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Boosting Item-based Collaborative Filtering via

Nearly Uncoupled RandomWalks

ATHANASIOS N. NIKOLAKOPOULOS and GEORGE KARYPIS, University of Minnesota

Item-based models are among the most popular collaborative filtering approaches for building recommender

systems. Random walks can provide a powerful tool for harvesting the rich network of interactions captured

within these models. They can exploit indirect relations between the items, mitigate the effects of sparsity,

ensure wider itemspace coverage, as well as increase the diversity of recommendation lists. Their potential

however, can be hindered by the tendency of the walks to rapidly concentrate towards the central nodes of the

graph, thereby significantly restricting the range ofK-step distributions that can be exploited for personalized
recommendations. In this work, we introduce RecWalk; a novel random walk-based method that leverages

the spectral properties of nearly uncoupled Markov chains to provably lift this limitation and prolong the in-

fluence of users’ past preferences on the successive steps of the walk—thereby allowing the walker to explore

the underlying network more fruitfully. A comprehensive set of experiments on real-world datasets verify

the theoretically predicted properties of the proposed approach and indicate that they are directly linked

to significant improvements in top-n recommendation accuracy. They also highlight RecWalk’s potential in

providing a framework for boosting the performance of item-based models. RecWalk achieves state-of-the-

art top-n recommendation quality outperforming several competing approaches, including recently proposed

methods that rely on deep neural networks.
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1 INTRODUCTION

Recommender Systems are information filtering tools that aim to help users navigate through an
ocean of available options and support their decision-making process regarding what items to buy,
whatmovies towatch, what articles to read and the like. Over the past decade, they have become an
indispensable component of most e-commerce applications as well as content delivery platforms.
Top-n recommendation algorithms are a crucial component of most recommender systems. They
provide ranked lists of items tailored to the particular tastes of the users, as depicted by their past
interactions within the system.
Item-based methods are among the most popular approaches for top-n recommendation [40, 41,

48]. Such methods work by building a model that captures the relations between the items, which
is then used to recommend new items that are “close” to the ones each user has consumed in
the past. Item-based models have been shown to achieve high top-n recommendation accuracy
[41, 48] while being scalable and easy to interpret [40]. The fact, however, that they typically con-
sider only direct inter-to-item relations can impose fundamental limitations to their quality and
make them brittle to the presence of sparsity—leading to poor itemspace coverage and significant
decay in performance [1]. Random-walk-based methods are particularly well-suited for alleviating
such problems. Having the innate ability to relate items that are not directly connected by propa-
gating information along the edges of the underlying item-to-item graph, random walk methods
are more robust to the effects of sparsity and they can afford better coverage of the itemspace.
However, their effectiveness in terms of top-n recommendation can be limited by the tendency of
the walks to concentrate probability mass towards the central nodes of the graph—thus dispro-
portionately boosting the recommendation scores of popular items in the system. This means that
in order to produce high-quality recommendations, traditional random-walk-based techniques are
restricted to exploit just the first few steps of the walk that are still influenced by the personalized
starting distribution. This is in accordance to the mathematical properties of random walks and it
has also been empirically verified that when applied to real-world networks, short-length random
walks typically work best [5, 6, 10].
In this work1 we introduce RecWalk; a novel framework for top-n recommendations that aims

to combine the potential of item-based models to discern meaningful relations between the items,
with the inherent ability of random walks to diffuse these relations across the itemspace and ex-
ploit the rich network of interactions they shape. RecWalk produces recommendations based on
a random walk with node-dependent restarts designed to prolong the influence of the personalized
initialization on the successive K-step landing probabilities of the walk—thereby eliminating the
need of ending the walks early. Intuitively, this gives the walker “more time” to harvest the in-
formation captured within the item model before succumbing to the “pull” of central nodes. The
proposed random walk construction leverages the spectral properties of nearly uncoupled Markov

chains [7] in order to enforce a time-scale dissociation of the stochastic dynamics of the walk to-
wards equilibrium—thus increasing the number of successive landing probabilities that carry per-
sonalized information useful for top-n recommendation. The properties of ourmodel are backed by
rigorous theoretical analysis of the mixing characteristics of the walk which we empirically verify
that are indeed intertwined with top-n recommendation accuracy. A comprehensive set of exper-
iments on real-world datasets showcase the potential of the proposed methodology in providing

