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Multiuser Full-Duplex Two-Way Communications
via Intelligent Reflecting Surface

Zhangjie Peng, Zhenkun Zhang ", Cunhua Pan J, Member, IEEE, Li Li, and A. Lee Swindlehurst, Fellow, IEEE

Abstract—Low-cost passive intelligent reflecting surfaces (IRSs)
have recently been envisioned as a revolutionary technology capa-
ble of reconfiguring the wireless propagation environment through
carefully tuning reflection elements. This paper proposes deploying
an IRS to cover the dead zone of cellular multiuser full-duplex (FD)
two-way communication links while suppressing user-side self-
interference (SI) and co-channel interference (CI). This approach,
allowing the base station (BS) and all users to exchange information
simultaneously, can potentially double the spectral efficiency. To
ensure network fairness, we jointly optimize the precoding matrix
of the BS and the reflection coefficients of the IRS to maximize the
weighted minimum rate (WMR) of all users, subject to maximum
transmit power and unit-modulus constraints. We reformulate this
non-convex problem and decouple it into two subproblems. Then
the optimization variables in the equivalent problem are alternately
optimized by adopting the block coordinate descent (BCD) algo-
rithm. In order to further reduce the computational complexity, we
propose the minorization-maximization (MM) algorithm for opti-
mizing the precoding matrix and the reflection coefficient vector by
defining minorizing functions in the surrogate problems. Finally,
simulation results confirm the convergence and efficiency of our
proposed algorithm, and validate the advantages of introducing
IRS to improve coverage in blind areas.

Index  Terms—Intelligent Reflecting Surface (IRS),
Reconfigurable Intelligent Surface (RIS), Max-Min Fairness
(MMEF), full-duplex, two-way communications.

1. INTRODUCTION

N THE future 5G-and-beyond era, wireless networks will
be required to achieve a 1000-fold increase in capacity
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compared with current networks, motivated by the growing pop-
ularity of applications that rely on high data rate transmission,
such as three-dimensional (3D) video and augmented reality
(AR) [1]. To achieve this progress, promising techniques such as
millimeter wave (mmWave) communication, ultra-dense cloud
radio access networks (UD-CRAN) [2] and massive multiple-
input multiple-output (M-MIMO) arrays [3] have been advo-
cated [4]. In addition, full-duplex (FD) two-way communication
in which two or more devices simultaneously exchange data
at the same carrier frequency has received extensive research
attention as it can double the spectral-efficiency of the wireless
communication system [5], [6]. Due to its appealing advantages,
two-way FD relaying has been extensively studied in various
scenarios, such as D2D communications [5], cognitive radio [7],
mmWave communication [8] and M-MIMO [9]. However, an
FD two-way network suffers from low energy-efficiency and
high hardware cost. For example, the large number of antennas
in M-MIMO leads to alarge number of RF chains and incurs high
power consumption, while energy-intensive transceivers and
complex signal processing techniques are required to support
the mmWave communication. Moreover, another non-negligible
bottleneck in the implementation of FD two-way communica-
tions lies in the propagation environment. In particular, besides
the loop-interference (LI) at the relay, this network must also
overcome back-propagation interference at the base station (BS)
and the users.

Thanks to breakthroughs in micro-electrical-mechanical sys-
tems and programmable metamaterials, the intelligent reflecting
surfaces (IRSs) have recently attracted extensive attention from
researchers as a means to improve both the spectral- and energy-
efficiency of wireless communications networks [10], and to
enable the future vision of smart radio environments [11]. An
IRS comprises a number of low-cost passive reflection elements
requiring no dedicated energy sources [12], and each reflection
element can independently impose a continuously or discretely
tunable phase shift onto the incident signal [13], [14]. When the
phase shifts are properly adjusted, the directly transmitted signal
and the reflected signal can be superimposed constructively at
the intended receivers or destructively at other unintended users.
Note that an IRS can also implement fine-grained 3D passive
beamforming [15], and thus its function resembles that of an FD
MIMO amplify-and-forward (AF) relay. The difference is that
the IRS transmits signals through passive reflection, requiring no
signal processing to deal with LI and leading to negligible energy
consumption. In addition, unlike active relay transmission, an
IRS does not generate new signals or thermal noise. Thanks to its
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Fig. 1. Tlustration of the IRS-aided FD two-way communication between a
MIMO BS and K SISO users.

miniaturized circuits, an IRS also has the attractive advantages
of light weight, small size and high integration, which enables it
to be used to improve indoor propagation environments [16]. For
outdoor communication scenarios, it can be integrated into the
existing infrastructure, such as building facades, station signs
and lampposts.

Due to these promising features, joint precoding at the BS/AP
and reflecting at the IRS has been extensively studied in one-
way communication networks, for the MISO case [17]-[20],
physical layer security [18], [21], [22], simultaneous wireless
information and power transfer (SWIPT) [23], mobile edge
computing [24], and multigroup multicast [25]. In addition, the
deep reinforcement learning technique has been leveraged for
this joint design [26]. More system factors, such as channel
estimation and the overhead required for configuring the phase
shifts, are taken into account in recent works [27]. However,
there is a paucity of investigations on the study of the integration
of IRS in two-way communications [28]-[30]. The work of [28]
and [29] considered communication between two SISO end
users and two MIMO sources, respectively, both of which are
aimed at maximizing the system sum rate. A cognitive radio
system consisting of an FD BS and multiple half-duplex users
was considered in [30], where the system sum rate of the
secondary network was maximized with a constraint on the
interference to the primary users. However, the fairness between
uplink and downlink transmissions needs to be guaranteed in FD
communication, and this has not been taken into account in these
studies.

In this paper, we propose to employ an IRS in an FD two-way
network to provide signal coverage for users in blind areas, as
shown in Fig. 1. Specifically, unlike the relay schemes in [31],
in our proposed system, both the uplink and downlink trans-
missions can occur simultaneously and operate at the same
frequency via the reflection of the IRS, and thus potentially
doubles the spectral-efficiency. In order to guarantee fairness, the
max-min fairness (MMF) criterion is chosen as the optimization
metric, which is a complex non-differentiable objective function
(OF) that cannot be solved by applying the existing methods
proposed in the related works such as [17].
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We summarize the main contributions and challenges of this
work as follows

1) To the best of our knowledge, this is the first work to con-
sider fairness in a multiuser FD two-way communication
network with the assistance of an IRS. Specifically, we
jointly optimize the precoding matrix of the BS and the
reflection coefficients of the IRS to maximize the weighted
minimum rate (WMR) of all users, subject to maximum
transmit power and unit modulus constraints. This prob-
lem is challenging to tackle for the non-differentiable OF
and the highly coupled optimization variables.

2) By applying the weighted minimum mean-square error
(WMMSE) criterion and introducing certain auxiliary
variables, the original problem is transformed and solved
effectively through the proposed block coordinate descent
(BCD) algorithm, in which each set of variables is alter-
nately optimized. In particular, the precoding subproblem
is formulated as a second-order cone programming prob-
lem (SOCP), and the reflection coefficient subproblem
is derived as a quasi-SOCP with a non-convex quadratic
constraint.

