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Enabling Fine-grained Finger Gesture
Recognition on Commodity WiFi Devices

Sheng Tan, Jie Yang, Yingying Chen

Abstract—Gesture recognition has become increasingly important in human-computer interaction and can support different
applications such as smart home, VR, and gaming. Traditional approaches usually rely on dedicated sensors that are worn by the user
or cameras that require line of sight. In this paper, we present fine-grained finger gesture recognition by using commodity WiFi without
requiring user to wear any sensors. Our system takes advantages of the fine-grained Channel State Information available from
commodity WiFi devices and the prevalence of WiFi network infrastructures. It senses and identifies subtle movements of finger
gestures by examining the unique patterns exhibited in the detailed CSI. We devise environmental noise removal mechanism to
mitigate the effect of signal dynamic due to the environment changes. Moreover, we propose to capture the intrinsic gesture behavior to
deal with individual diversity and gesture inconsistency. Lastly, we utilize multiple WiFi links and larger bandwidth at 5GHz to achieve
finger gesture recognition under multi-user scenario. Our experimental evaluation in different environments demonstrates that our
system can achieve over 90% recognition accuracy and is robust to both environment changes and individual diversity. Results also
show that our system can provide accurate gesture recognition under different scenarios.

Index Terms—WiFi, channel state information, finger gesture

F

1 INTRODUCTION

IN recent years, gesture recognition is gaining increas-
ing importance in human-computer interaction (HCI).

Comparing to traditional techniques using peripheral de-
vices such as mouse or keyboard, gesture-based interaction
serves as a more convenient and natural means for users
to interact with computers. Gesture made with fingers is
particularly crucial as our HCI bandwidth is the highest
there due to finger dexterity [2]. Recognizing finger gesture
is also extremely compelling for interacting with mobile and
wearable devices and performing finger control in emerging
applications, such as smart home, virtual reality, and mobile
gaming. Google’s Soli radar chip [3], for example, is recently
developed for the wearables to recognize finger gestures.

Prior work in gesture recognition mainly relies on pre-
installed depth and infrared cameras (e.g., Kinect, Leap
Motion) [4], [5], [6], [7], [8] or dedicated sensors (e.g., RFID,
gloves, motion sensors) that are worn by the user [9], [10],
[11], [12], [13], [14], [15], [16]. These approaches however
require significant deployment overhead and incur non-
negligible cost. In addition, the camera-based solution can-
not work in non-line-of-sight (NLOS) scenarios. Recently,
Radio Frequency (RF) based gesture recognition using either
specialized [17], [18], [19], [20] or commodity devices [21],
[22], [23], [24] have drawn considerable attention as they
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don’t require users to wear any physical sensors and can
work under NLOS scenarios. These systems however only
provide coarse-grained gesture recognition such as body
activities [17], [18], [19], [21], [22], [25] or hand move-
ments [26], [27], [28], [23]. While WiKey [24] and the system
proposed by Chen et al. [20] can recognize specific finger
movements of typing, WiKey [24] requires the WiFi packets
to be transmitted at outrageously high rate of 2500 pack-
ets/second and is very sensitive to environmental changes,
and the system [20] relies on specialized software-defined
radio to extract radio wave features that are not reported
in commodity RF device. Such limitations and the high
infrastructure cost make these methods hard to deploy for
gesture recognition in a practical and user friendly system.

In this paper, we demonstrate that the commodity WiFi
can be exploited for fine-grained finger gesture recognition
which is both easily deployable and low-cost. Our proposed
system takes advantages of the fine-grained wireless chan-
nel measurement of Channel State Information (CSI) and
the prevalence of WiFi network infrastructure. First, the
detailed physical layer measurement of CSI is internally
tracked by IEEE 802.11 MIMO and is readily available in
commodity WiFi devices. Such fine-grained CSI is able to
detect the minute environment changes that alter signal
propagation and multipath. It is thus capable of capturing
the subtle movements of fingers to provide fine-grained
gesture recognition. Leveraging detailed CSI to recognize
gestures doesn’t require users to wear any sensors and
can work under both LOS and NLOS scenarios. Second,
the prevalence of WiFi network infrastructures enables the
proposed system to reuse existing WiFi devices and net-
works without requiring dedicated or specialized hardware.
The system could reuse existing WiFi signals, for example,
the beacon signals of WiFi networks, to perform finger
gesture recognition. Reusing existing WiFi infrastructures
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not only advances and extends the applications that could
be supported by WiFi networks but also enables easy and
large-scale deployment of the proposed system due to the
proliferation of WiFi devices and networks [29].

In particular, our system, WiFinger, utilizes commodity
WiFi devices to recognize finger gestures by examining the
unique patterns exhibited in the detailed CSI. Accurately
discerning the finger gestures is challenging, because the
multipath, shadowing, and fading components of signal
could be dynamic due to the environment changes. For
example, people walking around or moved furniture could
change the multipath environment and affect the signal
propagation. Such changes could also be sensed by the
detailed CSI and may distort the CSI pattern of the fin-
ger gesture. Moreover, there exists individual diversity of
each user such as the finger length and movement speed.
Even for the same user, the same finger gesture could be
slightly different from time to time due to the lack of consis-
tency. Furthermore, current commodity WiFi based gesture
recognition systems cannot work well under the multi-user
scenario. This is due to the signal reflections from different
users are mixed at the receiver end and existing systems
cannot separate the signal components that are mainly af-
fected by individual user. Recently, system like WiMU [30]
try to resolve this issue by finding the possible combination
of different known gestures through exhaustive search. But
such an approach is unable to work when one or more users
perform gestures that is unknown to the system. This greatly
limits its applicable scenarios.

To handle environmental changes, we propose an envi-
ronmental noise removal mechanism which employs multi-
path mitigation and wavelet based denoising to filter out the
environmental noises while trying to keep the CSI patterns
resulted from the finger gestures. In particular, the multi-
path mitigation removes the signal components that arrive
at the receiver through longer multipath propagation which
are more likely affected by the changed environments, while
the wavelet based denoising is used to further remove the
high frequency noises while trying to keep sufficient details
of CSI pattern for differentiating similar gestures. To deal
with the individual diversity and gesture inconsistency, we
propose to identify the principal components of the CSI
pattern and to choose critical subcarriers that are sensitive to
finger gesture for accurate gesture recognition. Specifically,
the principal component identification exploits the idea of
the intrinsic gesture behavior of the user [31] and extracts
the gesture components which are invariant across the same
set of finger gestures that one user performed.

