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Abstract—Intelligent reflecting surfaces (IRS) have been pro-
posed as a revolutionary technology owing to its capability of adap-
tively reconfiguring the propagation environment in a cost-effective
and hardware-efficient fashion. While the application of IRS as a
passive reflector to enhance the performance of wireless commu-
nications has been widely investigated in the literature, using IRS
as a passive transmitter recently is emerging as a new concept and
attracting steadily growing interest. In this paper, we propose two
novel IRS-based passive information transmission systems using
advanced symbol-level precoding. One is a standalone passive in-
formation transmission system, where the IRS operates as a passive
transmitter serving multiple receivers by adjusting its elements to
reflect unmodulated carrier signals. The other is a joint passive
reflection and information transmission system, where the IRS not
only enhances transmissions for multiple primary information re-
ceivers (PIRs) by passive reflection, but also simultaneously delivers
additional information to a secondary information receiver (SIR)
by embedding its information into the primary signals at the symbol
level. Two typical optimization problems, i.e., power minimiza-
tion and quality-of-service (QoS) balancing, are investigated for
the proposed IRS-based passive information transmission systems.
Simulation results demonstrate the feasibility of IRS-based passive
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information transmission and the effectiveness of our proposed
algorithms, as compared to other benchmark schemes.

Index Terms—Intelligent reflecting surface (IRS), symbol-
level precoding, passive information transmission, passive
beamforming.

I. INTRODUCTION

URING the past decade, various techniques have been

developed to accommodate the rapidly increasing de-
mands for high data rates and diverse quality-of-service (QoS).
Massive multi-input multi-output (MIMO), millimeter wave
(mmWave) communication, and ultra-dense networks are three
representative approaches for enhancing wireless network per-
formance [1]. However, the required high hardware cost
as well as the resulting increased energy consumption re-
main as roadblocks in their practical implementation. As a
energy/spectrum/hardware-efficient solution for future wireless
networks, intelligent reflecting surfaces (IRS) have attracted
abundant attention owing to their ability to tailor the radio
environment in a cost-effective and hardware-efficient fash-
ion [2]-[9].

An IRS is a man-made two-dimensional (2D) surface com-
posed of a large number of reconfigurable passive elements.
Each element can independently manipulate the phase of the
incident signals in a real-time programmable manner, thus
collaboratively enabling adaptive reflection beamforming in
three-dimensional (3D) space. By intelligently controlling the
signal reflection, an IRS can create a more favorable propagation
environment, which used to be more or less out of the control of
the system designer. Furthermore, the reflection beamforming
offers additional degrees of freedom (DoFs) for addressing
severe channel fading and refining channel statistics. Therefore,
IRS is attracting steadily growing interest in both academia and
industry. In the past several years, researchers have devoted
substantial efforts to exploring the potential of IRS as a passive
relay/reflector to greatly expand coverage, improve transmis-
sion quality, and assure security, [10]-[18], etc. By judiciously
designing the IRS phase-shifts, the signals reflected by the IRS
and from other paths can coherently add up at intended receivers
and/or cancel out at unintended receivers to improve system
performance. Various advanced optimization algorithms and
deep learning-based methods [19], [20] have been proposed for
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the designs of IRS-assisted systems. In addition, IRS have also
found some novel applications in holographic MIMO [21], [22],
mobile edge computing, sensing and localization, etc. [5], [8].

In most of the applications mentioned above, the IRS is
deployed as a passive reflector to enhance performance by
adaptively reflecting the incident signals, which are already
modulated/precoded by an active transmitter. Meanwhile, the
novel concept of utilizing IRS as passive fransmifters was
presented in [3], where the IRS changes the parameters of the
reflecting elements to modulate and transmit information sym-
bols by exploiting an unmodulated carrier signal generated by a
nearby radio-frequency (RF) signal generator. Testbed platforms
utilizing IRS to realize a quadrature phase-shift-keying (QPSK)
transmitter [23] and 8-PSK transmitter [24] have validated this
idea. In particular, the IRS-based passive transmitter can re-
alize virtual MIMO communication with only one RF chain
and very cost-effective reflecting elements at the transmitter
side, which thus makes it very promising for practical wireless
networks due to the significantly reduced hardware complex-
ity and energy consumption. While IRS-based single-stream
transmitters have been investigated in [3], [23], [24], exploiting
IRS to simultaneously transmit multiple data streams and serve
multiple users has not been studied yet, which thus motivates
this work.

In addition, there has been growing interest in combining
the passive reflection and passive transmission capabilities of
IRS. In these joint applications, besides enhancing the quality
of the primary signals using the IRS, one can also modulate
and embed the secondary information into the primary signals
by appropriately varying the IRS reflection coefficients. Such
an IRS-based symbiotic radio system achieves higher spectrum
efficiency by exploiting the same spectrum resource for both the
primary and secondary information transmissions. Compared
with conventional ambient backscatter-based symbiotic radio
systems [25], [26], where the backscatter device usually has
only a single-antenna, the abundant reflecting elements of the
IRS provide more DoFs to combat the double fading effect
and thus enhance the quality of the information transmissions.
Specifically, in [27], [28], the authors presented a joint passive
beamforming and information transfer system in which the
secondary information is modulated by the on/off states of
the IRS reflecting elements. In [29], the authors proposed a
reflecting modulation scheme for an IRS-based passive trans-
mitter. In [30], the IRS operates as an Internet-of-Things (IoT)
device to transfer secondary information by jointly designing
the active beamforming and passive reflecting. While these
works [3], [23], [24], [27]-[32] explored the feasibility of using
an IRS as a passive transmitter, the selection of reflection patterns
are limited for the secondary information transmission, e.g.,
only two antipodal reflection patterns were considered in [30].
Therefore, the full potential of IRS has not been exploited
in these works. More importantly, in these existing designs,
both primary and secondary receivers need to jointly detect the
primary and secondary information symbols, which causes high
computational complexity to the receivers. Furthermore, the
more complicated case with passive information transmission to
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multiple receivers has not been investigated yet, which motivates
us to develop this work.

We note that in IRS-based passive transmission schemes,
each information symbol is modulated by varying the reflecting
elements of the IRS, which is similar to the mechanism employed
in symbol-level precoding [33]-[36]. In symbol-level precoding,
the multi-antenna transmitter varies its precoder in a symbol-
by-symbol fashion to turn the harmful multi-user interference
(MUI) into constructive and beneficial signals. Such methods
can exploit both the spatial and symbol-level DoFs to signif-
icantly improve the symbol error-rate (SER) performance of
multiuser systems. Moreover, the receivers in the symbol-level
precoding system can demodulate information using a simple
hard-decision rule since the optimizations at the transmitter side
consider the specific modulation type known at the receiver. In
addition, with current semiconductor technologies, fast positive-
intrinsic-negative (PIN) or Schottky diodes can realize switching
within nanoseconds [37]. Existing testbed platforms [23], [24]
have also validated the feasibility of adjusting IRS at symbol-
level speeds. Inspired by these findings, in this paper we show
how to realize IRS-based passive information transmissions by
exploiting symbol-level precoding technology, which provides
symbiotic benefits from various aspects. The main contributions
in this paper are summarized as follows:

® Unlike our previous work [11] on joint symbol-level pre-

coding and IRS passive reflection design, in this paper
we use symbol-level precoding to implement IRS-based
passive information transmissions in the downlink of a
multi-user multi-input single-output (MU-MISO) system.
This new symbol-level precoding approach not only fully
exploits the DoFs available from the massive number of
IRS reflecting elements to enhance the quality of informa-
tion transmissions, but also allows the receivers to employ
a very simple symbol detector, thus rendering itself partic-
ularly appealing in practical implementation.

