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Grid Topology Identification With Hidden Nodes
via Structured Norm Minimization
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Abstract—This letter studies a topology identification
problem for an electric distribution grid using sign patterns
of the inverse covariance matrix of bus voltage magnitudes
and angles, while accounting for hidden buses. Assuming
the grid topology is sparse and the number of hidden buses
are fewer than those of the observed buses, we express the
observed voltages inverse covariance matrix as the sum of
three structured matrices: sparse mairix, low-rank matrix
with sparse factors, and low-rank matrix. Using the sign
patterns of the first two of these matrices, we develop an
algorithm to identify the topology of a distribution grid with
a minimum cycle length greater than three. To estimate the
structured matrices from the empirical inverse covariance
matrix, we formulate a novel convex optimization problem
with appropriate sparsity and structured norm constraints
and solve it using an alternating minimization method.
We validate the proposed algorithm’s performance on a
modified IEEE 33 bus system.

Index Terms—Power systems, smart grid, estimation,
atomic norm, and alternating minimization.

. INTRODUCTION

T HE KNOWLEDGE of electric distribution grid topology’
is crucial to many power system applications, including
state estimation, control of energy resources, and cybersecu-
rity [1]1, [2]. However, operators have limited or no access
to the grid’s topology in real-time, and they need to identify
it from measurements [1]. Identifying topology from mea-
surements is a challenging problem because of the nonlinear
relationship between the measured quantities and the topology,
noise in the measurements, and the compromised or missing
data,

Several data-driven methods have appeared in the litera-
ture for the topology identification problem. In [3], a linear
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regression framework, with unknown predictors encoding
the topology, is used to identify the topology. Along these
lines, [1], [4] reconstructed topology by invoking the sparse
nature of the distribution grid via group and adaptive LASS0
formulations. Tn [5], a decision theoretic framework is used
to reconstruct tree structured grids; instead, [6] uses graph-
ical models to estimate tree and meshed grid topologies. In
contrast to the preceding offline methods, online methods for
joint estimation of topology and line parameters are consid-
ered in [7], [8]. Finally, topology identification in the presence
of hidden buses (unmeasured buses) is considered in [9].

Lately, [10] showed that the topology could be identified
using sparsity pattern of the inverse covariance matrix of volt-
age magnitude. Assuming the grid’s minimum cycle length
(MCL) is greater than three, [11] provided a simple topol-
ogy identification algorithm using sign patterns of the inverse
covariance matrix of voltage magnitudes and angles measure-
ments recorded from all the buses. By definition, radial grids
satisly the MCL constraint; however, for meshed grids, the
preceding size constraint on MCL is necessary to uniguely
identify the topology [11]. For a recent summary on topology
identification from voltage correlations, see [12].

In this letter, for the grid topology identification problem
using voltage measurements, we relax (i) the full observabil-
ity assumption of [11] to the case where only a subset of buses
are measured (called the ebserved buses); and (ii) the MCL
assumption of greater than four in [13] to that of the theoreti-
cally possible limit of greater than three (see Theorem 2). Our
MCL assumption is the theoretical limit below which topol-
ogy identification is not possible (see Section IV). Further, via
numerical simulations, we show that the sparse plus low rank
decomposition method, used in [13, Algorithm 1], fails for spe-
cific grid topologies (see Remark 2). The main contributions
of our paper are as follows.

1) Assuming the underlying grid topology is sparse, and
no two hidden buses are adjacent, we decompose the
inverse covariance matrix of observed voltage mag-
nitudes and angles into structured malrices: sparse,
low-rank with sparse factors, and low-rank matrices.
We present a recursive method (Algorithm 1) to estimate
the grid's topology with MCL greater than three using
sign patterns of the sparse and low-rank with sparse
factors matrices (see Theorem 2 for details).

We formulate a convex optimization problem with a
structured norm-based regularizer to estimate the struc-
tured matrices from the empirical covariance matrix.