1A preliminary version of this work has appeared in [36].
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a framework for boosting the performance of item models. RecWalk achieves high recommen-
dation quality outperforming state-of-the-art competing approaches, including recently proposed
methods relying on deep neural networks.
Open source implementation of the method is available at:

https://github.com/nikolakopoulos/RecWalk

2 NOTATION AND DEFINITIONS

2.1 Notation

Vectors are denoted by bold lower-case letters and they are assumed to be column vectors
(e.g., v). Matrices are represented by bold upper-case letters (e.g., Q). The j-th column and the
i-th row of matrix Q are denoted qj and q

T
i , respectively. The ij-th element of matrix Q is denoted

as Qi j or [Q]i j when such choice leads to clearer presentation. We use diag(Q) to refer to the
matrix that has the same diagonal with matrix Q and zeros elsewhere, and Diag(v) to denote the
matrix having vector v on its diagonal, and zeros elsewhere. We use a boldface 1 to denote a vector
all the elements of which are equal to 1 (when we need to specify the dimension of such vector,
we do so with a subscript, e.g., 1n ). Furthermore, we use ‖·‖ to denote a norm that—unless stated
otherwise—is assumed to be the Euclidean. Sets are denoted with calligraphic upper-case letters

(e.g.,U ,V). Finally, symbol � is used in definition statements.

2.2 Definitions

Let U = {1, . . . ,U } be a set of users and I = {1, . . . , I } a set of items. Let R ∈ RU×I be the user-

item interaction matrix; i.e., the matrix whose ui-th element is 1 if user u has interacted with item
i , and 0 otherwise. Each user u ∈ U is modeled by a vector rTu ∈ RI which coincides with the
corresponding row of the user-item interactionmatrixR; similarly, each item i ∈ I will bemodeled
by a vector ri ∈ RU which coincides with the corresponding column of matrix R. The rows and
columns of R are assumed to be non-zero; i.e., every user has interacted with at least one item, and
for every item there exists at least one user who has interacted with it. Finally, we use the term
item model to refer to a matrix W ∈ RI×I the ij-th element of which gives a measure of proximity

or similarity between items i and j.

3 RANDOM WALKS AND ITEMMODELS

The fundamental premise of the present work is that combining random walks and item models
allows for more effective utilization of the information captured in the item model; considering
direct as well as transitive relations between the items, and also alleviating sparsity related prob-
lems. However, directly applying random walks on item models can lead to a number of problems
that arise from their inherent mathematical properties and the way these properties relate to the
underlying top-n recommendation task.
Imagine of a randomwalker jumping fromnode to node on an item-to-item graphwith transition

probabilities proportional to the inter-item proximity scores depicted by an item model. If the
starting distribution of this walker reflects the items consumed by a particular user u in the past,
the probability the walker lands on different nodes after K steps provide an intuitive measure of
proximity that can be used to rank the nodes and recommend items to user u accordingly.
Specifically, if W denotes the item model and

S � Diag(W1)−1W (1)

the transition probability matrix of the walk, personalized recommendations for each user u can
be produced e.g., by utilizing the K-step landing probability distributions of a walk rooted on the
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items consumed by u:

πT
u � ϕT

uS
K , ϕT

u � rTu

‖rTu ‖1
(2)

or by computing the stationary distribution of a random walk with restarts on S, using ϕT
u as the

restarting distribution. The latter approach is the well-known personalized PageRank model [44]
with teleportation vector ϕT

u and damping factor p, and its stationary distribution can be ex-
pressed [26] as

πT
u � ϕT

u

∞∑
k=0

(1 − p)pkSk . (3)

Clearly, both schemes harvest the information captured in the K-step landing probabilities

