Shi et al., 1998; Xie et al., 2010) with the exception of the placement of
379 *Mytilaria*, which differs in its phylogenetic placement between nuclear ribosomal and plastid
380 datasets (Xie et al., 2010): here it falls in the position suggested based on plastid data in Xie et al.
381 (2010) and 301 nuclear loci in Folk et al. (2019).

382

383 4.1.3. *Haloragaceae/Crassulaceae* clade

384 Relationships among families in this clade are generally consistent with previously

385 published studies, with *Crassulaceae* sister to a clade consisting of *Aphanopetalaceae* +

386 *Tetracarpaeaceae* + *Haloragaceae* + *Penthoraceae* (Jian et al., 2008; Soltis et al., 2013; Folk et

387 al., 2019). However, while we find continued support for *Aphanopetalaceae* as sister to

388 *Tetracarpaeaceae* + *Haloragaceae* + *Penthoraceae*, we find less than complete statistical support

389 for this relationship (PP = 0.96; Figure 1), which might merit further study. Indeed, Folk et al.

390 (2019, 2021) recovered *Tetracarpaeaceae* as sister to *Aphanopetalaceae* + *Haloragaceae* +

391 *Penthoraceae*, suggesting potential conflict between chloroplast and nuclear data. In addition,

392 Folk et al. (2019) recovered *Crassulaceae* as sister to the *Saxifragaceae* Alliance

393 (Grossulariaceae, Iteaceae, *Saxifragaceae*; see below) in their coalescent analysis, as opposed to

394 sister to *Aphanopetalaceae* + *Tetracarpaeaceae* + *Haloragaceae* + *Penthoraceae* as recovered in

395 Jian et al. (2008), Soltis et al. (2013), and the concatenated analyses of Folk et al. (2019, 2021).

396 Infrafamilial relationships are in agreement with focused studies in *Crassulaceae* (Mort et al.,

397 2001; Carrillo-Reyes et al., 2009) and *Haloragaceae* (Moody & Les, 2007; Chen et al., 2014) in

398 places where relationships are supported in these previous studies.

399

400 4.1.4. *Saxifragaceae* Alliance

401 As with other clades, major relationships in the *Saxifragaceae* Alliance in this study

402 confirm those recovered in previous studies (Jian et al., 2008; Soltis et al., 2013; Folk et al.,

403 2019).

404 Grossulariaceae, containing only the genus *Ribes* L., has been poorly studied in a
405 molecular phylogenetic context. The most recent study on Grossulariaceae phylogenetic
406 relationships is from Schultheis & Donoghue (2004), but this study failed to find any support
407 for resolution below the sectional level. By contrast, many more studies have focused on
408 relationships, divergence times, and biogeography of Saxifragaceae. The topology of
409 Saxifragaceae recovered in this study is consistent with that recovered by previous phylogenetic
410 studies of the family (Xiang et al., 2012; Soltis et al., 2013; Deng et al., 2015), especially with the
411 most recent of the studies (Deng et al., 2015). In particular, the phylogenetic placement of
412 *Saniculiphyllum* with the Heucheroid clade was unclear in Xiang et al. (2012) while Deng et al.
413 (2015) and Folk et al. (2019) placed *Saniculiphyllum* sister to the *Boykinia* group.

414

415 4.2. Biogeography of Saxifragales

416 Our divergence time estimates, while varying widely from those of Soltis et al. (2013),
417 are largely in line with those of Folk et al. (2019), with some exceptions which are discussed
418 below (Figure 4). The similarity of our age estimates to those of Folk et al. (2019; Figure 4) are
419 not surprising given that their ages are based on a combined penalized likelihood/BEAST
420 “congruification” analysis using secondary calibrations from node ages from Magallón et al.
421 (2015), from which our fossil priors were derived, while Soltis et al. (2013) used penalized
422 likelihood with four constraints clustered in the PWC. Not surprisingly then, most crown ages
423 older in Soltis et al. (2013) versus this study are in the PWC, while most node ages younger in
424 Soltis et al. (2013) versus this study are in the Core Saxifragales, particularly Crassulaceae and
425 Saxifragaceae (Figure 4). Compared with Folk et al. (2019), the greatest outlying ages are found
426 in Peridiscaceae and the PWC (Altingiaceae, Cercidiphyllaceae, and Hamamelidaceae). In all

427 cases, equivalent node ages are younger in Folk et al. (2019). The discordances undoubtedly
428 reflect topological differences between studies (see sections 4.1.1 and 4.1.2). Striking nodal
429 divergence times between Folk et al. (2019) and this study are also found within
430 Hamamelidaceae, all of which are again younger in Folk et al. (2019). This may be due to our
431 conservative placement of the Hamamelidaceae prior on crown Hamamelidaceae instead of
432 crown Hamamelidoideae. The divergence times for the Saxifragaceae alliance and crown
433 Saxifragaceae we estimated are similar to Folk et al. (2019, 2021) but over 30 MY older than the
434 estimates from Deng et al. (2015). This major discrepancy is likely due to both a paucity of
435 outgroup sampling (only two species of *Liquidambar*) as well as an inadequate calibration
436 strategy by Deng et al. (2015). Nevertheless, apart from these few exceptions, the nearly
437 equivalent ages across different datasets point to a growing consensus on divergence times
438 within the order when similar or identical calibrations are used, especially once there is a clear
439 consensus on interfamilial relationships in the PWC (see section 4.1.2).

440

441 *4.2.1. Biogeographic origins*

442 Our ancestral range estimation accounts for the extant ranges of 115 of the 121
443 recognized genera in the order: either directly coded or represented by placeholders for their
444 larger clade. The exact origin of the order remains unclear (Figure 2), as the most probable joint
445 ancestral area does not seem plausible in light of area adjacency at the time of the crown
446 divergence of Saxifragales (joint Central America + southern Africa + south Asia + Australasian
447 distribution at ~107 Ma). There are at least two issues playing a role in confounding a clearer
448 reconstruction of the ancestral range of crown Saxifragales, Core Saxifragales, and to a lesser
449 extent the Saxifragaceae Alliance. First, a lack of suitable outgroups that help polarize the states

450 in an adequate fashion. This is a general problem in studies of ancestral state reconstruction
451 (Omland 1999), but even more so at the phylogenetic scale investigated here, where orders are
452 sister to large, polymorphic clades that possess all (or most) available character states which, in
453 the case of *Saxifragales*, are all rosids. Second, the distribution of *Cynomoriaceae*, the sole
454 member of *Saxifragales* excluded from this study, may have important implications for the
455 historical biogeography of the order, or at least the Core *Saxifragales* and possibly the
456 *Saxifragaceae* Alliance. *Cynomoriaceae* is an African/Eurasian family that ranges from the
457 Mediterranean to central Asia. Folk et al. (2019) clarified its phylogenetic placement to some
458 extent, with the family certainly closely related to Core *Saxifragales* but less certainly placed
459 within or around the clade as either sister to the *Haloragaceae/Crassulaceae* clade with 62%
460 bootstrap support in the concatenated analysis of 301 nuclear loci or sister to all Core
461 *Saxifragales* in the coalescent analysis of the same dataset with nearly full support. In either
462 placement of *Cynomoriaceae*, given the ancestral area of the PWC, as well as some signal in the
463 ambiguous reconstructions of the deepest nodes of the *Saxifragaceae* Alliance, the plurality of
464 the evidence argues for a Eurasian, and probably northern Asian origin of *Saxifragales* in whole
465 or in large part. The deepest backbone divergences of *Saxifragales* are therefore best explained
466 by diversification and stasis within a geographic realm, rather than explained by dispersal across
467 landmasses (Figure 2).

