
Synthetic Time-Series Load Data via Conditional
Generative Adversarial Networks

Andrea Pinceti, Lalitha Sankar, and Oliver Kosut
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287

Abstract—A framework for the generation of synthetic time-
series transmission-level load data is presented. Conditional
generative adversarial networks are used to learn the patterns
of a real dataset of hourly-sampled week-long load profiles
and generate unique synthetic profiles on demand, based on
the season and type of load required. Extensive testing of the
generative model is performed to verify that the synthetic data
fully captures the characteristics of real loads and that it can
be used for downstream power system and/or machine learning
applications.

Index Terms—synthetic load data, conditional generative ad-
versarial networks, time-series data.

I. INTRODUCTION

In recent years, the field of machine learning (ML) has
matured to the point where it can provide real value to power
system operations; for this reason, a large portion of research
work focuses on applying ML to power system applications.
Within this new paradigm, the availability of large amounts of
real data is crucial. Unfortunately, while power system models
of all kinds are readily available, data is a much more scarce
resource and the research community must rely on the very
few and limited datasets that are publicly available.

The goal of our project is to develop a mechanism for
the generation of synthetic time-series transmission-level load
data. Leveraging a proprietary dataset of high resolution
measurements from hundreds of phasor measurement units
(PMUs) across many years of operation, we can model the
behavior of real system loads and subsequently generate
realistic-looking data on demand. The focus on bus-level load
data is motivated by the fact that loads are one of the main
external drivers of power system behaviors; loads depend
on phenomena outside of the power system itself (consumer
behaviors, weather, etc.). Thus, realistic load profiles can
be used as an input to existing power system programs to
accurately determine electric quantities such as voltages and
currents via dynamic simulation.

In this work, we use a ML technique called conditional
generative adversarial network (cGAN) [1] which represents
a powerful and flexible framework for the training of a gen-
erative model. Simple GANs [2] and conditional GANs have
been used in the literature for the generation of PMU voltage
data [3], renewable energy profiles [4], and residential energy
consumption [5] but not for transmission-level load data. We
train a cGAN to generate realistic, synthetic week-long time-
series load profiles at a resolution of one sample per hour.
The generation of synthetic data can be conditioned on labels

indicating the season of the year or the type of load profile
desired in order to meet the user’s specific requirements.

In the literature, the two main approaches to the generation
of synthetic transmission-level load data are to: 1) use pro-
totypical customer load curves and knowledge of the specific
geography and demographics to combine them into aggregate
loads [6], or 2) use net or zonal demand and disaggregate it at
the bus level based on fixed factors [7]. The main weakness of
the first method is the fact that it can only be applied to grid
models for which detailed information on the geography of the
system and the population served by each load is available: this
is required to determine the composition of each load. More
importantly, since both methods rely on a limited number of
prototypical curves (either zonal or customer level), the result-
ing synthetic data is limited in diversity and complexity. We
follow a newer approach that involves training ML algorithms
and generative models on real power system data; the resulting
synthetic data can then be mapped to any power system model.
Based on this concept, we have proposed in the past a method
based on singular value decomposition [8]. The limitations
of that work lie in the fact that the synthetic data length was
limited to the length of the real dataset used and the generated
data only captured main patterns. Using a non-linear model
such as conditional generative adversarial networks, we are
able to capture more diverse and nuanced load behaviors and
overcome the limitations of the previous methods.