2)

3)
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Finally, to solve the oplimization problem, we propose
an alternating minimization algorithm that combines
ADMM and Frank-Wolfe methods,

Il. PROBLEM SETUP AND PRELIMINARY NOTIONS

We represent a distribution grid of N + 1 buses with the
graph G = (V, &), where the nodes V = [1,...,N + 1}
and the edges (i) € £€ € V x V denote the buses and
the lines, respectively. A set of distinct undirected edges
’Pf = {lih), (hiz), ..., (=1, k)} that connect node § and j
is referred to as parh of length of 1. A cycle is a path ?—"f with
i = k and length greater than two, i.e., { = 2. The minimum
cyele length is the length of the smallest cycle. The neighbors
of a node § are the set of nodes j such that (i) £ £. Nodes
i and j are referred to as k-hop neighbors if the shortest path
between them equals k.

A Power Distribution Grid Model

Let pu + jgu and v, + jB, (where j = /=1) denote the
complex valued power injection and voltage at the bus n € V.
We refer the quantities vy, &, pn, and g, as voliage magnifude,
voltage phase, active power, and reactive power, respectively.
Let Yum = Znum + jBum be the admittance of the line (nm),
where gy and fyy are the conductance and susceptance, resp.
Consider the nonlinear power flow model:

Potidn= 3 YomlVs — VaVim exp(j(Om — )],

nmz{nm)eE

where n e V. Following [11], [13], we assume that |8, —
8, == 1 for {ma) € £ and |v, — 1| == 1. Thus, we have the
following linear coupled power flow (LC-PF) model:

Prtign= 3 Yaml(Va—¥m) —j(Bu —Bu)]. (1)

me{mm) e

Without loss of generality, we ignore the reference bus, r € V,
and consider the power flow model (1) for the remaining N
non-reference buses,

Let 7  V be the set of observed (measured) buses of size
o, and Z == V% O be the set of hidden (unmeasured) buses
of size z. Let Vo = [Vuys--vs ¥’y 00 = [Bpys e n,l'.
Po = IFP{J, . .,Pnu]T, and qp = [anf ...fqﬂ{_]T._, where n;
O. Let y, = [15 #5] and xT, = [pl, ¢L,]. respectively, be
the vector of voltage magnitudes and angles and the vector of
real and reactive power injections of buses in O. Analogously,
define the quantities vz, # z, pz, qz. ¥z and xz for the buses
in 2.

For all n € V, by doubling the complex valued equation (1)
into two real valued equations and rearranging terms, we have
the following equivalent representation for (1)

[m _[Hoo Hoz o @
Y= Hnz Hzz Xz |

"

Ap-1

where H € B™*™_ Define the edge sets oo © O x O,
fopz € Ox Z, and £zz C 2 x Z. Then, for any index

In this letter, we use the linzarized power flow model; however, doe to
mathematical equivalence, our identification algorithm {see Section 11I-A) can
be used on the traditional linear circuit model as well.

P22

P, iz .94 P qs

Fig 1 Line gnid with 1 as the reference bus. The hidden bus is 3, and
the rest are the observed busas.

{ € (00,02, ZZ), it follows that

g O
H, = [ ir} ﬁic} (3)
Hyg —H;
with the (i, j)-th entry of H}“ (similarly for H,{aﬁ ) given by
Ei:fﬂ‘.lEE; gil, for f=.i':
HEOG ) = —gii for (i) & (4)
0, otherwise.

From (4), notice that Héﬂz){i, j) = 0 when there is no edge
between buses i € (0 and j € 2. Similar conclusion holds
for HEP and H'ZZ) . Thus, blocks Hop, Hoz. and Hzz
encode the connectivity among the observed buses, between
an observed and a hidden bus, and among the hidden buses,
respectively; see Example 1. With a slight abuse of notation
we refer H in (2) to as the Laplacian matrix of &.

Example I: Consider the line grid shown in Fig. 1.

For the grid in Fig. |1, ﬂ} =[v2 va vs & 04 65] and
¥% = [¥3 63], and from (3) and (4), it follows that

(En 0 0 B 0 0
0 igay+ges) —pgas| O (P + fas)  — fus
0 — g5 845 0 — fas fas
H = :
0= g 0 0 |~z 0 0
O (fsa+ gas) —pas| 0 —(gad+pgas) pas
L0 — fas fus 0 gas — 845
Lo _ [z8m g O] —pn —pu n]_ T [E‘ga, P ]
OZ 7 =B — P O] 25 ga Of 727 [ Pl

where B2 = g23 + 234 and By = Ba3 + Paa.