To resolve mutli-user gesture recognition issue, our sys-
tem utilize multiple WiFi links and the larger bandwidth at
5GHz. The motivation of utilizing larger bandwidth (over
600MHz) at 5GHz band is to provide a higher distance
resolution at around 0.3 meters. Such resolution is sufficient
to achieve fine-grained gesture recognition when multi-
ple users are performing gestures simultaneously within
a typical indoor environment. On the other hand, 2.4GHz
band with much smaller bandwidth (less than 100MHz) can
only provide distance resolution at around 2 meters. There
are existing WiFi devices such as laptops, IoT devices and
APs in the smart home environment which can be further
utilized to form multiple transmission links. The received

signal from those links can be used to capture the RF signal
propagation path change within the environment. Here we
use power delay profile to quantify such change which gives
the power strength of the received signal as a function of
propagation delay. By subtracting the power delay profile
under multi-user scenario (i.e., when multiple users perform
finger gestures simultaneously) from the one under static
environment (i.e., when there is no human presence), we can
obtain the signal reflections that only affected by the finger
motions of different users. Next, we separate the signal
reflections from previous step into single user reflections
profile which corresponds to each individual user. Then,
we can achieve multi-user finger gesture recognition by
analyzing the signal reflection components of each user at
different transmission links. It is done by reconstructing the
single user signal reflections as if there is only one user
performing the finger gesture within the environment.

We experimentally evaluate WiFinger in both office and
home environments with typical finger gestures including
zoom in/out, circle left/right, swipe left/right, and flip
up/down. Result shows that our system achieves overall ac-
curacy over 93% and is robust to both environment changes
and individual diversity. It also shows that our system can
work with WiFi beacon signals and provides accurate ges-
ture recognition under multi-user as well as NLOS scenario.
The contributions of our work are summarized as follows:

• We show that the commodity WiFi can be reused to
capture subtle changes of finger movements for fine-
grained gesture recognition. Such approach doesn’t
require any dedicated or specialized devices and can
work under NLOS scenarios.

• We devise environmental noise removal mechanism
to mitigate the effect of the environment changes.
Such a method enables the WiFinger’s robustness
to various environmental interference such as people
walking around and furniture changes.

• We exploit the principal component of the CSI pat-
tern and select critical subcarriers for accurate ges-
ture recognition. The principal component extraction
makes our system resilient to individual diversity
and gesture inconsistency.

• We leverage all the available channels at 5GHz
band from multiple transmission links to derive fine-
grained power delay profile and separate the signal
reflections from different users within the same mul-
tipath environment.

• We conduct extensive experiments in both office and
home environments with multiple participants un-
der various conditions. The results show that WiFin-
ger achieves over 90% recognition accuracy and can
work with existing WiFi beacon traffic, NLOS, and
multi-user scenarios.

2 RELATED WORK
In general, the approaches for gesture recognition can be

divided into three categories: wearable sensor based, camera
based, and RF signal based.

Wearable sensor based. Many research efforts have been
done by using dedicated sensors worn by users’ hand for
gesture recognition. For example, Risq [13] utilizes inertial
sensors on a wristband to recognize smoking gestures.
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Nelson et al. [10] developed a system using multi-sensor
glove to recognize paralysis patients’ gestures. Applications
like text input using hand gestures also attract many at-
tentions. PhonePoint Pen [9] for example recognizes hu-
man hand writing by holding mobile phone in hands. RF-
IDraw [11] tracks hand or finger movements by attaching
RFID to user’s fingers. Other wearable devices such as
smartwatch [14] or wearable ring [12], [16] can also be used
to enable text input recognition by hand movements. These
methods however all require user to wear physical sensors.

Camera based. Early works [7], [8] laid solid foundation
for gesture recognition using dedicated cameras. Recent
advancement in imaging technology enables depth or in-
frared cameras for gesture recognition, including the ones
used in Microsoft Kinect [4], Leap Motion [5] and WiiU [6].
Although they do not require user to wear any sensors, they
rely on dedicated hardware which incurs non-negligible
installation overhead, and only work under LOS scenario.

RF signal based. The RF signal based methods are most
related to our work. Without requiring user to wear any
physical sensors, they can sense user motion under both
LOS and NLOS scenarios. By using specialized devices,
systems like WiSee [17] WiTrack [19] and Wi-Vi [18] are
able to track large scale movements. AllSee [26] and the
system proposed by Chen et al. [20] are capable of tracking
hand movements and even the finger movements of typing.
Those systems however all rely on specialized hardware.
Although the systems (e.g., E-eyes and CARM [21], [22]) use
commodity WiFi devices, they can only identify large scale
human activities or hand movements. While WiKey [24] can
recognize finger typing motions, it requires the packets to
be transmitted at outrageously high rate.

Much research has been done that attempt to resolve the
issue of multi-user compatibility in commodity WiFi based
gesture recognition systems. WiMU [30] can achieve multi-
user gesture recognition by exhaustive search and compare
of different known gestures combination to the collected
samples. The proposed system can only work under the sce-
nario where system has knowledge of all activities/gestures
that can be performed by users. It cannot work when one or
more users perform activities/gestures that are unknown
to the system. Systems like CrossSense [32] and EI [33]
leverage deep learning techniques to achieve better activity
recognition performance under multi-user scenario when
comparing with state-of-the-art systems. However, those
approaches cannot work well without large number of
training samples and require constant system update once
the multipath environment changes.

Recently, many research have been done to achieve CSI-
based gesture recognition adopting machine learning or
deep learning models. Work like SignFi [34] focuses on rec-
ognizing large collection of sign language gestures, which
involve the head, arm, hand, and finger gestures. It can
achieve high accuracy utilizing CNN based classification
algorithms. Wi-Multi proposed by Feng et al. [35] achieves
large-scale gesture recognition utilizing either SVM or DTW
depends on if a sufficient number of collected samples are
available. Yang et al. [36] proposed a novel deep Siamese
representation learning architecture for one-shot gesture
recognition using CSI. Such system can achieve good perfor-
mance when dealing with environmental dynamics and in-

(a) CSI measurements of Circle Left

(b) CSI measurements of Zoom In
Fig. 1: Illustration of CSI measurements for two different
finger gestures.
dividual heterogeneity. Widar 3.0 [37] achieve cross-domain
hand gesture recognition using domain-independent feature
and GRU model. WiCAR [38] utilizes multi-adversarial
domain adaptation model to achieve in-car gesture recog-
nition. However, those systems mainly focus on addressing
the large-scale gesture/activity problem and only work well
under single user scenario.

Comparing to the existing approaches discussed above,
our proposed system can provide fine-grained finger ges-
ture recognition using commodity WiFi while achieve multi-
user compatibility. It is a software-only solution, which is
both easily deployable and low-cost.

