
Proceedings of the ASME 2021 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2021
August 17-20, 2021, Virtual, Online

IDETC2021-71226

LEVERAGING DESIGN HEURISTICS FOR MULTI-OBJECTIVE METAMATERIAL
DESIGN OPTIMIZATION

Roshan Suresh Kumar∗
Department of Aerospace Engineering

Texas A&M University
College Station, Texas 77840

roshan94@tamu.edu

Srikar Srivatsa
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, New York 14850
sms722@cornell.edu

Meredith Silberstein
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, New York 14850

meredith.silberstein@cornell.edu

Daniel Selva
Department of Aerospace Engineering

Texas A&M University
College Station, Texas 77840

dselva@tamu.edu

ABSTRACT
Design optimization of metamaterials and other complex

systems often relies on the use of computationally expensive mod-
els. This makes it challenging to use global multi-objective opti-
mization approaches that require many function evaluations. En-
gineers often have heuristics or rules of thumb with potential to
drastically reduce the number of function evaluations needed to
achieve good convergence. Recent research has demonstrated
that these design heuristics can be used explicitly in design opti-
mization, indeed leading to accelerated convergence. However,
these approaches have only been demonstrated on specific prob-
lems, the performance of different methods was diverse, and de-
spite all heuristics being “correct”, some heuristics were found
to perform much better than others for various problems. In this
paper, we describe a case study in design heuristics for a sim-
ple class of 2D constrained multiobjective optimization problems
involving lattice-based metamaterial design. Design heuristics
are strategically incorporated into the design search and the
heuristics-enabled optimization framework is compared with the
standard optimization framework not using the heuristics. Re-

∗Address all correspondence to this author.

sults indicate that leveraging design heuristics for design opti-
mization can help in reaching the optimal designs faster. We
also identify some guidelines to help designers choose design
heuristics and methods to incorporate them for a given problem
at hand.

NOMENCLATURE
x Design variable
f (x) Objective function
�11 Effective metamaterial stiffness in horizontal direction
�22 Effective metamaterial stiffness in vertical direction
E 5 Volume fraction of complete truss design
� Young’s Modulus of constituent material
; Side length of lattice unit
3 Diameter of truss member
2C0A64C Target stiffness ratio
6 5 40B Design feasibility score
62>== Design connectivity score
6BC8 5 Design stiffness ratio constraint
6?2 Design partial collapsibility score
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6=? Design nodal properties score
6>A84=C Design orientation score
68=C4A Design intersection score
6?4= Total penalty function
FBC8 5 Penalty weight for stiffness ratio constraint
F2>= Penalty weight for feasibility and connectivity constraint
%� Pareto Front
3%�,?4= Minimum distance to penalized Pareto Front
3%�,CAD4 Minimum distance to true Pareto Front
BD? Support of association rule
2>= 5 Confidence of association rule
;8 5 C Lift of association rule

INTRODUCTION
The design of mechanical meta-materials and other complex

engineered systems such as spacecraft has traditionally relied
on the use of computationally expensive models such as finite
element simulations. Moreover, these problems are often non-
convex, constrained, multi-objective, mixed integer optimization
problems for which efficient algorithms are not known. Global
multiobjective optimization algorithms such as evolutionary al-
gorithms are often used to solve these problems, but in some
cases they require many function evaluations to reach the optimal
regions of the design space. Several methods have been proposed
to reduce the number of function evaluations needed to achieve
a certain level of convergence, such as surrogate-assisted meth-
ods [1, 2], Bayesian optimization [3, 4], or using expert knowl-
edge, either biasing the initial population, using hard or soft con-
straints, or using specialized operators [5,6]. Methods leveraging
expert knowledge are particularly interesting, either in isolation
or to complement data-driven methods, since: 1) They do not
require many expensive function evaluations to tune the models,
unlike some data-driven methods. 2) Large databases contain-
ing knowledge in the form of design heuristics or lessons learned
in a format that facilitates integration into a computational tool
(e.g., SysML, knowledge graphs) are becoming more common in
organizations [7,8]. Moreover, recent research in design automa-
tion has found that incorporating design heuristics explicitly into
design optimization has the potential to improve the efficiency of
the search for optimal designs [9, 10].

The definition of a design heuristic considered in this paper
is taken from Fu et al. [11] and has been derived from an exten-
sive literature survey: A context-driven directive, based on intu-
ition, tacit knowledge, or experiential understanding, which pro-
vides design process direction to increase the chance of reach-
ing a satisfactory but not necessarily optimal solution. Extrac-
tion of design heuristics can be done using interviews [12], ex-
amination of high quality products [13] or through data-driven
methods [14, 15]. Heuristics are commonly used in design op-
timization to overcome computational hurdles [16]. They are
essentially rules of thumb, situated in either intuition or domain

experience that can be utilized to improve computational effi-
ciency [12, 16] but at the expense of guarantee of optimality and
completeness of the solution set [17]. In this paper, we attempt
to use such heuristics explicitly to accelerate design optimiza-
tion. Note that according to this definition, optimal designs do
not necessarily need to abide by a heuristic, but searching for
heuristic-satisfying designs should lead to satisfactory and opti-
mal designs faster.

For example, in the earth observation satellite system de-
sign problem described in [18], wherein the goal is to find satel-
lite constellations maximizing science benefit while minimizing
mission cost, examples of the heuristics used include: 1) avoid-
ing satellites in the constellation with payload mass of more than
1500 kg, since that leads to diseconomies of scale and/or insuffi-
cient resources on board for all instruments, thus degrading both
science and cost; 2) putting synergistic instruments on the same
satellites, and separating instrument with negative interactions
in different platforms; 3) targeting a satellite size and weight that
leads to high packaging efficiency factors given a launch strategy,
which leads to launch cost savings without affecting science.

The utility of employing heuristics in the design optimiza-
tion process is empirically demonstrated in a comparison study
in Binder and Paredis [19]. To demonstrate their newly devel-
oped Design Decision Framing Method, an algebraic heuristic
enabled design method is compared with expert and non-expert
variants of a computational optimization based expected utility
maximization approach for the design of a pressure vessel. The
algebraic design method incorporates a heuristic based inbuilt
factor of safety, using it to compute two wall thicknesses and
choose the conservative option. It is found that the algebraic
heuristic based design method outperforms the non-expert based
optimization approach under certain conditions. It is worth men-
tioning that the algebraic heuristic optimization algorithm is an
instance of the incorporation of expert heuristics into the opti-
mization framework.