II. GENERATIVE ADVERSARIAL NETWORKS

A. Basic GAN

Generative adversarial networks are a novel ML framework
in which a generative model (or generator) is trained by
making it compete against a discriminator. The goal of the
generator G is to capture the distribution of the real data pr,
while the discriminator D is trained to distinguish the real
data from the synthetic data produced by the generator. The
generator is trained to learn a mapping G(z; θg) from a known
noise distribution pz to pg , where G is a differentiable function
represented by a multilayer neural network with parameters θg
and z is a noise vector sampled from pz . Given a data sample
x, the discriminator determines the probability D(x, θd) that
the sample came from the real data distribution pr rather than
from the generator pg . The training of D and G is represented
by a two-player minimax game with the following objective



function:

min
G

max
D

Ex∼pr(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))]

(1)
Here, the discriminator is maximizing the likelihood of data x
when sampled from pr and minimizing it when sampled from
pg , while the generator has the opposite goal of maximizing
the likelihood of the samples from pg . The optimal solution is
obtained when the discriminator assigns a probability of 0.5
to all samples, meaning that it cannot distinguish between real
and generated data.

B. Conditional GAN
Conditional generative adversarial networks (cGAN) are an

improvement on the basic GAN framework which allow for a
more targeted generation of synthetic data. The conditioning
is performed by labelling the real data and then providing
this label y as a further input to both the generator and
the discriminator. By doing this, the generator learns the
conditional distribution pg over x|y and the generation process
can be guided by requesting synthetic data belonging to a
specific class. The final structure of a generic cGAN can be
seen in Fig. 1.

Fig. 1. Structure of a conditional GAN.

III. DATASET DESCRIPTION

The foundation of this project is a large dataset of real
PMU data obtained from a utility in the USA. The data spans
two years (2017 and 2018) and about 500 PMUs installed at
the transmission level. Based on the system topology and the
location of the measurement devices, we identified 12 load
buses whose lines are entirely monitored by PMUs. The net
injection at these buses represents the load demand and this
allowed us to compute the active and reactive power of the 12
loads with a resolution of 30 samples per second. As discussed
in the introduction, the focus of this work is the generation
of week-long profiles at a resolution of 1 sample per hour
for a total of 168 hours. The raw, PMU-speed load data is
then downsampled by computing the hourly load average and
broken into weeks. When combining all weekly profiles from
all 12 loads, the final dataset is a 1158x168 matrix. Each week-
long profile is normalized by dividing it by the average load
over the week; the entire dataset is further normalized between
0 and 1 for the training of the cGAN.

Fig. 2. Examples of real profiles; different seasons present different patterns.

IV. LOAD CHARACTERISTICS

Different factors influence the way system loads behave over
time. To appropriately generate realistic synthetic load profiles
for a given application, these elements need to be captured and
modeled by the GAN. When looking at the week-long time-
series data described in the previous section, two main driving
factors can be identified: time of the year, and type of load.

The differences between load profiles due to seasonal
changes in energy consumption can be easily visualized.
Figure 2 shows four week-long profiles for a load, across
the four different seasons. In winter and fall, the load pattern
presents two daily peaks, one in the morning and one in the
afternoon. During spring and especially summer, the load is
more regular, with a large spike during the day and dips at
night. This type of behavior can be observed in a more or less
pronounced manner across all the loads in our dataset. For this
reason, the season of the year to which a profile belongs is an
important indicator (label) of the expected profile.

At the transmission level, each load represents the aggregate
demand of one or more distribution feeders. Thus, the behavior
of a load is given by the sum of all the customers at the
distribution level that it serves. Because of this, the second
main factor that determines the temporal profile of a load
is its composition in terms of residential, commercial, and
industrial portions since each of these types of loads tend
to have very distinctive patterns. In our dataset, we have
observed two classes of loads with very distinct behaviors:
loads that are mainly residential and/or commercial and loads
that are mainly industrial. Figure 3 shows some selected
examples: on the top and bottom left are mainly residential
loads from winter and summer respectively, while on the right
are winter and summer profiles of a mainly industrial load.
As we can see, loads that are mainly residential have very
regular and predictable patterns, whereas industrial loads do
not necessarily follow recognizable daily patterns. We used
a k-means clustering algorithm to label each load as mainly
residential or mainly industrial. When using 3 clusters, two
main groups of loads are identified, each containing five and
six loads, while one single load is grouped separately. We
observed that the loads where the top two factors in terms



Fig. 3. Examples of real load profiles. Top row: mainly residential winter load
(left) and mainly industrial winter load (right). Bottom row: mainly residential
summer load (left) and mainly industrial summer load (right).

of percentage composition are residential and commercial
are clustered as one, while the loads in which the industrial
component is first or second are grouped as another cluster.
Thus, for training purposes, six loads are labeled as mainly
residential and six as mainly industrial (for more details, we
refer the reader to the Appendix found in [9]).