® For the case where the IRS works as a standalone pas-

sive transmitter to deliver information to multiple single-
antenna users, we design the IRS phase-shifts to minimize
the transmit power subject to a given set of QoS require-
ments. Efficient algorithms based on Riemannian mani-
fold optimization and the branch-and-bound algorithm are
proposed to obtain continuous/high-resolution phase-shifts
and low-resolution quantized phase-shifts, respectively.
We also investigate the QoS balancing problem for a given
transmit power budget.

® For the case where the IRS works as a joint passive

reflector and transmitter, also known as a symbiotic ra-
dio system, the IRS enhances the primary information
transmissions from the multi-antenna base station (BS) to
multiple single-antenna users, and simultaneously delivers
secondary information to one additional user by embed-
ding the secondary information into the primary signals.
The power minimization and QoS balancing problems are
also investigated by iteratively solving for the precoders
and reflectors using efficient gradient projection-based and
conjugate gradient-based algorithms.
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Fig. 1. AnIRS-based MU-MISO passive information transmission system.

® Finally, we provide extensive simulation results to demon-
strate the feasibility of exploiting symbol-level precoding
for passive information transmissions in IRS-based MU-
MISO systems, and to illustrate the effectiveness of our
proposed algorithms.

Notation: Boldface lower-case and upper-case letters indicate
column vectors and matrices, respectively. (-)7 and (-)¥ denote
the transpose and the transpose-conjugate operations, respec-
tively. C denotes the set of complex numbers. |a| and ||al| are the
magnitude of a scalar a and the norm of a vector a, respectively.
y = f(z) denotes that y is a function of x. Za is the angle of
complex-valued a. PR{-} and J{-} denote the real and imaginary
part of a complex number, respectively. diag{a} indicates a
diagonal matrix whose diagonal terms are the elements of a.
A(z, 7) denotes the element of the i-th row and the j-th column
of matrix A, and a(z) denotes the i-th element of vector a.

II. PASSIVE INFORMATION TRANSMISSION SYSTEM
A. System Model

Consider an MU-MISO system as shown in Fig. 1, where
the IRS equipped with N reflecting elements simultaneously
serves K single-antenna users. Specifically, using the idea of
symbol-level precoding, the IRS modulates the information
symbols onto the high-frequency carrier signals (generated from
a nearby RF signal generator) by adjusting its reflection coef-
ficients. Since the information modulation and precoding are
implemented at the IRS side, which only has passive com-
ponents, we refer to this communication system as a passive
information transmission system. As discussed in [3] and [31],
the RF generator is sufficiently close to the IRS and utilizes a
horn antenna to focus the signals on the IRS. Therefore, the RF
generator and IRS can be seen as a transmitter with only one
RF chain and multiple reflecting elements, which realizes a vir-
tual MIMO communication with significantly reduced hardware
complexity and cost. Denote 6 € C” as the vector containing
the IRS reflection coefficients. The received baseband signal at
the k-th user can be written as'

ri. = VPhl®h, + ny, (1)

I'The direct link between the RF generator and the users is ignored since the
pure RF signal does not contain information (i.e., a constant baseband value)
and can be easily removed at the users. Besides, the RF generator mainly beams
the energy towards the IRS rather than the randomly distributed users.
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where P is the transmit power of the RF generator, ©® =
diag{0}, hy, € CV is the channel vector from the IRS to the
k-th user, h, is the channel vector from the RF generator to
the IRS, and nj ~ CN(0, 0?) is additive white Gaussian noise
(AWGN) at the k-th user. Given the availability of various
channel estimation approaches [8], [38]-[42], perfect channel
state information (CSI) is assumed to be available at the IRS.
For simplicity, we denote the equivalent channel from the IRS to
the k-th user as hf/ = hfdiag{h,}. Then, the received signal
for the k-th user can be rewritten as

Tg = \/TIIRHG + ng. (2)

To realize passive information transmissions, the IRS modulates
the symbols by changing the reflection vector 8 according to
the symbols to be transmitted [3]. We assume that the desired
symbols for all users are independently 2-PSK modulated. As a
result, there are ¥ possible combinations of symbols that could
be transmitted to the K users. We let s;p = [sy1,- - - Smok "
for m = 1,...,0K represent all of the possible symbol vec-
tors. To transmit s,,,, an appropriate phase vector #,, must be
designed, so that the received signal at the k-th user

Tmk = VPhi 0, + 1y 3)

can be properly decoded according to the pre-known constel-
lation information. In the sequel, we will design the non-linear
mapping from s, to 6,, using constructive symbol-level pre-
coding [33]-[36]. Considering the ideal reflection model with
unit-modulus and continuous phase shifts, each reflecting ele-
ment should satisfy |6,,(n)| = 1, Ym, n.

Using knowledge of the symbol vector s,, to be trans-
mitted, constructive interference (CI) symbol-level precoding
converts the MUI into constructive components that push the
received noise-free signals away from their corresponding de-
cision boundaries, which greatly improves the detection perfor-
mance. Thus, the Euclidean distance between the received noise-
free signal and its corresponding closest decision boundary is
adopted as the metric to measure the users’ QoS. More detailed
and comprehensive descriptions about constructive interference
and symbol-level precoding can be found in [33]-[36]. In order
to explicitly demonstrate this metric, we take QPSK modulated
symbols as an example, as shown in Fig. 2. Specifically, we
assume Sm k= e7™/4 is the desired symbol of the k-th user, the
positive halves of the = and y axes are the decision boundaries
for sm, k., the shaded green area is its decision region (i.e., CI
region), @ = \/I_th 6, is the received noise-free signal, 1) =
w/§) = m /4 is the half angle of the decision region, and |@| is
the Euclidean distance between point C' and the corresponding
nearest decision boundary. We see that s, x can be correctly
detected at the k-th user when the received signal 7, ;. lies in
the green region. In order to improve the robustness to noise,
the phase vector 8,,, should be designed to render the received
noise-free signal OC' as far away from its decision boundaries

2t is noted that symbol-level precoding is related to the modulation type.
The designs throughout this paper focus on PSK modulations. The designs for
quadrature amplitude modulation (QAM) are left for our future work.
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Fig.2. Symbol-level precoding design for QPSK signals.

as possible. Therefore, |@| is usually used as the metric to
evaluate the QoS of communication since it determines the SER
performance. To derive an expression for |C'D|, we rotate the
diagram clockwise by /s, » degrees as shown in Fig. 2(b),
where

4

Then, the Euclidean distance to evaluate the QoS of communi-
cation is given by

— — — —
|C'D'| = |C'B| cos = ||A'B'| - |AC"|] cos
= [ﬂ‘i{(ﬁ}tand)—lﬂ{(ﬁ} I] cosyp )
= R {Fm i} sin®) — |3 {Fon i} cos .
The QoS constraint can thus be expressed as
R{Tmi}sineg — |J{rm i} cost > ax, Ym,k,

where ay, is the preset QoS requirement for the k-th user.