While the incorporation of design heuristics for design op-
timization has been demonstrated on specific problems, the util-
ity of this approach has not been systematically demonstrated
across a wide range of problems. Here, we seek to extend our
understanding of how to utilize heuristics through the example
of mechanical metamaterial design. Metamaterials are materials
whose properties are determined by geometry of a repeated mi-
crostructure, in addition to the intrinsic mechanical properties.
The inverse metamaterial design problem has been found to be
challenging owing to the potentially large design space. Conse-
quently, design of metamaterials for mechanical properties is a
large field, spanning ad hoc knowledge-driven approaches and
formal design methodologies [20–22]. Topology Optimization
is the most common method for 3D metamaterial design, espe-
cially when elastic properties are of interest, thanks to its bal-
ance of generality and efficiency [23, 24]. Typically, a finite el-
ement based method is used to compute the material properties
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of the candidate structure filling a certain region of the design
space and the numerical optimization approach drives the design
search towards the region with the required material properties
and density. Many machine learning and system design tech-
niques have also been applied to the metamaterial design prob-
lem [25–30]. The particular material design problem in this pa-
per was selected because it has hard constraints that are difficult
to satisfy, in addition to two conflicting objectives. This essen-
tially creates a dynamic objective function that focuses first on
finding feasible designs, then optimal ones. This aspect was not
present in any of the problems previously studied to leverage de-
sign heuristics [31–33].

Two main challenges exist in leveraging expert knowledge
in design optimization: selecting heuristics and selecting meth-
ods to leverage those heuristics. Hitomi and Selva [5] noted that
even though by definition all design heuristics are “good” (in the
sense that they capture a directive which when applied to the spe-
cific context described in the heuristic should improve the quality
of the design), not all heuristics actually have a positive impact
when used in a specific problem. For example, in [5], some of
the heuristics used were naturally satisfied by most designs in
the design space due to the specifics of the problem formula-
tion, rendering that heuristic not useful for the problem. Another
reason why good heuristics may not be useful for a particular
problem is that the heuristic could be aligned with some of the
objectives but actually conflict with a more important objective
or hard constraint. Even if the best possible set of heuristics were
chosen for a given problem, there are still questions about the
best methods to leverage those heuristics. Design heuristics have
been used in different ways to accelerate optimization, includ-
ing as repair search operators, as soft or hard constraints, or as
biased prior probability distributions to generate initial popula-
tions [34,35]. For example, biasing an initial population is a very
soft method of incorporating heuristics. As demonstrated in [5],
different methods may lead to widely different performance, and
there is little guidance about when to use different methods.

In this paper, we describe a case study in design heuris-
tics for a simple class of 2D constrained multiobjective opti-
mization problems involving design of lattice-based metamate-
rials for targeted mechanical properties. In addition to com-
paring the heuristics enabled optimization framework to a stan-
dard optimization framework (based on the popular n-MOEA al-
gorithm [36]), guidelines on how to leverage design heuristics
for design optimization, identified during the course of the case
study, are presented.

The paper is structured as follows: First the case study is pre-
sented, followed by a detailed discussion on the different meth-
ods of representation of design heuristics and the methods to
incorporate them into the design optimization process, recom-
mendations on heuristic metrics, results from the case study, and
finally recommendations for future utilization of heuristics.

(a) 3x3 Nodegrid (b) 3x3 Repeated lattice unit

FIGURE 1: An example design in the 2D 3x3 square node grid
design space is shown in (1a) with an example truss design is
illustrated with the nodes in red and the members in black. The
same lattice is shown in a 3x3 repeated form in (1b).

CASE STUDY PROBLEM FORMULATION
The constant radius truss design problem considers a 2D 3x3

node grid shown in Fig. 1a. This 2D node grid represents a sin-
gle repeat unit cell of the metamaterial and is the design space
to explore. The design decisions are binary variables that rep-
resent the presence or absence of truss members within the 3x3
node grid. Allowing for all possible connections between pairs
of nodes, there are 36 possible truss members. However, to ac-
count for repetition of lattice units in the two orthogonal direc-
tions, the design decisions corresponding to members on oppo-
site edges must be the same. For this problem, the decisions
for the left and bottom edge members are determined by the op-
timization algorithm and replicated for the right and top edge
members respectively– thus making the design vector to be op-
timized 30 elements long. All model evaluation was performed
with custom MATLAB scripts as described conceptually below.

The full stiffness matrix for each design is evaluated by mod-
eling the lattice as a truss - each linear elastic member can only
deform axially and connects to other members only at the nodes,
which are modeled as pin joints. The stiffness values of individ-
ual members are combined based on shared member endpoints
to form the global stiffness matrix. The effective material stiff-
ness tensor is then calculated by applying a series of controlled
displacements to the boundary of the lattice, calculating force,
and normalizing by area to obtain stress components. In this pa-
per, we are focused on the normal horizontal and vertical moduli,
�11 and �22 respectively, which are components of this stiffness
tensor. The volume fraction of the design is found by dividing
the sum of the volumes of all members by a volume of the same
side length and thickness of the unit cell. Based on convergence
of the moduli, all values were calculated using 3x3 repeats of the
3x3 node grid as depicted in Fig. 1b. The radius of each mem-
ber and side length of the lattice unit are fixed at 250 `< and 10
<< respectively. The constituent material is assumed to be SIL
(elastic modulus of 1.8162 "%0).
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An unrestricted design space of all possible connectivity be-
tween nodes contains many designs that are not realizable as
metamaterials. First, nodes cannot be connected to exactly 1
member, as this member will then not actually connect with
the rest of the material. Second, no members can cross or
overlap since they would then occupy the same physical space.
These hard requirements are enforced as the connectivity func-
tion (62>==) and feasibility function (6 5 40B), respectively. To fa-
cilitate the optimization, constraint functions are defined for each
constraint that span from 0 to 1, with 1 representing no violations
and 0.1 subtracted for each violation.