3 SYSTEM DESIGN

3.1 Preliminaries and Challenges
WiFi has been evolving from providing laptop connec-

tivity to connecting all kinds of mobile and smart devices
with higher speed and more advanced technologies. It has
resulted in the prevalence of WiFi devices and ubiquitous
coverage of WiFi network, which provides the opportunity
to extend WiFi’s capabilities beyond communication, par-
ticularly in sensing the physical environment. When the
wireless signal propagates through space, any environment
changes, either small scale or large scale, affect the received
wireless signal, which is commonly known as shadowing
and small-scale fading. With measurable changes in the re-
ceived signals, activities in the physical environment could
be potentially inferred. In particular, the 802.11a/g/n/ac
employs OFDM technology which partitions the relatively
wideband 20MHz channel into 52 subcarriers and provides
detailed channel state information (CSI) of each subcarrier.
The relative ”narrow-band” subcarriers are very sensitive to
the small movements in physical environment which results
in the changes of CSI. On the contrary, the traditionally used
received signal strength (RSS) is a coarse-grained informa-
tion which provides averaged power in the received signal
over the whole channel bandwidth and may not capture
such changes. We are thus motivated to reuse existing WiFi
infrastructure to sense and identify subtle movements of
finger gestures by leveraging the detailed CSI provided by
the commodity WiFi device.
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Fig. 2: CSI patterns of Circle Left under different environ-
ments.
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Fig. 3: CSI pattern of Circle Left performed by different
users.

Figure 1 shows the CSI amplitude of two subcarriers(i.e.,
subcarrier 15 and 20) when a participant is repeatedly
doing two finger gestures (circle left and zoom in) in front
of the laptop. The CSI is extracted from the laptop that
connected to a commercial AP in a 802.11n network. We
observe that the CSI amplitude of those two subcarriers
exhibits obvious periodic patterns and each of the finger
gestures can be distinguished by its unique CSI pattern.
This observation strongly indicates that the detailed CSI
extracted from commodity WiFi could be analyzed for fine-
grained figure gesture recognition.

Accurately discerning the finger gestures is however
challenging because of the interferences from the surround-
ing environment. The interferences could come from the
environment changes such as furniture change and people
moving around. Such changes, for example a table/chair is
moved to a different place or a person is walking around
in the environment, alter the multipath environment which
leads to construction or destruction (based on individual
subcarrier phase shifts) effect in the combined signals at the
receiver. Such effect could also be captured by the detailed
CSI (due to subcarrier’s relative ”narrow-band” nature) and
creates distortion of the CSI pattern. Figure 2 illustrates such
CSI pattern distortion at one subcarrier when a participant
is doing circle left gesture with and without environment
changes. We observe that the CSI patterns in the dash
windows are heavily distorted due to one person is walking
around in the environment. Such distortion could signifi-
cantly degrade the accuracy of gesture recognition.

Moreover, the finger gesture is subjected to individual
diversity and gesture inconsistency. Different people may
have different finger and hand size, movement pace, and
habit to perform finger gestures. Even for the same person,
she/he could perform the same gesture slightly different
from time to time due to lack of gesture consistency. Figure 3
shows the captured CSI amplitude of one subcarrier for the
same gesture performed by two different users. Although
the shape of these two CSI traces exhibits certain similarity,

the length and some details of the CSI pattern are very dif-
ferent due to different finger movement speed and gesture
inconsistency. In particular, the second user perform finger
gesture much faster than the first one, and the patterns at
the head and tail of the CSI traces have clear difference. The
individual diversity and gesture inconsistency thus could
seriously affect the robustness of the recognition system.

Lastly, existing RF-based gesture recognition systems
using commodity WiFi are mainly designed for and work
with the single user scenario. Their performance suffer from
severe degradation when multiple users are performing
gesture simultaneously within the same environment. This
is because the signal reflections captured at the receiver
end are the mixture of multipath components from differ-
ent users. Existing system cannot disentangle the signal
reflections mainly affected by individual user. System like
WiMU [30] attempts to resolve this issue by exhaustive
search all the possible combination of different gestures that
are known to the system. However, such an approach has
limited applicable scenarios because it cannot work when
one or more users perform unknown gestures.

3.2 Design Goals
To accurately recognize the fine-grained finger gestures

by using the detailed CSI from a single commodity WiFi de-
vice, the design and implementation of our system involve
a number of challenges:

Easily Deployable. The system should be easily de-
ployable on existing commodity WiFi without using any
dedicated or specialized hardware or requiring users to
wear any physical sensors. It should work with LOS/NLOS
and multi-user scenarios. It also should work only utilize
existing WiFi traffic or beacons at the deployed AP without
dedicated user generated traffic.

Robust to Environmental Change. The interferences
from the surrounding environment could dynamically
change the detailed CSI. Our system should be able to
provide accurate finger gesture recognition by mitigating in-
terferences such as furniture change, people moving around,
and body movements of the user.

Resilient to Individual Diversity and Gesture Inconsis-
tency. Once the system is setup, it should be able to be used
by different users without user-specific calibration. It thus
should be resilient to both individual diversity and gesture
variation due to lack of consistency.

Compatible to Multi-user Scenarios. The proposed sys-
tem should be able to achieve comparable performance with
respect to single user scenario when there are multiple users
perform finger gestures simultaneously within the same
environment.

3.3 System Overview
The basic idea of our system is to examine the unique

pattern exhibited in the CSI measurements that extracted
from commodity WiFi devices. Figure 4 shows the system
flow. WiFinger takes the time-series CSI measurements ex-
tracted from commodity WiFi devices as input. It can reuse
existing network traffic, such as WiFi beaconing signals, or
system-generated periodic traffic (if network traffic is insuf-
ficient) to extract the detailed CSI for single user scenario.
For the multi-user scenario, our system scans all the avail-
able channels at 5GHz band, where the transmitter send out
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Fig. 4: Overview of system flow.

probe packets to all the 5GHz channels successively within
coherence time and multiple receivers obtain the CSI mea-
surements from the received packet. In our system, the users
first need to identify if it is single user or multi-user scenario
which will then trigger channel scanning mechanism.

The obtained CSI measurements then go through CSI
Measurement Calibration to mitigate phase error as well as
amplitude error. For multi-user scenario, our system de-
rives the fine-grained power delay profile leveraging non-
uniform Discrete Fourier Transform (NDFT) from all the
spliced channels. To obtain the single user signal reflection
components, our system segment the derived power delay
profile at each transmission link through a sliding window.
Then, the fine-grained power delay profile of individual
user is reconstructed as if he/she has performed gestures
alone within the environment.

After each individual user’s power delay profile is ob-
tained, it goes through the Environmental Noise Removal and
the Gesture Pattern Extraction component. Environmental
noise removal encompasses two different techniques to ad-
dress the challenge of environmental interferences. It first
employs Multipath Mitigation to mitigate the interference
stemmed from the environment changes such as moved
furniture and/or people moving around. It then utilizes
Wavelet Based Denoising to further remove the noise by de-
composing signals into approximation coefficients and de-
tail coefficients. A dynamic thresholding method is applied
to the detail coefficients to remove the noisy components
while keeping sufficient details of the CSI pattern. After that,
the system performs movement segmentation to separate
the CSI measurements to each finger gesture.