B. Stochastic Model for Power Injections and Vollages

We establish a relation between the Laplacian H (defined
in (2)) and the covariance matrix of (¥o. ¥z). This relation
Plays a key role in our topology identification algorithm, which
we discuss later. We begin with the following assumption.

Assumption I (Power infjections): For n € G, the power
injection X, = [Py, q,,]T is a zero-mean Gaussian random vec-
tor with non-degenerate covariance matrix. Also, X, and X,
(for m # n) are uncorrelated; that is, Elxmxl-] = 0.

The validity of Gaussian distribution for power injections
is discussed in [11], [12]. Under Assumption 1, E[x,x,] need
not be diagonal; that is, we allow for correlations among the
real and reactive power injections at any bus. Since (xp, Xz)
is obtained by stacking X, it follows that ]Elx,,gx}] =), and
the joint covariance matrix of (xp, xz) is given by

T 0
R i
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where Eyp v = E[x@xg] and By, 4. = Elxzxé] are the
cross covariance matrices. Note the difference in the subscript
notations of the joint- and cross-covariance matrices.

Let %, yz) be the joint covariance matrix of the full
voltage vector (¥, ¥z), and consider the parmeterization

—1
—1 _ Lyoyo Zvouws Kcﬂ:} Koz (6
royz) = | L] z T |kbhz kzz|

Yo.¥E
To obtain expressions for Ko, Koz, and Kz z in terms of the
block matrices of H (2) proceed as follows. From (2) and (5),
first express Eiyp yz) in terms of Xy, v, and Ex. y-. Then,

take the inverse of E[;_' yg) 10 note the following:

YEXE

Koo = HooZy), wHoo +Hoz L, ;,HE;%
he 2
Koz = HooX,) \ Hoz + Hoz I} ..
Kzz =Hzz3  Hzz + Hhz 5 olloz.  (T)
Using the Schur's formula, we have the following formula to
evaluate the observed inverse covariance matrix:

Hzz

Zt vo=E¥oyb)) ' =Koo — KozKz5Kbz . (8)
e ——
A
=M

Thus, the inverse covariance matrix X ! if it exists, can
always be decomposed as 5+L—M. The c:m::nmj;J tions that ensure
the sparse nature of § and low-rank factorization of L are dis-
cussed in Section IV, Note that the triple (Kpp. Kpz. Kzz)
encodes the complete grid lopalag},r via (Hpp, Hoz, Hz 7).
Thus, the complete grid topology is also encoded in bmh the
full and the observed inverse covariance matrices, &
and T v TESpECtively.

Topﬂfr_lg}' Identification Problem: Assuming the knowledge
of £71 {or an estimate of it) and the dcmmposumn (8),
infer l‘i?re non-zero entries (topology) of H in (2).

To address the above problem, we define a graph whose
edges are given by the non-zero entries of the full inverse
covariance E =) Formally, for the graph (Voum, Eom).
associate a mngc-m variable z, £ (y©,yz) to n-th node in
Viou = {1, ..., 2N}. The size of Vg is 2N because for every
f-th bus, we have two scalars (v, &) € (¥o, ¥=). The edge
in,m) & Eqpg il E—] = (. In what follows, we characierize
the induced graph structures of E‘ e And Kog based on
(Viem, £gum) and the grid graph ¢ = d’ £).

If (¥p, vz) follows a zero-mean Gaussian distribution, the
graph (Vigag. Egar) 15 equivalent to the underlying un-directed
graphical model. Recall that a graphical model encodes con-
ditional dependencies between pairs of random variables [14].

[.'ro vl

. GrID TOPOLOGY IDENTIFICATION
This section provides an a]gnrrilhm to identify the complete
grid topol of & using the sign pattern of Kaop.
Let B ©D) =Elpopll; 2%)5
E[p0q0| Similarly, let £5'%) =
ElqoqL]. and 255 = ElpoqL1.
Lemma 1 Let K@g S-I-Lbeas in (7). Then,
J{D{Tﬂ) J{DG} J{GZ) JIDZ]
§= [ 100 [ boy | and L= | oz, _,E%EJ @)
an fv

Elqoqp]; and Tie <) =
205

Elpop .