The selected multiobjective combinatorial design optimiza-
tion problem is formalized in Eqn. 1. The goal is to maxi-
mize vertical stiffness while minimizing volume fraction of the
repeated lattice configuration, subject to constraints on design
feasibility, design connectivity and an additional constraint rep-
resenting a target stiffness ratio.

min
x

f (x) =
[
−�22 E 5

])
s.t. 1−6 5 40B (x) = 0

1−62>== (x) = 0
6BC8 5 = 0

(1)

Here, 6BC8 5 =
����22
�11
− 2C0A64C

���, and we will present results only for
2C0A64C = 1. The feasibility and connectivity constraints are en-
forced using the interior penalty method [37] with a base 10 log-
arithm. The ;>610 function gives a zero value for completely
feasible and fully connected designs and a greater negative value
the further a design is from full feasibility and connectivity. The
lowest feasibility and/or connectivity score a design can achieve
is 1.1× 10−16 (as a result of MATLAB’s precision limitations),
so the largest penalty that can be levied on a design for com-
plete infeasibility or non-connectivity is near 16. The constraint
penalty terms are appended to the objectives with their corre-
sponding weights and the multi-objective optimization algorithm
optimizes the two penalized objectives, shown in Eqn. 2. The
penalty term 6?4= (x) is defined in Eqn. 3.

f ?4= (x) =
[
−�22
�
E 5

0.96

]
−

[
1
1

]
6?4= (x) (2)

6?4= (x) = F2>=

(
;>610 (6 5 40B)

16 + ;>610 (62>==)
16

2

)
+

FBC8 5
6BC8 5

10
(3)

In order to interpret the weights F2>= and FBC8 5 solely in terms
of assigning relative priority for the optimization algorithm, the
objectives and the penalty terms are normalized to the best extent
possible to have a value between 0 and 1. 6BC8 5 is normalized by
10 based on observations from multiple runs. E 5 is normalized
by 0.96 which is the volume fraction of the truss design with all
possible member connections (i.e. the highest possible volume
fraction ignoring feasibility limits). For the purpose of this pa-

FIGURE 2: Illustration of the different heuristic representations
and their corresponding handling methods.

per, both F2>= and FBC8 5 are taken as 10 to emphasize constraint
satisfaction over objective minimization, since both the feasibil-
ity and stiffness ratio constraints are rather hard to satisfy, as is
shown later.

Four design heuristics are considered for this problem based
on expert knowledge of the authors for good design of mechan-
ical metamaterials. Importantly, they were not all developed for
this particular problem, but may be related to some of the objec-
tives and constraints. They are:

1. Partial Collapsibility: This design heuristic embodies the
resistance of the truss design to collapse due to shear load-
ing. It dictates that each half of the unit cell, both vertically
and horizontally, must contain at least one diagonal member.

2. Nodal Properties: This design heuristic directs designs to
be physically stable. It dictates that each node have at
least three connections unless completely unused, to prevent
snap-through instability in joints under loading. This heuris-
tic also caps the number of unused nodes per design to 1. As
a result its main goal is to aid in the satisfaction of the con-
nectivity constraint.

3. Orientation: This design heuristic directs designs to
achieve a certain target average orientation of its members,
computed from the target stiffness ratio. Thus the heuristic
is aimed at satisfying the stiffness ratio constraint.

4. Intersection: This design heuristic has been developed to
reduce the number of intersections between the members of
the truss design. It is therefore associated with the feasibility
constraint.

INCORPORATION OF HEURISTICS INTO OPTIMIZA-
TION FRAMEWORK

Figure 2 shows the different means of representation of de-
sign heuristics and the handling methods that utilize the appro-
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priate representations of the heuristics to incorporate them into
the design optimization framework. It must be stressed that any
heuristic can be formulated into any of the illustrated represen-
tations. These representations capture the underlying directives
of the heuristics in a manner suitable for their incorporation into
the design search. It is worth mentioning that although the design
heuristic representations were developed with evolutionary algo-
rithms in mind - a popular method to solve metamaterial design
problems - they can trivially be extended for use in other opti-
mization techniques. What follows applies to any global multi-
objective optimization strategy that uses random generation of an
initial set of solutions and performs some kind of hill climbing
by iteratively applying one or more moves or operators.

Soft Constraint Form
The soft constraint form of design heuristics quantifies the

degree of satisfaction of that heuristic by an input design by
means of a function 6 : - → R, where G ∈ - represents a de-
sign from the design space and 6(G) represents the degree of sat-
isfaction of heuristic 6 by design G. This function can then be
incorporated into the problem formulation as a soft constraint.
Note that from the very definition of a heuristic, it is not guar-
anteed to lead to optimal solutions, and it is only applicable to
a certain context. Therefore, a heuristic should not be imple-
mented as a hard constraint. The soft constraint forms of the par-
tial collapsibility and nodal properties heuristics award a value
of 1 to designs that fully satisfy the heuristic directive and 0.1
is subtracted for each subsequent violation. The orientation soft
constraint form calculates a design’s orientation as the average
orientation of all individual members relative to the horizontal
axis, then assigns a score based on the deviation of the design’s
orientation from the target orientation. This function assigns a
continuous score spanning from 0 to 1 (properly oriented). The
intersection soft constraint form, used solely for the computation
of heuristic alignment metrics introduced below, is identical to
the feasibility constraint.

The soft constraint form can be handled using two types of
methods: penalty and stochastic. Penalty methods are generic
constraint handling methods. As the name suggests, designs are
penalized for violations of the design heuristic directives. Ex-
amples of methods belonging to this class of constraint handling
methodologies include coevolutionary [38], metric [39] and the
interior [37] penalty methods. The choice of the penalization
method and the inherent weights is left to the designer and can
vary based on the severity of the penalty for heuristic violation.
For example, for heuristics that are harder to satisfy the domi-
nance operator can be modified so designs are compared based
on constraint satisfaction first, with Pareto dominance in objec-
tive space being used to break ties. Normalization of the objec-
tives and constraint penalty functions facilitates the interpretation
of the penalty weights.

Stochastic constraint enforcement is a class of heuristic han-
dling methodologies that are softer than penalty methods. Two
examples of stochastic constraint enforcement methods are Dis-
junctive Normal Form (DNF) and Adaptive Constraint Handling
(ACH) [5]. ACH applies a constraint in a probabilistic manner
based on the fraction of solutions in the current archive (ap-
proximate Pareto set with one point per 4?B8;>=-box in objec-
tive space [36]) that violates the constraint. The cumulative con-
straint violations of two designs are compared to find the dom-
inating design, with Pareto objective dominance being used in
case of ties. In this case, the probabilistic application of the
heuristic violation penalties to a design ensures diversity in the
archive in terms of heuristic satisfaction, which in turn leads to
a balance between design space exploration and design heuris-
tic exploitation. An example of soft constraint enforcement is
Michalski [40] which classifies designs as acceptable if they sat-
isfy at least one of the knowledge-dependent constraints.