—
OC' = 7 x = VPhf 0,67 345m

(6)

B. Design for Power Minimization

In this subsection, we investigate the power minimization
problem, which aims to minimize transmit power at the RF
generator while satisfying the QoS requirements of all users.
Accordingly, the optimization problem is formulated as

Gmr?a'iwg,P P ()
st. R{rmi}tsineg — [I{rmr}|cosyy > ar, Vm,k, (7b)
Fmgk = VPhE Qe I%°mk, m, k, (7c)
|0m(n)] = 1, Vm, n. (7d)

It can be observed that unlike the constant envelope symbol-
level precoding approach in [35], we utilize the IRS to realize
passive beamforming and simultaneously consider all possible
precoders in one channel coherence time. To efficiently solve
this non-convex multivariate optimization problem, we propose
to convert it into a univariate problem, which facilitates devel-
opment of an efficient algorithm.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 7, JULY 2021

First, after dividing both sides of the QoS constraint (7b) by
g \/ﬁ, we have

1

VP
where 7 x = hH6,,e7745m.x. By introducing an auxiliary
variable ¢ £ —, the power minimization problem (7) can be
converted to

< L R{Tm}siny — I {Fmi}|cosd], Vm, k, (8)

g

t (9a)

max
O Ym,t

sl € S Faa) s = iRl cosdl], Vink,
v

(9b)
P =g O e70 0k Ny, (9c)
|0 (n)| =1, Ym,n. (9d)

The optimization problem (9) can be further equivalently rewrit-
ten as a max-min problem as

: A 2 ; 53 ;
—_— j R /
e e R{Tm}sin — |T{Tm i} cost]

(10a)
s.t. P = hf @pe 45k Ym, k, (10b)
|0 (n)| =1, Ym,n. (10c)

Obviously, problem (10) is also difficult to solve, not only
because of the large number of variables, but also the non-
differentiable absolute and minimum value functions in the
objective (10a), and the non-convex unit-modulus constraint
(10c) of the IRS. In the following, we propose to divide the large-
scale optimization problem into several sub-problems. For each
sub-problem, an approximate differentiable objective is derived,
and the non-convex constraint is tackled using a manifold-based
algorithm.

Since the optimization of (10) for different 6,,,m =
1,...,Q%, is independent with respect to m, we can equiva-
lently divide this large-scale problem into Q¥ sub-problems.
The m-th sub-problem is rewritten as

Jgjn max |J{a0,}|cosv — R{alB,,}siny  (11a)

st |Om(n)| =1, Vn, (11b)

where aff £ Lhffe~14¢m* i = K(m — 1) + k. Then, in or-
der to remove the absolute value function and form a more
concise objective function, we utilize the property that |z| =
max{z,—z} for a scalar = together with some basic linear
algebra laws to re-formulate the objective (11a) as

13{af'6m}| cos ) — R{af O} siny) = max{fi,g:}, (12)
where f; and g; are defined as

fi 2 3{af 0,,} cos — R{af'8,,} siny = R{bf6,,}, Vi,
(13a)

gi 2 —3{af’8,,} cost — R{al0,,} sinp = R{cT O} Vi.
(13b)
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For notational conciseness in the following algorithm develop-
ment, in (13a) and (13b), we have defined

b £ _al siny 4 all e 77 cosp, (14a)
cf 2 _alsing —affe 77 cosip. (14b)

Then, exploiting the well-known log-sum-exp approximation,
the objective (11a) is converted to

mK
max {fi, g} Selog Y [exp(fi/e) +exp(ai/e)],
i=K(m—1)+1
(15)

where € > 01is a relatively small number to maintain the approx-
imation.

After obtaining the smooth and differentiable objective (15)
for problem (11), the unit-modulus constraint (11b) of the IRS
becomes the major challenge. Non-convex relaxation and al-
ternating optimization based algorithms are very popular ap-
proaches for solving this problem. However, the relaxation-
based algorithms may suffer significant performance loss and the
alternating optimization algorithms may have slow convergence.
To avoid these issues, we adopt the Riemannian-manifold-based
algorithm, which directly solves this problem on the original
feasible space instead of a relaxed convex version, and thus
is able to provide a locally optimal solution with fast conver-
gence [43]. Constraint (11b) forms an N-dimensional complex
circle manifold

M £ {01 € CN : 6}, (n)0(n) =1, Vn}, (16)
which is a smooth Riemannian manifold equipped with an inner
product defined on the tangent space:

To.Mc = {PpeCY : R{po O} =0n, ¥n}. 17)
Then, problem (11) can be rewritten as
mK
Jmin h(fm) £elog Y [exp(fi/e) +exp(gi/e)],
TERD i=K (m—1)+1
(18)

which is an unconstrained optimization problem on the Rie-
mannian space M. Since each point on the manifold has a
neighborhood homeomorphic to Euclidean space, the gradients
of cost functions, distances, angles, etc., have counterparts on
the Riemannian space, and efficient algorithms developed on
the Euclidean space can be readily extended to the manifold
space, e.g., the conjugate gradient (CG) algorithm. Therefore,
in the following we use the CG algorithm on the Riemannian
space, referred to as the Riemannian conjugate gradient (RCG)
algorithm, to solve this problem.

To facilitate the RCG algorithm, we first derive the Euclidean
gradient of h(0,,) as

K m—1)41 [exp(fi/€)b; + exp(gs /€)ci] _

V h{fm) = =
ZizK(m—l)-}-l [exp(fi/€) + exp(gi/e€)]

(19)
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Algorithm 1: RCG algorithm to obtain 87,.
Input: h(6,,).

Output: 87,.

1:  Initialize 6, 0 € Mcc, do = —gradg_ h(0m.0).
2: Repeat

3: Choose Polak-Ribiere parameter 7, [43].
4: Calculate search direction d, by (21).

5: Calculate step size £, [43].

6: Obtain the update 8y, 541 by (22).

7: Calculate gradient gradg h(6m p) by (20).
8: Until convergence

Then, the Riemannian gradient grad h(@,,) can be obtained by
projecting the Euclidean gradient V h(6,,) onto its correspond-
ing Riemannian tangent space as follows:

grad h(B,n) = Projo, Vh(6,m)
= Vh(6,,) —R{Vh(6,,) ©6.}©6,,.

Thus, in the p-th iteration of the RCG algorithm, the search
direction d,, is

(20)

dp = —grad h(0mp-1) +7pdy_, 2D

where 6, ;1 is the solution in the (p — 1)-th iteration, and
7)p is the Polak-Ribiere parameter [43]. Since the Riemannian
gradient and search direction for the (p — 1)-th iteration lie in
different tangent spaces, an additional Riemannian transport
operation is needed to map d,_; into the tangent space of
grad (6, p_1) denoted by d;, ;. After choosing the step size
&, using the Armijo backtracking line search method [43], the
p-th update is given by

9m1p+| = Re(rgm (Gm?p o £pdp) s (22)

where Retrg_ (-) indicates the retraction operation, mapping the
point on the tangent space to the manifold.