Next, our system performs gesture pattern extraction by
utilizing Principal Component Identification and Critical Sub-
carrier Selection. Principal component identification is used
to capture the intrinsic user gesture behaviors by identifying
the CSI components which remain stable within the user’s
finger gestures. The identified principal components are
usually invariant in the presence extensive variations in the
user’s gesture, and hence resilient to individual diversity
and gesture inconsistency. Our system then uses critical
subcarrier selection to choose the subcarriers that have high
sensitivity to the subtle movements of fingers gestures for

gesture recognition.
At last, our system recognizes gestures by going through

Gesture Identification process. Our system first extract fea-
ture and then calculate the similarity of such feature with
respect to each enrolled finger gesture profile using Muti-
Dimensional Dynamic Time Warping (MD-DTW). The one
with the profile in the library that has the highest and
also sufficient similarity with the testing CSI pattern is then
identified as the recognized gesture.

To construct gesture profile, our system could utilize
either a supervised or semisupervised approach. For ex-
ample, one user could perform each finger gesture several
times offline and then label the corresponding extracted
CSI pattern in the profile library. The system can also con-
tinuously monitoring user’s gestures and identify multiple
similar instances of CSI pattern without a matching profile.
The user then could provide feedback to label such CSI
pattern and deposit it to the profile library for subsequent
gesture recognition. Moreover, the system could also use the
semisupervised approach to update the CSI pattern when
the gesture evolves to a slightly different version.

3.4 CSI Measurement Collection
Our system has the ability to extract CSI from the WiFi

NIC which is the sampled version of the channel frequecy
response when it is connected with 802.11n network. Specif-
ically, for each of the 20MHz WiFi channel, the extracted CSI
contains both amplitude and phase information for each of
the 56 orthogonal frequency-division multiplexing (OFDM)
subcarriers. In this work, for single user scenario, we use
single WiFi device with its connected AP and one 20MHz
channel to examine the unique patterns exhibited in the
detailed CSI. Meanwhile, for multi-user scenario, we utilize
multiple WiFi links and all the available 20MHz channels
at 5GHz band to identify and extract the signal reflection
from each individual user. To ensure WiFinger can probe
through all the channels within the coherence time, we set
the channel hopping delay to 0.2ms.

In particular, we denote the CSI measurements from all
available channels at 5GHz band as:

csiq = [csi1,q, ..., csip,q, ...], (1)

where p and q denotes the pth channel at the qth receiver.

3.5 CSI Measurement Calibration
The raw CSI measurement extracted from previous step

contain considerable distortions due to the hardware lim-
itation of commodity WiFi NICs which mainly caused by
clock unsynchronization of each transmission pair. Here, we
achieve CSI calibration by adopting the correction approach
proposed by previous work [39]. In particular, we aver-
age CSI measurements from several packets that collected
within coherence time to mitigate amplitude error. For the
phase error, it involves both constant component and linear
component. For the constant component, we mitigate the
error by selecting a reference channel and compensate the
difference between such channel and all the other collected
channels. For the linear component, we first average mul-
tiple CSI measurements at the same channel at individual
receiver and then search for an optimized offset that can
minimize the difference between all pairs of power delay
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profile derived from the channels collected within coher-
ence time. After calibration, the CSI measurement at each
transmitter and receiver pair can be represented as:

CSIq = [ ̂CSI1,q, ..., ̂CSIp,q, ...], (2)

Given the calibrated channel response CSI, the power
delay profile g at given channel can be derived using IFFT:

gq =
R∑

r=1

arδ(t− tr), (3)

where r denotes the sequence number of total R multipath,
ar and tr are the amplitude and signal propagation time
delay of rth path, δ(t) is the Dirac delta function. For mul-
tiple user scenario, in order to derive a more fine-grained
power delay profile, our system needs to stitch together
the CSI measurements collected from all the channels at
5GHz after calibration. But all the available channels are
unequally and non-contiguous spaced at 5GHz band due to
the regulation issue. Particularly, all the available channels
on the Intel 5300 NICs at 5GHz band are divided into
three different segments: first segment from channel 36 to
64 (5.17GHz to 5.33GHz), second segment from channel
100 to 140 (5.49GHz to 5.71GHz) and third segment from
channel 149 to 165 (5.735GHz to 5.835GHz). Instead of using
simple IFFT which only works for evenly spaced channels,
we propose to utilize inverse Non-uniform Discrete Fourier
Transform (NDFT) which can be applied to non-uniformly
spaced channels. Here we can formulate the inverse NDFT
problem as following:

min
g
||ĈSIq −Fg||2, (4)

where g represents the power delay profile we are trying to
find and F is Fourier matrix. The goal is to search for an
optimum solution of power delay profile that can minimize
the difference between the Fourier Transformation of g and
spliced CSI measurements from all available channels.

Because the search for power delay profile will yield
non-linear and non-closed form results, we leverage the lay-
out information of transmission links to select the optimum
solution. Here, we assume currently all the signal propa-
gation from each transmission pair has line-of-sight where
the LoS propagation path has the largest power among
all the multipath propagation. Thus, our system favors the
derived power delay profile that has larger power at the LoS
propagation among all the yield solutions. By leveraging
inverse NDFT, we can further improve the resolution of the
derived power delay profile.

After obtaining the fine-grained power delay profile,
our system performs multi-user profile separation and re-
construction to acquire the signal reflections from each
user. The basic idea is illustrated in Figure 5. Because the
obtained power delay profile consists of signal reflections
components from both the motions of multiple users and
static environment, we first subtract the derived power
delay profile at one of the WiFi links linkT1R1 as shown
in Figure 5 (b) by the profile under the static environment
shown in Figure 5 (a) which is collected when there is no
human presents within the environment. Our system can
then determine the number of users by detecting how many
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Fig. 5: Illustration of multi-user profile separation and
reconstruction.

major signal reflection components exist after subtraction.
Next, we further segment the subtracted power delay pro-
file representing only multiple user motion information as
shown in Figure 5 (c) into single user reflections profile
where each one contains the signal reflection components
mainly caused by individual user. This is done by using a
moving window based approach. In particular, the power
differential between adjacent time points is accumulated
within each sliding window and compare to a threshold
to determine the duration of the individual user motion.
Here, we empirically set the threshold to be 0.6. This process
is repeated over all the power delay profiles derived from
subtraction at each transmission link.

It is worth noting, when multiple users are at the same
distance to one particular transmission link, the signal re-
flection from these users could overlap (i.e., signal reflec-
tions from different users share the similar propagation
time delay) in the multi-user reflection profile at that link.
Thus, simply utilizing power delay profile derived from
a single link could not distinguish multiple users. Here,
we propose to use multiple transmission links (e.g., 3 or
more) to overcome this problem. Due to geometric relation
between multiple transmission links (e.g., 3 or more), one
or more transmission links could capture signal reflection
from multiple users without overlapping. Therefore, we can
further separate different users’ profiles based on multiple
transmission links that are not severely overlapping.