V. CGAN FOR SYNTHETIC LOAD PROFILES

A. cGAN model

In this section, we will describe the implementation of the
cGAN and its training process. Convolutional neural networks
(CNNs) are chosen for the discriminator and the generator for
their ability to learn multiple spectral properties of the data.
While similar in size and complexity, the two models present
some differences.

The discriminator receives two inputs: first, the raw time-
series is processed by two convolutional layers, then the
flattened output is concatenated to its label and fed to three
fully-connected layers. The output of the discriminator is
a scalar indicating if a profile is real (1) or fake (0). In
the generator, the two inputs are the load label and a 25-
dimensional Gaussian noise vector1. These are concatenated
and fed to three fully connected layers and the output is up-
sampled via three transposed convolution layers. The final
output is a synthetic load profile whose characteristics match
the input label. The overall architecture of the cGAN is
illustrated in Fig. 4.

As we have seen in the previous section, two characteristics
of loads are used as labels for the conditional GAN: the season
and whether a load is mainly residential or industrial. The
factors are represented as one-hot encoded vectors, i.e., the
seasons are represented via the following four labels: (1 0 0
0) for winter, (0 1 0 0) for spring, (0 0 1 0) for summer, and
(0 0 0 1) for fall. Similarly, the load type is encoded as: (0 1)
for mainly residential and (1 0) for mainly industrial.

The training process is performed by iteratively training
the discriminator to distinguish between real and generated

1The dimension of the noise vector depends on the GAN architectures
chosen and the desired output vector length.

Fig. 4. Structure of the cGAN used for the generation of week-long profiles.

data and the generator to create realistic-looking profiles. The
discriminator is trained twice at every iteration in order to
give it an advantage against the generator; this forces the
generator to produce better samples. Figure 5 shows the
training progresses as the epochs proceed. The three curves
represent the average discriminator prediction at each epoch
for three sample datasets: real data used during training (blue),
real data never used during training (validation data, green),
and fake data created by the generator (orange). We can see
that at the beginning the discriminator easily distinguishes
between real and fake data, assigning high values to both
real datasets and low value to the generated data. As training
progresses, the generator improves and the discriminator is
unable to differentiate between the two data sources. At around
3000 epochs, the training converges: the discriminator assigns
very similar values to all three datasets. It is interesting to
notice that some overfitting is happening (the blue curve
reaches 0.53) but it is not very significant. More importantly,
the discriminator assigns the same values to both the generated
data and the validation data; this means the output of the
generator matches the real data. The training took approxi-
mately 3 hours on a computer with Nvidia RTX2080. Using
the trained model to generate synthetic data is extremely fast:
1000 profiles can be generated in less than a second.

B. Data Generation

Once the training process is terminated, the generator can
be used to create any number of synthetic profiles. Based
on the required data type, the user only needs to define the
appropriate label and generate a noise vector according to the
predetermined distribution; feeding these to the generator will
result in a synthetic load profile. As an example, in Fig. 6
two synthetic summer profiles (right) are compared to two
randomly selected real profiles (left) of the same label. The
blue profiles (top) correspond to a mainly residential load
and the green plots (bottom) to a mainly industrial load. It
is important to notice that while the synthetic profiles present



Fig. 5. Training progress of the cGAN based on the predictions of the
discriminator at each epoch. The blue curve shows the average prediction over
a batch of real training profiles. The green curve represents real validation data
and the orange one predictions on generated data.