3) Inorder to further reduce the computational complexity of
the BCD algorithm, we proposed a modified Minorization-
Maximization (MM) algorithm. Specifically, unlike the
quadratic form in [20], the OFs of both subproblems are
non-differentiable. We thus utilize the smooth approxima-
tion theory [32] to obtain differentiable approximations for
them. Then, the corresponding minorizing functions are
derived sequentially, which leads to surrogate problems
with closed-form solutions. Hence, both approximated
subproblems are solved efficiently by the MM algorithm
in an iterative manner.

4) Our simulation results illustrate the feasibility of the pro-
posed approach and the advantages of using an IRS in
assisting the FD two-way communication. Additionally,
the results also provide guidance for practical engineering
designs, and highlight the trade-off between improved
self-interference (SI) elimination when the IRS is de-
ployed near the users, and reduced propagation blockages
when the IRS is deployed near the BS. The convergence
and the efficiency of the proposed algorithm are also
verified.

The rest of the paper is organized as follows. Section II
describes the system model involving multiuser FD two-way
communication via an IRS, and formulates the WMR maxi-
mization problem. In Section III, we derive the subproblems
corresponding to each set of variables by reformulating the
original problem and performing alternating optimization. In
Section IV, we propose a low-complexity version of the algo-
rithm. Extensive simulation results are presented in Section V.
Finally, we conclude the paper in Section VI.

Notation: Vectors and matrices are denoted by boldface lower
and boldface capital case letters, respectively. The quantities
a., and A, , respectively denote the mth element of vector a
and the (m, n)-entry of matrix A. CM*N denotes the space of
M x N complex-valued matrices, and j = \/—1 is the imagi-
nary unit. A¥, AT and A* denote the Hermitian, transpose and

Authonzed licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on Apnl 17,2021 at 16:46:03 UTC from IEEE Xplore. Restrictions apply.



PENG ef al.: MULTIUSER FULL-DUPLEX TWO-WAY COMMUNICATIONS VIA INTELLIGENT REFLECTING SURFACE 839

conjugate of matrix A, respectively. The trace and Frobenius
norm of a matrix are denoted by Tr[-] and || - ||, respectively.
|| -|l+ and || - |2 denote the l;- and ly-norm of a vector, re-
spectively. For a complex scalar a, Re{a}, E[a], |a| and Z(a)
denote the real part, expectation, absolute value and angle of
a, respectively. The function diag(-) represents diagonalization
operator. A > B means that A — B is a positive semidefinite
matrix. The Hadamard product and Kronecker product of A and
B are respectively denoted by A ©® B and A ® B. CN(0,0?)
denotes the Gaussian distribution with mean 0 and variance 0.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Signal Transmission Model

Consider an FD two-way communication system with one
BS and multiple users, where both the downlink and uplink
transmissions occur at the same time and the same frequency
as shown in Fig. 1. Due to path loss and blockages, no direct
link between the BS and the users is assumed to exist. An
IRS is deployed to assist the data transmission by establishing
additional non-line-of-sight (NLoS) links.

The BS is equipped with N; > 1 transmit antennas and
N; > 1 receive antennas. In the service area of the IRS, there
are K users, each equipped with a pair of transmit and receive
antennas. Additionally, we assume that each user transmits
signals with a fixed power.

The signal transmitted from the BS is given by

K
Xp = Z frsp ik, (1)

k=1

where sp_x denotes the desired data symbol for user k and f}, €
CNe*1 is the corresponding beamforming vector. Similarly, the
transmit signal at user k is

Tuk = v Presuk, (2)

where sy 1 denotes the data symbol sent by user k, and P is
the corresponding transmit power. Defining £ = {D, U} and
K={1,...,K}, we assume each s; ; for Vi € L,k € K is an
independent Gaussian data symbol and has unit power, i.e.,
E[Sg?ks?‘k] =1 and E[ﬂ.ks;j] =0, {I, k} 7‘—' {E,_}'} Let us de-
note F = [fy, ..., fx] € CNe*K as the collection of all beam-
forming vectors, so that the power constraint of the BS can be
written as

Sp = {F|Tr [F'F] < Puax}, A3)

where P,y is the maximum transmit power of the BS.

The IRS contains M passive reflection elements that adjust
the phases of incident signals. The set of reflection coefficients is
represented as the vector ¢» = [¢1, ..., ¢ar]T, orequivalently as
a matrix of @ = diag(¢), where |¢p|> =1,Vm=1,..., M.
In order to provide efficient transmission, the antenna spacing
at the BS should be large enough so that the small-scale fading
associated with two different antennas can be assumed indepen-
dent. A similar assumption holds for the reflection elements of
the IRS. The baseband channels from the BS to the IRS, from the
IRS to the BS, from user & to the IRS, and from the IRS to user

k are denoted by G € CM>*Nt| G, € CM*Ne |, , € CM*1,
and h, , € CM*1  respectively. Furthermore, we denote the
loop channels between the transmit and receive antenna(s) of
user k and the BS by hg and Hg, respectively. The CSI for all
channels is assumed to be quasi-static and perfectly known by
the BS.!

The signal received by user k can be modeled as

K
Yok = hi  @Gyfrsp i + Z hEkq’thmSD,m

m=1
m#k

e
Multiuser interference

+ \/P_L\/ Prhgisu, K+ \/_\/ Pihil, ®hy gsu, K

Loop—lnterfe rence

Self- mterfere nce

=1 Z '\/ hr kq)ht mSU,m +ng, (4}

m?ék

Co-channel interference

where pr, and pg with 0 < pr,, ps <1 are LI and SI coeffi-
cients, respectively, and n; is additive white Gaussian noise
(AWGN) following the distribution CA/ (0, ¢2). The coefficient
p1, is introduced to model the fact that LI suppression methods
such as antenna isolation may not completely eliminate the LI.
Similarly, SI elimination methods can to some extent reduce
the influence of SI reflected from the IRS,? and thus we also
introduce the coefficient pg to model the residual SI compo-
nent. Due to blockages as shown in Fig. 1, the user-to-user
interference contribution will likely be small, and thus we treat
it as AWGN and include it in ng. In particular, we denote
the sum of the LI term and ny in (4) as ip x, whose average
power is given by o3 , = |ip x|* = prPx|hik|*> + . Then,
the signal-to-interference-plus-noise ratio (SINR) at user k is
given by

2
b, BGufy

ME=% 5 e 3 ;
5 b 8Gutn[+ 35 o[t @b 10,
m=1 - m=1 d

m;_ék
(&)
where the coefficient p is defined as
_Jps, ifm=F;
4 1, otherwise.

?

" Though this assumption is idealistic, it allows us to explore the upper bounds
for the performance of IRS-based FD networks. The robust transmission design
based on imperfect CSI was studied in [33] for a multiuser half-duplex system,
and its extension to FD systems will be left for future work.