Based on the above analysis, the locally optimal solution to
each 6}, can be obtained using the RCG algorithm as summa-
rized in Algorithm 1. Then, the minimum required power can be
calculated by substituting 8, , ¥m to (8). In addition, as proven
in Theorem 4.3.1 of [43], Algorithm 1 is guaranteed to converge
to a critical point where the Riemannian gradient equals zero.

C. Design for QoS Balancing

In this subsection, we consider the QoS balancing problem,
which aims to maximize the minimum weighted QoS perfor-
mance for a given transmit power. The optimization problem is
formulated as

JHAE L gy [R{Tmx}siny — [J{Fmx} cos?)] (23a)
st. Tmx = VPhEOpe745m*  Ym, k, (23b)
Om(n)| =1, Ym,n, (23¢)

where P is the maximum transmit power and pg > 0 is the
weight coefficient for the k-th user. It can be seen that this
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problem is very similar to problem (10). Therefore, this QoS
balancing problem can be solved with the algorithm proposed
in Sec. II-B by setting a; = Yk in (10).

peVP?

D. Design for Low-Resolution IRS

Since an IRS with infinite/high-resolution phase shifters
would inevitably require higher hardware complexity and cost,
low-resolution phase shifters are practically appealing. Thus, in
this subsection, we investigate solutions for the case of low-
resolution IRS.

With the continuous solution 8}, obtained as in Sec. II-B, a
direct quantization operation as in [44] can be easily applied to
seek the nearest discrete phase value by

265, (n)

/68 (n) = [—] x A,

A (24)

where A £ %} is the resolution of each reflecting elements
controlled by B bits, and [-]; indicates the rounding operation.
However, this method provides a suboptimal solution due to
the quantization error, which may cause severe performance
degradation for very low-resolution cases, e.g., 1-bit and 2-bit
cases [8].

Thus, we investigate obtaining the optimal solutions by con-
verting the optimization problem into a mixed-integer nonlinear
program (MINLP) and solving it with an off-the-shelf algorithm.
The low-resolution phase-shifts can be rewritten as

91?; = QmQ:

where the auxiliary vector q 2 [e72, 7?2, ..., ™| contains
all the possible phase values, Q,, € {0, 1}¥*2” has only one
non-zero element per row, and Q,,,(n, j) = 1 indicates the n-th
element in 6,, is (7). Then, the optimization problem for the
low-resolution IRS case is re-formulated as

min max |J{a;'Qma}|cosy — % {ai’Qma} siny (26a)

(25)

2}3
s.t. Z Qmn(n,j) =1, ¥n, (26b)
j=1
Qm(n, j) €{0,1}, ¥n,j, (26¢)

which is an MINLP problem and can be efficiently solved
using the well-known branch-and-bound algorithm [45]. The
details of this well-known algorithm are omitted for brevity.
When the optimal Q};, for problem (26) is found, the optimal
low-resolution reflection coefficients Gfl* can be constructed as

O = (27)

s B

However, considering the required high computational complex-
ity, the branch-and-bound algorithm is only suitable for the 1-bit
or 2-bit cases.

In order to provide better performance than direct quantization
and lower complexity than the branch-and-bound algorithm,
we further propose an efficient heuristic algorithm to succes-
sively seek the conditionally optimal low-resolution solutions.
Assuming that only the n-th element of 8, is unknown, the
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optimization problem is formulated as

min max |J{c¢; + @i nBm(n)} cosy

Om(n) k
—R{ci + ainOm(n)}siny (28a)

st Guln) € 169%,6%8,0067), (28b)

where ¢; £ Z?;l,#n a;,j0m (7). and a; ; denotes the j-th ele-

ment of af. Since in this case the number of feasible discrete
values is not very large, an exhaustive search for the solution to
(28) is affordable. With the obtained continuous 87, as the initial
value, we iteratively solve (28) for each element of the IRS until
convergence is achieved.

E. Computational Complexity Analysis

The worst-case complexity of the RCG algorithm to obtain
07 is of order O{N'-*} [43]. Thus, the total complexity for the
power minimization and QoS balancing problems with continu-
ous IRS phase shifts is of order O{ Q¥ N''-3}. For low-resolution
IRS, the complexity of the quantization operation in (24) is
of order @{2N'}, which can be neglected compared with the
complexity required to obtain the continuous solution. Thus,
the total complexity for the low-resolution IRS scenario using
quantization is also of order O{Q* N'->}. For B-bit IRS using
the branch-and-bound algorithm, the optimization problem is a
2B_dimensional integer program with IV variables, whose com-
plexity is of order O{23-38 N2 4 2238 N33} [45]. Thus, the
total complexity for this scenario is of order O{ Q¢ (23-3B N 25 4
223BN3:35)1 The computational complexity of the branch-and-
bound algorithm is exponential in B, and is obviously much
higher than direct quantization. The complexity of the heuristic
algorithm is of order O{Q¥[N'5 + K (28 + N)]}, which is
slightly higher than direct quantization but much lower than the
branch-and-bound algorithm.

III. JOINT PASSIVE REFLECTION AND INFORMATION
TRANSMISSION SYSTEM

A. System Model

In this section, we introduce the joint passive reflection and
information transmission system as shown in Fig. 3, where
the IRS is a dual-function device, i.e., it combines the passive
reflection function as in the traditional IRS-assisted downlink
MU-MISO systems [10] and the passive information transmis-
sion function as described in the previous section. In particular,
the IRS with NV passive reflecting elements enhances the primary
information transmissions from an M -antenna BS to K single-
antenna primary information receivers (PIRs) by adjusting its
reflection coefficients. Meanwhile, it also transmits secondary
information to one secondary information receiver (SIR) by
selecting the proper reflection. The secondary information, e.g.,
environmental data, is collected from the surroundings by a
sensor or IoT device. We assume that the K PIRs and one SIR?
are separate receivers.

3We should emphasize that the results in this section can be easily generalized
to the scenario with multiple SIRs.
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Fig. 3. Joint passive reflection and information transmission system, where
IRS serves as a reflector and transmitter.

We emphasize that in the considered joint passive reflection
and information transmission system, the primary function of
the IRS is to enhance the active information transmissions from
the BS to PIRs by passive reflection. The passive information
transmission from the IRS to the SIR is the secondary task,
which requires very low transmission rate. To perform the above
dual functions, the IRS deployment and operation are quite
different compared with the standalone passive information
transmission system in the previous section. In the following, we
present detailed system models for both primary and secondary
information transmissions.

For the primary information transmissions, the active pre-
coding at the BS and passive reflection at the IRS are jointly
optimized. Specifically, non-linear symbol-level precoding is
employed since it not only enhances the primary information
transmissions by converting harmful MUI into useful signals, but
also provides additional symbol-level DoFs for embedding sec-
ondary information. As before, assume that the primary informa-
tion symbols for the K PIRs are independent 2-PSK modulated
symbols, and let S, = [syn 1, . s Smuic]T,m = 1,..., QK rep-
resent all possible symbol combinations for the K PIRs. The
precoder for transmitting s,,, is denoted by x,,, € C™ and the
signal received by the k-th PIR is

Ymk = (hj,;jr + hfi@G)xm +ng, m=1,...,95 (29

where hy, € CM_ hy € CV, and G € CV*M are the channels
from the BS to the k-th PIR, from the IRS to the k-th PIR, and
from the BS to IRS, respectively, ©® = diag{6} is the reflection
matrix, and ny ~ CN (0, 02) is AWGN at the k-th PIR. Similar
to Sec. II, the PIRs detect their desired symbols by simple hard
decisions according to the pre-known constellation information.
In addition, the QoS constraint for the PIRs is written as

R {Ym ik} sint — |T{Ymr}|cos > ag, Ym,k,

where 7, 1 = (h + hfl ©@G)x;,e745m * is the rotated noise-
free signal as before.