At last, the segmented power delay profile obtained from
previous step as shown in Figure 5 (d) and Figure 5 (e) will
go through individual profile construction to reconstruct
the signal reflection profile dominated by individual user
as if there is only one user performing gesture within the
environment. This is done by combining the segmented
power delay profile with the power delay profile collected
under the static environment scenario. After this, we are
able to derive the power delay profile shown in Figure 5 (f)
and Figure 5 (g). Such reconstructed profiles contain both
signal reflection mainly caused by the target user motion
and the static environment. Meanwhile, the interference
from the motion of other users has been mitigated.

3.6 Environmental Noise Removal

In this subsection, we present the details of two tech-
niques the system used to mitigate the interferences from
the surrounding environment: multipath mitigation and
wavelet based denoising.
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Fig. 6: Power delay profile with and without environment
change.

3.6.1 Multi-Path Mitigation
Multipath mitigation aims to remove the signal com-

ponents that arrive at the receiver through longer multi-
path propagation. As the environment changes such as a
table/chair is moved to a different place or a person is
walking around will reflect the wireless signal and also cre-
ate additional multipath, these reflected signals via created
multipath will distort the CSI pattern of a finger gesture.
Removing these reflected signal components could mitigate
such interferences and hence makes the system robust to the
environment changes. In particular, the signal reflection via
multipath usually has longer propagation delays before ar-
riving at the receiver. By transferring the frequency domain
CSI into time-domain power delay profile, we could remove
the signal components that have longer delay to mitigate the
effect of the changed multipath.

Figure 6 shows the power delay profile with 60-point
IFFT for the same gesture (i.e., circle left) under the scenarios
with and without people moving around in the environ-
ment. We observe that the signal components in these two
dash windows have obvious difference due to the envi-
ronment change. We thus remove the signal components
with large time delay (i.e., the part on the right side of the
dash line in Figure 6) to retain the CSI pattern of the finger
gesture while mitigating the effect of the changed multipath
environment. After removing the signal components with
larger delay, we apply an FFT transformation to covert the
trimmed profile to frequency domain CSI. Previous study
shows general indoor environment has the maximum delay
less than 500 ns [40]. We use this value as a baseline for
removing the signal components with longer delay, shown
as the dash line in Figure 6.

3.6.2 Wavelet Based Denoising
Wavelet based denoising is used to further remove the

noises presented in the collected CSI measurements. These
interferences could come from various sources such as the
nearby electric devices and WiFi devices’ inner noise. It
is based on the Discrete Wavelet Transform (DWT) which
analyzes the signal in both time and frequency domain
and doesn’t make any assumption about the nature of the
signal. The DWT decomposes signals into approximation
coefficients and detail coefficients. While the approximation
coefficients describe the shape/trend of the signal which
retain large scale characteristic of the CSI pattern, the detail
coefficients capture the low-scale components which rep-
resent both high frequency noise and the fine details of
the CSI pattern. As we are interested in removing the high

Original Signal

Low Pass

High Pass

L[1]

H[1]

L[4]

H[4]

Apply Thresholding
Decomposing

Reconstruction

Fig. 7: Illustration of Wavelet based denoising.

frequency noise components while trying to keep sufficient
details of CSI pattern for differentiating similar gestures, a
dynamic thresholding is applied to the detail coefficients to
remove the noisy components.

In particular, the wavelet based denoising includes three
steps: decomposition, thresholding, and reconstruction. As
shown in Figure 7, we first run the DWT based signal de-
composition recursively by four levels with Symlet wavelet
filter [41]. The DWT then yields both approximation co-
efficients αJ (with J = 4) and a sequence of detailed
coefficients β1, β2, ...β(J). Each level of DWT coefficients are
computed based on the following equations:

α
(J)
k = 〈xn, g(J)n−2Jk〉n =

∑
n∈Z

xn g
(J)

n−2Jk, J ∈ Z (5)

β
(`)
k = 〈xn, h(`)n−2`k〉n =

∑
n∈Z

xn h
(`)

n−2`k, ` ∈ {1, 2, ..., J}

(6)
where xn is the nth input point,〈.〉 is the dot product oper-
ation, and wavelet basis represents by two sets of discrete
orthogonal functions g’s and h’s.

We then apply dynamic thresholding to each level of
detail coefficients β1, β2, ...β(J) to remove their noisy com-
ponents. Finally, by combining all the resulting coefficients
(i.e., the approximation coefficients and the detail coeffi-
cients after noisy removal), we reconstruct the final denoised
CSI measurements with the inverse DWT. The inverse DWT
is given by following formula:

xn =
∑
k∈Z

α
(J)
k g

(J)

n−2Jk +

J∑
`=1

∑
k∈Z

β
(`)
k h

(`)

n−2`k (7)

The reconstructed measurements enable us to remove the
noise components while keeping the detailed patterns. This
could facilitate accurate gesture recognition, especially for
those gestures with similar shape of CSI patterns.

The system requires a user to have a short static interval
between gestures to serve as the sentinel signal. Our system
then can identify the movement of a gesture by detecting
the static interval. In detail, we accumulate the amplitude
differential between adjacent time points within each sliding
window. The accumulated value is then compared to a
empirical threshold for determining the sentinel signal for
CSI trace segmentation.
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3.7 Gesture Pattern Extraction

We next detail the gesture pattern extraction component
which is used to identify the principal components of CSI
patterns and to choose critical subcarriers for accurate ges-
ture recognition.

3.7.1 Principal Component Identification
The principal component identification borrows the idea

of the intrinsic gesture behavior of the user in signature
verification [31]. In particular, the CSI measurements of
each finger gesture could be divided into several gesture
components. Due to the individual diversity and gesture
inconsistency, only part of these components are invariant
across the same set of finger gestures that one user per-
formed. We refer such components as principal components
which capture the intrinsic gesture behavior of the user.
Our system thus extracts these principal components to
facilitate gesture recognition for improving the resilience to
individual diversity and gesture inconsistency.

To identify the principal components of the CSI pattern,
we examine and compare multiple instances of the same
gesture. In particular, our method takes two instances of
CSI measurements and compares them to find the best
alignment by calculating a cost matrix and discovering the
lowest cost route. The resulted lowest cost route could be
represented by a coupling sequence in which the direct
matching samples denote the components without signifi-
cant distortion between two instances. We thus incorporate
these direct matching samples into a weight vector to repre-
sent the principal components of the finger gesture. We run
this process repeatedly between different pairs of instances
that are available during the profile construction phase, and
then average over the resulting weight vectors to obtain the
principal components of each finger gesture.