{ϕT
uS

k }k=0,1, ... .
In the former case, the recommendations are produced by using a fixedK ; in the latter case, they are
computed as a weighted sum of all landing probabilities, with the k-step’s contribution weighted
by (1 − p)pk . But, how do these landing probabilities change as the number of steps K increases?
For how long will they still be significantly influenced by user’s prior history as depicted in ϕT

u?
When S is irreducible and aperiodic—which is typically the case in practice—the landing prob-

abilities will converge to a unique limiting distribution irrespectively of the initialization of the
walk [14]. This means that for large enough K , the K-step landing probabilities will no longer be
“personalized” in the sense that they will become independent of the user-specific starting vec-
tor ϕT

u . Furthermore, long before reaching equilibrium, the usefulness of these vectors in terms of
recommendation will start to decay as more and more probability mass gets concentrated to the
central nodes of the graph—thereby restricting the number of landing probability distributions
that are helpful for personalized recommendation. This imposes a fundamental limitation to the
ability of the walk to properly exploit the information encoded in the item model.
Motivated by this, here we propose RecWalk; a novel random-walk model designed to give

control over the stochastic dynamics of the walk towards equilibrium; provably, and irrespectively
of the dataset or the specific item model onto which it is applied. In RecWalk, the item model is
incorporated as a direct item-to-item transition component of a walk on the user-item bipartite
network. This component is followed by the random walker with a fixed probability determined
by a model parameter that controls the spectral characteristics of the underlying walk. This allows
for effective exploration of the item model while the influence of the personalized initialization on
the successive landing probability distributions remains strong. Incorporating the item model in a
walk on the user-item graph (instead of the item graph alone) is crucial in providing control over
the mixing properties; and as we will see in the experimental section of this work such mixing
properties are intimately linked to improved top-n recommendation accuracy.

4 PROPOSED METHOD

4.1 The RecWalk Stochastic Process

We define G � ({U ,I},E) to be the user-item bipartite network; i.e., the network with adjacency

matrix AG ∈ R(U+I )×(U+I ) given by:

AG �
[
0 R

RT 0

]
. (4)

Consider a random walker jumping from node to node on G. Suppose the walker currently occu-
pies a node c ∈ U ∪ I. In order to determine the next step transition the walker tosses a biased
coin that yields heads with probability α and tails with probability (1 − α ):
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(1) If the coin-toss yields heads, then:
(a) if c ∈ U , the walker jumps to one of the items rated by the user corresponding to node

c uniformly at random; and
(b) if c ∈ I, the walker jumps to one of the users that have rated the current item uni-

formly at random.
(2) If the coin-toss yields tails, then:

(a) if c ∈ U , the walker stays put; and
(b) if c ∈ I, the walker jumps to a related item abiding by an item-to-item transition prob-

ability matrix (to be explicitly defined in the following section).

The stochastic process that describes this random walk is defined to be a homogeneous discrete
time Markov chain with state space U ∪ I; i.e., the transition probabilities from any given node
c to the other nodes, are fixed and independent of the nodes visited by the random walker before
reaching c .

4.2 The Transition Probability Matrix

The transition probability matrix P that governs the behavior of our randomwalker can be usefully
expressed as a weighted sum of two stochastic matrices H andM as:

P � αH + (1 − α )M (5)

where 0 < α < 1, is a parameter that controls the involvement of these two components in the
final model. Matrix H can be thought of as the transition probability matrix of a simple random
walk on the user-item bipartite network. Since every row and column of matrix R are non zero,
matrix H is well-defined and it can be expressed as:

H � Diag(AG1)
−1AG . (6)

MatrixM, is defined as:

M �
[
I 0

0 MI

]
(7)

where I ∈ RU×U the identity matrix and MI ∈ RI×I a transition probability matrix designed to
capture relations between the items. In particular, given an item model with non-negative weights
W we define this matrix using the following stochasticity adjustment strategy:

MI � 1

‖W‖∞
W + Diag

(
1 − 1

‖W‖∞
W1

)
. (8)

The first term divides all the elements by the maximum row-sum of W and the second enforces
stochasticity by adding residuals to the diagonal, appropriately. The motivation behind this defi-
nition is to retain the information captured by the relative differences of the item-to-item relations
inW, ensuring that:

[W]i j ≥ [W]i′j′ ⇒ [MI]i j ≥ [MI]i′j′, for all i � j, i ′ � j ′.

This prevents items that are loosely related to the rest of the itemspace to disproportionately in-
fluence the inter-item transitions and introduce noise to the model.
An illustration of the RecWalk model is given in Figure 1.