For the secondary passive information transmission, we pro-
pose to embed the secondary information into the primary sig-
nals using the extra DoFs available in the reflection coefficients
of the IRS. Since only a small amount of data is transmitted

(30)
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by the sensor in general, the rate of the secondary transmission
is usually much lower than that of the primary transmissions.
Therefore, we propose to embed “binary” secondary information
symbols into the L primary signals by selecting the reflection
matrix as either @, = diag{6y} or ©, = diag{#,}, depending
on whether “0” or “1” is being sent by the sensor. In other
words, the reflection matrix of the IRS is ®y during L time
slots when the transmitted binary secondary symbol is “0,” and
©; when it is “1”. A smaller L will provide a higher secondary
symbol rate, but usually also results in worse SER performance.
Meanwhile, since the BS does not have access to the secondary
information and the secondary information transmission should
avoid affecting the primary information transmissions, both
reflection matrices @, and O should satisfy the QoS constraint
for the PIRs in (30). The QoS constraint for the PIRs is thus
re-written as

R{Tm,k.0/1} S0V — |Gk 0/1}| cos® > ax, ¥m, k, (31)

where k01 = (W + 50, G)x,e ?4¥mk  and the
subscript 0/1 denotes whether the reflection matrix is either @
or®,.

Before formulating the QoS constraint for the SIR, the detec-
tion strategy should be discussed since it is directly related to the
QoS performance metric. To detect the secondary information at
the SIR, the authors in [27], [28] proposed a two-step approach,
which recovers the primary symbols first, and then utilizes the
recovered primary symbols to decode the secondary symbols.
On the other hand, the primary and secondary symbols in [30]
were jointly recovered using a maximum-likelihood (ML) de-
tector. However, requiring decoding of the much higher rate
primary transmissions places an excessive computational burden
on the SIR, which is only interested in the lower rate secondary
information. Therefore, we propose a more efficient strategy to
embed the secondary symbols, which facilitates a very simple
hard decision detector.

In particular, the SIR detector simply extracts the binary
embedded secondary information by evaluating the average
received signal during the L time slots. To express the average
of the SIR’s signals collected during the L time slots, we first
assume that, in the [-th time slot,l = 1, ..., L, the index of the
primary transmitted symbol vector is m; € {1,...,Q%}. The
signal received by the SIR is thus expressed as

Ymys0/1 = (W +hZ O /1G)xm, + ns, (32)

[T
S

where the subscript denotes the SIR, h, and h, are respec-
tively the channel vectors from the BS to SIR and from the IRS
to SIR,* and ns ~ CN'(0,0?) is AWGN at the SIR. Denoting
the set of transmitted symbol indices during the L time slots as
T £ {my,...,my}, the average received signal at the SIR is

+Although CSI acquisition in [RS-assisted systems is still a challenging
task, accurate CSI can be obtained with existing channel estimation algo-
rithms [8] [38]-[42]. In order to focus on characterizing the performance upper
bound of the joint passive reflection and information transmission system, we
assume perfect CSIin this paper. In addition, the CSI of the primary information
receivers and secondary information receiver can be distinguished at the BS by
different pilot sequences or using time division duplexing (TDD).
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expressed as

1
To/1 = T Z Ymy ,5,0/1

myel
_ [ £ + D O6G) T, er Xm, + 15 2 H,
%(th & hg@|G) Zm;el’xm: +ng : Hj.
With the principle of binary-PSK (BPSK) modulation, the sec-
ondary information is detected as “1” if SR{T} > 0, or “0” if
M{7T} < 0. Inspired by symbol-level precoding, we utilize the

CI region concept for the secondary information transmission
design. The CI regions for the SIR are defined as follows

(33)

1 H H
m{f(hs +h700G) > xm,

myel

} <—B:Hp, (34a)

1 H H
m{f(hs +h70,G) ) xp,

myel

}E}B:HI: (34b}

where 3 > 0 is the QoS requirement that denotes the minimum
Euclidean distance between the average received noise-free
signal and its decision boundary. During the L time slots,
Zm: <7 Xm, can take on Cé x possible values, which cannot be
practically accounted for in the precoding and reflection design.
Thus, we propose to simplify this constraint by decomposing
the summation into individual terms. Then, the QoS constraint
for the SIR is re-formulated as

R{(h{ +hiOG)xmn} < —B, ¥Vm,
R{(h¥ +1h0,G)xy} > B, Vm,

which is a stricter constraint than (34) since the SIR’s received
noise-free signal is forced to satisfy the QoS requirement in each
time slot, rather than the average signal over all L time slots.

Based on the above, the procedure for the IRS-based simul-
taneous primary and secondary information transmissions is
straightforward. With given QoS requirements for the PIRs and
SIR, the symbol-level precoders X,,,, ¥m, and reflection vectors
6y, 6, are jointly optimized at the BS. Then, the optimized
reflection vectors #y, 6, are transmitted to the IRS controller
through a dedicated control link. During the transmission phase,
the BS sends the precoded signal x,,, in each time slot according
to the corresponding primary information symbol vector sy,.
Meanwhile, the controller adjusts the IRS reflection vector 6
or 8 every L time slots according to the binary secondary
information.

The design of the precoding vectors X, Vm, and the reflec-
tion vectors @, and 6, leads to a joint passive reflection and
information transmission problem that is more complicated than
that in the previous section. In the following subsections, we
propose efficient algorithms to solve the resulting joint power
minimization and QoS balancing optimization problems.

(35a)
(35b)

B. Design for Power Minimization

In this subsection, we investigate the joint design of the
precoding and reflection vectors to minimize the transmit power
while guaranteeing the QoS for the PIRs (31) and SIR (35).
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Accordingly, the general problem can be formulated as
Ok
2
>~ [xml|
m=1

R {Um.x0/1 } sin — |3 {§m1k,0/1}| cost > ag,
Tmk0/1 = (hf +hEOp)1G)xme 745 m*  Vm, k,

min (36a)
Xy VM,
.0,

S.L

(36b)
R{(bf +hEOG)x;n} < —B, Vi, (36¢)
R{(b7 +blO,G)x,,} > B, Vm, (36d)
O¢/1 = diag{6o/1}, |6o/1(n)| =1, ¥n. (36¢)

Note that this is a non-convex optimization problem that is
difficult to solve due to the following reasons. First, the precoders
Xm, Vm and the reflection vectors 8y, 6, are intricately coupled
in the QoS constraints (36b)-(36d). Second, the unit-modulus
constraint of the reflection vectors in constraint (36e) is non-
convex. To address this problem, we propose to partition all
optimization variables into two blocks (i.e., X, ¥m and 6,
6,), and then solve each of the sub-problem alternately until
convergence is achieved.

With fixed 6 and 8,, the compound channel from the BS to
the k-th PIR and SIR can be concisely expressed as

hi,, 2 bf +hE6,,q, vk,
_ (37)
b, 2 h¥ +h7 0, G.