2ACCD]‘d]l‘lg to (4) to partially eliminate the SI, the scalar hH  Phy i should be
estimated by each user, for example as follows. After the reﬁectlon coefficients
of the IRS calculated at the BS are sent to the IRS controller, the BS remains
silent and the IRS works with the calculated reflection coefficients. Then, each
user sends one or more pilot symbols to estimate the scalar channel h e Phy ke
while the other users remain silent. This step is repeated until all users have
estimated their channels.
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Similarly, the signal received at the BS yy € CN~*! is given
by

K
Yu:— G}-_I‘i'ht‘k V PkSU_.k =l Z Gli-_lq)ht‘m % PmsU,m
m=1

m#=k
~ - s
Multiuser interference
K K
+ HB fmSD,‘m + Gl’ @Gt fmSD,m +1ng,
m=1 m=1

r ~ ’

Self-interference

s
Loop-interference

(6)

where ng is the AWGN noise vector, whose elements are in-
dependently distributed as CA/(0, o2). Based on techniques for
LI cancellation for FD AF MIMO relays [34], [35], we assume
the BS LI can be effectively eliminated. With the calculated
reflection coefficients of the IRS, the SI received at the BS is
known and can be effectively mitigated. We assume that any
residual noise resulting from the interference cancellationis i.i.d.
AWGN, denote cr% as the average power of the total noise at the
BS, and define i, ~ CN(0,0%), n=1,..., N;. Then (6) can
be simplified to

K
yu = GI®h; x\/Prsux + Z GP®h¢ v/ Pnsum +ig,

m=1
m#=k

)

where ig £ [iq,...,in,]7T.

Denoting the set of receive beamformers at the BS by Uy =
{uy k, Vk € K}, the recovered signal for user k is given by

K
R L ( > GE®hmy/Prsum+ iB) . (®
m=1
Then, the SINR of user £’s recovered signal is formulated as

2
Py ‘ug‘kGfL}ht,k

)]

TR =" 5 2 '
2
> Pn [ull GE®h.m| + 0 uul
EE

Accordingly, the maximum achievable rates (nat/s/Hz) of user
k for downlink and uplink transmission are respectively given
by

Rp i (F,¢)=log(1+ps), (10)
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and

Ry (@) =log(1+uk). (11)

B. Problem Formulation

In this paper, we propose to guarantee the fairmess among
the users by maximizing the WMR by jointly optimizing the
precoding matrix F and the reflection coefficient vector ¢.
Specifically, denoting w; ;. > 1 as a weighting factor, the WMR
maximization problem is formulated as

st. F€5r, (12b)
¢ eSs, (12¢)

where the set Sp is defined in (3), and the set Sy =
{¢||¢m| =1,1 <m < M} imposes the unit-modulus con-
straint on ¢.

Remark I1: Each weighting factor w; x, in the OF of Problem
(12) represents the inverse of the priority of the corresponding
user. The optimal solution of Problem (12) has a tendency to
equalize the weighted rate of each user for both the uplink and
downlink, which is consistent with our goal of ensuring fairness.
However, the desired uplink and downlink rates in a cellular
system are often asymmetric, so one may wish to choose weights
that account for this difference. In particular, choosing a larger
wi,x leads to a lower data rate for user k in direction [.

Note that Problem (12) is difficult to solve as a result of the
coupling between the precoding matrix F' and the reflection
coefficient vector ¢, as well as the non-convex constraint on
¢. In the following, efficient algorithms are provided to solve
this problem.

III. SOCP-BASeED BCD METHOD

In this section, we derive an efficient strategy for solving
the formulated problem (12). We first rewrite (10) and (11)
by using the equivalence between the WMR and the WMMSE
to reformulate the original problem (12) into a more tractable
form [36], then optimize the subproblems relying on the block
coordinate descent (BCD) algorithm framework.

A. Reformulation of the Original Problem

From (8), the mean squared error (MSE) of the estimated
signal at the BS corresponding to user k can be derived as (13),
shown at the bottom of the next page. Similarly, upon intro-
ducing the set of decoding variables Up = {up , 7k € K}, the

eur=E [(Eu,k —sux)™ (Bux — §U,k)}

m=1

K
Y Pnufl (GH®h, ,hY, 3G uy ;. — 2Re {x/PkuE1kG?*I-ht,k} T LR

K
(\/FkugthfIthfk—l)H(\/ITkuﬁ?kGP'ihm—l)+ 3 Paull (GE®h, mhf, 37 G uy s +0f Neull ug

m=1m#k

(13)
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estimated signal symbol of user k is given by $p » = u, YD k-
Then, the MSE of the estimated signal at user k is written as
(14), shown at the bottom of this page.

Introducing two sets of auxiliary variables: Wp =
{wp,x > 0,Vk € K} and Wy = {wy x > 0,Vk € K}, the ex-
pressions for Rp  and Ry & can be transformed as follows

(15)
(16)

ok (F, ¢,Up, Wpb) = log |wp x| — wp kepx + 1,
Tuk (@, Uy, Wyu) = log |wy k| — wu geux + 1.

Note that for a given reflection coefficient vector ¢,
rp.x(F, ¢,Up, Wp) and ru (@, Uy, Wy ) are concave func-

tions for each set of variables when the others are fixed. Hence,
we can reformulate Problem (12) as

uitee Bk Lersriad ¢
F.¢

st. FeSp, (17b)

b € Ss. (17¢)

Comparing the expressions of Rp ; with rp » and Ry j with
v,k the optimal Wp and Wy can be readily obtained as follows

wWp gk = Bﬂfk, wy g = Bﬁ?k, k. (18)

For given F, ¢ and Wh, by setting the first-order derivative of
o (F, ¢,Up, Wp) with respect to (w.r.t.) up x to zero, we can
obtain the optimal U, as shown in (19) shown at the bottom of
this page. Similarly, the optimal linear receivers in Uy can be
derived by setting the first-order derivative of 7y x (¢, Uy, Wu)
W.L.t uy  to zero, as follows

VPGH®h, ;
K
Y. P,GH®h, ,hf $UG, +o2Ly,

m=1

Uy = (20)

In the following, we adopt the BCD method to solve Problem
(17) by alternately optimizing the OF over each of the variables.
Since the optimal Up, Wh, Uy and Wy in each iteration are
given by (18)-(20), the main task is the optimization of the
precoding matrix F' and the reflection coefficient vector ¢.

B. Optimizing the Precoding Matrix ¥

Note that the precoding matrix F is not related to the rate of
the uplink transmission 7y x, so to optimize F for a given ¢, we
can simplify the OF of Problem (17) to

min {wD__kTD?k (F)} (21)

We introduce a selection vector t; € R**!, in which all
elements are zero except the kth one. Then, from (14), we have

K
epk= Y uhzupk(Ftm) GIE"h, yhl, $GFt,y,

m=1

— 2Re {ug,klﬂfk@GtFtk}

K
+ Y pPmub jup xhf ®hy il &h,

m=1
- U%,kuﬁ,kuD,k +3
= Tr [up, yupxF" Gt ®"h; xh, G F]
— 2Re {Tr [uf, yh; G Fti] }

K
+ Y pPmui gup xhi ®hy il &h,
m=1
+ 0P xUp gDk + 1. (22)

Substituting (22) into (15) and defining hpi(F) =
wpkrp.k(F), Vk € K, we formulate the subproblem for

epx =E [(§D,k —spx)" (bpx — SDJ:)}

K

= (up W BGf — 1) (uf WL DG — 1)+ Y up up s BG L, £ GHS N,

m=1m+#k

K
* H H H 2 *
i E meuD,kuD‘khr,kq)hr‘mht,m‘I) hli_.k + JD‘IkuD‘k_UDk

m=1

K
= Y uhpup xhf @G Enfh G @, k — 2Re {uf, I G fi }

m=1

K
+ Y pPmup gup xhiy ®hy i, @%hy k. + 0p gub jup k + 1 (14)
m=1
K K -1
up x = hEkchtfk( > b GGl ek + > pPruhr®hemhil,, ®he x + og‘k) (19)

m=1

m=1
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the optimization of F from Problem (17) as

max Ecﬂei,'cl{hn,k (F)} (23a)
s.t. F e Sp. (23b)