4.3 Choice of the Core Item-model

The construction of matrixW itself can be approached in several ways depending on the available
information, the characteristics of the underlying recommendation problem, the properties of ma-
trix R, and the like. The fact that random walk methods can achieve naturally itemspace coverage
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Fig. 1. Illustration of the RecWalk Model. Maroon nodes correspond to users; Gold nodes correspond to

items. The dashed lines depict transitions between users and items, captured by matrix H. The solid lines

correspond to node-to-node transitions captured by matrix M.

allows us to define this component in a way that promotes sparsity in the relations between the
items, having also the advantage to be easy to compute.
In particular, we propose the use of a locally restricted variant of the well-known SLIM

method [41] that is forced to consider only fixed-size neighborhoods when learning relations be-
tween the items. Concretely, for any given item i we find the set of its C closest neighbors
(in terms of cosine similarity between their vector representations) and we form a matrix Ni ∈
RU×C , by selecting the corresponding columns of the initial matrix R. We then solve for each item
the optimization problem:

minimize
x∈RC

1

2
‖ri − Nix‖22 + γ1‖x‖1 +

1

2
γ2‖x‖22

subject to x ≥ 0

(9)

and we fill the corresponding elements in the i-th column of matrix W.
The estimation of W can be performed column-wise, in parallel, and it can be implemented

efficiently by exploiting the sparsity of Ni , e.g., using coordinate descent [43]. Note that the size
of the per-column optimization problems is controlled by the choice of the numbers of neighbors
to be considered (i.e., C), thereby, making estimation of W scalable to larger itemsets.

The complete procedure for building a RecWalk model is given in Algorithm 1.2

4.4 Recommendation Strategies

Having defined the RecWalk transition probability matrix, we can produce recommendations by
exploiting the information captured in the successive landing probability distributions of a walk
initialized in a user-specific way. Here, we will consider two recommendation strategies, namely,

RecWalkK-step: The recommendation score of user u for item i is defined to be the probabil-
ity the random walker lands on node i after K steps, given that she started on node u.
Therefore, the recommendation score for item i is given by the corresponding elements
of:

πT
u � eTuP

K (10)

where eu ∈ RU+I is a vector that contains the element 1 on the position that corresponds
to user u and zeros elsewhere. The computation of the recommendations is presented in
Algorithm 2 and it entails

Θ(K nnz(P))

2Note that while in this article the user-item interaction matrix R is assumed to be binary (implicit feedback setting),

RecWalk can be applied to any non-negative feedback matrix that contains e.g., “ratings,” “click counts,” and the like.
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ALGORITHM 1: RecWalk Model

Input: Input matrix R,
parameters: α , γ1, γ2, C .

Output: RecWalk transition probability matrix P.
parfor i ∈ I do

Find the C nearest neighbors of item i and form Ni

minimize
x∈RC

1
2 ‖ri − Nix‖22 + γ1‖x‖1 +

1
2γ2‖x‖

2
2

subject to x ≥ 0

Fill the corresponding elements in the i−th column ofW.
end parfor

MI ← 1
‖W‖∞W + Diag(1 −

1
‖W‖∞W1)

AG ←
[
0 R

RT 0

]
P← α Diag(AG1)

−1AG + (1 − α )
[
I 0

0 MI

]

operations, where nnz(P) is the number of nonzero elements in P.
RecWalkPR: The recommendation score of user u for item i is defined to be the element that

corresponds to item i in the limiting distribution of a random walk with restarts on P,
with damping factor η and teleportation distribution eu :

πT
u � lim

K→∞
eTu

(
ηP + (1 − η)1eTu

)K
. (11)

This can be computed using the power method as in Algorithm 3. Producing recommen-
dations for a user involves

Θ((log ϵ/ logη) nnz(P))

floating point operations for convergence up to a tolerance ϵ [30].