Fig. 6. Comparison between some real summer profiles (left) and generated
profiles (right). Top: mainly residential load. Bottom: mainly industrial load.

all the same characteristics as real data, they do not simply
repeat real profiles.

VI. EVALUATION OF SYNTHETIC DATA

While visual inspection does not yield clear differences
between real and synthetic profiles, a quantitative analysis
is required to verify that the generator captures all of the
characteristics and behaviors present in the real data. In this
section, we present multiple tests to validate the quality of the
synthetic data.

A. Wasserstein Distance

As explained in Section II, the goal of the generator is to
learn a mapping function from the known noise distribution to
the distribution of real data. Training is successful when the
distribution of generated data matches that of the real data.
Wasserstein distance is a measure of distance between two
distributions and it can be used to quantitatively assess how
close the distributions of generated and real data are.

The center plot in Fig. 7 shows the Wasserstein distance
computed during training at each epoch between a batch
of generated data and a batch of validation data. It can be
seen that as the training progresses, the distance between the
distributions tends to zero. This can be further seen by looking

Fig. 7. Center plot: Wasserstein distance between real and generated data as
a function of epochs. Side plots: comparison between the distribution of real
(blue) and generated data (orange) at epoch 0 (left) and epoch 3000 (right).

Fig. 8. Comparison between the power spectral density of real data (blue)
and generated data (orange).

at the two smaller plots on either side. The plots to the left and
right show the histograms (empirical distributions) of the real
data (blue) and that of the generated data (orange), at epoch 0
(left plot) and at epoch 3000 (right plot), respectively. While
initially the two distributions are very different, at the end
of training the generated data almost perfectly matches the
distribution of real data.

B. Power Spectral Density

An important characteristic of time-series load data is its
periodicity. Because loads are tied to the routine and behavior
of people, they present different recurring patterns. One way to
identify these periodicities is by looking at the power spectral
density of the time-series data. Figure 8 shows the power spec-
tral density for real data (blue) and generated data (orange). It
can be seen that the two plots match very closely, confirming
that the generated data captures the periodic behavior of real
data. It is also interesting to look at the various peaks that
appear in spectral density: in particular, the highest peak,
which occurs at a frequency of 0.04/hour, corresponds to a
time period of 24 hours, thus representing the daily load cycle.

C. Forecasting Application

The main goal of this paper is to create a mechanism for
the generation of realistic synthetic load data that can be used
by researchers when real data is either not available or not
rich enough. In the next two sections we present the results



TABLE I
COMPARISON OF THE FORECASTING ERROR BETWEEN GENERATED AND

REAL LOAD DATA, FOR SUMMER AND FALL RESIDENTIAL PROFILES.

Load label Testing data Percentage Error
Mean Std. Dev.

Summer - Residential Synthetic 4.37 5.26
Real 5.30 5.17

Fall - Residential Synthetic 5.82 7.10
Real 5.92 5.17

of two example applications that show that the synthetic data
successfully captures the behavior of real data and that it can
be used for downstream applications.

One of the most common uses of time-series load data
is the development of the forecasting algorithms needed for
power system operations and markets. While many different
techniques are used, often in combination, one of the latest
advancements in ML-based forecasting is a class of recurrent
neural networks called long short-term memory (LSTM).
Because feedback loops are present, the LSTM architecture
is able to process sequences of data (such as time-series data)
maintaining a memory of the previous inputs. To verify the
quality of our load data generator, we trained an LSTM on a
batch of synthetic data and then tested the learnt model on the
real data.

An LSTM network with three layers and 48 units per layer is
trained to predict the value of a load at one point in time, given
the previous 48 hours (48 points). This model is trained on two
separate datasets independently: synthetic mainly residential
summer profiles and synthetic mainly residential fall profiles.
Each of the datasets consists of 1200 week-long profiles
generated using the trained cGAN according to their respective
labels. To evaluate the performance of the LSTM, for each of
the two load types, the trained models are used to predict the
load values of two batches of profiles: new generated data
and real data of the same class. The percentage error between
the forecasted value and the actual value is computed for
each profile in a batch and the first and second moments are
computed. Table I summarizes the results of the forecasting
test for the two types of loads (summer and fall residential). In
both cases we can see that even though the model was trained
only on synthetic data, the error when applied to real data is
very comparable. In general, this suggests that a user could
train a ML model on our synthetic data and be confident that
it would still capture the characteristics of real data.