Operator Form
The operator form encodes the prescriptive action or direc-

tive represented by the heuristic to improve a design’s optimality
in the form of a move in design space, i.e. a function that takes a
design as an input and returns a design as an output $ : - → - .
This form is consistent with the representation of heuristics con-
sidered in Filingim et. al. [12] where heuristics are considered
to prescribe an action towards improving a design. The operator
form acts upon a design to produce a new design that adheres
to the directives of the heuristic to a greater extent. The par-
tial collapsibility operator form aims to add a diagonal member
otherwise absent at random to an input design to improve sat-
isfaction of the heuristic. The nodal properties operator form
adds a connection at random to any violating node in order to
improve satisfaction of the Nodal Properties directive. The ori-
entation operator form adds either a horizontal or vertical mem-
ber at random to the input design based on whether the design
orientation is higher or lower than the target orientation. The
intersection operator form removes an intersecting or overlap-
ping truss member from the design at random. Heuristic-based
operators (called knowledge-directed operator in [41]) should be
used in conjunction with other knowledge-independent operators
so as not to limit the design search. The random aspect of the
operator is important for maintaining exploration. The opera-
tor form can be handled either using a fixed operator selection
strategy that continuously applies the same set of knowledge-
directed operators throughout the design search, or by Adaptive
Operator Selection (AOS). AOS [42] uses a multi-arm bandit
approach for selecting operators to improve the design search.
A pool of knowledge-independent (e.g. crossover and muta-
tion) and knowledge-directed operators is maintained, with op-
erators being selected based on their relative cumulative perfor-
mance. AOS will be used to encode operators in the presented
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case study. Offspring-parent domination is used as the credit as-
signment strategy with 1 credit being awarded for the offspring
dominating the parent, 0.5 credits for both the offspring and the
parent being non-dominated and 0 credits for the parent domi-
nating the offspring. Probability matching is used as the operator
selection strategy with U and ?<8= values of 0.6 and 0.03 respec-
tively. In order to reduce reliance on the knowledge-dependent
operators in the later stages of the optimization, ?<8= (the mini-
mum probability of selection for an operator) is reduced by 0.01
every 500 function evaluations until a value of 0 is reached to
encourage design space exploration by the selection of poorly
performing operators. Since the assumption in this work is that
heuristics are only useful in the beginning of the design search, it
is assumed that the knowledge dependent operators will perform
poorly compared to knowledge-independent operators at the later
stages of the optimization run.

Biased Prior Distribution Form
The biased prior distribution form encodes the heuristic in

the form of a probability distribution that produces a set of de-
signs that statistically tend to satisfy the directives of the heuris-
tic. In population-based algorithms, the biased set of designs
can be used as the initial population, with the expectation that
the initial presence of some aspects of ‘good designs’ will ac-
celerate convergence [35]. Again, the stochastic satisfaction as-
pect is particularly important as it allows for further design space
exploration rather than limiting the design search strictly to the
heuristic-adhering region of the design space. The partial col-
lapsibility biased initialization strategy assigns a probability of
0.75 for the presence of a diagonal member in a design as op-
posed to 0.5 for the presence of straight members. For nodal
properties, the biased initialization strategy involves increasing
the probability of the presence of members so as to statistically
reach more number of members in each truss design of the initial
population. The population is divided into 4 clusters, the designs
in each cluster are biased to statistically contain 15, 18, 20 and
22 members respectively (not counting the repeated members).
The initial population biasing strategy for the orientation heuris-
tic involves acceptance of randomly generated designs only if
their orientation is in the margin of 10◦ from the target orienta-
tion. The intersection biased initialization strategy involves di-
viding the population into 4 clusters, with each cluster statisti-
cally biased to contain 6, 9, 12 and 15 members respectively with
the motivation that designs with fewer members have a lower
probability of having intersecting or overlapping members. The
methods to implement biased initialization are essentially meth-
ods that sample from a given prior probability distribution. For
standard random variables, sampling functions are available in
most scientific computing software packages. The inverse sam-
pling method can be used if the cumulative distribution function
is known. The soft constraint form of the heuristic 6(G) can also

be used in a rejection sampling scheme.

IDENTIFICATION OF PROMISING HEURISTICS
As mentioned in the introduction, not all “correct” heuris-

tics are actually useful for a given problem at hand. Some of the
methods presented above are more forgiving than others when
poor heuristics are incorporated (e.g., AOS) but in general, in-
corporating poor heuristics will hurt performance. This section
provides some specific metrics and tests, as identified by the au-
thors, for designers to apply when down-selecting heuristics to
incorporate into their optimization problem.

The following types of metrics are recommended to assess
how promising a heuristic is:

1. Ease or degree of full satisfaction of the heuristic and the
quantity it is targeting (Pareto dominance in the true objec-
tives space or specific constraints).

2. Alignment with Pareto dominance (e.g., distance to Pareto
front) in the true objective space or alignment with one or
more constraints. Alignment with Pareto dominance can be
a) in the complete range of the true objective space or b) in
a portion of the true objective space (e.g., low stiffness/low
volume fraction). More succinctly, alignment with Pareto
dominance in the penalized objective space takes into ac-
count both the true objectives and the constraints with the
relevant weights as defined in the problem formulation.

In general, these metrics can be evaluated on a set of randomly
generated designs. If, like in the problem at hand, the constraints
are too hard to be satisfied in a small random sample, a pop-
ulation generated by a preliminary search process can be used
instead. The degree of full satisfaction of a heuristic or con-
straint can be computed using the fraction of randomly gener-
ated designs that fully satisfy it. Intuitively, heuristics strongly
aligned with more important or harder to satisfy objectives and
constraints will help the most. The ease of satisfaction of the
heuristic itself will also inform the heuristic handling method.
Of note, this metric evaluation step is not strictly necessary for all
heuristic handling methods. For example, AOS can learn which
heuristics are useful for the problem at hand and which are not.
However, the performance of AOS degrades when the number of
operators in the pool is very large.

Many metrics can be used to ascertain the alignment of
the heuristics with the constraints and Pareto dominance of
the true or penalized objectives. The Pearson’s Correlation
Coefficient [43] and the Spearman’s Correlation Coefficient [44]
measure the degree of linearity and monotonicity respec-
tively between the independent and dependent variable. In
case of insignificant results for the previous two correlation
coefficients, various interestingness measures from associ-
ation rule mining theory can be leveraged. Measures such
as support [45], confidence [46] and lift [47] can be used to
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compute the interestingness of association rules of the form
{low/high heuristic} → {low3%�,CAD4, low/high objective}
{low/high heuristic} → {low/high constraint value}
{low/high heuristic} → {low/high3%�,?4=}

The support, confidence and lift measures for an association
rule A→ B can be computed using the equations below, taken
from [48].

BD?(A→ B) = %(A∪B) (4)

2>= 5 (A→ B) = %(B|A) = BD?(A∪B)
BD?(A) (5)

;8 5 C (A→ B) = 2>= 5 (A→ B)
BD?(B) (6)

In situations where linear or monotonic alignment cannot be as-
certained, the association rule mining based interestingness mea-
sures provide valuable information regarding how to leverage the
heuristics for optimal design search.

