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ABSTRACT

The implementation of full-duplex (FD) theoretically doubles the
spectral efficiency of cellular communications. We propose a mul-
tiuser FD cellular network relying on an intelligent reflecting surface
(IRS). The IRS is deployed to cover a dead zone while suppressing
user-side self-interference (SI) and co-channel interference (CI) by
carefully tuning the phase shifts of its massive low-cost passive
reflection elements. To ensure network fairness, we aim to max-
imize the weighted minimum rate (WMR) of all users by jointly
optimizing the precoding matrix of the base station (BS) and the
reflection coefficients of the IRS. Specifically, we propose a low-
complexity minorization-maximization (MM) algorithm for solving
the subproblems of designing the precoding matrix and the reflection
coefficients, respectively. Simulation results confirm the convergence
and efficiency of our proposed algorithm, and validate the advantages
of introducing IRS to realize FD cellular communications.

Index Terms— Intelligent reflecting surface, reconfigurable in-
telligent surface, full-duplex, max-min fairness.

1. INTRODUCTION

Full-duplex (FD) two-way communication in which two or more de-
vices simultaneously exchange data at the same carrier frequency has
received extensive research attention, as it can double the spectral-
efficiency of the wireless communication system [1, 2]. FD two-way
relaying has been studied in various scenarios [1, 3–5]. However, be-
sides the loop-interference (LI) at the relay, FD two-way networks
must also overcome back-propagation interference at the base sta-
tion (BS) and the users. Therefore, existing networks suffer from
low energy-efficiency and high hardware cost since energy-intensive
transceivers and complex signal processing techniques are required to
cope with the much more complex propagation environment.

Recently, the intelligent reflecting surfaces (IRSs) have attracted
extensive attention from researchers as a means to improve both the
spectral- and energy-efficiency of wireless communication networks
[6]. An IRS comprises a large number of low-cost passive reflection
elements, each independently imposing a continuously or discretely
tunable phase shift on the incident signal [7,8]. When the phase shifts
are properly adjusted, the directly transmitted signal and the reflected
signal can be superimposed constructively at the intended receivers
or destructively at other unintended users, so as to realize directional
enhancement or suppression of signals, while enabling fine-grained
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Fig. 1. Illustration of the IRS-aided FD cellular network between a
MIMO BS and K SISO users.

3D passive beamforming. We emphasize that the IRS reflects signals
through passive reflection, generating no new signals or thermal noise,
and requiring no signal processing operations to deal with LI.

Due to these appealing features, joint precoding at the BS/AP and
reflecting elements design at the IRS have been extensively studied in
one-way communication networks [9–16]. However, there is a pauci-
ty of investigations on the study of the integration of IRS in two-way
communications [17–19]. Additionally, the fairness between uplink
and downlink transmissions needs to be guaranteed in FD communi-
cation, which has not been taken into account in these studies.

In this paper, we propose to employ an IRS in an FD cellular net-
work to provide signal coverage for users in blind areas, as shown in
Fig. 1. Specifically, unlike the relay schemes in [20], in our proposed
system, both the uplink and downlink transmissions can occur simul-
taneously and operate at the same frequency via the reflection of the
IRS, and thus potentially doubles the spectral-efficiency. In order to
guarantee fairness, the max-min fairness (MMF) criterion is chosen as
the optimization metric, which is a complex non-differentiable objec-
tive function (OF). We propose a low-complexity algorithm based on
alternating optimization and the Minorization-Maximization (MM)
algorithm to solve this problem. According to the simulation results,
our proposed algorithm has a high convergence speed, and the FD
cellular network can achieve high communication performance.

2. SIGNAL MODEL AND PROBLEM FORMULATION

2.1. Signal Transmission Model

We consider the IRS-based FD cellular communication system shown
in Fig. 1, where one BS and K users exchange data at the same time
and the same frequency. Due to severe path loss and blockages, no
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direct link between the BS and the users is assumed to exist. To re-
solve this issue, an IRS containing M passive reflection elements is
deployed to establish additional non-line-of-sight (NLoS) links. The
BS is equipped with Nt > 1 transmit antennas and Nr > 1 receive
antennas. Each user is equipped with one transmit antenna and one
receive antenna. The kth user transmits signals with fixed power Pk.
Denoting F = [f1, · · · , fK ] ∈ C

Nt×K as the collection of beamform-
ing vectors of the BS, the power constraint of the BS is

SF =
{
F|Tr

[
FHF

]
≤ Pmax

}
, (1)

where Pmax is the maximum transmit power. All the data symbols
sent by the BS and the users are assumed to be independent Gaussian
with unit power. The phase adjustment of the IRS to the reflected sig-
nals is modeled as a set of reflection coefficients φ = [φ1, · · · , φM ]T,
or equivalently as a matrix Φ = diag (φ), where |φm|2 = 1, ∀m =
1, · · · ,M .