It can be derived that

hp i (F) = 2Re {Tr [C{F]|} — Tr [F"B«F] + consty,
(24)
where B, C; and const,. are respectively given by

A % HxH H

Bk = wD,ka,kuD,kuD,th, @ hl’,khr,lk@Gt?
A % * HyH H

Ck = wD‘ka‘kuD,k Gt. (I) hr,ktk 3

consty

yay 2 *
£ wp i log |wp k| + wpx + wp rwp & (UD_kHD,.kUD,k +1)

K
— Wp kWD & Z pPmu, yup xhiy ®he mhi, ®h, .
m=1
Then, by introducing auxiliary variable ¢ for the pointwise
minimum expressions, Problem (23) can be reformulated as
follows

max 5 (25a)
st. hpy(F) >6,Vke K, (25b)
Feds, (25¢)

Problem (25) is an SOCP, which can be optimally solved by the
existing optimization tools, such as CVX.

C. Optimizing the Reflection Coefficient Vector ¢

In this subsection, we optimize ¢ given F. Defining

r] A% H
H: x = up zup xhr khy g,

K
G.= Y G tal,
=1

K
Hix £ ) pPubemhily,

m=1

we can reformulate (14) as
€Dk = Tr [@HI:.II-_;C i’ét + (I’Hﬁr.ki)ﬁt‘k}
—2Re {Tr [u}, , G:fchf @]} + J%)‘k'UB,kUD,k +1
o . . i
=¢" (Hr?k © (Gt + Ht,k) ) (o}

—2Re {gg‘kqﬂ +J%,ku51kun‘k 47, (26)

where gp x, is the collection of diagonal elements of the matrix
[uf,  Gifihy] [37, Eq. (1.10.6)], ie.

) T
_— [[ua‘thfkhEk] N— [uB?thfkhEk]M:M}
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Similarly, from (13), we have
e =Tr [@H (‘}r‘_k@ﬁt] — 9Re {Tr [\/Fkht,kugkc::*@]}
+ oguy) guy g + 1
= 6" (Gox O HY ) ¢ — 2Re {7 18}

+opup guuk + 1, @7

where

A H H
Gr?k = GruU,kuU:kGr .

K
Ht = Z tht.mhﬁm:
m=1
and vector gy  is the collection of diagonal elements of the
matrix [\/Peh; pug  GH.

Define by 1 (@) = wy ki k(@) forVl € L, k € K. Substituting
(26) and (27) into (15) and (16), respectively, it can be derived
that

h;,k ((f)) = 2Re {aﬁké} =3 qﬁHAg‘kd) + consty g,

where a; ;, A; ; and const; ;. are respectively given by

(28)

A # * *
ALk = Wy Wy k81 k>
ﬂ = ” s T
Ap i = wprwprHer © (Gt + Ht,,k) 5
Aux 2 G.0HT
Uk = wurwWu ke © Hy
Fay
constp x = wp.k (log |lwp x|+ 1)
2 *
— WD kWD k (JD,_J:UD,kquk + 1) )
iy
consty x = wu k (log|wy k| +1)

2 H
— WU kWU k (JUUU‘kuU.k F1).

Then, the subproblem for the optimization of ¢ is formulated as

mgx !me{hi,k (&)} (29a)
st. P eS,. (29b)
Introducing auxiliary variable e, Problem (29) is equivalent to
]:%ag{ € (30a)
sit. hx (@) >eVlie LVEeK, (30b)
PeS,. (30c)

Problem (30) is still non-convex, due to the unit-modulus
constraint (30c). To address this issue, we take a straightfor-
ward approach that replacing S, with the relaxed constraint
set S;Ela" ={o||¢;m| <1,1 <m < M}, then Problem (30)
is transformed into an SOCP which can be optimally solved.
Denote the optimal solution of the relaxed version of Problem
(30) by @. Then, a proximate optimal solution for the original
Problem (30) can be obtained by ¢ = exp{jZd}, where Z(-)
and exp{-} are both element-wise operations. Note that the
global optimality of q?) obtained may not be guaranteed at each
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Algorithm 1: SOCP Based BCD Algorithm.
Initialize: Initial iteration number n = 1, and feasible F1,

'

1: repeat

2: Given F™ and ¢", calculate the optimal decoding
variables L{SH in (19) and the optimal linear receivers
Ugt in (20);

3: Given F™, ¢™, U and U™, calculate the optimal
auxiliary variables WE‘.H and W{}“ in (18);

4: Given Up ™, UpT, Wit Wit and ¢", calculate the
optimal precoding matrix F"+! by solving Problem
(25);

5: Given U™, U™, Wi, Wit and F™+!, calculate
the optimal reflection coefficient vector o1 by solving
Problem (30);

:Setn ¢+ n+1;

7: until The value of the OF in (17) converges.

(=)}

iteration. To ensure the convergence, we adopt the following
strategy:

¢, it min {hx (9) } > min {hue (9));

¢, otherwise.

b= (3D

D. Algorithm Development

1) SOCP Based BCD Algorithm: Based on the discussions
above, we provide the details of the proposed BCD algorithm
in Algorithm 1, where the optimization variables Up, Uy, Wh,
W, F and ¢ are alternately updated to maximize the WMR of
all users. In Algorithm 1, the globally optimal solution to Prob-
lem (25) can be obtained at each iteration. While the adopted
relaxation technique leads to some performance loss in solving
Problem (30), which mainly depends on the approximation gap
between q?) and ¢. Hence, the optimality of Algorithm 1 is
not guaranteed. However, the simulation results in Section V
illustrates that the performance loss is actually limited when the
IRS is deployed at the BS side.

1) Complexity Analysis: First, we have to compute the value
of Up, Uy, Wp, and Wy;. The computational complexity
of this step is analysed as follows: The order of complexity
for computing each up ; in (19) and each uy ; in (20) is
given by O(K (M2 + N;M)) and O(K (M2 + N.M) + M3),
respectively. The complexity order of computing Up and Uy
is O(K?(M? + N;M + N.M) + KM?3). The complexity of
computing Wp and Wy is equal to that of computing the K
values of ep  in (14) of order (’J(K(M'2 + NiM)) and the K
values of ey x, in (13) of order O(K (M? + N, M)), respectively.
Thus, the overall complexity of computing Wp and Wy is
O(K?*(M? 4+ N;M + N.M)), and the total complexity is of
order O(K?(M? + N:M + N.M) + KM3).