RESULTS AND DISCUSSION
Identification of promising heuristics

The metrics described in the Section titled “Identification
of promising heuristics”, were computed for each of the four
heuristics. The heuristics were assessed using 10 trials with 400
designs each. 100 of these designs were randomly generated
unique designs and 300 designs were from the final population of
3 n-MOEA runs optimizing the problem represented by Eqn. 1.
This approach provides a mix of designs that have both high and
low constraint satisfaction for an unbiased calculation of the met-
rics. Specifically, the feasibility constraint is very hard to satisfy
and randomly generated designs tend to have very low feasibility
scores. It is worth noting that the utilization of n-MOEA gener-
ated designs for metrics computation in general is not necessary
if enough randomly generated designs can fully satisfy the con-
straints.

The first metric is ease of satisfaction. Table 1 shows the
fraction of the designs that show complete satisfaction of the dif-
ferent constraints and heuristics as well as the mean score of the
heuristics and constraints (values of the soft constraint form for
the heuristics and the constraint functions) across all designs in
all trials. It can be seen that feasibility is indeed very hard to sat-
isfy given the low mean fraction of fully satisfying designs and
high standard deviation of the score. It must be mentioned that
there is no variation in the mean fraction of fully satisfying de-
signs for feasibility across the trials since the main source of vari-
ability in the feasibility scores came from the n-MOEA runs and
the random designs all generated zero feasibility score designs.
The intersection heuristic shows the same behaviour as feasibil-
ity as the feasibility function is used to compute the metrics for
the intersection heuristic. In contrast, the connectivity mean frac-
tion of fully satisfying designs and mean scores are extremely
high with negligible standard deviation. This indicates the rather

Parameter |6 (x)=1 |
|∪ |

∑(6 (x)
|∪ |

%� 0.0175 ± 0.0000 -

6 5 40B 0.36 ± 0.0000 0.6222 ± 0.3906

62>== 0.9797 ± 0.0084 0.9977 ± 0.0162

6BC8 5 0.045 ± 0.0000 0.0982 ± 0.2376

6?2 0.8882 ± 0.0026 0.9845 ± 0.0468

6=? 0.975 ± 0.0104 0.9973 ± 0.0176

6>A84=C 0.0042 ± 0.0026 0.9784 ± 0.0249

68=C4A 0.36 ± 0.00 0.6222 ± 0.3906

TABLE 1: Fraction of fully satisfying designs and mean scores
for the Pareto front designs, the 3 constraints, and the 4 heuristics
across the 10 trials (mean ±1f).

high ease of satisfaction of the connectivity constraint and thus it
may not require further improvement through the incorporation
of a heuristic. The stiffness ratio constraint is difficult to sat-
isfy, which is evidenced through the small mean fraction of fully
satisfying designs. In addition it can take a wide range of val-
ues, which results in a standard deviation greater than the mean
value. Partial collapsiblity and nodal properties heuristics are
reasonably easy to satisfy given the high mean scores and corre-
sponding low standard deviations. The orientation mean fraction
of fully satisfying designs and mean score suggests that there are
very few designs that fully satisfy it but a high number of designs
come very close to it. The small value of fraction of designs in
the Pareto front signifies the fact that this constrained multiob-
jective problem is not easy to solve.

The second metric is alignment of the heuristics with Pareto
dominance in the true objective space or with one or more con-
straints. This is computed either using the Pearson or Spearman
correlation coefficients or the interestingness measures (mainly
confidence and lift). For computation of the lift, the objectives,
constraints, heuristics and distances to the true and penalized
Pareto front are thresholded into high or low values. The 75Cℎ

percentile of combined data for all 10 trials was used as the
thresholding limit for �22, 6 5 40B, 62>==, 6?2 , 6=? , 6>A84=C and
68=C4A . The 25Cℎ percentile was used for E 5 and 6BC8 5 . 3%�,?4=
and 3%�,CAD4 were thresholded using the 60Cℎ and 70Cℎ percentile
values respectively. Heuristics are assessed based on their asso-
ciations with desirable consequents containing the constraint or
objectives they target. For example, since we want 6BC8 5 to go to
zero, the orientation heuristic would be considered promising if
the association rule - high 6>A84=C → low 6BC8 5 was found to be
significant. Similarly, high 6=?→ high 62>== and high 68=C4AB→
high 6 5 40B would imply that both nodal properties and intersec-
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tion are promising heuristics.
Table 2 presents the statistics for the Pearson and Spearman

correlation coefficients as computed for significant combinations
of heuristics and either minimum distance to true Pareto front
or constraints across the 10 trials. The Pareto fronts are com-
puted for each trial using normalized objectives. The minimum
distances to the Pareto front are computed in the normalized ob-
jective space. The lower part of Table 2 presents the correla-
tion coefficients for the heuristics with the minimum distance to
the penalized Pareto front, combining the true objectives and the
constraints. Just like for the distance to true Pareto front, the pe-
nalized Pareto front is computed in the normalized penalized ob-
jectives space in order to prevent the influence of any penalized
objective on the minimum distance calculation. Correlation with
the distance to penalized Pareto front provides an aggregate per-
spective of the heuristics’ ability to both reach optimal designs
and satisfy constraints. Concerning the association rule mining,
the complete set of interestingness measures computed for all rel-
evant association rules is provided in Appendix A. Some exam-
ples of rules that were found to have high degree of association
as inferred by their lift values are: low 6?2 → low 6BC8 5 (lift =
3.85 ± 0.09), high 6>A84=C → low 3%�,?4= (lift = 1.77 ± 0.56),
high 6>A84=C → low 6BC8 5 (lift = 3.89 ± 0.05), high 68=C4A → high
6 5 40B (lift = 2.77 ± 0) and low 6=? → low 62>== (lift = 9.21 ±
5.57).

Results from both the correlation and association rule min-
ing tests show that the partial collapsibility exhibits significant
negative correlations with distance to the true Pareto front and
feasibility (high Pearson and Spearman correlations between 6?2
and 3%�,CAD4, low 6?2 → {low 3%�,CAD4, low E 5 } (lift = 4.27 ±
1.13) and low 6?2 → high 6 5 40B (lift = 2.67 ± 0.06)), which
implies that contradicting the directive of partial collapsibility
leads to promising designs. Nodal properties shows significant
correlations with connectivity (low 6=?→ low 62>== (lift = 9.21
± 5.57)) and stiffness ratio constraint (low 6=? → high 6BC8 5
(lift = 1.33 ± 0)) but no corresponding significant correlations
for high 6=? thus implying it may not be a promising heuris-
tic. Orientation and intersection on the other hand display very
favourable correlations that indicate that they can be help find op-
timal designs quickly. Orientation has positive correlation with
feasibility and negative correlation with stiffness ratio constraint
(i.e. positive correlation with reaching target stiffness ratio). The
latter is consistent with the main goal of developing the orien-
tation heuristic while the former is a nice bonus. The intersec-
tion heuristic not only improves stiffness ratio constraint satis-
faction but also moves the design search towards the true Pareto
front as designs improve their levels of intersection satisfaction
(high 68=C4A → {low 3%�,CAD4, low E 5 } (lift = 2.45 ± 0.52)). The
full positive correlation of intersection with feasibility is obvious
given that the feasibility function is used to compute the metrics
for the intersection heuristic. The alignment metrics with the pe-
nalized objectives confirm all these results.