468 Based on our stochastic mapping, movement outside of east Asia is best explained by
469 founder events rather than vicariance sensu the BioGeoBEARS model, where vicariance is a
470 cladogenetic event where a widespread ancestor diverges into two lineages that each occupies a
471 subset of the wider range. In our analyses, as many as 77% of the cladogenetic events occurring
472 > 50 Ma (excluding the oldest event at the root) are reconstructed as jump dispersal (founder)

473 events (Figure 3). While uncertainty about ancestral range of major nodes of *Saxifragales*
474 prevents us from making solid conclusions about the biogeographic processes at play, we argue
475 that the origin of stem *Peridiscaceae* represents long distance dispersal from east Asia to west
476 Africa ~107 Ma. Likewise, the origin of stem *Haloragaceae/Crassulaceae* clade in Australasia
477 ~102 Ma most likely represents a long-distance dispersal event from east Asia, when these areas
478 were even more separated than they are presently. Excluding *Crassulaceae*, our inference of
479 historical biogeography in the clade is nearly identical to that of Chen et al. (2014) using the
480 DEC model and nearly identical divergence time estimates for *Haloragaceae*, with
481 reconstructions of deeper nodes not reported. The Australasian *Aphanopetalaceae* and
482 *Tetracarpaeaceae* therefore clearly represent relictual derivatives from an Australasian ancestor
483 (Figure 2). Given their nearly identical distributions as coded in this study, any uncertainty about
484 their relationships with *Haloragaceae* + *Penthoraceae* should not have any major effect on the
485 ancestral ranges inferred at these nodes. Similarly, Deng et al. (2015) studied the historical
486 biogeography of *Saxifragaceae* although they only used *Grossulariaceae* as an outgroup in their
487 ancestral range estimation. Again, despite young ages in Deng et al. (2015) relative to this study,
488 they found *Saxifragaceae* + *Grossulariaceae* to be of Asian origin, with an either northern Asian
489 or western North American origin along the backbone of *Saxifragaceae*, as we find in this study
490 but with a slightly more predominant Asian signal. Folk et al. (2021; Fig. S1 & S2), however,
491 found *Saxifragaceae* + *Grossulariaceae* to be of North American origin, although this
492 reconstruction was somewhat equivocal. Also, the geographic coding strategy used by Folk et al.
493 (2021) differed from ours, which makes direct comparisons tricky. While our reconstruction is
494 clear that these backbone nodes in *Saxifragaceae* must be one area or another and not a joint
495 area, nearly equiprobable reconstructions of either area make it difficult to infer directionality, if

496 any to movement between the two regions, although the results of stochastic mapping suggests
497 that transitions to western North America from northern Asia are more common than the reverse
498 (mean number of transitions 12.68 and 5.90, respectively).

499 Finally, uncertainty about the biogeographic history of the deepest nodes of the
500 Saxifragaceae Alliance are confounded in two ways. The first is the distribution of *Pterostemon*,
501 a clade with an extant distribution restricted to Mexico (Figure 2). This southwestern North
502 American distribution as scored in our study is very rare in the order, not a range currently
503 occupied by any close relatives, and is a distribution that is especially rare for such an ancient
504 lineage (stem age ~61 Ma). Second, poor understanding of relationships in Grossulariaceae (see
505 section 4.1.4) with apparent conflicting signal for northern Asia and northwestern North America
506 at its crown, exerts some influence on the ancestral range of Grossulariaceae + Saxifragaceae.
507 Nevertheless, a single area of origin for this clade is strongly favored, with a slightly greater
508 chance of a northern Asian origin (Figure S1).

509

510 *4.2.2. Patterns within disjunct distributions*

511 The inter and intrafamilial geographic diversity of Saxifragales makes it an interesting
512 group in which to examine the timing and processes behind these events. In particular, the extant
513 distributions of several families represent recurrent patterns that have fascinated biogeographers.
514 Molecular analyses suggest that long distance dispersal is more likely to explain these patterns as
515 opposed to vicariance via continental drift from both divergence times and formal analyses of
516 historical biogeography. Similarly, our analyses suggest that these strikingly disjunct
517 distributions are the result of long-distance dispersal rather than vicariance. However, known
518 divergence times coupled with an inference of the underlying directionality are in general

519 agreement within relatively distantly related clades in Saxifragales, as well as with distantly
520 related angiosperm lineages examined in other studies (Table 1). Although our sampling towards
521 the tips is not exhaustive in many cases, our analyses still shed light on the minimum divergence
522 times for these events, and still inform the likely type and directionality of these events.

523 In particular, the origin of South American Peridiscaceae is the result of a vicariance
524 event from west Africa ~29 Ma following trans-Atlantic anagenic dispersal along stem
525 *Peridiscus/Soyauxia* after the origin of the stem lineage ~53 Ma. While it is difficult to estimate
526 the exact timing of the dispersal event along the branch, such a dispersal window lines up with
527 dispersal ages inferred from trans-Atlantic lineages within Annonaceae (~38 Ma for the
528 divergence of *Cymbopetalum* Benth./*Trigynaea* Schltdl. from *Mkilua* Verdc. [Thomas et al.,
529 2015]), Lecythidaceae (24.4 Ma for the divergence of *Asteranthos* Desf. from African
530 Scytopetaloideae [Rose et al., 2018]), Proteaceae (43.8 Ma for the divergence of *Brabejum*
531 L./*Panopsis* Salisb. ex Knight [Barker et al., 2007]), and Vitaceae (30–36 Ma for the divergence
532 of members of *Cissus* L. s.l. [Nie et al., 2012; Liu et al., 2013]).

533 Our observed occurrences of amphitropical disjunctions are from across wide ranges of
534 divergence times and only one corresponds to the classic disjunction of North America/South
535 America (*Cascadia nuttallii* (Small) A.M. Johnson/*Saxifragodes albowlana* (Kurtz ex Albov)
536 D.M. Moore). This disjunction is not an artifact of taxon sampling, as these are the only two
537 extant members of the *Cascadia* A.M. Johnson clade. Deng et al. (2015) reconstructed this node
538 as representing a vicariance event following long distance dispersal. The crown age estimate for
539 this clade by Deng et al. (2015) is much younger than ours (35.6; 95% HPD = 15.4–55.6) at 19.1
540 Ma (95% HPD = 11.0–27.9) but in either case, the timing of dispersal to South America is
541 unusually old compared to other lineages (e.g., Wen & Ickert-Bond, 2009; Simpson et al., 2017),

542 suggesting repeated occurrences of North American/South American connectivity throughout the
543 Tertiary.

544 Asian-North American disjunctions have probably been the best studied of all types of
545 disjunctions, and the existing data has been reviewed multiple times. Within *Saxifragales*, 11 of
546 the 20 infrafamilial disjunctions highlighted in Table 1 involve eastern Asia and North or Central
547 America, with all but one jump dispersal event involving movement from Asia to the New
548 World. The three European/North American disjunctions also involve close ancestors with east
549 Asian affinities. Again, all inferred cladogenetic dispersal involves movement to the New World.
550 Wen et al. (2010) surveyed the literature at the time and found that of eastern Asian-North
551 American disjuncts, there was a strong signal of Old World to New World movement (62–70%
552 of events) and strong signal of Beringian rather than North Atlantic migration (56–79% of
553 events). Within *Saxifragales*, the vast majority of events we highlight show movement from the
554 Old World to New World and also show a Beringian rather than North Atlantic route,
555 highlighting the importance of Beringian land bridges in the assembly of north temperate floras
556 (Wen et al., 2016). In terms of timing, Wen et al. (2010, 2016) reported these disjunctions
557 occurring in a wide time frame from 89 Ma to the present but with most events < 20 Ma.
558 Similarly, our results fall within this range, especially in the 5–20 Ma range (Table 1). Such
559 frequent movement has been attributed to the presence of land bridges across both Beringia and
560 the North Atlantic, although the strong directionality to this movement has yet to be explained.
561 Long distance dispersal via air or water is also a possibility, but the dry capsular or follicular
562 fruit of most *Saxifragales* (and all of those illustrated in Table 1) argues against such means of
563 colonization.