Then, we analyse the complexity of solving the two SOCPs in
steps 5 and 6. Problem (25) contains K rate constraints in (25b)
and a power constraint in (25c¢). Since each of the constraints is
of dimension K N;, the total complexity is of order O( K°-°N3)

[38]. Similarly, the complexity of solving the relaxed version of
Problem (30), which contains 2 K rate constraints with dimen-
sion M and M constant modulus constraint with dimension one,
is of order O(M3-5 + M(2K )3 + M3(2K)%%). As a result,
the total order of the complexity for Algorithm 1 per iteration is
given by

(32)

CA]g,l =0 (M3.5 + _ﬂ{fS K2-5 2= KSSN{?)

which is dominated by the complexity of solving Problem (25)
and (30).

IV. Low-COMPLEXITY ALGORITHM DEVELOPMENT

In Algorithm 1, there are an SOCP and a quasi-SOCP that have
to be solved in each BCD iteration. To reduce the computational
load, in this section we propose a low-complexity algorithm
with closed-form solutions. Since the OFs of Problem (23)
and (29) are non-differentiable, we first derive a lower-bound
approximation by introducing a smooth approximation [32]. The
approximated problem is then solved using the MM method.

The following two smoothing functions f(F') and f(¢) are
introduced to approximate the OFs of Problem (23) and (29),
respectively:

iﬂeig{hn,k (F)}

~f(F) = —i log (Z exp {—php,x (F)}) NES

kek
Ie?;]gét {hx (@)}
~ £ (#) = —log (Z > exp {—phu g (aﬁ)}) . (34)
#* lel kekl

where i > 0is a smoothing parameter. For p > 0, the following
inequalities hold:

£ () < min (hox (P} < £ (F) + 5 oK) (39

£(9) < min {hix($)} < f(4)+—log2K). (36)
leL.kek 7

As shown in (35) and (36), f(F) and f(¢) are the
lower-bounds for the OFs of Problem (23) and (29), respec-
tively. Moreover, it has been proved in [25] that function
—ﬁ log(} " ex exp{—pxy}) is increasing and concave w.r.t. ry.
Note that quadratic functions hp x(F') and h; x(¢) are concave
w.rt. F and ¢, respectively, so f(F) and f(¢) are concave
functions w.r.t. F' and ¢, respectively.

Recall that ]IliIlkE,( {th(F)} and mj.ﬂgg_ﬁ‘lkex {h;,k (Qﬁ)} are
piecewise functions and non-differentiable, which is the reason
why we adopt the smoothing method. Thus, the strategy of
initializing and adjusting p should be chosen appropriately. On
the one hand, in the early stage of the BCD algorithm, a large
p may trap F™ and ¢" in a local stationary point far from the
optimal solutions of Problem (23) and (29). On the other hand,
in order to make the algorithm converge to globally optimal
solutions, a large p is required to improve the approximation
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accuracy in the later stage. In addition, it should be noted that the
algorithm will produce extremely small intermediate variables
due to a large p, thus degrading the accuracy. Therefore, it is
necessary to set an upper bound piqy for p.

A. Optimizing the Precoding Matrix F

Upon replacing the OF of (23) with f(F') given in (33), the
subproblem for the optimization of F is approximated as follows

max f(F) (37a)

st. FeSp. (37b)

The OF f(F) is continuous and concave but is still too complex
to optimize directly, which motivates us to adopt the MM
algorithm. The MM algorithm [39], [40] is widely used for
resource allocation in wireless communication networks [20],
[21], [25], [36]. We will use the MM algorithm to solve a
series of more tractable surrogate problems satisfying several
conditions, instead of the original one. Denote the optimal
solution of the surrogate problem at the nth iteration by F".
The resulting sequence of F™ is guaranteed to converge to the
KKT point of Problem (37) [25], and the sequence of OF values
{f(F1), f(F?),...} must be monotonically non-decreasing.

To describe the conditions that the OF of the surrogate
problems must satisfy, we define f'(x™;d) as the directional
derivative of f(x"), i.e.

fX"+Ad) - F(x")
5 A

f (x";d) = lim
A0

The OF of the surrogate problem introduced at the (¢ + 1) st
iteration, denoted by f(F|F"), is said to minorize f(F) if [40]

1) f(F"[F™) = f(F"),VF" € Sp;

2) f(FIF) < f(F),VF,F" € Sp;

3) _f’(F|F“; d)|p=p~ = f'(F*;d),Vd with F" 4+ d € Sp;

4) f(F|F™) is continuous in F and F".

To obtiain the surrogate problems, we introduce the following
theorem:

Theorem I: For any feasible ¥, f(F') is minorized with a
quadratic function at solution F™ as follows

f (F|F™) = 2Re {Tr [VHF]} + oTr [FYF] + consF,
(38)
In (38), V and consF are respectively defined as

V 23" 9o (F") (Ci — BYF") —oF",

kek

(39a)

consF' 2 f(F™) + Tt [(F“)HF“]

— 2Re {Tr lz ok (F™) (CE - (F”)HBk) F“] } ,
kel
(39b)
where

exp {—phpx (F")}

gk (F") = > ke exp{—php x (F7)}’

kek, (40a)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fa
o=

—max {tply} — 2 max {tp2;} , (40b)

tp ]-k é wD‘_ka,kuB‘IkuD,k hsk‘I'Gt G?@Hhr,k 3

tp2 2 Praztpl? + |Ckll% +2v/ Prac|BiCkllz.  (40d)

Proof: Please refer to [41, Appendix A]. o

We can formulate the surrogate problem for solving F at
each iteration by replacing the OF of Problem (37) with (38), as
follows

max 2Re {Tr [VHF] } +aTr [FHF] + consF’

(40c)

(41a)

st. FeSp. (41b)

The optimal closed-form solution of Problem (41) can be ob-
tained using the Lagrangian multiplier method. Introducing the
Lagrange multiplier ¢, the Lagrangian function is written as
L(F,() =2Re {Tr [VHF]} + aoTr [FHF]
+consF — ¢ (Tr [F'F] — Puax) . (42)

Setting the first-order derivative of L(F, () w.r.t. F to zero,
we can obtain the solution of F as follows

v
F= e (43)
Given the power constraint Tr[FHF]| < Py, it follows that
Tr [VHV]
TR < P, max- (44)
((—a)

The left hand side of (44) is a decreasing function w.r.t . As a
result, we obtain the optimal solution of F at the nth iteration
as follows

—_— :{—V/a, if (44) holds when ¢ =0;

—v/Pmax /Tt [VEV]V, otherwise.

(45)

B. Optimizing the Reflection Coefficient Vector ¢

Replacing the OF of (29) with f(¢) given in (34), the ap-
proximated subproblem for the reflection coefficient vector ¢ is
given as follows

ey f(®) (46a)
st peS, (46b)

Similar to the process of optimizing F in the previous sub-
section, we adopt the MM algorithm framework. Note that
constraint (46b) is non-convex. To guarantee convergence, the
conditions of the minorizing function f(¢|¢™) should be mod-
ified as follows [42], [43]

) f(¢"@") = f(9"),Vo" € Sy;

2) f(9l9") < [(9), Y, 9" € Sy;

3) ['(¢l¢";d)lg=gm = f'(¢";d),Vd € Ts,(¢);

4) f'(qf)|¢:“) is continuous in ¢ and ¢™.
where Js, (¢) is the Boulingand tangent cone of S, A feasible
f(@|@™) can be constructed as shown in the following theorem:
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Theorem 2: For any feasible ¢, f(¢) is minorized with the
following function:

f (¢1¢") = 2Re {v"'¢} + consg, (47)
In (47), v and cons¢ are respectively defined as
vad- e, (48a)
consp £ f(¢™) +2M B — 2Re {d" 9"}, (48b)
where
d2 YN gk (6") (aue — Alx9"), (49a)
leL kek
exp {—phik (@)}
gk (") £ : —_ le L,keK, (49b)
e () S ep (e (7))
IeC kek
gL — Q#D?F;‘;X { llazella + MAmax (AI,kAEk)
+ 2”A£'kaltk”1} = ﬂ?—?rx {Ama.x (AU&')} . (49¢)
Proof: Please refer to [41, Appendix B]. i

The surrogate problems of ¢ at each iteration with closed-
form solutions is formulated by replacing the OF of Problem
(46) with (47), as follows

mgx 2Re {quf)} + consg (50a)

st. e 84,5.