ALGORITHM 2: RecWalkK-step

Input: RecWalk model P, user u ∈ U .
Output: Recommendation vector πu .
πT
u ← eTu

for k ∈ 1, . . . ,K do

πT
u ← πT

uP

end for

5 THEORETICAL PROPERTIES

As we will show in this section, a key property of the RecWalk model is that for small values of
parameter α the RecWalk chain is going to be nearly uncoupled into a large number of blocks,
thereby allowing the random walk process dynamics towards equilibrium to disentangle into a
slow-mixing and a fast-mixing component. This implies personalized landing probabilities even
when the number of steps gets large.
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ALGORITHM 3: RecWalkPR

Input: RecWalk model P, user u ∈ U , damping factor η.
Output: Recommendation vector πu .
xT
(0)
← eTu

k ← 0
repeat

k ← k + 1
xT
(k )
← ηxT

(k−1)P + (1 − η)eTu
Normalize xT

(k )

until ‖xT
(k )
− xT

(k−1) ‖1 < tol

πu ← x(k )

5.1 Nearly Uncoupled Markov Chains

A nearly uncoupled Markov chain is a discrete time chain whose transition probability matrix is
almost block diagonal [7, 52]. Formally, let Z ∈ Rn×n be the transition probability matrix of an
irreducible and aperiodic Markov chain. Matrix Z can always be written as:

Z = Z� + εC,

where Z� is a block-diagonal matrix of order n, given by:

Z� �
��������

Z�
11 0 · · · 0

0 Z�
22

. . .
...

...
. . .

. . . 0

0 · · · 0 Z�
LL

�������	
and matrices Z�

I I
are irreducible stochastic matrices of order n(I ). Hence,

n =
L∑
I=1

n(I )

and because both Z and Z� are stochastic, the row-sums of C are zero.
Matrix C and the non-negative real number ε are selected such that for all rows it holds:

ε
∑
J�I

n ( J )∑
l=1

[CI J ]ml =
∑
J�I

n ( J )∑
l=1

[ZI J ]ml , (12)

ε � max
mI

∑
J�I

n ( J )∑
l=1

[ZI J ]ml (13)

where we use [ZI J ]ml to denote the element at the intersection of them-th row and l-th column
of the ZI J submatrix of Z.

Parameter ε is referred to as the maximum degree of coupling between the blocks. When ε is
sufficiently small, the Markov chain with transition probability matrix Z is called nearly uncoupled
into L blocks [7].

5.2 Mixing Properties of RecWalk

When graph G is connected the discrete time Markov chain defined by P is ergodic (see Appen-
dix A for a proof). Thus, as the number of steps K increases the landing probabilities of RecWalk
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will converge to a limiting distribution. It is well known (see e.g., [53]) that the rate of conver-
gence to this distribution depends on the modulus of the subdominant eigenvalue of the transition
probability matrix of the walk, which we denote |λ2 (P) |. In particular, the asymptotic rate of con-
vergence to the limiting distribution is the rate at which:

|λ2 (P) |k → 0.

Intuitively, the smaller |λ2 (P) | is, the sooner the landing probability distributions will start yielding
recommendation vectors that are “non-personalized,” in the sense that they are similar for all users
irrespectively of the items with which they have interacted.
The following theorem sheds more light to the spectral properties of matrix P.

Theorem 5.1. Let P be the RecWalk transition probability matrix with α ∈ (0, 1) defined over a

connected user-item network G, and also let λ(P) be the set of the eigenvalues of P. Irrespectively of

the item model used to define matrixMI it holds

(a) 1 − 2α ∈ λ(P)
(b) when α is small enough the Markov chain with transition probability matrix P will be nearly

uncoupled into at least U + 1 blocks.

Proof. When G is connected, the stochastic matrix H is irreducible [26]. Moreover, since the
graph is bipartite a simple randomwalk on G results in a periodic Markov chain with period d = 2.
Therefore, from the Perron-Frobenius theorem [14] we get that:

λ1 (H) = 1,

λ2 (H) = e2iπ /d = eiπ = −1.

The so-called Perron eigenvalue λ1 (H) is associated with the right eigenvector 1; whereas eigen-
value λ2 (H) with a right eigenvector which we denote v.

The special structure of H makes it easy to guess the form of the eigenvector v as well as to
verify that it actually denotes an eigenvector of matrixM too. In particular, we have:

v � [

|U | user nodes︷
















︸︸
















︷
1 1 1 · · · 1

|I | item nodes︷




















︸︸




















︷
−1 − 1 · · · − 1].