D. Optimal Power Flow

The synthetic data is also tested to verify that the generated
profiles can be correctly mapped to a power system model.
One way to check this is to ensure that all the resulting load
cases form a feasible AC power flow.

This test is performed by first generating individual, week-
long profiles for each load in the Polish test case: this system
model has 2383 buses and 1822 loads. Two datasets are
generated: one corresponding to a winter week and one for a
summer week. Each of these profiles is mapped to the Polish

system loads: since the base case of the Polish system is a
peak case, the profiles are matched so that the peak of each
profile corresponds to the base case value. AC optimal power
flow (OPF) is then run on each case corresponding to each
of the 168 hours of the week. The results showed that OPF
converged in every case to a solution with bus voltages and
generator outputs within their predefined limits.

VII. CONCLUSION

We have presented a method to generate synthetic transmis-
sion load data at a bus level leveraging conditional generative
adversarial networks. A user can specify the time of the
year and type of load for which to generate time-series load
profiles. Extensive testing is performed and we have verified
the validity of our method and quality of the generated data.
Our trained generative model will be available to researchers
to be used for any type of power system and ML application.
Moreover, the proposed conditional learning framework can
be leveraged for the generation of other datasets highlighting
different characteristics, such as the level of penetration of
renewables or electric vehicle charging.

Finally, we are working on expanding the generative model
to create a tool for the generation of synthetic datasets at
any time resolution (from 30 samples/second to a few sam-
ples/week) and for any length of time (from a few minutes to
multiple years). The trained generative model and an Appendix
with extra figures and results can be found at [9].

VIII. ACKNOWLEDGMENTS

The authors acknowledge Research Computing and Gil
Speyer at ASU for providing HPC and storage resources. This
material is based upon work supported by the National Sci-
ence Foundation under Grant Nos. CNS-1449080 and OAC-
1934766 and the Power System Engineering Research Center
(PSERC) under projects S-72 and S-87.

REFERENCES

[1] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014. [Online]. Available: https://arxiv.org/abs/1411.1784

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014. [Online]. Available: https://arxiv.org/abs/1406.2661

[3] X. Zheng, B. Wang, and L. Xie, “Synthetic dynamic PMU data gen-
eration: A generative adversarial network approach,” in 2019 SGSMA
Conference, 2019, pp. 1–6.

[4] Y. Chen, P. Li, and B. Zhang, “Bayesian renewables scenario generation
via deep generative networks,” in 2018 52nd Annual Conference on
Information Sciences and Systems (CISS), 2018, pp. 1–6.

[5] Z. Wang and T. Hong, “Generating realistic building electrical load
profiles through the generative adversarial network (GAN),” Energy and
Buildings, vol. 224, 2020.

[6] H. Li, J. H. Yeo, A. Bornsheuer, and T. J. Overbye, “The creation and
validation of load time series for synthetic electric power systems,” IEEE
Transactions on Power Systems, 2020.

[7] C. Grigg et al., “The IEEE reliability test system-1996. A report prepared
by the reliability test system task force of the application of probability
methods subcommittee,” IEEE Transactions on Power Systems, vol. 14,
no. 3, pp. 1010–1020, Aug 1999.

[8] A. Pinceti, O. Kosut, and L. Sankar, “Data-driven generation of synthetic
load datasets preserving spatio-temporal features,” in 2019 IEEE Power
Energy Society General Meeting (PESGM), 2019, pp. 1–5.

[9] A. Pinceti, “Synthetic load GAN,” https://github.com/apince/LoadGAN,
2020.