The optimal solution of ¢ at the nth iteration is given by

¢" t1 =exp{jLv}, (&1))

where /() and exp{-} are element-wise operations as before.

(50b)

C. Algorithm Development

In theory, by adopting the MM method to solve the subprob-
lems (41) and (50) instead of solving Problem (17) directly,
the precoding matrix F and the reflection coefficient vector ¢
can be optimized at a lower computational cost. However, the
convergence speed of the proposed MM algorithm is limited by
the tightness of the minorizing functions f(F|F™) and f(o|¢™),
which is mainly determined by « in (40b) and 3 in (49c).
Although the MM algorithm requires little computation per
iteration, the large number of iterations required for conver-
gence may lead to a long total operation time. Therefore, we
introduce SQUAREM [44] theory to accelerate the convergence
of the proposed MM algorithm. Specifically, the number of MM
iterations required at each update of F' or ¢ is reduced to 2.

1) BCD-MM Algorithm: The accelerated version of our pro-
posed algorithm referred to as BCD-MM, is detailed in Algo-
rithm 2, where the OF of Problem (12) evaluated at F™ and ¢"
is denoted as Obj(F™, ¢™), and the original MM iteration rules
of F given in (45) and those of ¢ given in (51) are denoted
as the nonlinear fixed-point iteration maps 2t (-) and Miy(-),
respectively. As shown in step 15, we propose to define an
adjustment factor ¢ to gradually increase p to pimqg-

Algorithm 2: BCD-MM Algorithm.

1: Initialize iteration number » = 1 and feasible F'! and
@'. Calculate Obj(F1, ¢'). Set p, ftmag, ¢, maximum
number of iterations nyax and error tolerance &;

2: Given F™ and ¢", calculate the optimal decoding
variables Mg“ in (19) and the optimal linear receivers
Uyt in (20);

3: Given F", ¢",UnT" and U™, calculate the optimal
auxiliary variables Wi ™" and Wi in (18);

4: Calculate F; =Mp(F")and Fy = Mp(Fy);

5: Calculate Q; =F; —F"and Q; =F; — F; — Qq;

6: Calculate step factor o = —H%H-?;

7: Calculate F*+1 =F" — 2w Q; + w2Q,.

8 lfF“+1¢Sp,scaleF“+1<—ﬂF—_,_—1-””‘f““”‘F”+1;

9: I f(F™)|p—gn < f(F")|g—pn, set
w + (w —1)/2 and go to step 8;

10: Calculate p; = My (™) and Py = My (D, ):
11: Calculate q; = ¢; — @™ and g2 = ¢y — P, — q1;
12: Calculate step factor oo = — “g—;éli—;
13: Calculate " ! = exp{£(¢™ — 2wq; + @2q2)};
14: If f(¢" ") |[p=pn+r < f(@")|p=pn+1, set
w ¢ (w — 1)/2 and go to step 13;
15:  Set g + max(p*, fmaz);
16: If |Obj(F™1, ¢™*1) — Obj(F™, ¢")|/
Obj(F™, ¢") < € Or n > nypyax, terminate.
Otherwise, set n < n + 1 and go to step 2.

The MM method yields monotonically non-decreasing OF
values for (37) and (46), ie. f(F") < f(F1) < f(F2) and
f(@") < f(¢y) < f(¢;). Both steps 9 and 14 ensure that the
value of the OF in Problem (12) is non-decreasing. Additionally,
the value of the OF must have an upper bound, due to the lim-
itations on the maximum transmit power Pp,,x and the number
of reflection elements M. Hence, Algorithm 2 is guaranteed to
converge.

Note that the KKT optimality of the converged solution of
MM algorithm has been proved and verified widely in existing
literatures, such as [25], [36] and [40]. Hence, the converged
solution {F*, ¢*} generated by Algorithm 2 satisfies the KKT
conditions of problems (37) and (46). When the first equality in
(35) and that in (36) hold, problems (37) and (46) are respectively
equivalent to (25) and (30). Then, it can be readily verified
that {F*, ¢*} satisfies the KKT conditions of Problem (12).
In fact, the approximations in (35) and (36) are very tight
when smoothing parameter y is sufficiently large. That is, the
converged solution of Algorithm 2 is very close to a KKT point
of Problem (12). Moreover, by gradually increasing p to reduce
the approximation gap, Algorithm 2 actually has a relatively high
probability of converging to a good locally optimal solution of
Problem (30).

1) Complexity Analysis: First, as discussed in III-E1, the
complexity of computing Up, Uy, Wp and Wy is of order
O(K2(M? + N:M + N.M) + KM3).
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Fig.2. Simulated IRS-aided FD two-way multiuser communication scenario.

Second, we analyze the computational complexity of solving
Problem (23) and (30) with the proposed MM algorithm. The
computational complexity of optimizing F' lies mainly in the
calculation of V in (39a) and « in (40b), whose complexity in
turn depends on gp  in (40a) and tp2; in (40d), respectively.
Since the K values of hp x(F™) are repeated in every gp x(F"),
the complexity of computing gp  is O(K (N;M? + K2N, +
KN2)). The complexity for each tp2, is O(K2N, + KN?2),
so the complexity order for a is O( K (K2N; + KN?)). Recall
that to calculate F™*+1 and ¢"*!, only two MM iterations
are required in each BCD iteration. Hence, the complexity of
calculating F™"*! is given by O(K (N;M?2 + K2N, + KN2)).
The calculation of g; (@™ ) in (49b) and 3 in (49¢c) comprises the
main complexity of calculating "1, The order of complexity
for each hyx(¢p") is O(KM?), and thus that for g;x(¢")
is O(K? M?). Additionally, the computational complexity of
calculating the maximum eigenvalues of A, ; and At,kAEk is
of order O(M?). Thus the computational complexity of calcu-
lating 3 in (49c) is of order O(KM3), and that for ¢™*' is
O(K? M? + KM3).

Finally, the overall complexity of Algorithm 2 is of order

Caiga = O (K*N;M + K2N:M + K2N2 + K*Ny)

+ O (KM? + KNM? + K*M?) . (52)

Clearly, application of the MM method greatly reduces the
computational load of the algorithm.

V. SIMULATION RESULTS

In this section, extensive simulation results are presented to
verify the performance of the proposed multiuser IRS-aided FD
two-way communication system.