.slac:k bus

i hidden bus

(a)

Fup 2 (a) Radial gnd with one hidden bus. (b) Two-hop network for
the observed woltage magnitude and angles. Each bus of the radial grid
confributes to two nodes in the two-hop network. In (b)), bwo nodal quan-
tities are connected by a solid {dashed) line if their underlying buses in
the radial grid are one-hop (two-hop) neighbors.

and for | € {0, OZ}, we have

Iy D (D ggtly _ 5200 gyl =0 gl 200 i,
ﬁw:‘q} [EggHg' —ZpgHg'1— Hﬂ [EWH:? _EPFHI{H]'

(0 D52 (0 00 5200 iy g D 200y 0 300 g0y,
Iy _HR IE:MH.H +quHg | H,H [EPI‘,}'-I"'&= +EP.I'JHR I:
J{H_H{ﬂlEmHm_EmH("]]_Hm[ffﬂﬂm_f{ﬂﬂ{ﬂ];

T = H“’ O+ ORI+ HOEDHD + E0HD);

where T4 = (D ~1xL) and similarly for £} and T, and
DO i = Em{l,:}ﬂgq (i, i) — Eﬂ{r,:}E},ﬁ'{:, i) for diagonal
o,

Proaf: lovoke Assumption 1 and apply block matrix inver-
sion formula on X, .. and X, .. (0 see that the inverses
are block matrices, with each block being a diagonal. The
expressions of J’.[p] J,i;], and .-';{33 can now be obtained by
explicit matrix multiplication. n

Lemma 1 allows us o compute each entry of § and L (and
hence Kpe) using the entries of Laplacian H. The following
result characterizes the graph of Kqng.

Theorem 1 {Graphical Model of Kop: Two-Hop Network):
For graph &, the graphical model of Ky includes edges
between voltage magnitudes and phases that are at the same
observed bus, one-hop observed neighbor buses, and two-hop
observed neighbor buses.

Proaf: We use the proof technigque in [11]. We prove the
theorem by showing that there is no edge between voltage
magnitudes (v) and phases (8) at the buses k € Y and [ € O
three or more hops away. This is equivalent to showing that
Kook, l) = Kook, 2l) = Kop(2k, 1) = Kop(2k,20) = 0.
We show that KEpg(k, I} = 0, and omit the details for the
remaining cases. Recall that Kpp = § + L and consider
Stk, 1) = [J€"); . From Lemma 1, note that £, £
and £9 are all diagonals. Instead, the non-zero entries in

HOP (ana HOPY) are the diagonal terms and the (i, j)-th
enmes for which i € (? and j € O are neighbors. By invoking
this observation and simplifying S5, we see that 5(k, I) = 0 if
k and ! are neither neighbors nor have an observed neighbor
in common. Similarly, L(k, [) = 0 if k and ! do not have an
hidden neighbor in common. |
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Note that the two-hop neighbors in a graph are the nodes
connected by a shortest path of length two. Instead, wo-hop
network has at most two-hop neighbors. Theorem 1 says that
the graph of Ky includes (spurious) edges between observed
nodal quantities even if their corresponding buses do not have
an edge in the grid; see Fig. 2. Nole that unlike Kpg, the
observed inverse covariance matrix E:r'_c;m need not have a
two-hop network structure [11].

A. Topology ldentification

We present an algorithm that identifies the complete grid
topology—that is, the edge connections among the observed
buses, between observed and hidden buses, and among the hid-
den buses—using the components 5 and L of Kgo (9). We begin
with an assumption that is necessary to uniquely identifying
the true topology [11], [13].

Assumption 2; In grid G, hidden buses are neither the leaf
nodes nor adjacent to each other.

Theorem 2 (Sign Based Rules for Topology Identification):
For grid ¢ with a minimum cycle length (MCL) greater than
three, consider § and L in (9). Then,

D D 4 SO0 < 0 (i) is a true edge in G.

2) [ 4 g9, - = 0ff there is a path i—k—j linking

the observed buses i and j, and £ is an observed bus.

3) D 45920, 5 0 UF there is a path i—k—j linking

the observed buses i and j, where & is a hidden bus.