564

565 **Conclusions**

566 This study clarifies the historical biogeography of Saxifragales with strong and clear
567 support. While the ancestral range of the crown of the order is unclear based on our analyses, the
568 preponderance of evidence clearly points to an east Asian origin, especially when the extant
569 distribution of Cynomoriaceae is considered, as well as an important Australasian (but not
570 Gondwanan) element which gave rise to multiple extant families. Both long distance dispersal
571 and vicariance have played a role in shaping the extant distribution of Saxifragales, but our
572 analyses clearly show that long-distance dispersal has been a more prevalent force, even at
573 deeper nodes. Recent disjunctions are overwhelmingly explained by long-distance dispersal and
574 highlight the importance of land bridges during the Neogene. These land bridges strongly
575 favored dispersal from east Asia to North America and shaped the flora of north temperate
576 regions.

577

578

579 **Acknowledgements**

580 We thank Ryan Folk, Pam Soltis, and Doug Soltis for helpful discussions. Drew acknowledges
581 support from NSF-DEB grant DEB-1655611. We also acknowledge the University of NE-
582 Kearney RSC for postdoc funding. Thanks also to two anonymous reviewers who helped
583 improve the manuscript.

584

585

586

587

588 **References**

589 Angiosperm Phylogeny Group (APG) IV (2016). An update of the Angiosperm Phylogeny
590 Group classification for the orders and families of flowering plants: APG IV. *Botanical
591 Journal of the Linnean Society*. 181: 1-20.

592 Barker NP, Weston PH, Rutschmann F, Sauquet H (2007). Molecular dating of the
593 'Gondwanan' plant family Proteaceae is only partially congruent with the timing of the
594 break-up of Gondwana. *Journal of Biogeography*. 34: 2012-2027.

595 Bellot S, Cusimano N, Luo S, Sun G, Zarre S et al. (2016). Assembled plastid and mitochondrial
596 genomes, as well as nuclear genes, place the parasite family Cynomoriaceae in the
597 *Saxifragales*. *Genome Biology and Evolution*. 8: 2214-2230.

598 Berger BA, Kriebel R, Spalink D, Sytsma KJ (2016). Divergence times, historical biogeography,
599 and shifts in speciation rates of Myrtales. *Molecular Phylogenetics and Evolution*. 95:
600 116-136.

601 Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley et al. (2009). Phylogeny of the
602 Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth
603 differentiation in the core Caryophyllales. *International Journal of Plant Sciences*. 170:
604 627-643.

605 Buerki, S, Forest, F, Alvarez N, Nylander JAA, Arrigo N et al. (2011). An evaluation of new
606 parsimony-based versus parametric inference methods in biogeography: a case study
607 using the globally distributed plant family Sapindaceae *Journal of Biogeography*. 38:
608 531-550.

609 Cardinal-McTeague WM, Sytsma KJ, Hall JC (2016). Biogeography and diversification of
610 Brassicales: a 103 million year chronicle. *Molecular Phylogenetics and Evolution*. 99:
611 204-224.

612 Carrillo-Reyes P, Sosa V, Mort ME (2009). Molecular phylogeny of the Acre clade
613 (Crassulaceae): Dealing with the lack of definitions for *Echeveria* and *Sedum*. *Molecular*
614 *Phylogenetics and Evolution*. 53: 267-276.

615 Chen LY, Zhao SY, Mao KS, Les DH, Wang QF et al. (2014). Historical biogeography of
616 Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental
617 dispersals. *Molecular Phylogenetics and Evolution*. 78: 87-95.

618 Clayton JW, Soltis PS, Soltis DE (2009). Recent long-distance dispersal overshadows ancient
619 biogeographical patterns in a pantropical angiosperm family (Simaroubaceae,
620 Sapindales). *Systematic Biology*. 58: 395-410.

621 Cohen KM, Harper DA, Gibbard PL, Fan JX. (2019). ICS international Chronostratigraphic
622 chart 2019/05.

623 Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ et al. (2002). Molecular
624 phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid *rbcL*, *atpB*, and
625 *matK* DNA sequences. *American Journal of Botany*. 89: 132-144.

626 Darriba D, Taboada, GL, Doallo, R, Posada D (2012). jModelTest 2: more models, new
627 heuristics and parallel computing. *Nature Methods*. 9: 772-772.

628 Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of
629 favoured races in the struggle for life. John Murray, London, England.

630 Davis CC, Chase MW (2004). Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to
631 *Saxifragales*. *American Journal of Botany*. 91: 262-273.

632 Deng JB, Drew BT, Mavrodiev EV, Gitzendanner MA, Soltis PS et al. (2015). Phylogeny,
633 divergence times and historical biogeography of the angiosperm family Saxifragaceae.
634 Molecular Phylogenetics and Evolution. 83: 86-98.

635 Donoghue MJ, Smith SA (2004). Patterns in the assembly of temperate forests around the
636 Northern Hemisphere. Proceedings of the Royal Society of London. Series B: Biological
637 Sciences. 359: 1633-644.

638 Drew BT, Liu S, Bonifacino JM, Sytsma KJ (2017). Amphitropical disjunctions in New World
639 Menthinae: Three Pliocene dispersals to South America following late Miocene dispersal
640 to North America from the Old World. American Journal of Botany. 104: 1695-1707.

641 Drummond AJ, Rambaut A (2007). BEAST: Bayesian evolutionary analysis by sampling
642 trees. BMC Evolutionary Biology. 7: 214.

643 Drummond AJ, Suchard MA, Xie D Rambaut A (2012). Bayesian phylogenetics with BEAUTi
644 and the BEAST 1.7. Molecular Biology and Evolution. 29: 1969-1973.

645 Dupin J, Matzke NJ, Särkinen T, Knapp S, Olmstead RG et al. (2017). Bayesian estimation of
646 the global biogeographical history of the Solanaceae. Journal of Biogeography. 44: 887-
647 899.

648 Fishbein M, Hibsch-Jetter C, Soltis DE, Hufford L (2001). Phylogeny of Saxifragales
649 (angiosperm, eudicots): Analysis of a rapid, ancient radiation. Systematic Biology. 50:
650 814-847.

651 Fishbein M, Soltis DE (2004). Further resolution of the rapid radiation of Saxifragales
652 (angiosperm, eudicots) supported by mixed model Bayesian analysis. Systematic Botany.
653 29: 883-891.

654 Folk RA, Stubbs RL, Mort ME, Cellinese N, Allen JM et al. (2019). Rates of niche and
655 phenotype evolution lag behind diversification in a temperate radiation. Proceedings of
656 the National Academy of Sciences USA. 116: 10874-10882.

657 Folk RA, Stubbs RL, Engle-Wrye NJ, Soltis DE, Okuyama Y (2021). Biogeography and habitat
658 evolution of Saxifragaceae, with a revision of generic limits and a new tribal system.
659 Taxon. 70: 263-85.

660 Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC et al. (2004). Ancient vicariance or recent
661 long-distance dispersal? Inferences about phylogeny and South American-African
662 disjunctions in Rapateaceae and Bromeliaceae based on *ndhF* sequence data.
663 International Journal of Plant Sciences. 165: 35-54.