Following shows the details of the principal compo-
nent identification algorithm. After environmental noise
removal, we first interpolated CSI measurements of each
gesture instance to a fixed length L. We then assume
{ci,1 ≤ i ≤ N} is a set of interpolated CSI measurements
with the fixed length L extracted from N gesture instances.
The weight vector derived from a pair of instances ci and
cj can be described as: wci,cj

l where i 6= j and 1 ≤ l ≤ L.
We then use the coupling sequence which is the alignment
between ci and cj to estimate the weight value. All the direct
matching samples in the coupling sequence are considered
as the principal component candidates which represent the
consistent gesture segments between two CSI instances. We
simply use 1 as the weight if it is a principal component,
and assign a weight 0 otherwise. At last, we generalize
the principal components by averaging the weight vectors
over each pair of CSI instances. Each averaged weight value
ranges from 0 to 1 indicating the consistency of the corre-
sponding segment of the CSI measurements. And a larger
weight value means the corresponding segment is more
stable when performing finger gestures. Our system thus
values the segments with higher averaged weights more
significantly during the gesture identification procedure as
they represent the intrinsic gesture behavior.

Figure 8 shows one example on the process of the
principal component identification using two instances. We
first calculate the cost matrix between these two instances,

Measurement 1

Measurement 2

(a) CSI of two gesture instances (b) Cost Matrix

Principal Component

(c) Identified principal Components

Fig. 8: Illustration of principal component identification
steps.
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Fig. 9: One example of subcarrier sensitivity to the finger
gesture of Circle Left.

as shown in Figure 8(b). Based on the coupling sequence
shown in the cost matrix, we identify these direct matching
samples as the candidates of the principal components of
the gesture. We then map these direct matching samples
back to the CSI measurements of those two instances. The
identified principal components in these two instances are
highlighted as black color, as shown in Figure 8(c). During
the gesture recognition phase, the principal components
will be assigned with higher weights while the rest will
be assigned with lower weights. The principal components
identification thus could effectively capture the intrinsic
gesture behaviors and improve the robustness of the system.

3.7.2 Critical Subcarrier Selection
Due to the frequency diversity, different subcarriers have

different sensitivity to the subtle movements of finger ges-
tures [42]. Figure 9 illustrates an example of time series
CSI changes for 30 subcarriers when performing circle left
gesture. We observe that the subcarriers with smaller indices
are more sensitive to the circle left gesture, while the CSI
from the higher subcarrier indices presents less changes. It
is thus desire to assign more weights to these subcarriers
with higher sensitivity for gesture recognition. Specifically,
we calculate the variance of the CSI in a moving window
in time series to quantify the sensitivity of the subcarriers
to the finger gesture. By comparing to other work simply
discard the subcarriers with less sensitivity, our approach
enhances the impact of more sensitive subcarriers while
preserving the effect of subcarriers with lower sensitivity.

3.8 Gesture Identification

To extract feature from finger gesture motions, we pro-
pose to use Doppler shift by leveraging short-term Fourier
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Fig. 10: Illustration of experimental setup.

transform (STFT). Such an approach will compute the spec-
trogram which represents the time-frequency information
of the given motion. In particular, we apply STFT to the CSI
measurements obtained from previous step with a Gaussian
window (i.e., < 0.1s) where we assume Doppler shift is
invariant during that time period. Our system then extracts
the energy based frequency contour of derived spectrogram.
Specifically, the power level of given spectrogram is normal-
ized into the same scale from 0 to 1. Then, a pre-defined
power level band is chosen (i.e., between 0.90 and 0.95) and
the centroid frequencies at such band is combined which
resulted in one positive and one negative frequency contour.
After that, the extracted energy-based frequency contour
will be utilized for similarity comparison.

To better facilitate similarity comparison, Muti-
Dimensional Dynamic Time Warping (MD-DTW) [22] is
utilized to achieve better alignment. MD-DTW allows us
to overcome the problem of speed problem by focusing on
shifts in the matching pattern. Thus it provides a robust
metric for measuring the similarity. Specifically, we adopt
the Euclidean distance to quantify the warping path. During
gesture recognition, the extracted energy-based frequency
contour is used as feature and MD-DTW is utilized to
calculate the similarity between the testing instances and
enrolled finger gesture profile. It is shown as:

d(sa, tb) =
U∑

u=1

(sa,u − tb,u)2 (8)

where S = s1, s2, ..., su and T = t1, t2, ..., tu are two CSI
patterns where U is the number of chosen subcarriers. The
one with the highest and sufficient similarity in the gesture
profile is identified as the recognized gesture whereas the
one with insufficient similarity (lower than 0.75) to existing
gesture is then identified as unknown gesture.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
WiFinger system using a commodity WiFi device in both
office and home environments with multiple participants
under various conditions.

4.1 Experimental Setup

4.1.1 Device and Network
For single user scenario, we conduct experiments with

a single WiFi device (i.e., Dell LATITUDE E5540 Laptop)
connected to a commercial wireless Access Point (LINKSYS
E2500 N600 Wireless Router) in an 802.11n WiFi network.

1) Zoom Out 2) Zoom In 3) Circle Left 4) Circle Right

5) Swipe Left 6) Swipe Right 7) Flip Up 8) Flip Down

Fig. 11: Illustration of eight finger gestures.

The laptop runs Ubuntu 10.04 LTS and is equipped with an
Intel WiFi Link 5300 for extracting CSI measurements [43].
The packet transmission rate is set to 20 pkts/s. We will
discuss the impact of packet rate on overall recognition
accuracy in Section 4.7. For each packet, we extract CSI for
30 subcarrier groups, which are evenly distributed in the 56
subcarriers of a 20MHz channel.

For multi-user scenario, we conduct experiments with
one laptop as transmitter and three laptops as receiver. The
setup of transmission links are shown on Figure 10(b). All
laptops have the same software and NIC setup as stated
in single user scenario. Both transmitter and receivers are
in monitor mode and have the ability to send and receive
packet at 5GHz band in an 802.11n network. The transmitter
scans all the 24 available 20MHz channels at 5GHz of
Intel 5300 NIC by sending packets at each channel to all
receivers and each receiver will collect the packets of the
particular channel during the scanning process. They can
be further divided into three non-contiguous parts: from
5.18GHz to 5.32 GHz (i.e., the channels from 36 to 64), from
5.5GHz to 5.70GHz (i.e., the channels from 100 to 140) and
from 5.73GHz to 5.83GHz (i.e., the channels from 149 to
165). As indicated in the previous work [44], typical indoor
environment has the coherence time of several hundreds
milliseconds. Thus, we set the channel hopping delay to
0.2ms as it allows us to collect multiple packets across
all available channels within the coherence time. We then
extract the CSI measurement contains 30 subcarriers which
are equally distributed at a 20MHz channel for each packet.