Similarly, the precoder vectors X,,,m =1, ..., QX | are inde-
pendent of each other for the power minimization problem, and
thus it can be divided into Q¥ sub-problems to be solved in
parallel. In particular, the m-th sub-problem for optimizing X,
is given by

min x| (38a)
st. R{hf  xme?44mk} sin

— |3{hfy ) Xme 7444} cos > o, Yk, (38b)

R{hlxm} < B,

m{if,rl Xm } Z |8:

(38¢)
(38d)

which is convex and can be solved by standard optimization
tools, e.g., CVX. In addition, the more efficient gradient projec-
tion algorithm [33] can be employed to solve (38), although the
details are omitted for brevity.

After obtaining precoder vectors X,,,m =1, ..., QX the re-
flection design problem is reduced to a feasibility-check problem
without an objective, which may generate many solutions and
lead to different convergence rates. Thus, we utilize an auxiliary
variable ¢ to impose stricter QoS constraints, which can provide
more freedom for power minimization in the next iteration and
accelerate the convergence. To this end, the IRS reflection design
problem is transformed to
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Algorithm 2: Joint Symbol-Level Precoding and Reflection
Design for the Power Minimization Problem.

Input: hy, h,;, o, Yk, G, hg, hy, Q, 02, B.

Output: X*, 85, 67.

1: Initialize @ € M.

2: Repeat

3: Calculate each precoder vector x},,, ¥m by solving
(38).

Obtain continuous 8* by solving (43).

Construct reflection vectors 85 and 87 by (44).
Calculate low-resolution solutions using (24).

4
3:
6:
7: Until convergence

max t
t’seﬂsal

st. R{Umpro/1}sint — |I{Umro/1}|cost > axt,
gm,k,ﬂ/l = (th + hTHk BDG)Xme_Jésm’kv V’m,k,

(39a)

(39b)
— R {(h¥ + hZ ©yG)xm} > Bt, ¥m, (39¢c)
R{(Lf +bZ©,G)x;n } > Bt, Ym, (39d)
©y/ =diag{0y/1}, [0o/1(n)| =1, ¥n, (3%)

where ¢ > 1 since the reflection coefficients obtained from the
previous iteration satisfy the QoS requirements. Thus, after solv-
ing (39), a better QoS than the original requirement is achieved
for the obtained precoders in the current iteration. In order to
solve this multivariate problem, we convert it into a univariate
problem by eliminating ¢, combing 8, and 6, into a single vector,
and exploiting the RCG algorithm to handle the unit-modulus
constraint, as detailed below.

First, in order to re-arrange the optimization problem in (39)
to a univariate problem, we define

0 £ (67, 671",
A g = hfxme_:"‘“"‘-" , VYm. k,
i mcin = B, Vi,
bg,kﬁ/l 4 eg}] ® {hjidiag{Gxe 7“*m*}}, Vm, k,
bg,_K+l,0/I 2 eg}l ® {hfdiag{Gxm}}, Vm,

where ey = [1,0]7,e; £ [0, 1]T. Thus, we have the following
concise representations of the received signals

Ym.k,0/1 = Qm,k + bﬁ,k,oﬂﬂ, vm, k,

(hf 5 2 hg@oﬂG)xm =amK+1 1 bg,KH:D/lﬂ, Ym.

Then, the optimization problem (39) is converted to 0
msa;t;x t (41a)

fi £ R{bIO} +w; < —t, Vi, (41b)

g 2 R{cHO} +2; <, Vi, (41c)
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0(n)| =1, n=1,...,2 N, (41d)

where the expressions for b; and c; are similar to (14) and omit-
ted for brevity. The constant terms w; and z;,7 = 1,...,2(K +
1)QK | are expressed as

Wyj_| = Wyj = —Qemk (siny’J — €% cos 1;’)) /g,
WK tm = ﬂm,K+1/;3, @2)
2251 = 225 = —Qm (siny) + e 7% cos ) /o,
2IKQK tm = —@m,k+1/B,

where j = K(m — 1) + k. According to (41b) and (41c), we
have —t > max{ f;, i, i}, thus problem (41) is further trans-
formed to the following univariate problem

(43a)

Illaiﬂ max {fssgi}
st. |8(n)|=1,n=1,...,2N,  (43b)

which exhibits a similar form as problem (11). Therefore,
we exploit the log-sum-exp approximation to handle the non-
differentiable max value function, and then utilize the RCG
algorithm to tackle the non-convex unit-modulus constraint.
The solution to problem (43) follows the same procedures as
in Sec. II-B, and thus the details are omitted here.

After obtaining 6*, the reflection vectors 8 and 67 can be
extracted by

0:=0*(1:N), ' =0*(N+1:2N). (44

For the low-resolution cases, we adopt the most efficient direct
quantization method as in (24).

In summary, given random initial reflection vectors, the
precoder vectors X, Vm, and reflection vectors 6,8, are
iteratively updated by solving problems (38) and (43) until
convergence is achieved. The details of this joint symbol-level
precoding and reflection design algorithm for the power min-
imization problem are summarized in Algorithm 2. Since the
reflection design is suboptimal, monotonic convergence cannot
be theoretically guaranteed. Alternatively, we provide numerical
results in Sec. IV to show the convergence.

C. Design for QoS Balancing

In this subsection, we solve the QoS balancing problem for
both PIRs and the SIR, which maximizes the minimum weighted
QoS for a given average transmit power budget P and is formu-
lated as

max ¢

XK, VML,
60,6,

st t < pr [R{Um k001 )} S0P — |HTm k01 cos ],
U k,0/1 = (hl + 1%11@0/1G)Xm'3_343'"=": Vm, k,

(45a)

(45b)
t < —oR{(h + hTO0,G)xy}, Vm, (45¢)
t < o®{(hf + b ©,G)x,,}, ¥m, (45d)
Oy = diag{6p;1}, |00/1(n)| =1, ¥n, (45e)
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QK
Y Izl £ PO,

m=1

(451)

where pr and p are the QoS weights for the k-th PIR and
SIR, respectively. As before, we decompose this large-scale
optimization problem into several sub-problems and iteratively
solve them.

With given reflection vectors 6 and 6, the compound chan-
nels hy!; ), and hj, | can be obtained by (37), and the precoding
design problem is rewritten as

max ¢
K, Vm,t

(46a)
st t< pg [m{ﬁﬁojlxme_JZSM'*}sinw

— |3{BE, ) Xme 9™+ }| cos ¢] . Vm, k, (46b)

t < —oR{hfxm}, ¥m, (46¢)

t < oR{h xm}, ¥m, (46d)
QK

¥ Izl £ PaE, (46e)
m=1

which is a convex optimization problem. In order to reduce the
computational complexity, we still attempt to decompose it into
QF sub-problems and deal with the small-scale x,,, individu-
ally. However, the average power constraint (46e) couples the
design of each precoder since the total power must be balanced
between them. Thus, we first explore the relationship between
the objective value and the power constraint for each precoder,
and then solve the power allocation problem. In the end, the
optimal precoders are obtained based on the obtained allocated
pOwer.