664 Graham A (2011). The age and diversification of terrestrial New World ecosystems through
665 Cretaceous and Cenozoic time. American Journal of Botany. 98: 336-351.

666 Hermsen EJ, Gandolfo MA, Nixon KC, Crepet WL (2006). The impact of extinct taxa on
667 understanding the early evolution of angiosperm clades: an example incorporating fossil
668 reproductive structures of Saxifragales. Plant Systematics and Evolution. 260: 141-169.

669 Hermsen EJ (2013). A review of the fossil record of the genus *Itea* (Iteaceae, Saxifragales) with
670 comments on its historical biogeography. The Botanical Review. 79: 1-47.

671 Hoot SB, Magallon S, Crane PR (1999). Phylogeny of basal eudicots based on three molecular
672 data sets: *atpB*, *rbcL*, and 18S nuclear ribosomal DNA sequences. Annals of the Missouri
673 Botanical Garden. 86: 1-32.

674 Ickert-Bond SM, Wen J (2006). Phylogeny and biogeography of Altingiaceae: evidence from
675 combined analysis of five non-coding chloroplast regions. Molecular Phylogenetics and
676 Evolution. 39: 512-528.

677 Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R et al. (2008). Resolving an ancient, rapid
678 radiation in *Saxifragales*. *Systematic Biology*. 57: 38-57.

679 Klaus KV, Matzke NJ (2019). Statistical comparison of trait-dependent biogeographical models
680 indicates that *Podocarpaceae* dispersal is influenced by both seed cone traits and
681 geographical distance. *Systematic Biology*. 69: 61-75.

682 Liu XQ, Ickert-Bond SM, Chen LQ, Wen J (2013). Molecular phylogeny of *Cissus* L of Vitaceae
683 (the grape family) and evolution of its pantropical intercontinental
684 disjunctions. *Molecular Phylogenetics and Evolution*. 66, 43-53

685 Maddison WP, Maddison DR (2019). Mesquite: a modular system for evolutionary analysis
686 Version 3.61 <http://wwwmesquiteprojectorg>

687 Magallón S, Crane PR, Herendeen PS (1999). Phylogenetic pattern, diversity and diversification
688 of eudicots. *Annals of the Missouri Botanical Garden*. 86: 297-372.

689 Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015). A
690 metacalibrated time-tree documents the early rise of flowering plant phylogenetic
691 diversity. *New Phytologist*. 207: 437-453.

692 Maldonado C, Molina CI, Zizka A, Persson C, Taylor CM et al. (2015). Estimating species
693 diversity and distribution in the era of Big Data: to what extent can we trust public
694 databases? *Global Ecology and Biogeography*. 24: 973-984.

695 Manchester, SR, Kapgate, DK and Wen, J (2013). Oldest fruits of the grape family (Vitaceae)
696 from the Late Cretaceous Deccan Cherts of India. *American Journal of Botany*. 100:
697 1849-1859.

698 Matasci, N, Hung, LH, Yan, Z, Carpenter, EJ, Wickett, NJ, Mirarab, S, Nguyen, N, Warnow, T,
699 Ayyampalayam, S, Barker, M, Burleigh, JG, 2014 Data access for the 1,000 Plants (1KP)
700 project. *Gigascience*. 3: 2047-217X.

701 Matzke NJ (2012). Founder-event speciation in BioGeoBEARS package dramatically improves
702 likelihoods and alters parameter inference in Dispersal-Extinction-Cladogenesis (DEC)
703 analyses. *Frontiers of Biogeography*. 4: 210.

704 Matzke NJ (2013). BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary
705 analysis in R Scripts, CRAN: The Comprehensive R Archive Network, Vienna, Austria
706 <http://cranr-project.org/package=BioGeoBEARS>

707 Matzke NJ (2016). Stochastic mapping under biogeographical models PhyloWiki
708 BioGeoBEARS website http://phylowikidotcom/biogeobears#stochastic_mapping

709 Matzke NJ (2021). Statistical comparison of DEC and DEC+J is identical to comparison of two
710 ClaSSE submodels, and is therefore valid. <https://doi.org/10.31219/osf.io/vqm7r>

711 Miller MA, Pfeiffer W, Schwartz T (2010). Creating the CIPRES Science Gateway for inference
712 of large phylogenetic trees, in: Proceedings of the Gateway Computing Environments
713 Workshop (GCE), New Orleans, LA, pp 1-8.

714 Moody ML, Les DH (2007). Phylogenetic systematics and character evolution in the angiosperm
715 family Haloragaceae. *American Journal of Botany*. 94, 2005-2025.

716 Moore MJ, Bell CD, Soltis PS, Soltis DE (2007). Using plastid genomic-scale data to resolve
717 enigmatic relationships among basal angiosperms. *Proceedings of the National Academy of
718 Sciences USA*. 104: 19363-19368.

719 Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M, et al. (2011). Phylogenetic
720 analysis of the plastid inverted repeat for 244 species: insights into deeper-level

721 angiosperm relationships from a long, slowly evolving sequence region. International
722 Journal of Plant Sciences. 172: 541-558

723 Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010). Phylogenetic analysis of 83
724 plastid genes further resolves the early diversification of eudicots. Proceedings of the
725 National Academy of Sciences USA. 107: 4623-4628.

726 Morgan DR, Soltis DE (1993). Phylogenetic relationships among members of the Saxifragaceae
727 sensu lato based on *rbcL* sequence data. Annals of the Missouri Botanical Garden. 80:
728 631-660.

729 Mort ME, Soltis DE, Soltis, PS Francisco-Ortega, J Santos-Guerra A (2001). Phylogenetic
730 relationships and evolution of Crassulaceae inferred from *matK* sequence data. American
731 Journal of Botany. 88: 76-91.

732 Nickrent DL, Joshua PD, Frank EA (2005). Discovery of the photosynthetic relative of the
733 Maltese mushroom *Cynomorium*. BMC Evolutionary Biology. 5: 38.

734 Nie ZL, Sun H, Manchester SR, Meng Y, Luke, Q, et al. (2012). Evolution of the
735 intercontinental disjunctions in six continents in the *Ampelopsis* clade of the grape family
736 (Vitaceae). BMC Evolutionary Biology. 12: 17.

737 Omland KE (1999). The assumptions and challenges of ancestral state reconstructions.
738 Systematic biology 48: 604-611.

739 Olmstead RG, de Pamphilis C W, Wolfe AD, Young ND, Elisens WJ et al. (2001).
740 Disintegration of the Scrophulariaceae. American Journal of Botany. 88: 348-361

741 de Queiroz A (2005). The resurrection of oceanic dispersal in historical biogeography. Trends in
742 Ecology and Evolution. 20: 68-73.

743 Rambaut A, Drummond AJ, Suchard M (2014). Tracer v1.6 [http://beastbioed.acuk](http://beastbioed.acuk/software/tracer/)

744 /software/tracer/

745 Raven PH (1963). Amphitropical relationships in the floras of North and South America. *The*

746 *Quarterly Review of Biology*. 38: 151-177.

747 Raven PH (1972). Plant species disjunctions: a summary. *Annals of the Missouri Botanical*

748 *Garden*. 59: 234-246.

749 Ree RH, Sanmartín I (2018). Conceptual and statistical problems with the DEC+ J model of

750 founder-event speciation and its comparison with DEC via model selection. *Journal of*

751 *Biogeography*. 45: 741-749.

752 Ree RH, Smith SA (2008). Maximum likelihood inference of geographic range evolution by

753 dispersal, local extinction, and cladogenesis. *Systematic Biology*. 57: 4-14.