We assume that the channel state information (CSI) of all
channels is quasi-static and perfectly known at the BS. Though this
assumption is idealistic, it allows us to explore the performance upper
bounds for the IRS-based FD network. The baseband channels from
the BS to the IRS, from the IRS to the BS, from user k to the IRS, and
from the IRS to user k are denoted by Gt ∈ C

M×Nt , Gr ∈ C
M×Nr ,

ht,k ∈ C
M×1, and hr,k ∈ C

M×1, respectively. Additionally, we
denote the loop channels between the transmit and receive antenna(s)
of user k and the BS by hkk and HB, respectively. Let us define
K = {1, · · · ,K}. Denoting the set of receive beamformers at the BS
by UU = {uU,k, ∀k ∈ K}, in [21] the mean squared error (MSE) of
the estimated signal at the BS corresponding to user k was derived as

eU,k =

K∑
m=1

PmuH
U,kG

H
r Φht,mhH

t.mΦHGruU,k (2)

− 2Re
{√

Pku
H
U,kG

H
r Φht,k

}
+ σ2

Uu
H
U,kuU,k + 1,

where σ2
U denotes the the average power of the total noise resulting

from the interference cancellation at the BS. Similarly, defining the LI
coefficient ρL and the self-interference (SI) coefficient ρS with 0 ≤
ρL, ρS ≤ 1 to respectively model the residual LI and SI components
of the interference elimination methods applied by the users, the MSE
of the estimated signal at user k can be derived as

eD,k =

K∑
m=1

u∗
D,kuD,kh

H
r,kΦGtfmfHmGH

t Φ
Hhr,k

+

K∑
m=1

ρPmu∗
D,kuD,kh

H
r,kΦht,mhH

t,mΦHhr,k

− 2Re
{
u∗
D,kh

H
r,kΦGtfk

}
+ σ2

D,ku
∗
D,kuD,k + 1, (3)

where coefficient ρ is equal to 1 except when m �= k, in which case
it is equal to ρS, and σ2

D,k represents the average sum power of the
residual LI and additive white Gaussian noise (AWGN) at user k.

2.2. Problem Formulation

We introduce two sets of auxiliary variables: WD = {wD,k ≥ 0,
∀k ∈ K} and WU = {wU,k ≥ 0, ∀k ∈ K}. Using the equivalence
between the achievable rates and the mean-square error, tractable low-
er bounds for the maximum downlink and uplink achievable rates
(nat/s/Hz) of user k can be derived as follows [21]

rD,k (F,φ,UD,WD) = log |wD,k| − wD,keD,k + 1, (4)

rU,k (φ,UU,WU) = log |wU,k| − wU,keU,k + 1. (5)

For a given reflection coefficient vector φ, rD,k and rU,k are concave
functions for each set of variables when the others are fixed.

To guarantee fairness among the users, we propose to maximize
the weighted minimum rate (WMR) of all users by jointly optimiz-
ing the precoding matrix of the BS and the reflection coefficients
of the IRS, subject to maximum transmit power and unit modulus
constraints. Denoting L = {D,U}, we introduce a weighting fac-
tor ωl,k ≥ 1 for ∀l, k to represent the inverse of the priority of the
corresponding user. Then, the WMR maximization problem can be
formulated as

max
Ul,Wl,l∈L

F,φ

min
l∈L,k∈K

{ωl,krl,k} (6a)

s.t. F ∈ SF , (6b)

φ ∈ Sφ, (6c)

where the set SF is defined in (1), and the set Sφ defined as Sφ =
{φ||φm| = 1, 1 ≤ m ≤ M} imposes the unit-modulus constraint on
φ. This problem is non-convex due to constraint (6c). In the follow-
ing, an efficient algorithm is provided to solve this problem.

3. LOW-COMPLEXITY ALGORITHM

In this section, we derive an MM-based alternating optimization al-
gorithm for efficiently solving the formulated problem (6).

3.1. Outer Iteration

From the lower bounds (4) and (5), although additional variables are
introduced, we see that the variables in Problem (6) are not cou-
pled. This motivates us to adopt an alternating optimization approach,
where the variables UD, UU, WD, WU, F and φ are alternately up-
dated to maximize the WMR of all users.

We first introduce the following theorem proposed in [21].