It is easy to see that v is indeed an eigenvector of both matrices H andM. Specifically, we have:

Hv =

[
0 H12

H21 0

] [
1U
−1I

]
=

[
−1U
1I

]
= −v (14)

from which we get that (−1, v) is an eigenpair of matrix H; and

Mv =

[
I 0

0 MI

] [
1U
−1I

]
=

[
1U
−1I

]
= v (15)

which implies that (1, v) is an eigenpair of matrix M.
Now consider a non-singular matrix,

Q �
[
1 v X

]
, (16)

which contains in its first two columns the eigenvectors 1 and v. Also let

Q−1 �
⎡⎢⎢⎢⎢⎢⎢⎣
yT1

yT2

YT

⎤⎥⎥⎥⎥⎥⎥⎦ . (17)
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By definition it holds Q−1Q = I, which can be usefully written as:⎡⎢⎢⎢⎢⎢⎢⎣
yT11 yT1v yT1X

yT21 yT2v yT2X

YT1 YTv YTX

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 I

⎤⎥⎥⎥⎥⎥⎦ . (18)

Now, if we consider the similarity transformation of the RecWalk transition probability matrix,
Q−1PQ, also taking into consideration the relations (14), (15) and the identities (18), we have:

Q−1PQ = αQ−1HQ + (1 − α )Q−1MQ

= α

⎡⎢⎢⎢⎢⎢⎢⎣
YT
11 (−1)YT

1v YT
1HX

YT
21 (−1)YT

2v YT
2HX

YT1 (−1)YTv YTHX

⎤⎥⎥⎥⎥⎥⎥⎦ + (1 − α )
⎡⎢⎢⎢⎢⎢⎢⎣
YT
11 YT

1v YT
1MX

YT
21 YT

2v YT
2MX

YT1 YTv YTMX

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
α 0 αYT

1HX

0 −α αYT
2HX

0 0 αYTHX

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣
1 − α 0 (1 − α )YT

1MX

0 1 − α (1 − α )YT
2MX

0 0 (1 − α )YTMX

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 αyT1HX + (1 − α )yT1MX

0 1 − 2α αyT2HX + (1 − α )yT2MX

0 0 αYTHX + (1 − α )YTMX

⎤⎥⎥⎥⎥⎥⎥⎦ (19)

Thus, matrix P is similar to a block upper triangular matrix, the eigenvalues of which are the
eigenvalues of its diagonal blocks. From that, we directly establish that 1 − 2α is an eigenvalue of
the RecWalk transition matrix P, and the first part of the theorem is proved.
To prove the second part it suffices to show that there exists a partition of the state space of the

RecWalk chain into blocks, such that the maximum probability of leaving a block upon a single
transition is upper-bounded by α [52]. In particular, consider the partition

A � {{u1}, {u2}, . . . , {uU },I}. (20)

By definition, in the RecWalk model the probability of leaving u is equal to α , for all u ∈ U .
Concretely,

Pr{jump from u ∈ U to any j � u} =
∑
j�u

Puj =
∑
j�u

αHuj = α . (21)

Similarly, the probability of leaving block I upon a transition is

Pr{jump from i ∈ I to any � � I} =
∑
��I

Pi� =
∑
��I

αHi� = α . (22)

Therefore, the RecWalk chain can always be decomposed according toA such that the maximum
degree of coupling between the involved blocks is exactly equal to α . Hence, choosing α to be
sufficiently small ensures that the chain will be nearly uncoupled into (at least) U + 1 blocks. �

Theorem 5.1 asserts that the proposed random walk construction ensures the existence of an
eigenvalue equal to 1 − 2α . This means that the modulus of the eigenvalue that determines the
rate of convergence to the limiting distribution will be at least 1 − 2α . Hence, choosing α allows
us to ensure that the RecWalk process will converge as slow as we need to increase the number
of landing probability distributions that can still serve as personalized recommendation vectors in
our model—irrespectively of the particular user-item network or the chosen item model upon which

it is built.
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Moreover note that the spectral fingerprint of nearly uncoupled Markov chains is the existence
of a set of subdominant eigenvalues that are relatively close (but not equal) to 1 [7]. In our case, for
small values of α these eigenvalues are expected to be clustered close to the value 1 − α (cf. (19)).
The number of these eigenvalues depicts the number of blocks of states into which the chain is
nearly uncoupled. Therefore, subject to α being small the RecWalk chain will have at leastU + 1
eigenvalues clustered near the value 1, and it can be shown (see e.g., [52]) that matrix P can be
expressed as:

P = 1πT + Tslow + Tfast (23)

where πT is the stationary distribution of the walk, Tslow is a slow transient component, and Tfast

is a fast transient component. As K gets large the fast transient term will diminish while the el-
ements of the slow transient term will remain large enough to ensure that the recommendation
vectors are not completely dominated by 1πT. Of course, as K gets larger and larger the relative
influence of the first term will become stronger and stronger, up to the point where each user is
assigned the exact same recommendation vector πT; however, this outcome will be delayed by the
existence of the slow transient term Tslow. Note that in a simple random walk on W such time-
scale dissociation of the stochastic dynamics of the walk is typically absent; and certainly it cannot
be guaranteed in advance. On the contrary, the proposed random walk construction in RecWalk
provides a clear mechanism to ensure such property, and as we will see in the experimental section
of this article this property alone can lead to significant improvements in top-n recommendation
quality compared to what one would get by using the item model directly.

5.3 Coverage

It is often useful to be able to ensure that in principle all items can be recommended to the users.
However, due to the sparsity of the user-item feedback matrix, such requirement is many times
difficult to satisfy or comes at the expense of accuracy. Moreover, the opaque nature of many of
the state-of-the-art approaches for top-n recommendation makes it impossible to guarantee such
property in advance.
In case of RecWalkPR this requirement is easily guaranteed. Before we proceed to the proof of

this property, we list the following useful Lemma from [32].

Lemma 5.2 ([32]). Let A be a primitive stochastic matrix and B1,B2, . . . ,Bn stochastic matrices;

then matrix

αA + β1B1 + · · · + βnBn
where α > 0 and β1, . . . , βn ≥ 0 such that

α + β1 + · · · + βn = 1

is a primitive stochastic matrix.

Proposition 5.3 (RecWalkPR Coverage Conditions). When G is connected the personalized

recommendation vectors produced by RecWalkPR with α ,η ∈ (0, 1) are guaranteed to provide full

itemspace coverage for every user in the system, i.e.,

[πu ]j > 0, ∀j ∈ I, ∀u ∈ U .

Proof. Notice that πu in case of RecWalkPR is defined as the limiting distribution of a Markov
chain with transition probability matrix:

ηP + (1 − η)1eTu . (24)
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Under our assumptions, the RecWalk chain is ergodic (see Proposition A.1 in Appendix) and
hence, matrix P is a primitive stochastic matrix [29]. This makes stochastic matrix (24), a lin-
ear combination of a primitive matrix, and the rank-one stochastic matrix, 1eTu ; thus, Lemma 5.2
applies, and we get that (24) is a primitive stochastic matrix as well.
Therefore, the recommendation vector πu produced by RecWalkPR will coincide with the

unique dominant left eigenvector of the primitive stochastic matrix (24) (up to rescaling of its en-
tries to sum to 1). However, from the Perron Frobenius theorem, we know that every element of the
dominant left eigenvector of primitive matrices is necessarily strictly positive (see e.g., [29]). Thus,
when G is connected and α ,η ∈ (0, 1), the recommendation vector πu produced by RecWalkPR is
guaranteed to assign positive scores to every item in the system, i.e,

[πu ]j > 0, ∀j ∈ I, ∀u ∈ U .

as needed; and the proof is complete. �

RecWalk K-step can guarantee item-space coverage too, provided that K is sufficiently large for
the walk to discover the complete set of items. This is a direct consequence of the primitivity of P.
Bounding the necessary number of steps K to ensure coverage would require analysis of relevant
combinatorial invariants of the particular user-item network and item-model under consideration,
and thus, goes beyond the scope of this work. In practice, we find that even modest values of K
are enough to ensure such property for every dataset we experimented with. Importantly, we also
find that for RecWalk item-space coverage does not come at the expense of accuracy, as it is the
case for other item-based recommendation algorithms.