Assuming that the transmit power allocated to X, iS P, P >
0 and Zg; pm = PQX, the m-th sub-problem of (46) can be
formulated as

(47a)

max it

Kmytm

sttty < p [m{EkH‘G/lxme_J‘és""*}smzp

—|j{ﬂ£0/,xme—143m=k}|cosw] , Yk, (47b)

tm < —oR{hfxm}, (47¢)
tm < oR{hH xm}, (47d)
%mll* < Prm, (47e)

where t,, is the minimum weighted QoS for precoder X,,,. We
assume that the optimal solution for this problem is x}, and t},.
Notice that the norm of X7, is proportional to ¢}, and ,/pr,, and
thus the QoS balancing and power minimization problems will
yield the same optimal solutions within a scaling that depends
on the allocated power. Thus, we can obtain a scaled version
of x}, by solving the power minimization problem (38) with
constraints ay, = ;fi—, Yk, B = %, where #, > 0 is an arbitrary
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QoS requirement. After obtaining the optimal solution X}, of
(38), the optimal solution x};, and ¢, of problem (47) can be
obtained by scaling as

v VPRGN @8)
S - T <4

Then, we need to find the optimal power allocation p,;, to balance
the QoS requirement ¢}, which is formulated as

mVax t (49a)
Pm,Vm,t
v/ Pmto
s.t. = :(n = m.. " (49b)
QK
3 P < POX (49¢)
m=1

Similarly, the optimal solution of this problem can also be
obtained by solving the corresponding power minimization
problem:

0k
min -} pm (50a)
m=1
— ~ Xl
0

which has the same form as problem (38) and can be efficiently
solved using the projected gradient-based algorithm. Then, sub-
stituting the obtained power allocation p,,, into (48), the precoder
for the original QoS balancing problem (45) can be calculated.

In summary, the precoding design problem (46) is solved in
three steps: i) Solving the power minimization problem (38) with
an arbitrary QoS requirement £, and obtaining its optimal solu-
tion X}, ; ii) obtaining the power allocation p,,, Vm, by solving
problem (50); iii) calculating the solution x};, by substituting p,,
into (48).

With fixed precoding vectors X,,,Vm, the design of the
reflection coefficients is similar to problem (39), and can be
solved using the algorithm proposed in the previous subsection
by setting ay, = ﬁ,‘v’k, and 3 = é.

With the previous developments, the joint symbol-level pre-
coding and reflection design for the QoS balancing problem (45)
is straightforward and is summarized in Algorithm 3. Given
random initial reflection vectors, problem (46) and (39) are
iteratively solved to obtain the precoding vectors X, ¥m, and
the reflection vectors 8y and 6, until convergence is met.

D. Computational Complexity Analysis

For the power minimization problem, the computational com-
plexity using the projected gradient algorithm to solve for
X is of order O{M?}. The complexity required to obtain
the reflection vectors is of order @{(2 N)'3}. Thus, the to-
tal computational complexity to solve the power minimization
problem is of order O{QX[M> + (2 N)!]}. For the QoS
balancing problem, the computational complexity of the three
steps required to obtain the precoders is of order O{Q% M3},
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Algorithm 3: Joint Symbol-Level Precoding and Reflection
Design for the QoS Balancing Problem.

IHPUt: ]'lks }-ll'ka pk: Vk? G’, h—s: hI'S! Q? 0.2, g'} tﬂ‘

Output: X*, 85, 67.

1: Initialize @ € M.

2: Repeat
3: Calculate each precoder vector X},,, ¥m by solving
(38).

-+ Obtain power allocation p,,,, ¥m by solving (50).
5z Calculate x};, by (48).

6: Obtain continuous 8* by solving (43).

T Construct reflection vectors 8 and 87 by (44).

8 Calculate low-resolution solutions using (24).

9: Until convergence

O{3 K}, and O{ MQK}, respectively. Thus, the total compu-
tational complexity of the QoS balancing algorithm is of order
O{QX (M3 + Q2 K) + (2 N)!}.

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
the feasibility of IRS-based passive information transmission
and illustrate the effectiveness of our proposed algorithms. We
adopt the popular settings in this field as in [10]. The noise
power at all receivers is 0> = —80dBm. The constellation order
is {2 = 4, corresponding to QPSK. The path-loss is modelled as
PL(d) = Cy(dp/d)", where Cyp = —30dB, dy = 1m, dis thelink
distance, and ¢ is the path-loss exponent. The small-scale Rician
fading channel model is adopted for all links. For example, the
channel from the BS to the IRS G is modelled as

L, s LoS 1 NLoS
G_\/.«c—l—IG +VK-+1G ?

where  is the Rician factor set as 3 dB, G°S is the line-of-sight
(LoS) component determined by the geometric locations of the
BS and the IRS, and GN'*S is the non-LoS (NLoS) Rayleigh
fading component.

(531

A. Passive Information Transmission System

In this subsection, we present simulation results for the passive
information transmission system in Sec. II. We assume that K’ =
3 users are randomly distributed 100 m away from the IRS, and
the path-loss exponent is set as k = 3. For simplicity, we assume
that the QoS requirements and weights for all users are the same,
ie,ar=a, pp=p=1, Vk

Fig. 4 shows the average transmit power versus the QoS
requirement « for the power minimization problem, including
both the continuous and low-resolution cases. The 2, 3, 4,
and 5-bit resolution cases using the direct quantization and
heuristic algorithms in Sec. II-D are referred to as “Quan-
tize, 2-bit"-*“Quantize, 5-bit,” and “Heuristic, 2-bit”-*“Heuristic,
5-bit,” respectively. The cases with 1-bit resolution are not
shown due to their severely degraded performance. Since the
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Fig.5. SER versus average transmit power P (K = 3, N = 100). (a) Average
SER versus P. (b) Maximum SER versus P.

optimal branch-and-bound algorithm has unaffordable expo-
nential complexity for high-resolution cases, only the 1-bit
and 2-bit cases are included, which are denoted as “B & B,
1-bit” and “B & B, 2-bit,” respectively. It can be seen that
the continuous scheme achieves the best performance given its
flexibility in specifying the phase-shifts. Whereas for a given
finite resolution, the branch-and-bound algorithm provides the
best performance and the direct quantization method has the
worst performance, as expected given their different levels of
computational complexity. The choice of the algorithm and the
resolution of the phase quantization requires a tradeoff between
performance and complexity. For 5-bit or higher resolution, the
computational complexity is a more dominant factor in practice,
since the performance is already sufficiently close to that with
infinite resolution at the IRS. For the 3-bit and 4-bit cases,
the heuristic algorithm is a good choice in the sense that it
provides better performance than direct quantization with af-
fordable computational complexity. For the very low-resolution
1-bit and 2-bit cases, the optimal branch-and-bound algorithm
provides much better performance. However, even using the
optimal branch-and-bound algorithm, the 1-bit case still suffers a
severe performance loss, requiring almost 5 dBm extra power to
achieve the same performance as with continuous phase control.
Thus, in Fig. 5 we choose the branch-and-bound algorithm for
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Fig.6. Average transmit power versus the number of iterations (K =3, N =
100, a = 2.50, B = 0.50).

the 2-bit case, the heuristic algorithm for the 3-bit and 4-bit cases,
and the direct quantization method for the 5-bit case to strike a
balance between computational complexity and performance.