Theorem 1 For given F, φ, WD and WU, the optimal UD and UU

are respectively given by

uopt
D,k = hH

r,kΦGtfk

(
K∑

m=1

hH
r,kΦGtfmfHmGH

t Φ
Hhr,k

+

K∑
m=1

ρPmhH
r,kΦht,mhH

t,mΦHhr,k + σ2
D,k

)−1

, (7)

uopt
U,k =

√
PkG

H
r Φht,k

K∑
m=1

PmGH
r Φht,mhH

t,mΦHGr + σ2
UINr

, ∀k. (8)

And for given F, φ, UD and UU, the optimal WD and WU are respec-
tively given by

wopt
D,k = e−1

D,k, wopt
U,k = e−1

U,k, ∀k. (9)

Theorem 1 provides closed-form solutions for UD, UU, WD and
WU, and our main task is thus translated into optimizing the precod-
ing matrix F and the reflection coefficient vector φ. Note that the
precoding matrix F is not related to the rate of the uplink transmis-
sion rU,k, so by defining hD,k (F) = ωD,krD,k (F) for ∀l, k, the
subproblem corresponding to F can be formulated as

max
F

δD,k (F) = min
k∈K

{hD,k (F)} (10a)

s.t. F ∈ SF . (10b)
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It can be derived that hD,k (F) has a quadratic form as follows

hD,k (F) = 2Re
{
Tr

(
CH

k F
)}

− Tr
(
FHBkF

)
+ constk. (11)

where the definitions of Bk, Ck and constk are given in [21, III-B].
Similarly, with the following definition

hl,k (φ) � ωl,krl,k (φ)

= 2Re
{
aH
l,kφ

}
− φHAl,kφ+ constl,k, ∀l, k, (12)

the subproblem for the optimization of φ can be formulated as

max
φ

δl,k (φ) = min
l∈L,k∈K

{hl,k (φ)} (13a)

s.t. φ ∈ Sφ. (13b)

where the definitions ofal,k,Al,k and constl,k are given in [21, III-C].

3.2. Inner Iteration

As shown in 3.1, there are two complex subproblems (10) and (13) to
solve in the outer iteration. In this subsection, we propose a modified
MM algorithm to efficiently solve these two problems.

First, we introduce the following differentiable smooth approxi-
mation for the objective functions δD,k (F) and δl,k (φ) [22]:

δD,k (F) ≈ f (F) = − 1

μ
log

(∑
k∈K

exp {−μhD,k (F)}
)
, (14)

δl,k (φ) ≈ f (φ) = − 1

μ
log

(∑
l∈L

∑
k∈K

exp {−μhl,k (φ)}
)
, (15)

where μ > 0 is a smoothing parameter. For μ > 0, the following
inequalities hold:

f (F) ≤ δD,k (F) ≤ f (F) +
1

μ
log (K) , (16)

f (φ) ≤ δl,k (φ) ≤ f (φ) +
1

μ
log (2K) . (17)

The function − 1
μ
log

( ∑
x∈X

exp {−μx}
)

has been proved in [14]

to be increasing and concave with respect to (w.r.t.) x. Note that
quadratic functions hD,k (F) and hl,k (φ) are concave w.r.t. F and
φ, respectively, so f (F) and f (φ) are concave functions w.r.t. F
and φ, respectively. It should be noted that an appropriate strategy
for initializing and adjusting μ should be chosen. On the one hand, in
the early stage of the outer iteration, a large μ may trap F and φ in a
local stationary point far from the optimal solutions of Problem (10)
and (13). On the other hand, in order to ensure that the algorithm con-
verges to a globally optimal solution, a large μ is required to improve
the approximation accuracy in the later stage.

The MM algorithm [23, 24] is widely used for resource alloca-
tion in wireless communication networks [11, 14, 15]. Specifical-
ly, instead of the original subproblems (10) and (13), we iteratively
solve two series of more tractable surrogate problems whose OF-
s minorize the original ones. Denote the optimal solutions of the
surrogate problems at the nth iteration by Fn and φn. The result-
ing sequences of Fn and φn are guaranteed to respectively converge
to the Karush-Kuhn-Tucker (KKT) point of Problem (10) and (13)
[14], and the sequences of OF values

{
f
(
F1

)
, f

(
F2

)
, . . .

}
and{

f
(
φ1

)
, f

(
φ2

)
, . . .

}
must be monotonically non-decreasing.

To obtain the surrogate problems, we introduce the following the-
orems [21]:

Theorem 2 For any feasible F, f (F) is minorized with a quadratic
function at solution Fn as follows

f̃ (F|Fn) = 2Re
{
Tr

[
VHF

]}
+ αTr

[
FHF

]
+ consF . (18)

In (18), V and consF are respectively defined as

V =
∑
k∈K

gD,k (F
n)

(
Ck −BH

k F
n
)
− αFn,

consF = f (Fn) + αTr
[
(Fn)HFn

]

− 2Re

{
Tr

[∑
k∈K

gD,k (F
n)

(
CH

k − (Fn)HBk

)
Fn

]}
.