4.1.2 Environments and Finger Gestures

We conduct experiments in both an office and an apart-
ment environments with five participants. The experimental
setup in these two environments are shown in Figure 10.
The office has the size of about 9 ft by 9 ft with three tables
and chairs, and some electronic devices inside, whereas the
apartment is about 16 ft by 13 ft with regular living room
furniture setup, such as dining table, book shelf, sofa, and
TV. The office environment represents a more compact space
filled with furniture, while the apartment setup describes
a typical home environment with larger space. When the
participant is performing the finger gesture, she/he is sitting
on the sofa in the apartment environment and sitting in front
of the table in office environment respectively. The AP and
the laptop are placed at two sides of the sofa and table for
single user scenario, as shown in Figure 10. For the multi-
user experiments, two users are sitting on the sofa when
performing the finger gesture under two user setup while an
additional user is standing in front of the table under three
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Fig. 12: Confusion matrix of finger gesture recognition
under different environments.

user setup. The transmitter and receivers’ positions under
multi-user scenarios are marked respectively on Figure 10.

We evaluate the performance of our system with eight
commonly used finger gestures including swipe left, swipe
right, zoom in, room out, circle left, circle right, flip up,
and flip down, as shown in Figure 11. These gestures are
also widely used in current human-computer interaction
systems such as Microsoft Kinect or Leap Motion. Each
participant performs one gesture fifty times in office and
apartment environments respectively. We use ten instances
of each finger gesture to extract the CSI pattern for building
the gesture profile. To test the robustness of our system to
environment changes, we experiment with both furniture
move and people walking around scenarios. In particular,
when the participant is performing finger gesture, a second
person is randomly walking around within the environment
to create interference. Examples of the walking trajectories
are shown in dash curve in Figure 10. For the furniture
change, we move the chairs and tables from one place to
another inside the room.
4.1.3 Metrics

We use both confusion matrix and recognition accuracy
to evaluate the performance of our system.

Confusion Matrix. Each column represents the finger
gesture that was classified by our system and each row
shows finger gestures performed the user. Each cell in the
confusion matrix represents the percentage of finger gesture
in the row that was classified as the gestures in the column.

Recognition Accuracy. The percentage of the finger ges-
tures correctly classified by our system.

4.2 Overall Performance
Figure 12 shows the confusion matrix of finger gesture

recognition under both home and office environments. We
observe that in both environments, our system achieves an
overall recognition accuracy over 93% with the standard
deviation at about 1.5%. By comparing the details of each
finger gesture recognition in these two environments, we
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Fig. 13: Performance comparison when using CSI and RSS.

Fig. 14: System performance under two-user scenario (7 ft.
distance).
find that the recognition accuracy distribution are similar. In
both environments, the swipe left and right have the highest
recognition accuracy, whereas the flip up and down have the
lowest accuracy. In particular, the swipe left achieves 96%
and 95% accuracy in home and office environments respec-
tively. This is possibly because of the relative larger finger
movements involved in swipe left and right. Consequently,
more finger movement details could be captured by CSI for
differentiating from other similar finger gestures. The above
results show that our system could provide high accuracy
in recognizing finger gestures by using only a single WiFi
device. The recognition accuracy could be further improved,
for example, by using multiple available devices or the WiFi
device equipped with multiple antennas.

We also compare the performance of using CSI to that of
using RSS for finger gesture recognition. As RSS is the more
sensitive to the physical movements when the transmitter
and receiver are closer due to the log distance propagation,
we place the WiFi device and the AP very close to each
other (i.e., 3 ft) and compare the performance of CSI-based
and RSS-based recognition in the same setup. Figure 13
illustrates the performance comparison of the overall recog-
nition accuracy with each finger gesture tested for fifty
times in each of these two environments. We observe that
under the same setup, the CSI based method could achieve
around 95% accuracy in both environments, whereas the
RSS based method has only 76% recognition accuracy. It
indicates that the detailed CSI could provide more fine-
grained information than that of RSS, and can result in much
better gesture recognition accuracy.

4.3 Multi-User Gesture Recognition Performance
We then evaluate the performance of our system in

multi-user scenarios. The experiment is conducted in home
environment where two users are performing finger ges-
tures simultaneously. The results are shown in Figure 14. We
observe that the overall recognition accuracy for two users
are around 90% which is comparable to the single user sce-
nario. Moreover, by comparing Figure 14 and Figure 12(a),
we observe that the system performance does not have
obvious degradation. This study demonstrates our system
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Fig. 16: System performance under three-user scenario.

can achieve similar performance under multi-user scenarios.
Furthermore, we can observe that our system achieves better
recognition accuracy for user 2 with respect to user 1. Such
phenomenon is likely caused by the placement of Wi-Fi
receivers. With only three receivers for our current system
setup, the received signal reflections are highly depending
on the user locations with respect to each receiver. For
example, when the distance between one of the users and
all the receivers is shorter compare to the other users, the
signal reflections from such user are stronger. Therefore, the
derived power delay profile will contain more information
of the gestures performed by this user which causes the
recognition accuracy higher than all the other users. By
adding more receivers or adjusting receiver placements
can mitigate the phenomenon of recognition accuracy gap
between different users.

As shown in Figure 15, we observe that the overall
recognition accuracy for two users are over 88% under the
close proximity scenario where the distance between two
users are 5 feet. Furthermore, by comparing Figure 15 and
Figure 14 where the distance between two users are 7 feet,
we observe similar system performance. This shows our
system can achieve good performance even when multiple
users are in close proximity.

We further evaluate the performance of WiFinger un-
der multi-user scenario by allowing three different users
perform finger gestures simultaneously. The user locations
are illustrated in Figure 10, where the distance between
each pair of users are 5 ft, 5 ft and 7 ft respectively. The
system performance is shown in Figure 16. We can observe
the overall recognition accuracy for three different users is
around 85%. This demonstrate our system has the ability to
track more than two users simultaneously. We note that the
recognition accuracy under three users are lower than that
of the two users. This is because the signal reflections can
be easier to separate under two-user scenarios compare to
three-user scenario. Thus, a higher density of wireless links
in the environment could potentially help to improve the
recognition accuracy.
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Fig. 17: Recognition accuracy under the environment
changes.
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Fig. 18: Recognition accuracy under individual diversity.

4.4 Impact of Environment Change

We next evaluate the robustness of our system to the
environment changes. Specifically, we introduce environ-
ment changes including furniture change and people walk-
ing around that described in the experimental setup when
the participant is doing finger gestures. We then compare
the performance of our system with and without using
environmental noise removal technique. Figure 17 depicts
the performance comparison for each gesture recognition
in the home environment. We find that the environmental
noise removal technique improves the performance signif-
icantly for each of the finger gesture under both furniture
change and people walking around scenarios. Moreover, by
comparing Figure 17 with Figure 12(a), we observe that the
performance doesn’t have obvious degradation due to the
use of environmental noise removal technique. In addition,
we find that people walking around has larger impact on the
CSI measurements, as indicated by the performance under
the case without using environmental noise removal. This
study demonstrates that our system can effectively mitigate
the impact from the surrounding objects or people and is
robust to the environment changes.