754 Refulio-Rodriguez NF, Olmstead RG (2014). Phylogeny of Lamiidae. *American Journal of*

755 *Botany*. 101: 287-299.

756 Renner S (2004). Plant dispersal across the tropical Atlantic by wind and sea currents.

757 *International Journal of Plant Sciences*. 165: S23-S33.

758 Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J et al. (2018). Phylogeny, historical

759 biogeography, and diversification of angiosperm order Ericales suggest ancient

760 Neotropical and East Asian connections. *Molecular Phylogenetics and Evolution*. 122:

761 59-79.

762 Ruhfel BR, Bove CP, Philbrick CT, Davis CC (2016). Dispersal largely explains the Gondwanan

763 distribution of the ancient tropical clusioid plant clade. *American Journal of Botany*. 103:

764 1117-1128.

765 Sang T, Crawford DJ, Stuessy TF (1997). Chloroplast DNA phylogeny, reticulate evolution, and
766 biogeography of *Paeonia* (Paeoniaceae). American Journal of Botany. 84: 1120-1136.

767 Schäferhoff B, Fleischmann A, Fischer E, Albach DC, Borsch T, et al. (2010). Towards
768 resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences.
769 BMC Evolutionary Biology. 10: 352.

770 Schönenberger J, Anderberg AA, Sytsma KJ (2005). Molecular phylogenetics and patterns of
771 floral evolution in the Ericales. International Journal of Plant Sciences. 166: 265-288.

772 Schultheis LM, Donoghue MJ (2004). Molecular phylogeny and biogeography of *Ribes*
773 (Grossulariaceae), with an emphasis on gooseberries (subg *Grossularia*). Systematic
774 Botany. 29: 77-96.

775 Shi S, Chang HT, Chen Y, Qu L, Wen J (1998). Phylogeny of the Hamamelidaceae based on the
776 ITS sequences of nuclear ribosomal DNA. Biochemical Systematics and Ecology. 26: 55-
777 69.

778 Simpson MG, Johnson LA, Villaverde T, Guilliams CM (2017). American amphitropical
779 disjuncts: Perspectives from vascular plant analyses and prospects for future
780 research. American Journal of Botany. 104: 1600-1650.

781 Smith SA, Beaulieu J, Donoghue MJ (2010). An uncorrelated relaxed-clock analysis suggests an
782 earlier origin for flowering plants. Proceedings of the National Academy of Sciences
783 USA. 107: 5897-5902.

784 Soltis DE, Clayton JW, Davis CC, Gitzendanner MA, Cheek, M, et al. (2007). Monophyly and
785 relationships of the enigmatic amphitropical family Peridiscaceae. Taxon. 56: 65-73.

786 Soltis DE, Mort ME, Latvis M, Mavrodiev EV, O'Meara BC, et al. (2013). Phylogenetic
787 relationships and character evolution analysis of Saxifragales using a supermatrix
788 approach. *American Journal of Botany*. 100: 916-929.

789 Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC et al. (2011). Angiosperm phylogeny:
790 17 genes, 640 taxa *American Journal of Botany*. 98: 704-730.

791 Soltis DE, Soltis PS (1997). Phylogenetic relationships among Saxifragaceae *sensu lato*: a
792 comparison of topologies based on 18s and *rbcL* sequences. *American Journal of Botany*.
793 84: 504-522.

794 Soltis DE, Soltis PS, Chase MW, Mort ME, Albach AC (2000). Angiosperm phylogeny inferred
795 from 18s rDNA, *rbcL*, and *atpB* sequences. *Botanical Journal of the Linnean Society*.
796 133: 381-461.

797 Soltis DE, Soltis PS, Clegg MT, Durbin M (1990). *rbcL* sequence divergence and phylogenetic
798 relationships in Saxifragaceae *sensu lato*. *Proceedings of the National Academy of
799 Sciences USA*. 87: 4640-4644.

800 Spalink D, Drew BT, Pace MC, Zaborsky JG, Li P et al. (2016a). Evolution of geographical
801 place and niche space: patterns of diversification in the North American sedge
802 (Cyperaceae) flora. *Molecular Phylogenetics and Evolution*. 95, 183-195

803 Spalink D, Drew BT, Pace MC, Zaborsky JG, Starr JR et al. (2016b). Biogeography of the
804 cosmopolitan sedges (Cyperaceae) and the area-richness correlation in plants. *Journal of
805 Biogeography*. 43: 1893-1904.

806 Stamatakis A (2014). RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of
807 Large Phylogenies. *Bioinformatics* 9: 1312-1313.

808 Stubbs RL, Folk RA, Xiang CL, Chen S, Soltis DE, et al. (2020) A phylogenomic perspective on
809 evolution and discordance in the alpine-arctic plant clade *Micranthes* (Saxifragaceae).
810 Frontiers in Plant Science. 10: 1773.

811 Sun Y, Moore MJ, Zhang S, Soltis PS, Soltis DE et al. (2016). Phylogenomic and structural
812 analyses of 18 complete plastomes across nearly all families of early-diverging eudicots,
813 including an angiosperm-wide analysis of IR gene content evolution. Molecular
814 Phylogenetics and Evolution. 96: 93-101.

815 Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE et al. (2015) Nested radiations and the
816 pulse of angiosperm diversification: increased diversification rates often follow whole
817 genome duplications. New Phytologist. 207: 454-467.

818 Tarullo C, Folk R, Soltis PS, Soltis DE, Drew BT (2016). A supermatrix approach to solving
819 relationships in Saxifragales. Poster presented at the Botanical Society of America
820 conference in Savannah, Georgia.

821 Thomas DC, Chatrou LW, Stull GW, Johnson DM, Harris DJ, et al. (2015). The historical
822 origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant
823 family Annonaceae. Perspectives in Plant Ecology, Evolution and Systematics. 17: 1-16.

824 Tiffney BH (1985). The Eocene North Atlantic land bridge: its importance in Tertiary and
825 modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum.
826 66: 243-273.

827 Tiffney BH (2000). Geographic and climatic influences on the Cretaceous and Tertiary history of
828 Euramerican floristic similarity. Acta Universitatis Carolinae, Geologica. 44: 5-16.

829 Tiffney BH, Manchester SR (2001). The use of geological and paleontological evidence in
830 evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary.

831 International Journal of Plant Sciences. 162: 3-17.

832 Walker JF, Yang Y, Feng T, Timoneda A, Mikenas J et al. (2018). From cacti to carnivores:
833 Improved phylotranscriptomic sampling and hierarchical homology inference provide
834 further insight into the evolution of Caryophyllales. American Journal of Botany. 105:
835 446-462

836 Wallace AR (1880). Island life McMillan and Co, London, England.

837 Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF et al. (2009). Rosid diversification and
838 the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of
839 Sciences USA. 106: 3853-3858.

840 Wen J (1999). Evolution of eastern Asian and eastern North American disjunct distributions in
841 flowering plants. Annual Review of Ecology, Evolution, and Systematics. 30: 421-455.

842 Wen J (2001). Evolution of eastern Asian-eastern North American biogeographic disjunctions:
843 few additional issues. International Journal of Plant Sciences. 162: 117-122.

844 Wen J, Ickert-Bond SM (2009). Evolution of the Madrean-Tethyan disjunctions and the North
845 and South American amphitropical disjunctions in plants. Journal of Systematics and
846 Evolution. 47: 331-348.

847 Wen, J, Ickert-Bond, SM, Nie, ZL, Li, R (2010). Timing and modes of evolution of eastern
848 Asian-North American biogeographic disjunctions in seed plants. in: Darwin's Heritage
849 Today: Proceedings of the Darwin 200 Beijing International Conference. 252-269.