Corr. Pairs Pearson Coeff. Spearman Coeff.

68=C4A , 6 5 40B 1 ± 0 1 ± 0

6>A84=C , 6BC8 5 -0.7214 ± 0.035 -0.6402 ± 0.0342

6>A84=C , 6 5 40B 0.6640 ± 0.0368 0.7577 ± 0.0369

68=C4A , 6BC8 5 -0.5934 ± 0.0725 -0.6519 ± 0.0084

6?2 , 3%�,CAD4 0.4277 ± 0.0191 0.4461 ± 0.0107

68=C4A , 3%�,?4= -0.92 ± 0.0019 -0.975 ± 0.000

6>A84=C , 3%�,?4= -0.631 ± 0.041 -0.839 ± 0.0335

6=? , 3%�,?4= -0.272 ± 0.0548 -0.212 ± 0.0409

6?2 , 3%�,?4= 0.187 ± 0.0049 0.4365 ± 0.0128

TABLE 2: Alignment metrics between heuristics and aspects of
the problem formulation (min. distance to true Pareto front, pe-
nalized Pareto front and constraints) (mean ±1f).

In summary, the study identifies the orientation and intersec-
tion heuristics as the most promising candidates for incorporation
into the optimization framework, since they are strongly aligned
with the problem’s objectives and important and hard to satisfy
constraints.

Efficacy of the heuristics to accelerate convergence
The constrained multiobjective optimization problem for-

malized in Eq. 1 is solved using the n-MOEA algorithm with
different cases incorporating different heuristics/combinations of
heuristics. The value of n is chosen to be 0.01 on both directions
of the normalized objective space. Single-point crossover with a
crossover probability of 1 and bit-flip mutation with a mutation
probability of 1

30 are employed as the knowledge-independent
operators. The population size is set to 100 and the maximum
number of function evaluations for termination of the optimiza-
tion routine is set to 3,000.

Four cases are considered:

1. Case 1: No heuristics incorporated
2. Case 2: Orientation heuristic incorporated as repair operator

using AOS and Intersection heuristic incorporated as repair
operator using AOS and as biased prior distribution

3. Case 3: Orientation heuristic incorporated as repair operator
using AOS

4. Case 4: Partial Collapsibility and Nodal Properties repair
operators incorporated using AOS

Case 2 considers the two heuristics identified as promising in
the previous section. The combination of low mean fraction
of fully satisfying designs and high mean score of the orienta-
tion heuristic in the studies conducted in the “Identification of
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FIGURE 3: Combined feasible pareto fronts from the 30 runs of
the four cases at different NFE values in true objective space is
shown. The utopia point is located towards the bottom right.

promising heuristics” subsection warrants the use of a represen-
tation and handling methodology that is reasonably firm in en-
forcing heuristic satisfaction. Hence for this problem, the orien-
tation heuristic is represented using its repair operator form and
handled with AOS. The intersection heuristic, owing to the dif-
ficulty in fully satisfying the feasibility constraint as seen from
the metrics study, is represented using both its repair operator
(handled using AOS) and its biased prior probability distribu-
tion forms. Case 3 is considered in order to emphasize and il-
lustrate the value of incorporating the intersection heuristic as
opposed to just the orientation. The intersection repair opera-
tor (which removes an intersecting member at random) and the
biased prior distribution (which consists of designs with statisti-
cally lower number of members that have a lower probability of
having intersections or overlaps) improve feasibility, the hardest
constraint to satisfy. This is demonstrated in the results shown.
Case 4 is considered to demonstrate that the heuristics identified
as not promising in the previous study indeed do not perform
well. Both partial collapsibility and nodal properties do have rea-
sonably high mean fractions of fully satisfying designs and mean
scores, as seen in Table 1. Selective application of their repair op-
erators at appropriate times in the optimization run through AOS
is therefore the best way to leverage the heuristics.

Figure 3 shows the feasible designs in the combined Pareto
fronts from the 30 runs of each case over the true objectives space
at different points in the search (NFE=250, 500, 1500 and 3000).

FIGURE 4: The plot of the hypervolume values over the penal-
ized objectives space as a function of NFE for the four cases is
shown. The solid lines represent the median values while the
dashed lines represent the inter quartile range.

It shows that Case 2 is the first to reach feasible designs by 500
function evaluations. This clearly demonstrates the utility of the
intersection heuristic.

Figure 4 shows the hypervolume values plotted as a function
of number of function evaluations (NFE) in the penalized objec-
tives space. It can be seen that Case 2, which incorporates both
orientation and intersection heuristics, performs the best and is
close to convergence at 3000 NFE. However Case 1, that does
not incorporate heuristics, has not yet converged at 3000 NFE. It
is worth mentioning that in global optimization, any non-flawed
algorithm will eventually reach the true pareto front. So for large
NFE, Cases 1,3 and 4 would eventually catch up with Case 2.

Since the main goal of incorporating heuristics into opti-
mization is to reduce the NFE needed to achieve convergence,
Fig. 5 shows the fraction of the 30 runs for each case that attain
convergence (defined as HV ≥ 0.75) at different values of NFE.
It is clearly seen that the incorporation of both orientation and
intersection not only allows for reaching convergence faster but
also keeping that advantage to reach further optimal designs in
the later stages of the optimization run. In contrast, Case 3 is
able to reach more optimal designs in the early stages of the de-
sign search but it eventually loses out to the n-MOEA algorithm
since it does not have a strategy to improve the feasibility of de-
signs. Case 4, which incorporates partial collapsibility and nodal
properties, never overcomes the other cases owing to the fact that
maximizing partial collapsibility hurts the design search towards
the penalized Pareto front as concluded from the positive Spear-
man coefficient of 6?2 and 3%�,?4= . This validates the fact that
both partial collapsibility and nodal properties are not promising
heuristics for this problem.
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FIGURE 5: The fraction of the 30 runs that achieve the threshold
hypervolume value of 0.75 is plotted as a function of NFE for the
four cases.