4.5 Impact of Individual Diversity

We further test the resilience of our system to individual
diversity by applying the gesture profile built from one par-
ticipant to another participant. We compare the performance
of our system to the one without using the gesture pattern
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Fig. 20: System performance under different packet rate.

extraction method. Figure 18 presents the performance com-
parison for each finger gesture under individual diversity.
We observe that without using gesture pattern extraction
method, the performance degrades dramatically due to in-
dividual diversity and gesture inconsistency. Our system,
with the gesture pattern extraction, provides much higher
recognition accuracy than that of without using gesture
pattern extraction method. For example, our system could
improve the recognition accuracy by over 10% for most of
the finger gestures. These results show that by incorporating
the pattern extraction method, our system is resilient to
individual diversity. Our system, once setup, could be used
by multiple users without user-specific calibration.

4.6 Impact of Training Size
When building the profile for each gesture, our system

requires to extract the CSI patterns from multiple gesture
instances where the number is the training size. Figure 19
shows the impact of training size to the performance of our
system. This study focuses on the single user scenario where
only one user is performing the finger gestures. During
the training phase, the profile is built upon data collected
from both home and office. Moreover, the data is selected
from home location when the training size is one. Dur-
ing the evaluation phase, the profile is testing against the
data collected from both locations with different multi-path
environments. Overall, we observe that our system could
maintain high accuracy with a few instances. In particular,
our system achieves over 80% of the recognition accuracy
with one training instance, and the accuracy is improved
to over 90% with five training instances. This result shows
that our system could provide accurate gesture recognition
with small training size, hence doesn’t incur high overhead
on building the gesture profile, especially when the built
profile from one user could be used by others.

4.7 Impact of Packet Rate
As a higher packet transmission rate results in more

CSI measurements to capture, we are studying whether
existing WiFi traffic is sufficient to provide accurate gesture
recognition. We experiment with four packet transmission
rates, 5 pkts/s, 10 pkts/s, 15 pkts/s, and 20 pkts/s. The
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Fig. 21: System performance under both NLOS and LOS
scenarios.
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Fig. 22: System performance under different distance
between RX and TX.

results are shown in Figure 20. We observe that a higher
transmission rate results in a better recognition accuracy.
Moreover, with 10 pkt/s transmission rate, our system is
able to achieve more than 90% recognition accuracy. This
demonstrates that our system could work with very low
packet transmission rate. As the commercial AP sends bea-
con signals at 10 pkts/s, our system thus can reuse existing
WiFi beacon signals for accurate gesture recognition.

4.8 Impact of NLOS
We study the impact of NLOS by placing the WiFi device

and the AP in two connected rooms with the door closed.
When the door is open, there exists LOS between the AP and
the WiFi device. Figure 21 presents the performance com-
parison under the NLOS and LOS scenarios in both office
and home environments. Results show that NLOS slightly
degrades the system performance. Still, NLOS scenario has
the overall recognition accuracy at around 90% in both office
and home environments. It demonstrates that the proposed
system could even work under the NLOS scenario. This
allows us to deploy the proposed system to a wider range
of application domains.

4.9 Impact of TX-RX Distance
We study the impact of TX-RX distance by varying the

distance between the WiFi device and the AP. We exper-
iment with three different TX-RX distance, 1m, 2m, 2.5m.
The results are shown in Figure 22. We observe that a closer
distance results in a better overall recognition accuracy.
Moreover, with 2.5m distance between TX-RX, our system
is able to achieve around 92% recognition accuracy. This
demonstrates that our system could work under various TX-
RX distance setups.

4.10 Impact of Threshold Value
We also study the impact of threshold value by apply-

ing different thresholds for sliding window in multi-user
separation and similarity score in gesture identification. As
shown in Figure 23, we observe that the overall recogni-
tion accuracy for multiple users across different gesture is
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Fig. 23: System performance under different threshold.
around 92% when the appropriate thresholds are chosen for
both sliding windows size and similarity score value. Fur-
thermore, the accuracy is over 90% when sliding windows
threshold value is between 0.58 to 0.67 and similarity score
threshold value is between 0.73 and 0.8 respectively.
5 DISCUSSION

Machine Learning Techniques. Our system currently
utilizes empirically selected thresholds to achieve higher
overall recognition accuracy with existing data. Such an
approach could affect system performance especially under
the massive deployment scenarios. Hence, we propose to
use more sophisticated machine learning methods (e.g.,
CNN, RNN, etc.) to determine various thresholds instead
of empirically selection. For example, during the system
setup phase, WiFinger can utilize initial data collections and
machine learning algorithms to automatically determine the
threshold values for multi-user profile separation, critical
subcarrier selection and wavelet based denoising. Further-
more, those thresholds can be frequently updated when the
new data is collected without user intervention. We would
like to explore this as our future work to further improve
system accuracy and robustness under different scenarios.

Implementation Overhead. The wavelet-based denois-
ing technique is utilized to filter out environmental noises.
Such a technique has a very low implementation overhead
because it has been widely used in image processing, voice
recognition, etc. The MD-DTW used for gesture identifica-
tion is a comparably computational heavy approach, but the
processing time depends on various factors including the
number of enrolled finger gestures and the computational
power of the system. Currently, our system runs on Dell Lat-
itude E5540 laptop with dual-core CPU running at 1.9GHz,
4GB memory, and a built-in graphic processor. It takes an
average of about 3 seconds to complete the recognition
process. We believe that by leveraging widely available GPU
based parallelization with higher computational power on
the household computer, it is possible to cut the processing
time to complete the recognition procedure under 1 second
which is comparable to other gesture recognition systems.

Effect of User Breathing. The chest movements and the
fine finger motions share a similar magnitude. But compare
to fine finger motions (usually ranges from 1Hz to 4Hz),
the chest movements have a much lower frequency (usually
ranges from 0.2Hz to 0.5Hz). Thus, we can use a band-
pass filter to mitigate the breath motion noises with lower
frequency. We would like to include the study of chest
motion on system performance as part of future work.

6 CONCLUSION

In this paper, we exploit the prevalence of WiFi devices
and networks and design a system called WiFinger to

perform fine-grained finger gesture recognition by utilizing
the detailed CSI available in commodity WiFi devices. We
find that CSI can capture the subtle movements of finger
gestures. Our system benefits from such observation and
examines the unique pattern exhibits in the detailed CSI
for gesture recognition. To address the challenge of sig-
nal dynamic due to the environment changes, we devise
environment noise removal mechanism to filter out the
environmental noise while keeping the CSI pattern resulted
from the finger gesture. Moreover, we propose to capture the
intrinsic gesture behavior and to select critical subcarriers
for accurate gesture recognition. Additionally, to achieve
multi-user compatibility, we utilize multiple transmission
links and the large bandwidth at 5GHz to separate the signal
reflection from individual user. Extensive experiments in
both home and office environments demonstrate that WiFin-
ger is effective in distinguishing a number of finger gestures,
and that it can achieve over 90% recognition accuracy. In
addition, we show that our system can work with WiFi
beacon signals, provide considerable recognition accuracy
under NLOS scenario and work with multi-user scenario.
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