850 Wen J, Nie Z-L, Ickert-Bond SM (2016). Intercontinental disjunctions between eastern Asia and
851 western North America in vascular plants highlight the biogeographic importance of the
852 Bering land bridge from late Cretaceous to Neogene. Journal of Systematics and
853 Evolution. 54: 469-490.

854 Wikström N, Savolainen V, Chase MW (2001). Evolution of the angiosperms: calibrating the
855 family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences.
856 268: 2211-2220.

857 Wurdack KJ, Davis CC (2009). Malpighiales phylogenetics: gaining ground on one of the most
858 recalcitrant clades in the angiosperm tree of life. American Journal of Botany. 96, 1551-
859 1570

860 Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ et al. (2012).
861 Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm
862 radiation Malpighiales. Proceedings of the National Academy of Sciences USA. 109:
863 17519-17524.

864 Xiang CL, Gitzendanner MA, Soltis DE, Peng H, Lei LG (2012). Phylogenetic placement of the
865 enigmatic and critically endangered genus *Saniculiphyllum* (Saxifragaceae) inferred from
866 combined analysis of plastid and nuclear DNA sequences. Molecular Phylogenetics and
867 Evolution. 64: 357-367.

868 Xiang QY, Soltis DE, Soltis PS (1998). The eastern Asian and eastern and western North
869 American floristic disjunction: congruent phylogenetic patterns in seven diverse
870 genera. Molecular Phylogenetics and Evolution. 10: 178-190.

871 Xie L, Yi TS, Li R, Li DZ, Wen J (2010). Evolution and biogeographic diversification of the
872 witch-hazel genus (*Hamamelis* L, Hamamelidaceae) in the Northern
873 Hemisphere. Molecular Phylogenetics and Evolution. 56: 675-689.

874 Zhang SD, Soltis DE, Yang Y, Li DZ, Yi TS (2011). Multi-gene analysis provides a well-
875 supported phylogeny of Rosales. Molecular Phylogenetics and Evolution. 60: 21-28.

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896 **Table 1.** Summary of the type, timing, and directionality of 20 selected intrafamilial,
897 intercontinental disjunctions in *Saxifragales*. Disjunctions are sorted by general pattern and the
898 event type is as reconstructed on the moist likely ancestral state reconstruction. Taxa listed
899 reflect the most recent common ancestor (MRCA) node only and the disjunction may involve

900 more than two species. Note that due to extensive interchange, Saxifragaceae disjunctions
 901 between Asia and Western North America are curtailed to show the older disjunctions only. An
 902 asterisk (*) indicates nodes lacking a highest posterior density (HPD) of node ages because it is
 903 present in the maximum clade credibility tree but found in < 50% of posterior trees.

Disjunction (MRCA)	Family	Age/HPD (Ma)	Event Type and Direction
W. N. America/Asia			
<i>Astilbe rivularis/</i> <i>Saxifragopsis fragarioides</i>	Saxifragaceae	14.9 (4.1-26.3)	jump dispersal (Asia to N. America)
<i>Leptarrhena pyrolifolia/</i> <i>Tanakaea radicans</i>	Saxifragaceae	20.0 (5.5-35.1)	jump dispersal (Asia to N. America)
<i>Paeonia anomala/</i> <i>P. brownii</i>	Paeoniaceae	20.0 (11.0-29.5)	jump dispersal (Asia to N. America)
<i>Saxifraga mertensiana/</i> <i>S. stolonifera</i>	Saxifragaceae	26.4 (7.6-46.5)	jump dispersal (Asia to N. America)
E. N. America/Asia			
<i>Astilbe biternata/</i> <i>A. chinensis</i>	Saxifragaceae	3.4*	jump dispersal (Asia to E. N. America)
<i>Chrysosplenium iowense/</i> <i>C. lanuginosum</i>	Saxifragaceae	18.6 (7.5-29.4)	jump dispersal (Asia to N. America)
<i>Hamamelis mollis/</i> <i>H. virginiana</i>	Hamamelidaceae	3.6 (0.6-6.2)	jump dispersal (E. N. America to Asia)
<i>Itea virginica/</i> <i>I. yunnanensis</i>	Iteaceae	12.4 (4.2-21.1)	vicariance
<i>Penthorum chinense/</i> <i>P. sedoides</i>	Penthoraceae	7.0 (1.0-14.4)	jump dispersal (Asia to E. N. America)
Central America/Asia			
<i>Loropetalum chinense/</i> <i>Matudaea trinervia</i>	Hamamelidaceae	12.5 (5.4-19.0)	jump dispersal (Asia to Central America)
<i>Molinadendron guatemalense/</i> <i>Sinowilsonia henryi</i>	Hamamelidaceae	8.5 (2.7-13.8)	jump dispersal (Asia to Central America)
Europe/E. N. America			
<i>Chrysosplenium americanum/</i> <i>C. oppositifolium</i>	Saxifragaceae	9.1 (2.2-16.4)	jump dispersal (Europe to E. N. America)
<i>Fothergilla major/</i> <i>Parrotiopsis jacquemontiana</i>	Hamamelidaceae	6.0 (1.3-10.3)	jump dispersal (Europe to E. N. America)

<i>Liquidambar orientalis/</i> <i>L. styraciflua</i>	Altingiaceae	7.1 (2.0-11.7)	jump dispersal (Europe to E. N. America)
Amphitropical			
<i>Cascadia nuttallii/</i> <i>Saxifragodes albowlana</i>	Saxifragaceae	35.6 (15.4-55.6)	jump dispersal (W. N. America to S. America)
<i>Saxifraga balfourii/</i> <i>S. bicuspidata</i>	Saxifragaceae	52.5 (39.8-64.7)	jump dispersal (Asia to Andes)
<i>Saxifraga cymbalaria/</i> <i>S. moschata</i>	Saxifragaceae	5.2*	jump dispersal (Europe to S. America)
Gondwanan/Miscellaneous			
<i>Dicoryphe stipulacea/</i> <i>Noahdendron nicholasi</i>	Hamamelidaceae	9.5 (3.5-15.1)	jump dispersal (Africa to Australasia)
<i>Choristylis rhamnoides/</i> <i>Itea virginica</i>	Iteaceae	34.3 (14.5-55.8)	jump dispersal (E. N. America to Africa)
<i>Peridiscus lucidus/</i> <i>Soyauxia talbotii</i>	Peridiscaceae	29.1 (8.2-52.9)	vicariance following anagenetic dispersal