Proof: For part (i), we proceed as follows, I part: let i
and j be the observed neighbor buses and (i) € G. As the
minimum cycle length is greater than three, there are no com-
mon neighbors of § and j. Thus, from Lemma 1, we have
0D 1 JOON, . - 0. Here, we used the fact that 5, i),
and f},ﬁ are diagonals with positive entries. Only if: we prove
the contrapositive. Suppose § and j are nol neighbors. If i and
j are more than two-hops away, from Theorem 1, we have
E,; = 9, = 0. 1f i and j are two-hop neighbors
with a common observed neighbor, then from Lemma 1 it fol-
lows that [..i'f..,.ﬁ:":h'I +J§Em]; 4 = 0. Similarly, we can prove (ii)
and (iii), and the details are omitted. ||

If 2 =@, [11, Th. 4] follows a corollary to Theorem 2.
Further, Theorem 2 (i) allows us to uniquely identify the
connectivity among any pair of observed buses. Instead,
Theorem 2 (ii)-(iii) can be used to identify connectiv-
ity between an observed and hidden bus. Finally, from
Assumption 2, notice that no two hidden buses share an edge.
Thus, we have the complete grid topology. We summarize
these steps in Algorithm 1, which requires components of §,
L {9) as an input. However, recall that we have access only to
I,2 e but not to its decomposition (8). The thresholds 7
and r» help us counteract the bias introduced by the sample
estimate of ‘E;;Jﬂ. We discuss these issues in the following
sections.

Theorem 2 vs. [13, Th. 3]; MNote that Theorem 2
and [13, Th. 3] primarily ditfers on the assumptions of size
of MCL. In particular, we require MCL to be at least four
and [13, Th. 3] requires MCL to be at least five. We high-
light that MCL of size four is the theoretically possible limit
on uniguely identifying topology using measurements alone.
In other words, there exist topologies with MCL size at most
three for which topology identification is not possible. Hence,

Algorithm 1: Grid Topology Identification

Input: Matrices JEEJ ) J{[,fﬂ}. 7O and 13{?3}; 0=

dimension of r:;-" o+ £ := number of hidden
nodes; and thresholds 7y, 72 = 0,
Output: Reconstructed graph G = (V, &)
i initialization: V, = {1, .... 0} and &, = {}
z fnrie'ﬁ.,fc:jdn
s | YD + 29 < o then & < ()
4 end L L
5 initialization: V' « V, and £ «— &,
6 counter k=1
THoricl, i<=jdo
%
9

it 17 + 755 7 =72 then

Ve VUlo+kh £ EU o+ k)
k=k+1

11 end

12 if k == 7 then break

13 end

our Algorithm 1 is applicable to several classes of distribution
grids than [13, Algorithm 1].

Remark 1: The statement of Theorem 2 may fail to hold
for a specific values of H (4) that lie in a Zero measure
set. However, for all practical purposes, these specific values
should not hinder the applicability of our results.

IV. A CONVEX FRAMEWORK TO DECOMPOSE
OBSERVED INVERSE COVARIANCE MATRIX OF VOLTAGES

This section presents an oplimization framework o extract
matrices—S, L, and the number of hidden nodes—which are
inputs to Algorithm 1, from the sample covariance matrix

-~ 1g n_ - n_ < \'
£==) (¥4 -%o)(v8 7o) -
=1

where v are the i.id samples, and ¥y = T ZL (Y is
the sample mean. We discuss a few properties of the triple
(S, L, M) (8) that helps us decompose T~! into § + 7 — M,
where the hatted terms are the sample estimates.

Recall that distribution grids have sparse connections [1].
Thus, the Laplaican H is sparse, and hence § (7) is sparse.
Instead, ranks of L and M are much smaller than that of 5.
In fact, from (7) and (8), we have Rankil), Rank(M) = 2z;
where as, from Assumption 2, Rank(§) = 20 == 2z.

Further, M can be dense (non-sparse), provided there are
sufficient number of connections between observed neigh-
bors and non-neighbors of a hidden bus; see Fig. 3 Instead,
L, although non-sparse, admils a low-rank factorization with
sparse factors. To see this, let suppi{M) be the support of M: a
(0, 1)-matrix with (i, /)-th entry equal to 1 if [M];; # 0, and
equal to zero, otherwise.