Refer to [21, Theroem 1] for the more details of this theorem.

Theorem 3 For any feasible φ, f (φ) is minorized at solution φn

with the following function:

f̃ (φ|φn) = 2Re
{
vHφ

}
+ consφ. (19)

In (19), v and consφ are respectively defined as

v = d− βφn,

consφ = f (φn) + 2Mβ − 2Re
{
dHφn

}
.

Refer to [21, Theroem 2] for more details.

Then, we can formulate the surrogate problem corresponding to
F at each inner iteration by replacing the OF of Problem (10) with
(18), as follows

max
F

2Re
{
Tr

[
VHF

]}
+ αTr

[
FHF

]
+ consF (21a)

s.t. F ∈ SF . (21b)

Introduce the Lagrangian multiplier ζ and construct the following La-
grangian function

L (F, ζ) = 2Re
{
Tr

[
VHF

]}
+ αTr

[
FHF

]
+ consF

− ζ
(
Tr

[
FHF

]
− Pmax

)
. (22)

By setting the first-order derivative of L (F, ζ) w.r.t. F to zero, and
considering the power constraint Tr

[
FHF

] ≤ Pmax, the optimal so-
lution for F at each inner iteration can be derived as

Fopt =

⎧⎨
⎩−V/α, if

Tr[VHV]
α2 ≤ Pmax;

−
√

Pmax

Tr[VHV]
V, otherwise.

(23)

By replacing the OF of Problem (13) with (19), the surrogate problem
corresponding to φ at each iteration is formulated as

max
φ

2Re
{
vHφ

}
+ consφ (24a)

s.t. φ ∈ Sφ. (24b)

It is readily derived that the optimal solution of φ at each inner itera-
tion is given by

φopt = exp {j � v} , (25)

where � (·) and exp {·} are element-wise operations.

ĀȀ %

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 29,2021 at 15:16:14 UTC from IEEE Xplore.  Restrictions apply.



Algorithm 1 MM-based alternating optimization algorithm

1: Initialize iteration number n = 1 and feasible F1 and φ1. Calcu-
late Obj

(
F1,φ1

)
. Set μ, ι, maximum number of iterations nmax

and error tolerance εe;
2: Given Fn and φn, calculate Un+1

D and Un+1
U following (7) and (8);

3: Given Fn, φn, Un+1
D and Un+1

U , calculate Wn+1
D and Wn+1

U fol-
lowing (9);

4: Calculate F1 = MF (Fn) and F2 = MF (F1);
5: Calculate Q1 = F1 − Fn and Q2 = F2 − F1 − Q1;
6: Calculate step factor � = − ‖Q1‖F

‖Q2‖F
;

7: Calculate Fn+1 = Fn − 2�Q1 + �2Q2.

8: If Fn+1 /∈ SF , scale Fn+1 ←
√

Pmax

‖Fn+1‖Fn+1;

9: If Obj
(
Fn+1,φn

)
< Obj (Fn,φn), set � ← (� − 1) /2 and go to

step 8;
10: Calculate φ1 = Mφ (φn) and φ2 = Mφ (φ1);
11: Calculate q1 = φ1 − φn and q2 = φ2 − φ1 − q1;
12: Calculate step factor � = − ‖q1‖F

‖q2‖F
;

13: Calculate φn+1 = exp
{ � (

φn − 2�q1 + �2q2

)}
;

14: If Obj
(
Fn+1,φn+1

)
< Obj

(
Fn+1,φn

)
, set � ← (� − 1) /2 and

go to step 13;
15: Set μ ← μι;
16: If

∣
∣Obj

(
Fn+1,φn+1

) − Obj (Fn,φn)
∣
∣ /Obj (Fn,φn) < εe or n ≥

nmax, terminate. Otherwise, set n ← n + 1 and go to step 2.

3.3. Algorithm Development

Note that the convergence speed of the proposed MM algorithm is
limited by the tightness of the smooth approximation f (F) and f (φ)

as well as the minorizing functions f̃ (F|Fn) and f̃ (φ|φn). To ad-
dress this issue, we introduce SQUAREM [25] theory to accelerate
the convergence of the proposed MM algorithm. Finally, our pro-
posed MM-based alternating optimization algorithm is summarized
in Algorithm 1, where the OF of Problem (6) evaluated at Fn and φn

is denoted as Obj (Fn,φn), and the MM-update strategy of F given
in (23) and that of φ given in (25) are denoted as the nonlinear fixed-
point iteration maps MF (·) and Mφ (·), respectively. As shown in
step 15, we define an adjustment factor ι to gradually increase μ.