A. Simulation Setup

Fig. 2 shows the horizontal plane of the schematic system
model for our simulated network. As shown in the figure, we
consider a system with K' = 3 users, whose coordinates are gen-
erated uniformly and randomly in a rectangular region centered
at (120, 0) with length 40 m and width 20 m. The coordinates
of the BS and the IRS are (0,0) and (zps, 20), respectively,
where the default value of Tirg is 10. We assume that the height
of the BS, the IRS, and the users are 30 m, 10 m, and 1.5 m [36],
respectively.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

The path loss is taken to be -30 dB at a reference distance of
1 m. The path loss exponents of the links between the BS and
the IRS as well as those of the links between the IRS and the
users are denoted by gy and ayy, respectively. As we stated in
Section I, there is no direct link between the BS and the users.
On the contrary, through proper site selection, the transmission
environment for the IRS-provided link can be nearly free-space.
Hence, we set ap; = amy = amrs = 2.2 [36]. Then, the large-

scale path loss in dB is modeled by
PL = —30 — 10alog, 4d, (53)

where d is the link distance beyond the 1 m reference. The small-
scale fading is assumed to be Rician distributed, modeled by

G= /L _@GtLos 4
k+1

where & is the Rician factor, G*°S and GN°S are the LoS and
the NLoS components, respectively. GNLS is drawn from a
Rayleigh distribution, and G5 is modeled as

GLDS =c, (ﬂAOA) c:—l (lngD) ]

In (55), ¢ (94°*) and ¢, (94°P) are respectively given by

1 GNLDS

k+1 G0

(33)

T
. io gAcA : 1) sin GACA
c, (,tgADA) |:1,e_f,'ﬂ'sm1? o N BJ‘J‘T(W,_ 1) sing4e :|

£l

(56a)

]

c; (ﬂAOD) — [1 ej;rsin'ﬁAOD ej?r(W:,—l)sinﬂ"‘-GD T
(56b)

where W, and W, denote the number of antennas/elements at
the receiver side and transmitter side, respectively, J4°* and
¥4°D are the angle of arrival and departure, respectively. In the
simulations, we independently and randomly generate 4°* and
¥4°D in the range of [0, 2r]. For simplicity, we set 0 = 1.103
and o3 , = 1.107, k. Unless otherwise stated, the other pa-
rameters are set as follows: Channel bandwidth 10 MHz, Rician
factor k£ = 3, noise power density -174 dBm/Hz, SI coefficient
ps = 1, weighting factors w; = 1, VL, k, user transmit power
P, = 50 mW, Yk, number of BS antennas N; = N; = 4, maxi-
mum BS transmit power Pp,,, = 1 W, number of IRS reflection
elements M = 16, x-coordinate of IRS zipg = 10 m, initial
smoothing parameter p = 5, adjusting factor : = 1.02, upper
bound pimge, = 500, error tolerance g, = 10-%, The following
results are obtained by averaging over 200 independent channel
realizations. The reflection coefficient vector ¢ is initialized by
uniformly and randomly selecting the phase shift of each reflec-
tion element in [0, 2n]. The precoding matrix F is initialized
by extracting the real and imaginary parts of each element of F
from an independent Gaussian distribution, and then scaling F
to satisfy the equality in (3).

B. Baseline Schemes

In our simulation, Problem (25) and the relaxed version of
Problem (30) in Algorithm 1 are solved using the MOSEK
solver [45]. In the remainder of this section, we denote the
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proposed Algorithm 1 by BCD-SOCP, and Algorithm 2 by
BCD-MM. In order to analyze the performance of our proposed
algorithms, we consider three baseline schemes:

1) Note that MOSEK solver can optimally solve the SOCP
(25). To compare the performance of our proposed algo-
rithms in solving quasi-SOCP, we design a benchmark
algorithm SOCP+MM by replacing steps 4 to 9 of Algo-
rithm 2 with step 5 of Algorithm 1.

2) To analyse the benefits of jointly optimizing the precoding
matrix and the reflection coefficient vector, we consider
the schemes in which only the former is optimized. Specif-
ically, the steps that update the value of ¢ are skipped. We
refer to implementing Algorithm 1 with random phase
as BCD-SOCP, Rand. A similar definition holds for
BCD-MM, Rand.

3) Since an IRS with arbitrarily tunable phase shifts is diffi-
cult to implement, we consider a more practical scenario
involving 2-bit control of each IRS element (e.g., 4 pos-
sible phase shifts per element). Specifically, each element
of the optimal reflection coefficient vector ¢°P* obtained
by BCD-SOCP, BCD-MM or SOCP+MM is converted
to the following quantized value:

é‘i:bit = exp{argmainléqb?,ﬁ_’t _9[} ,m= 1‘....,4“’-{‘

(57
where 6 € {0, %, m,3Z}. The corresponding F is then
updated. The resulting algorithms are denoted as BCD-
SOCP, 2 bit, BCD-MM, 2 bit and SOCP+MM, 2 bit,

respectively.

C. Convergence of Proposed Algorithm

Fig. 3 plots the WMR versus the number of iterations and
the CPU time for M = 8 and 16, illustrating the convergence
behaviour of our proposed algorithms and the benchmark al-
gorithm. 200 iterations of each algorithm are performed in
each trial. We see that all the algorithms converge within 80
iterations, which confirms their high efficiency. The converged
WMR of BCD-SOCP and BCD-MM are basically the same,
and both are slightly lower than that of SOCP+MM, which
shows the accuracy of MOSEK in solving SOCP and MM
algorithm’s advantages in finding globally optimal solution of
quasi-SOCP. However, due to its advantage in computational
complexity, BCD-MM converges much faster in terms of CPU
time. Additionally, it is interesting to observe that even when
the number of reflection coefficients doubles, its convergence
speed in terms of both number of iterations and CPU time does
not increase significantly. The explanation can be found in the
updating strategy for the smoothing factor and the computational
complexity of the algorithms. On the one hand, the convergence
speed of Algorithm 2 mainly depends on the approximation
level of the surrogate functions in the MM iterations, which is
mainly controlled by u, whose rate of increase is set to gradually
accelerate. On the other hand, the quadratic and cubic terms in
M only account for less than half of the seven terms in the
expression for the computational complexity of Algorithm 2 in
(52). This indicates that our proposed Algorithm 2 will maintain
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Fig. 3. Convergence behaviour of proposed algorithms for M = [8, 16].

good convergence performance and relatively low complexity
even for the case of large M.

D. Impact of the IRS Location

In order to provide engineering guidance for IRS site selection
in practical communication systems, we investigate the effect of
IRS location on the achievable WMR. By moving the IRS along
the dotted line in Fig. 2 from zirs = 0 to zrs = 130, Fig. 4
and Fig. 4 illustrate the impact of IRS location on the achievable
WMR for two cases of the SI coefficient pg = 1 and pg = 0.1,
respectively. We can first draw a preliminary conclusion from
these figures that for all eight schemes, IRS deployments nearer
the BS improve the WMR. Second, recall that the x-coordinate
of the users is distributed independently and uniformly between
100 and 140 in our simulation. Let us loosely name the point
(120,0) as the user central point, and name the space on the
left and right side of = = 60 as the BS side and the user side,
respectively. Then, it can be observed that there are always two
peaks in the achievable WMR for the various schemes, one on
the BS side and one on the user side. Due to the increase in path
loss, the achievable WMR decreases as expected when zips is
too small or too large. Furthermore, the valley value of the WMR
that occurs when Tirs ~ 60 may also be explained by path loss.
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Fig. 4. Impact of the IRS location zirs and SI coefficient ps.