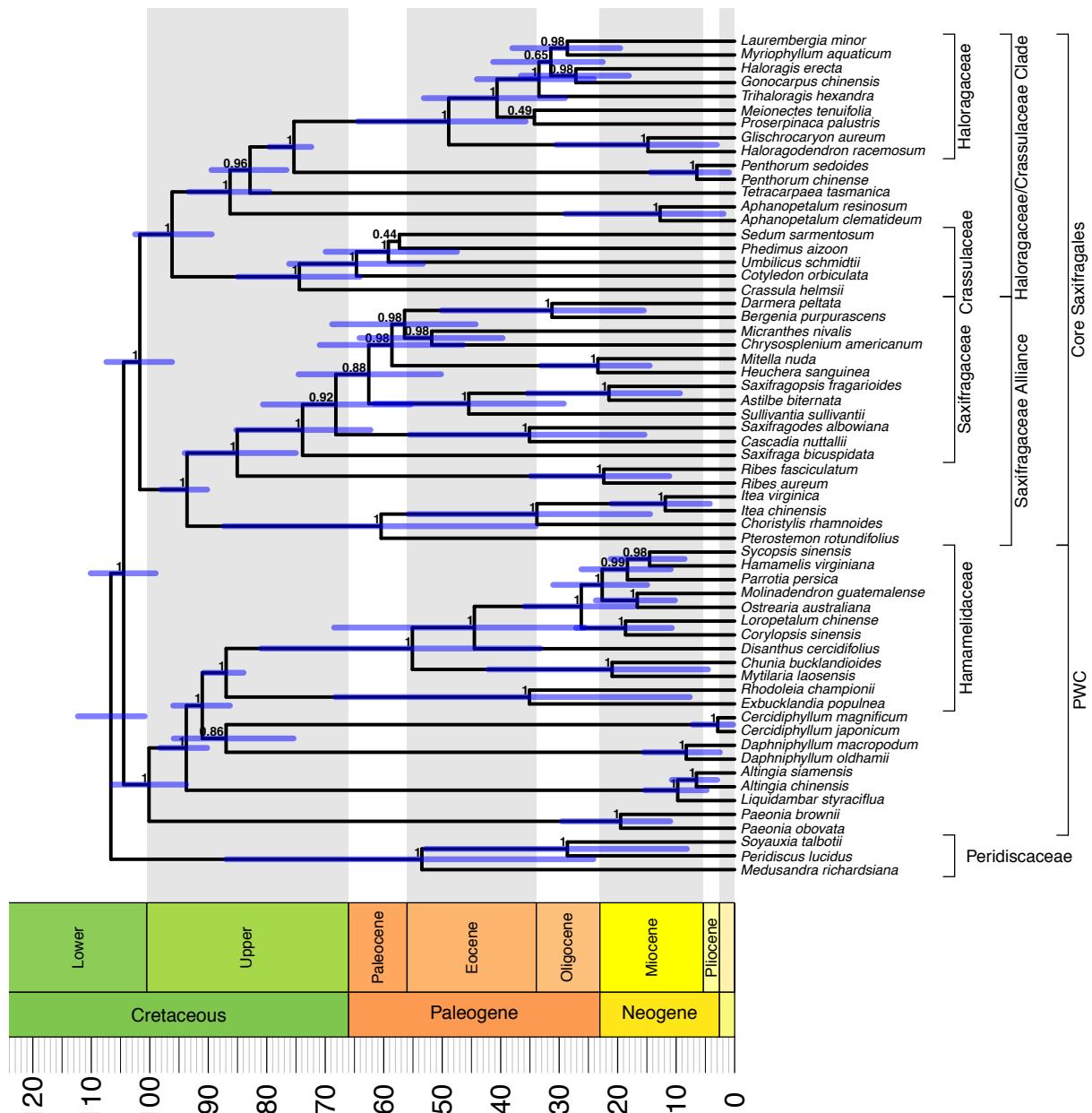
904

905

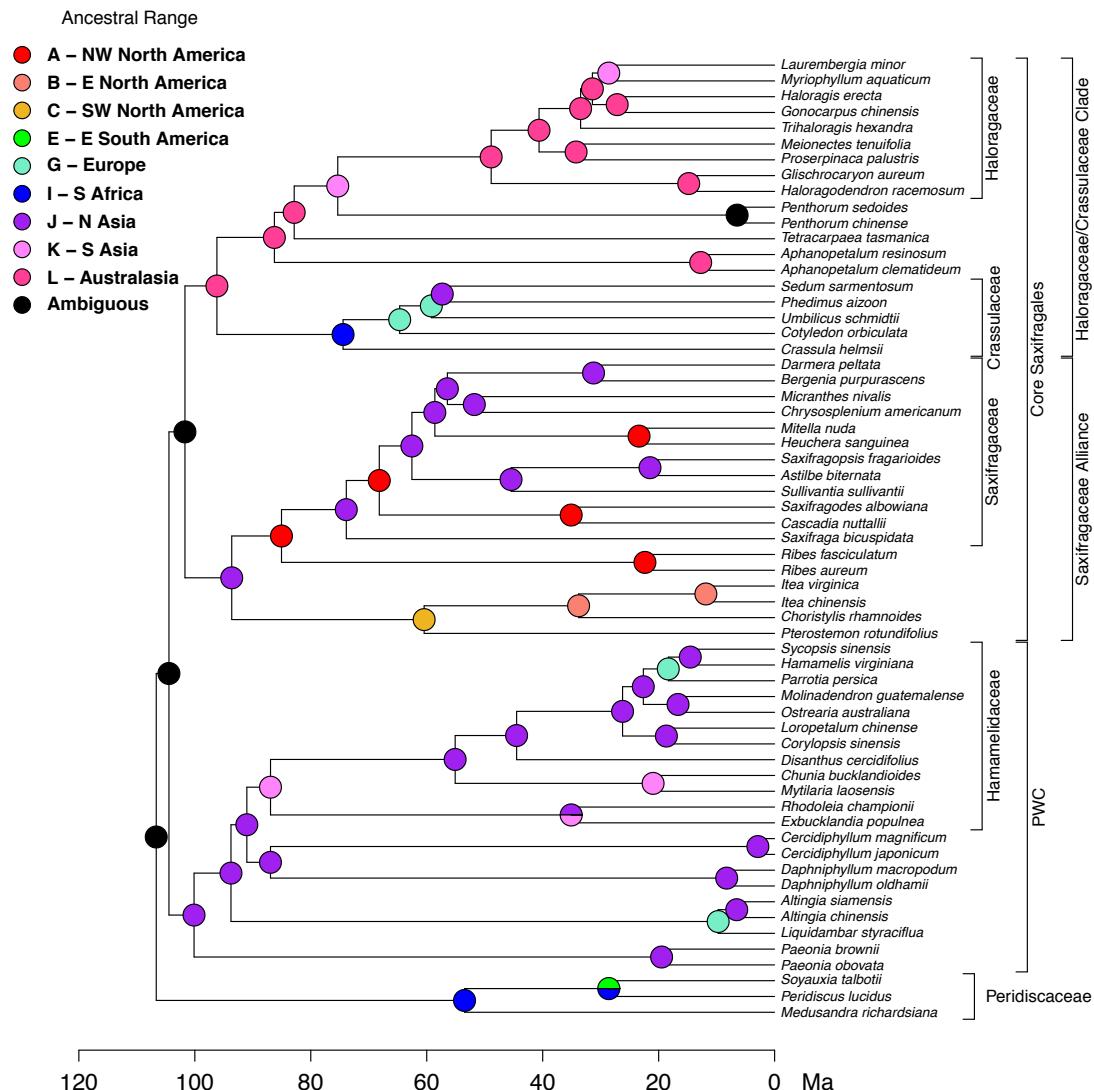
906

907

908

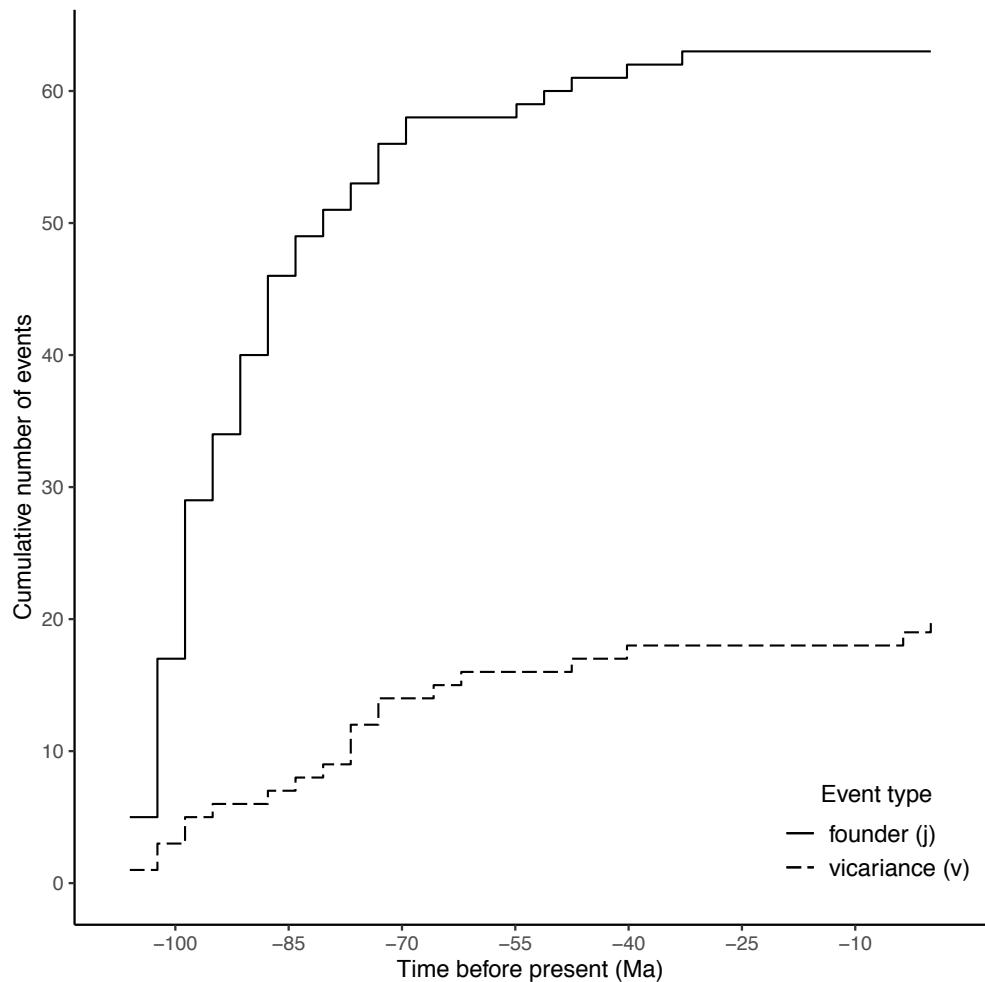

909

910


911

912

913


915 **Figure 1.** BEAST chronogram of Saxifragales pruned to 61 tips out of a total of 251 ingroup
916 taxa selected to represent major interfamilial, familial, and infrafamilial crown nodes. Major
917 clades discussed in the text are indicated to right of the tree. Numbers above branches represent
918 posterior probabilities and the blue bars around each node represent the 95% highest posterior
919 density of node ages.

921

922 **Figure 2.** Ancestral range estimation (ARE) of Saxifragales under the DECj model pruned to 61
 923 tips out of a total of 251 ingroup taxa selected to represent major interfamilial, familial, and
 924 infrafamilial crown nodes. Major clades discussed in the text are indicated to right of the tree.
 925 Node pies represent the most probable ancestral range of each node. In pies with multiple colors,