CONCLUSIONS
This paper shows the potential of methods that explicitly use

design heuristics in optimization to help find optimal or at least
satisfying designs faster, using the case study of 2D lattice-based
mechanical metamaterials. Figure 5 suggests that Cases 2 and
3 succeeded in this objective. However, the point of getting to
better designs faster is to enable evolutionary algorithms to get
to even more optimal designs towards the end of the optimiza-
tion run. In this respect, Cases 3 and 4 failed since they could
not improve upon the n-MOEA result towards the end of the op-
timization run.

Further, the main motivation behind the introduction of the
metrics of ease of satisfaction and alignment is to identify the
heuristics that can help with a given problem at hand. Design-
ers can come up with many heuristics that may seem useful for
a class of problems, but their usefulness for a given problem in-
stance is hard to predict due to couplings between the heuristics
and the objectives and constraints. For example, the partial col-
lapsibility heuristic was meant to improve shear stability on max-
imization, a goal that is not directly related to any of the objec-
tives or constraints in the problem considered. The metrics study
thus found that using the partial collapsibility heuristic would
be detrimental to the design search and thus partial collapsibil-
ity was deemed not promising for this problem. A more subtle
example of misalignment between heuristics and problem for-
mulations is the nodal properties heuristic that was specifically
developed to improve design member connectivity. This is one
of the constraints of the problem and hence a prime candidate
to be investigated using the metrics study. However, the met-
rics study concluded that nodal properties did not have any sig-
nificant correlations with either minimum distance to the Pareto
front or any of the constraints, not even connectivity which it

was created to improve. The main cause for this low impact is
the easy satisfaction of the nodal properties heuristic and its rel-
atively low variation across the design space. The metrics study
found that the orientation and intersection heuristics would not
only improve the constraints they were developed to improve but
also direct the search towards more optimal regions.

In the course of conducting the case study, we identified
certain guidelines that help to identify promising heuristics that
can be leveraged to improve our constrained optimization frame-
work. They are shown below.

1. Heuristics that are likely to improve search performance are
those that are aligned with Pareto dominance in the penal-
ized objective space, which takes into account both objec-
tives and constraints with their respective weights as pro-
vided in the problem formulation. This means that heuris-
tics must be aligned either with Pareto dominance in the true
objective space or with any of the constraints.

2. Heuristics may be aligned with Pareto dominance only in a
certain region of the objective space (e.g., low stiffness/low
volume fraction). This is consistent with the definition of de-
sign heuristics as context-specific. In such cases, the heuris-
tics can be selectively leveraged based on the current state
of the design search (e.g., density of solutions in a given re-
gion).

3. Heuristics are useful only in the beginning of the design
search. Heuristics are supposed to be directives that lead to
satisfactory but not necessarily optimal designs faster. Over-
enforcement of heuristics will eventually lead to a reduction
of exploration and result in premature convergence. To al-
leviate this issue, heuristics must be eventually “shut off”
and more exploratory strategies must be favored in the later
stages of the search.

The case study presented here not only shows the useful-
ness of the proposed metrics to predict how promising the de-
sign heuristics are for a given problem, but also the potential of
heuristic-handling mechanisms (and in particular AOS) to sig-
nificantly accelerate convergence in highly-constrained multi-
objective design problems without impeding exploration and
steady-state performance.

In future work, the guidelines proposed in this paper will
be tested as hypotheses on a wide range of design optimization
problems and formalized into a framework including a design
heuristics taxonomy based on the metrics discussed.
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Appendix A: Interestingness Measures of Significant
Association Rules

The interestingness measures from association rule mining
are used to determine the statistical alignment between heuristics
and minimum distance to the Pareto front (penalized or true ob-
jective space) and the constraints. The full results are shown in
this section.

Table 3 presents the support values of the antecedent, con-
sequent and their intersection as well as the confidence value of
the forward rule, confidence of the reverse rule and the lift values
for significant association rules with either partial collapsibility
or nodal properties in the antecedent. It can be seen from the
interestingness measures that pursuing maximization of partial
collapsibility would lead the design search away from the true
Pareto front and that it hurts feasibility satisfaction. The rule low
6?2→ low 6BC8 5 does not have a counterpart for high 6?2 imply-
ing that maximizing partial collapsibility will hurt stiffness ratio
constraint satisfaction. The interestingness metrics for associa-
tion rules with nodal properties in the antecedent are all for low
6=? with no counterpart with high 6=? as antecedent. This may

12 Copyright © 2021 by ASME



be the reason the correlation coefficients between nodal proper-
ties and the distance to true Pareto front and constraints were
found to be insignificant and are not included in Tab. 2.

Table 4 shows the support values of the antecedent, conse-
quent and their intersection as well as the confidence value of the
forward rule, confidence of the reverse rule and the lift values for
significant association rules with either orientation or intersec-
tion in the antecedent. In this case, the correlation coefficients
in Tab. 2 are in complete agreement regarding the inference
that both orientation and intersection have significant correla-
tions with both feasibility and stiffness ratio constraint. In ad-
dition, the association rule mining interestingness measures have
an ability to determine the alignment of heuristics within spe-
cific regions in the Pareto front. For example, the significance
of the rule high 68=C4A → {low 3%�,CAD4, low E 5 } implies that
maximizing the satisfaction of the intersection heuristic leads the
design search towards the low E 5 region of the true Pareto front.

Table 5 presents the antecedent, consequent and intersection
support values as well as the forward rule and reverse rule con-
fidence and lift values for the significant heuristics associations
with being close to the true or penalized Pareto front as the con-
sequent. This provides an overall picture of the alignment of
heuristics to being close to the true or penalized Pareto front. As
mentioned in the “Identification of Promising Heuristics” sec-
tion, the metrics can be used to find associations with either the
full Pareto front or the part of the Pareto front. The previous anal-
ysis computes alignment with specific regions in the true Pareto
front but this analysis computes alignment of the heuristic with
being close to the complete true Pareto front. The interestingness
measures indicate that maximizing partial collapsibility satisfac-
tion would hurt the search for optimal designs whereas maxi-
mizing orientation and intersection would aid in the search for
optimal designs. This makes sense, since the intersection heuris-
tic is aimed at improving feasibility satisfaction and orientation
is aimed at improving stiffness ratio constraint satisfaction which
drives the design search towards the optimal region of the penal-
ized objective space. This mirrors the inference from the corre-
lation coefficients of the heuristics with 3%�,?4= shown in Tab.
2.