We can approximate the large-scale channel gain as follows

PLIRS = —60 — IOCclogm (IIRS) === 10a]og10 (IUEC o I‘[RS) 3
(38)

where zygc denotes the x-coordinate of the user central point.
Thus, the minimum value of (58) is achieved at ={;pc = Trs/2,
which is consistent with the simulation results. Finally, as ex-
pected, the schemes that jointly optimize F' and ¢ significantly
improve the WMR performance over the Rand schemes. The
performance of the 2 bit schemes with lower hardware cost falls
in between the optimal continuous-phase and the random phase
solutions, indicating that much improved performance can be
obtained with even coarsely quantized phases.

E. Impact of the SI Coefficient

Next we focus on the effect of SI in Fig. 4. Comparing Fig. 4
with Fig. 4, efficient user SI elimination techniques can improve
the WMR when the IRS is deployed on the user side. Specifically,
the achievable WMRs for BCD-MM and SOCP+MM schemes
increase from 0.85 t0 0.95 when z1gg = 120. However, it should
be emphasized that ps = 0.1 is an ideal case, the feasibility of
which needs experimental verification in real scenarios. It can
be observed that even in this ideal scenario, the WMR achieved
by deploying the IRS near the users is still lower than when
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Fig. 5. Impact of the IRS location zirs for asymmetric-priority scenarios.

the IRS is deployed near the BS. This is due to the fact that
there is also co-channel interference (CI) in the signals received
by the users. When the IRS is further away from the users, the
impact of both SI and CI is relatively small. Additionally, with
an increase in number of users K, CI gradually increases and
becomes dominant. Thus, more of the IRS resources will be
assigned to reduce the CI when it is deployed near the users.

F. Impact of Asymmetric Priority

As mentioned in Remark 1, the desired uplink and downlink
rates in a cellular system are often asymmetric. To provide more
comprehensive engineering guidance, in Fig. 5, we set weighting
factors wy r = wy and wp x = wp for Vk and study achievable
WMR versus zirg in the following three scenarios various
in priority condition: 1) Downlink first (wy = 2,wp = 1, de-
noted as U2DI); 2) Equal priority (wy = 1,wp = 1, denoted
as UIDI); 3) Uplink first (wy = 1,wp = 2, denoted as U1D2).
BCD-MM is adopted in all schemes. It should be emphasized
that the WMR, whose value is affected by the weighting factor,
is not equivalent to the data rate. We see that for most scenarios,
IRS is preferable to deployed on the BS side than on the user
side. This contrast is obvious in the downlink first scenario,
which is the most common in practice. A slightly different
conclusion is presented only in uplink first scenarios where IRS
has arbitrary phase shifts. Based on the discussions in this and the
previous subsections, it can be concluded that in a common FD
two-way communication scenario, the IRS deployment location
that maximizes performance of all users is between the BS and
users, near the BS. However, since the BS-to-user channels are
blocked, moving the IRS closer to the BS may increase the
likelihood that the IRS-to-user channels become blocked as well.

G. Impact of the Weights and the Achieved Fairness

As mentioned in the problem formulation, the essence of
guaranteeing the fairness is to allocate resources from the users
with higher rates to those with lower rates, thus the data rates of
all users tend to be equal. Additionally, the weighting factor w;
represents the inverse of the priority of the corresponding user
in the link direction [. This means that by appropriately setting
wy,k, multiple user characteristics can be taken into account.
To illustrate this, we choose an example with wp ; = wy
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for each user, and set the coordinates of the three users as
(100,10),(120,0) and (140,—10). Taking the user activity
levels into consideration, two scenarios are tested: 1) Each
user is active (wg = 1,Vk); and 2) User 2 is more active than
the other two users (w2 = 1, w; = w3 = 2). Fig. 6 illustrates the
individual data rates achieved under both scenarios. The average
of the data rates is also plotted. As expected, a balanced rate
distribution is obtained with equal weights, even though the path
loss related to each user varies significantly. Additionally, the
most active user 2 achieves the highest data rate in the scenario
with different user activity levels. Furthermore, the essentially
constant average rate illustrates the flexibility of the IRS-aided
communication system for resource allocation.

H. Impact of the Path Loss Exponent

In some practical scenarios, an ideal location for deploying
the IRS may be infeasible, which means that path loss exponents
ars as low as 2.2 may not be guaranteed. To investigate the
system performance under different levels of fading, we plot
Fig. 7 showing the achievable WMR for various path loss
exponents. It can be observed that path loss has a significant
impact on the WMR performance. Specifically, in each scenario,
the increase in the achievable WMR is more than doubled for
every 0.2 decrease in the value of arg. Ultimately, the WMR
performance decays to 0 at high values of agrs. This provides
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important guidance for engineering design: the performance
gain obtained by deploying an IRS is greatly affected by channel
conditions, thus the IRS should be deployed in a location with
fewer obstacles.

I. Impact of the Rician Factor

Fig. 8 shows the achievable WMR for various Rician factors «,
which characterizes the scattering of the channel. As the multi-
path diversity gain decreases, the achievable WMR decreases as
expected. Moreover, it can be observed that in the rich-scattering
Rayleigh channel environment (x = 0), the achievable multipath
diversity gain of the Rand schemes is significantly lower than
that of the other methods, which again highlights the advantages
of joint optimization.

J. Impact of the Number of IRS Reflection Elements

According to the previous discussions, when the IRS is de-
ployed on the BS side, doubling the number of its reflection ele-
ments M can double the power of signals with little increase in
interference and noise. Then, according to the Shannon formula,
the channel capacity increases in an approximate logarithmic
manner with the increase of M. Fig. 9 shows the achievable
WMR for various values of M. As expected, the achievable
WMR is not perfectly linear with the number of IRS reflection
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elements. The performance gain from increasing the elements
decreases gradually. However, for the range of M from 8 to
64, this decreasing trend is not very significant, indicating that
it is cost-effective to improve communication performance by
deploying more reflection elements.

VI. CONCLUSION

In this paper, we have proposed a multiuser FD two-way
communication network that exploits the availability of an IRS to
enhance user fairness. Specifically, with appropriately adjusted
phase shifts, the IRS can create effective reflective paths between
the BS and the users, while simultaneously mitigating the inter-
ference at the users. We investigated the WMR maximization
problem, where the BS precoding matrix and the IRS reflection
coefficients were jointly optimized subject to maximum trans-
mit power and unit-modulus constraints. We transformed the
original problem into an equivalent form, and then introduced
the BCD algorithm to alternately optimize the variables. An
MM algorithm with closed-form solutions in each iteration was
proposed to further reduce the computational complexity. Our
simulation results showed that the proposed algorithm has a high
convergence speed in terms of both the number of iterations and
CPU time, and achieves high communication performance. In
addition, the results imply that when the IRS is deployed near
the users, user SI elimination techniques can improve system
performance to some extent. But in common scenarios, the IRS
should be deployed at a location between the BS and the users
with favorable reflection links, closer to the BS.
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