For the QoS balancing problem, we plot the SER versus the
average transmit power P in Fig. 5. Since the weight coefficients
pr. for all receivers are the same, the average and maximum
SER of all receivers are plotted in Figs. 5(a) and 5(b), respec-
tively, to show the QoS balancing performance. The difference
between the average and maximum SER is very small, which
verifies the QoS balancing between all receivers. In addition, it
is encouraging to see that the 4-bit and 5-bit schemes achieve
almost the same performance as the continuous scheme, and
the performance loss of the 2-bit and 3-bit schemes is only
0.5-1 dBm.

B. Joint Passive Reflection and Information Transmission
System

In this subsection, we present simulation results for the
joint passive reflection and information transmission designs in
Sec. III. We assume that the BS is equipped with M = 6 anten-
nas and serves K = 3 PIRs and one SIR. Since the IRS is usually
deployed near the BS or users to achieve more beamforming
gains, we assume that the IRS is 10 m away from the BS, the PIRs
are 100 m away from the IRS, and the SIR is 20 m away from the
IRS to facilitate the secondary information transmission. Since
the BS and IRS are usually deployed at higher elevation to avoid
undesired blockages, we assume that the channel between the
BS and IRS is stronger than the others. In particular, the BS-IRS
channel is assumed to follow a small-scale Rician fading model
with LoS and NLoS components whose path-loss exponent is
2.5, while the other channels only have NLoS components and
with a path-loss exponent of 3. For simplicity, we assume that the
QoS requirements and weight coefficients for the PIRs are the
same, i.e., ap = a, pp = p = 1, VEk, and the weight coefficient
for the SIR is p = 5.

The simulation results for the power minimization problem
are shown in Figs. 6— 8. We first demonstrate the convergence
performance in Fig. 6, where the average transmit power versus

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 7, JULY 2021

Average transmit power (dBm)

24q 2.6a 280 3
PIRs' QoS requirement o

20 220 320

Fig. 7. Average transmit power versus PIRs’ QoS requirement o (K = 3,
N = 100, 8 = 0.50).

245

S

N
e
n

[
w

(]
oo
n

]
)

Average transmit power (dBm)
~N
P

N
L
1]
L
4

[£)

=}

o
1

20

020 0.6z 0.8 o

SIR's QoS requirement

040

Fig. 8. Average transmit power versus SIR’s QoS requirement 3 (K =3,
N =100, @ = 2.50).

the number of iterations is plotted. It shows that the convergence
can be achieved within 20 iterations, which demonstrates a
reasonable computational complexity. Furthermore, we observe
that the low-resolution cases have faster convergence than the
continuous counterpart. As in Fig. 4, 1-bit phase-shifts show a
notable performance loss due to the quantization error and thus
will not be evaluated in the rest of the simulation studies.

Fig. 7 shows the average transmit power versus the PIR QoS
requirement o with fixed SIR QoS requirement 8 = 0.5¢. For
comparison, we also show the performance for the case where
there is no SIR and the IRS only works as a passive reflector for
enhancing the primary information transmissions. These results
are plotted as a benchmark and denoted by “w/o SIR”. We
also consider the scheme where the IRS transfers the secondary
information to the BS and the BS simultaneously serves the PIRs
and SIR with the aid of the IRS. This case is denoted as “BS,
w/ SIR”. The “w/o SIR” scheme naturally consumes the least
power since it only serves the PIRs. The “BS, w/ SIR” scheme
also consumes less power than the proposed schemes due to
the BS’s powerful processing ability. However, for this case,
the IRS must transfer secondary information to the BS, which
requires additional power consumption at the IRS and a higher

Authorized licensed use limited to: Access paid by The UC Irvine Libranies. Downloaded on August 29,2021 at 15:16:44 UTC from |IEEE Xplore. Restnctions apply.



LIU et al.: INTELLIGENT REFLECTING SURFACE BASED PASSIVE INFORMATION TRANSMISSION: A SYMBOL-LEVEL PRECODING APPROACH

380 T T

ol
<o
a

2

=

)
T

w

ha

a
T

w
a

Minimum weighted QoS

—&— Continuous

—fe— 1-hit
—E— 2-bit
—&— 3-bit
—t—4-bit
—— 5-bit

280

2 4 [ 8 10 12 14 16 18 20
Number of iterations

Fig.9. Minimum weighted QoS versus the number of iterations (K =3, N =
100, P = 25dBm).

Average PIRs' SER
Maximum PiRs' SER

—#— B85, wiSR \,

L L &
22 24 % 28 22 24 26 28
Transmit power P (dBm) Tranamit power P (dBm)

() (b)

Fig. 10. SER versus average transmit power P (K = 3, N = 100). (a) Aver-
age SER versus P. (b) Maximum SER versus P.

transmission bandwidth for the control link between the BS and
IRS. Moreover, compared with the case where there is no SIR,
less than 1.5 dBm extra power is required, which shows the
effectiveness of the proposed scheme. Since the symbol-level
precoding at the BS provides significant additional DoFs, the
performance loss due to quantization of the IRS phases is much
lower in this scenario compared with that in Fig. 4.

In Fig. 8, we plot the average transmit power versus the SIR
QoS requirement /3 with fixed PIR QoS requirement o = 2.5¢.
We see that as 3 increases, only a small amount of extra power
is required to provide better QoS for the SIR, especially for the
high-resolution cases, which illustrates the effectiveness of our
proposed scheme for embedding the secondary symbols into
primary transmissions.

Figs. 9— 11 show simulation results for the QoS balancing
problem. In Fig. 9, the minimum weighted QoS versus the
number of iterations is plotted to show the convergence of the
proposed algorithm. As in the previous examples, convergence
is faster for the low-resolution cases, but in all cases it is
achieved relatively quickly, within about 20 iterations, although
little performance improvement is observed beyond about 10
iterations.

InFig. 10, the average and maximum PIR SER versus transmit
power P are plotted to show the QoS balancing performance.
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We observe that the performance gap between Fig. 10(a) and
Fig. 10(b) is relatively small, which fits well with the setting
pr = 1,Vk. In addition, comparing the “BS, w/ SIR” and “w/o
SIR” schemes, the performance loss of the proposed continuous
approach is about 1 dBm and 1.5 dBm, respectively, which
is a reasonable cost for transmitting the additional secondary
information. Moreover, the efficient low-resolution schemes
also have encouraging performance.

The SIR SER versus transmit power P is shown in Fig. 11,
including continuous, 2-bit, and 3-bit phase resolution with
different embedding rates, L = 8, 12, 16. We observe that SER
decreases with increasing L, revealing the trade-off between
efficiency and reliability.

V. CONCLUSION

In this paper, we investigated IRS-assisted passive informa-
tion transmissions in downlink MU-MISO systems by exploiting
symbol-level precoding. A dedicated passive information trans-
mission system was first considered, where the IRS operates as
a passive transmitter by reflecting an unmodulated carrier signal
from an RF generator to multiple users. Then, a joint passive
reflection and information transmission system was investigated,
where the IRS enhances primary information transmissions and
simultaneously delivers its own secondary information. Efficient
algorithms were proposed to solve the power minimization and
QoS balancing problems for both systems. Extensive simula-
tion results confirmed the feasibility of IRS-assisted passive
information transmission and the effectiveness of the proposed
algorithms.
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