The MM method yields monotonically non-decreasing values for
(14) and (15), and both steps 9 and 14 in Algorithm 1 ensure that the
value of the OF in Problem (6) is non-decreasing. Additionally, the
value of the OF must have an upper bound, due to the limitations on
the maximum transmit power Pmax and the number of reflection ele-
ments M . Hence, Algorithm 1 is guaranteed to converge. The overall
complexity of Algorithm 1 is of order O(K2NtM + K2NrM +
K2N2

t +K3Nt +KM3 +KNtM
2 +K2M2) [21].

4. SIMULATION RESULTS

In our simulation, we consider a system with K = 3 users, whose
plane coordinates are uniformly and randomly generated in a rectan-
gular region centered at (120 m, 0) with length 40 m and width 20 m.
The coordinates of the BS and the IRS are assumed to be (0, 0) and
(10 m, 20 m), respectively. The height of the BS, the IRS, and the
users are 30 m, 10 m, and 1.5 m, respectively. The path loss is taken
to be -30 dB at a reference distance of 1 m, and we set the path loss
exponents of all the reflection links as αIRS = 2.2 [15]. The small-
scale fading is assumed to be Rician distributed with Rician factor 3.
The other parameters are set as follows: Channel bandwidth 10 MHz,
noise power density -174 dBm/Hz, SI coefficient ρS = 1, weight-
ing factors ωl,k = 1, ∀l, k, user transmit power Pk = 50 mW, ∀k,

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

1

W
M

R
 (

bi
t/s

/H
z)

M=8, Algorithm 1
M=8, benchmark

M=16, Algorithm 1
M=16, benchmark

10-2 10-1 100 101 102

CPU Time (s)

0

0.2

0.4

0.6

0.8

1

Fig. 2. Convergence behaviour of proposed Algorithm 1 versus the
number of iterations and CPU time for M = [8, 16].

number of BS antennas Nt = Nr = 4, maximum BS transmit power
Pmax = 1 W, initial smoothing parameter μ = 3, adjustment factor
ι = 1.05, error tolerance εe = 10−6. All experiments are performed
on a PC with a 2.59 GHz i7-9750H CPU and 16 GB RAM.

Note that Problem (10) is a second-order cone programming
problem, which can be optimally solved by existing optimization
solvers. To verify the efficiency of our proposed Algorithm 1, we
introduce a benchmark algorithm in which the MOSEK solver [26]
replaces the MM algorithm to solve Problem (10).

Fig. 2 plots the WMR versus the number of iterations and the
CPU time when the number of reflection elements is M = 8 and 16,
demonstrating the convergence behaviour of Algorithm 1 and the
benchmark algorithm. We see that both algorithms converge within
40 iterations, which confirms the high efficiency of the outer iteration
of the proposed algorithm. Thanks to MOSEK’s high precision in
solving the SOCP, the converged WMR of the benchmark algorithm
is slightly higher. However, due to its advantage in computational
complexity, Algorithm 1 converges much faster in terms of CPU time.
Additionally, it is interesting to observe that even when the number
of reflection coefficients doubles, the convergence speed in terms
of both number of iterations and CPU time does not significantly
increase. This indicates that our proposed algorithm will maintain
good convergence performance and relatively low complexity even
for the case of large M . The simulation results show an achievable
WMR of about 0.5 bit/s/Hz when M = 8 and 1 bit/s/Hz when
M = 16, confirming the feasibility of using an IRS to realize FD
cellular communication. Given the much lower power consumption
of passive reflection, the IRS shows great potential as an alternative
to FD relays in this application.

5. CONCLUSIONS

In this paper, we have proposed a multiuser FD cellular network
based on an IRS. Specifically, with appropriately adjusted phase
shifts, the IRS can create effective reflective paths between the BS
and the users, while simultaneously mitigating the interference at
the users. To ensure network fairness, we investigated the WMR
maximization problem, where the BS precoding matrix and the IRS
reflection coefficients were jointly optimized subject to maximum
transmit power and unit-modulus constraints. An efficient MM
algorithm with closed-form solutions in each iteration was proposed
to solve the subproblems corresponding to these two variables. Our
simulation results showed that the proposed algorithm has a very good
convergence speed in terms of both the number of iterations and CPU
time, and achieves high communication performance indicating the
energy consumption advantage of IRS in FD cellular communication.
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