Proposition 1: (a) There is a unique B with E;;Ixz =
B? such that L = {HGEB}(H,DZB}T and supp(Hpz) =
suppiHnzB), and (b) the i- and 2i-th columns of Hpz are
each (at most) 2s;-sparse, where 5; is the number of observed
neighbors of the i-th hidden bus.

Proof (Part (a)): From Assumption 1, note that Ey, .,
is 2 x 2 block matrix with blocks being diagonal (call this

(10)
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property P), and so is E;?"k? {follows by direct evaluation).
Thus, there is a permutation matrix I1 and a block diago-
nal matrix M such that £ = TIMTT. Let M = &,

RINXZ
for a block diagonal B, and define B = (TBM"). Then,
L.\, = B where we use the identity I1[1T = /. Note
that & not only satisfies the property P, but is unique because
Eu_;cl.xz is a positive definite matrix. Using these facts, we have
suppiHpz) = supplHp z B). Part (b): For a hidden bus i Z.
from (3) and (4), the i-th (or 1"‘[@. column of Hpz is the con-
catenation of i-th column of H#f Z) and that of H{Gz}', each
column being s;-sparse. Thus, the i- and 2i-th columns of Hpz
are each 2s;-sparse. n

From Proposition 1 we note that I is a low-rank matrix
with sparse factors, provided 5; is not large; we illustrate this
property in Fig. 3. Here L = un', for u' = [u;,uz], and
ujzli*i*{]l}i*i*l}ﬂ]T is 8-sparse, where + means a
non-zero entry.

Before we_present our optimization framework that allows
us recover (8, L, M) from (10), we recall the notion of an
atomic aorm—when used as a regularizer in (12) promotes
low-rank factorization property of L. To that end, let X =
R™=™ gatisfy X = Y., ciay, where ¢; > 0; a; € 4 € ™"
are the atoms: and A C BE™*™ jg the atomic set. Then, the
atemic norm [15] of X is given by

[ X]l.4 = inf Zr:,- :X:Zf‘ﬁﬂ;,ﬁ'ii{],ﬂ;‘EA .
-

=1

The atomic norm returns the minimal sum of weights c;
over all decompositions of X with respect to the set 4. For
example, the atomic set of trace norm (sum of singular values
of A) is the set of rank-one matrices with unit norm: A =
[uv’, [lujlz=||¥||z=1]. Thus, smaller the trace-norm, smaller
the Rank(X). However, we require L. to be a low-rank matrix
with sparse factors. To capture this structure, let 4 = U d;,
where A; = {uuT tullz = 1, ||ullg = k}, and consider the
resulting structured atomic norm [16], [17]

m m
2(X) =inf ZZ@*C;_* X = ZZC,‘_kﬂjlk,

k=l i k=l

* ik = 0, and u;,}EAg], (11
where || - || is the Euclidean norm, and the norm [Jullp counts
the number of non-zero entries in w. The weights wy = 0 can
be used to give importance to the sparsity level k. Higher the
weight, sparser the columns of optimal X.

A. Convex Optimization Framework
Consider the following convex optimization problem that
recovers 5, L, and E with aforementioned properties

(8, L, M) = arg min £(S + L — M; £)+ R(S, L, M)
5.LM

s S+L-M=0L=-0M=0, (12)

where £(-) is a loss function, which we shall discuss below,
and the structure promoting regularizer R(-) is given by

RS, L, M) = A1[ISllh + A282(L) + Astr(M), (13)

Algorithm 2: Alternating Minimization

Input: Sample covariance matrix £ = B2*2: maximum
iterations Tip and oy
Intialization: Sg = 0: Ly = 0; and Ep = 0.
1 for § = 1:T,,; do
2 Fix ﬂ_h and apply ADMM on (12) for Tj, iterations
o compule 5; and E;.
3 Fix §_y and E;_y, and apply FCG on (12} to
compute L.
4 end o
Return: The recovered matrices (5;, Ly, E).

and A; = 0. The |5l = E:‘.j |5;] morm enforces sparsity
among the observed buses, the tr(M)-norm enforces the low-
rank property, and the atomic norm £2(L) enforces [ to be a
low-rank matrix with sparse factors.