The interestingness measures for various association rules
linking heuristics with distance to Pareto front in the penal-
ized and true objective spaces and constraints provide the same
amount of information, if not more, when compared to the cor-
relation tests. This study can thus be used as a substitute for the
correlation tests to ascertain alignment of heuristics with Pareto
dominance in the true or penalized objective spaces and con-
straints.
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Association Rule
{�} → {�} BD?(�) BD?(�) BD?(�∩�)

2>= 5

({�} → {�})
2>= 5

({�} → {�}) ;8 5 C

low6?2→
{low3%�,CAD4, low�22}

0.11 ± 0.003 0.55 ± 0.01 0.11 ± 0.001 0.97 ± 0.02 0.20 ± 0.04 1.82 ± 0.36

low6?2→
{low3%�,CAD4, lowE 5 }

0.11 ± 0.003 0.24 ± 0.08 0.11 ± 0 0.96 ± 0.02 0.48 ± 0.13 4.27 ± 1.13

low6?2→ high6 5 40B 0.11 ± 0.003 0.36 ± 0 0.11 ± 0 0.96 ± 0.02 0.29 ± 0 2.67 ± 0.06

low6?2→ low6BC8 5 0.11 ± 0.003 0.25 ± 0 0.11 ± 0 0.96 ± 0.02 0.43 ± 0 3.85 ± 0.09

low6=?→
{low3%�,CAD4,high�22}

0.03 ± 0.01 0.14 ± 0.05 0.01 ± 0.004 0.46 ± 0.20 0.08 ± 0.03 3.27 ± 0.94

low6=?→ low6 5 40B 0.03 ± 0.01 0.64 ± 0.00 0.03 ± 0.01 1 ± 0 0.04 ± 0.02 1.56 ± 0

low6=?→ low62>== 0.03 ± 0.01 0.02 ± 0.01 0.004 ± 0.003 0.19 ± 0.13 0.21 ± 0.11 9.21 ± 5.57

low6=?→ high6BC8 5 0.03 ± 0.01 0.75 ± 0 0.03 ± 0.01 1 ± 0 0.03 ± 0.01 1.33 ± 0

TABLE 3: Interestingness measures for significant association rules with partial collapsibility or nodal properties as antecedent (mean
±1f).
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Association Rule
{�} → {�} BD?(�) BD?(�) BD?(�∩�)

2>= 5

({�} → {�})
2>= 5

({�} → {�}) ;8 5 C

low6>A84=C →
{low3%�,CAD4,highE 5 }

0.74 ± 0.003 0.44 ± 0.07 0.39 ± 0.07 0.53 ± 0.09 0.88 ± 0.04 1.18 ± 0.05

low6>A84=C → low6 5 40B 0.74 ± 0.003 0.64 ± 0 0.63 ± 0.003 0.85 ± 0.000 0.99 ± 0.005 1.33 ± 0.001

low6>A84=C → low62>== 0.74 ± 0.003 0.02 ± 0.008 0.02 ± 0.008 0.03 ± 0.01 0.98 ± 0.04 1.32 ± 0.06

low6>A84=C → high6BC8 5 0.74 ± 0.003 0.75 ± 0 0.74 ± 0.003 1 ± 0 0.99 ± 0.004 1.33 ± 0

high6>A84=C →
{low3%�,CAD4, low�22}

0.26 ± 0.003 0.55 ± 0.09 0.22 ± 0.04 0.87 ± 0.17 0.41 ± 0.06 1.59 ± 0.26

high6>A84=C →
{low3%�,CAD4, lowE 5 }

0.26 ± 0.003 0.24 ± 0.08 0.20 ± 0.02 0.79 ± 0.06 0.88 ± 0.19 3.43 ± 0.71

high6>A84=C → high6 5 40B 0.26 ± 0.003 0.36 ± 0 0.25 ± 0 0.97 ± 0.01 0.69 ± 0 2.7 ± 0.04

high6>A84=C → low6BC8 5 0.26 ± 0.003 0.25 ± 0 0.25 ± 0 0.97 ± 0.01 1 ± 0 3.89 ± 0.05

low68=C4A →
{low3%�,CAD4,highE 5 }

0.64 ± 0 0.44 ± 0.07 0.39 ± 0.07 0.62 ± 0.11 0.89 ± 0.04 1.39 ± 0.06

low68=C4A → low6 5 40B 0.64 ± 0 0.64 ± 0 0.64 ± 0 1 ± 0 1 ± 0 1.56 ± 0

low68=C4A → low62>== 0.64 ± 0 0.02 ± 0.008 0.02 ± 0.008 0.03 ± 0.01 1 ± 0 1.56 ± 0

low68=C4A → high6BC8 5 0.64 ± 0 0.75 ± 0 0.64 ± 0 1 ± 0 0.85 ± 0 1.33 ± 0

high68=C4A →
{low3%�,CAD4, lowE 5 }

0.36 ± 0 0.24 ± 0.08 0.20 ± 0.02 0.56 ± 0.04 0.88 ± 0.19 2.45 ± 0.52

high68=C4A → high6 5 40B 0.36 ± 0 0.36 ± 0 0.36 ± 0 1 ± 0 1 ± 0 2.78 ± 0

high68=C4A → low6BC8 5 0.36 ± 0 0.25 ± 0 0.25 ± 0 0.69 ± 0 1 ± 0 2.78 ± 0

TABLE 4: Interestingness measures for different association rules with orientation or intersection as antecedent (mean ±1f).

Association Rule
{�} → {�} BD?(�) BD?(�) BD?(�∩�)

2>= 5

({�} → {�})
2>= 5

({�} → {�}) ;8 5 C

low6?2→ low3%�,CAD4 0.11 ± 0.003 0.69 ± 0.09 0.11 ± 0.002 0.99 ± 0.01 0.16 ± 0.02 1.47 ± 0.21

high6>A84=C → low3%�,CAD4 0.26 ± 0.003 0.69 ± 0.09 0.25 ± 0.002 0.99 ± 0.01 0.38 ± 0.05 1.46 ± 0.20

low6?2→ low3%�,?4= 0.11 ± 0.003 0.6 ± 0.17 0.11 ± 0 0.96 ± 0.02 0.19 ± 0.06 1.75 ± 0.55

high6>A84=C → low3%�,?4= 0.26 ± 0.003 0.6 ± 0.17 0.25 ± 0 0.97 ± 0.01 0.45 ± 0.15 1.77 ± 0.57

high68=C4A → low3%�,?4= 0.36 ± 0 0.6 ± 0.17 0.36 ± 0 1 ± 0 0.66 ± 0.21 1.82 ± 0.59

TABLE 5: Interestingness measures for significant association rules with the heuristics as antecedent and being close to the true or
penanlized Pareto front as the consequent (mean ±1f).
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