 926 the ancestral range is inferred to include all areas indicated in the pie. Note that due to pruning,
 927 biogeographic transitions between nodes closer to the tips do not necessarily accurately reflect
 928 the historical biogeography. See Figure S1 for the complete ARE.

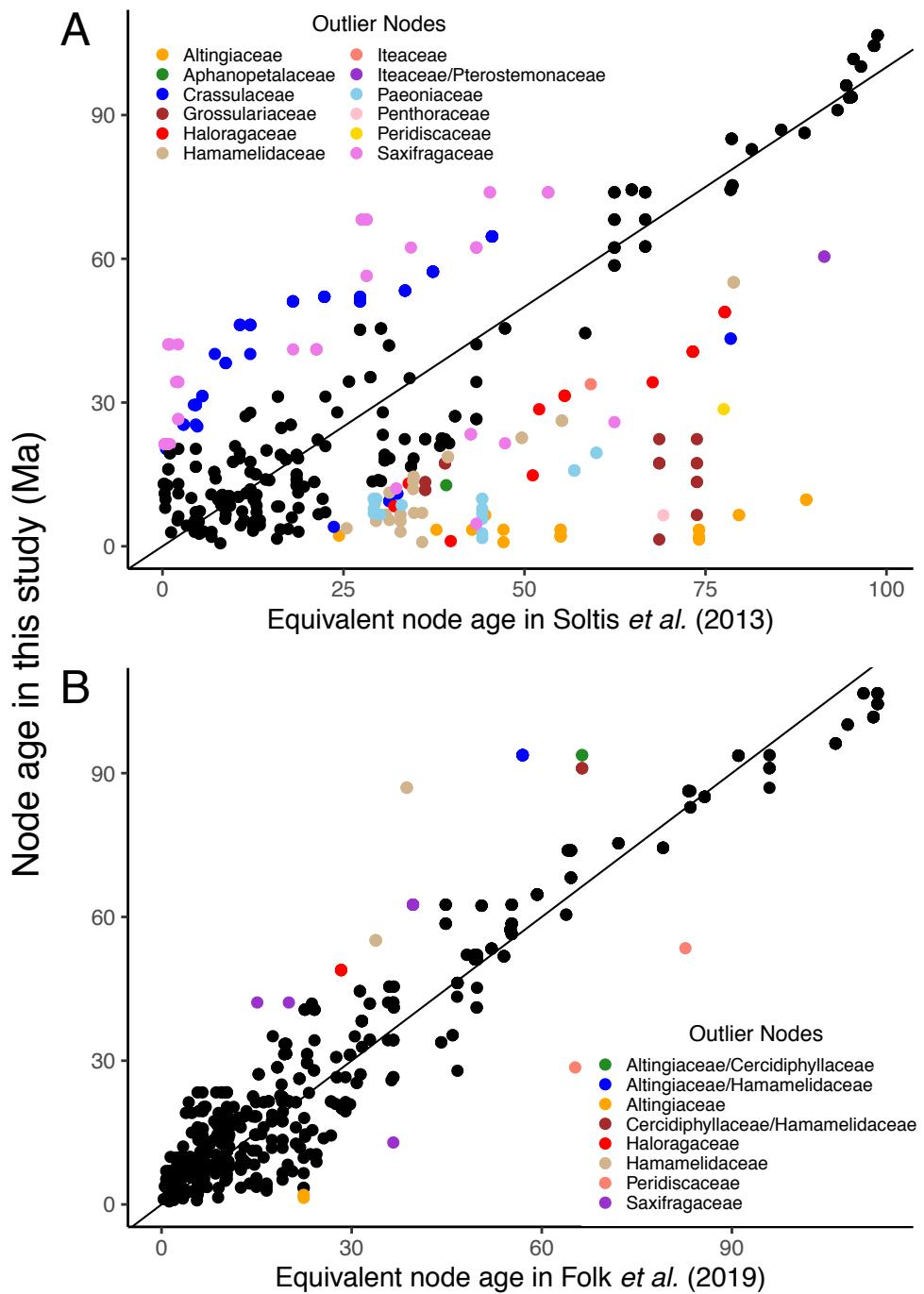
929

930

931 **Figure 3.** Cumulative distribution of cladogenetic dispersal (founder) and vicariant events in the
932 *Saxifragales* through time as inferred with biogeographical stochastic mapping.

933

934


935

936

937

938

939

940
941 **Figure 4.** Age comparisons between this study and the two largest and most recent prior analyses
942 of Saxifragales: (A) Soltis et al. (2013) and (B) Folk et al. (2019). Points represent crown ages of
943 equivalent common ancestor nodes for a pair of tips in each study. The diagonal line represents
944 where points should fall if common ancestor nodes are equal in age.