In Gaussian graphical model selection problems, for K = 0,
one lets FiR; E} = — logdet(K)+tr(K'E), and solve (12) using
proximal methods, such as the alternating direction multiplier
method (ADMM) [17]. However, evaluating the proximal
operator of £2(L) is computationally demanding. To overcome
this problem, we solve (12) using an alternating minimization
method (see below) that combines ADMM and the fast col-
umn generation (FCG) method—a variant of Frank-Wolfe
method [15]. We use the guadratic loss function [18]

UK T) = %H{KEK}I — te(K). (14)
Here £(K; ) is convex in K, and the unique minimizer of
E(K; E) occurs at 15 see [18] for more details.

We provide only a brief description of alternating
minimization method in Algorithm 2. For the line 2 in
Algorithm 2, we use the standard ADMM (the detailed steps
are given in [19]). For Line 3 in Algorithm 2, we use the FCG
method (the detailed steps are given in [15, Algorithm 17).

Remark 2 {Ineffectiveness of Sparse and {One) Low Rank
Decomposition): In [13], the authors use a sparse plus trace
norm regularizer o decompose Eﬂﬂl.m inlo matrices (5 + L)
and M. For this naive regularizer to work, matrix 5§+ I needs
to be sufficiently sparse. However, for sparsely connected
distribution networks, § + L maybe non-sparse. In fact, in Fig.
3, for a sparse radial network, we demonstrate that S+L is non-
sparse (the first column is full). Instead, in the right-bottom
of Fig. 3, we show that § is sparse and L is low-rank with
sparse factors (also see text below Proposition 4.1). From this
discussion, we conclude that one should consider sophisticated
regularizers, such as (13), to accurately decompose the inverse
covariance matrices that arise from structured models, such as
the power flow model (2).

V. NUMERICAL SIMULATIONS

We evaluate and compare the performance of Algorithm 1
with that of [13, Algorithm 1] on a modified IEEE 33 bus
distribution grid with three hidden nodes; see Fig. 4. We add
extra edges to ensure that the grid’s minimum cycle length
is greater than three and the hidden nodes are not adjacent
to each other. The power injection (Xg, xz) is modeled as
an i.id. zero-mean Gaussian random vector with covariance
matrix o 2fay oy (where N = 32) and o2 = 0.1. The observed
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Fig. 3 (Left) radial grid with one hidden bus and six observed
buses. (Right) visualization of components of Ef" Yo blue and yellow
boxes indicate zero and non-2ero entries. {nghtgnp?dammposilm of
Ef.:;,m into non-sparse and dense low-rank matrices. (Right-bottom)
decomposition of Ef;lrﬂ into a sparse matnx, a low-rank matnx with
sparse factors, and a dense low-rank matrix.
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Fig. 4. Modified IEEE 33 bus system with a minimum cycle length of
size four. Bus 1 is the reference bus. The three hidden buses, labeled
{3, 7,131, are more than two-hops away.
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Fig. 5 Relative estimation emor in Algorithm 1 and Algonthm used
in [13] for the reconstructed topology over 10 independent trails.

voltage samples yo are generated from the linear model (1).
Using these samples, we oblain matrices § and L., given as an
input to Algorithm 1, by solving optimization problem (12).
Instead, as suggested in [13], we employ a low-rank plus
sparse decomposition method to obtain matrix § + L, given
as an input [13, Algorithm 1]. Finally, we set 1y = 2 = 0.1.
We assess the accuracy of both the algorithms by relative esti-
mation error (REE): the ratio of the sum of false and missed
edges to that of the number of true edges in £. Fig. 5 shows
that the REE for both the algorithms decrease with an increase
in the sample size. Furthermore, Algorithm 1 has a minimum
REE compared with that of [13, Algorithm 1].

V1. CoNCLUSION

This letter provides an algorithm to identify the unknown
topology of a distribution grid from bus voltage magnitude and
angle measurements, while accounting for hidden buses. Our
identification algorithm relies on the sign patterns of the sparse
and low-rank (with sparse factors) components of the inverse
covariance matrix of observed voltages. By carefully study-
ing the nuanced structure of the inverse covariance matrix, we
relaxed the existing minimum cycle length conditions [13]. We
validated our algorithm's performance on a modified TEEE-
33 bus test system. Future works include obtaining theoretical
conditions (e.g., subspace incoherency condition) under which
the inverse covariance malrix can be decomposed into the
required structural components.
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