6 EXPERIMENTAL SETTING

6.1 Datasets

Our qualitative evaluation is based on six real-world publicly available datasets, namely, (i) the
movielens dataset, which contains the ratings of users for movies and it has been used extensively
for the evaluation of top-n recommendation methods; (ii) the yahoo dataset, which is a subset
of the Yahoo!R2Music dataset (obtained from [34]) containing the ratings of users for songs; (iii)
the electronics dataset [15], which contains review scores of electronic products in Amazon (we
keep users that have rated at least 10 items, and items that have been rated by at least 20 users);
(iv) the movies&tv dataset [15], which contains review scores of movies and tv shows in Amazon
(we keep users that have scores at least 15 items, and items that have been scored by at least 30
users); (v) books datasets [15], which contain review scores of books in Amazon (we keep users
that have provided review scores for at least 15 books, and books that have been scored by at least
30 users); and (vi) the pinterest dataset (obtained from [18]), which captures the interactions of
users regarding images where each interaction denotes whether the user has “pinned” the image
to her own board. Basic statistics about the datasets can be found in Table 1.
Furthermore, to assess the scalability of our method we make use of several larger datasets from

the collection [15]. Their characteristics can be found in Appendix C.

6.2 Evaluation Methodology and Metrics

To evaluate the top-n recommendation performance, we adopted the widely used leave-one-out

evaluation protocol [18, 25, 35, 41, 46]. In particular, for each user we randomly select one item
she liked3 and we create a test set T . The rest of the dataset is used for training the models. For

3When rating information is available in the original data, the per-user target item is randomly sampled among the highest

rated items of each particular user in order to ensure that it indeed denotes an item that the user liked. Such approach is
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Table 1. Statistics of Datasets Used to Assess

Recommendation Accuracy

Name #users #items #interactions density
electronics 3,769 1,598 66,060 0.0109
movielens 6,040 3,706 1,000,029 0.0447
yahoo 7,307 3,312 404,745 0.0167
movies&tv 10,039 5,400 437,763 0.0081
books 43,550 24,811 1,777,072 0.0016
pinterest 55,187 9,916 1,463,581 0.0027

model selection we repeat the same procedure on the training data and we create a validation set
V ; and for each method considered we explore the hyperparameter space to find the model that
yields the best performance in recommending the items in V , and then we evaluate its out-of-
sample performance based on the held-out items in T . For the evaluation we consider for each
user her corresponding test item alongside 999 randomly sampled unseen items and we rank the
1,000 item lists based on the recommendation scores produced by each method. During training
of all competing methods we consider only binary feedback.
The evaluation of the top-n recommendation performance is based on three widely used

ranking-based metrics, namely, the hit ratio (HR@n), the average reciprocal hit rank (ARHR@n),
and the truncated normalized discounted cumulative gain (NDCG@n) over the set of users (for a
detailed definition we refer the reader to e.g., [27, 35]). For each user, all metrics compare the pre-
dicted rank of the held-out item with the ideal recommendation vector which ranks the held-out
item first among the items in each user’s test-set list. For all competing methods, we get the pre-
dicted rank by sorting the recommendation scores that correspond to the items included in each
user’s test-set list. While HR@n gives a perfect score if the held-out item is ranked within the first
n, ARHR@n and NDCG@n use a monotonically increasing discount to emphasize the importance
of the actual position of the held-out item in the top-n recommendation list.

7 EXPERIMENTAL RESULTS

7.1 Effect of Parameter α

The theoretical analysis of our method suggests that parameter α controls the convergence prop-
erties of the RecWalk process and it can be chosen to enable a time-scale dissociation of the
stochastic dynamics towards equilibrium that ensures a larger number of personalized landing
distributions. Here we verify experimentally the predicted properties and we evaluate their effect
on the recommendation quality of the K-step landing probabilities.
We build the item model W that yields the best performance on the validation set and we use

it to create matrix MI as in Equation (8). We then build the RecWalk model as in Algorithm 1,
we run it for different values of α ranging from 0.005 to 0.5, and we report: (i) the performance in
terms of average NDCG@n (for n = 10) across all users for values of stepsK up to 30 (Figure 2(A));
(ii) the spectra of the corresponding transition probability matrices P (Figure 2(B)); (iii) the peak
performance per parameter α along with the step for which it was achieved (Figure 2(C)); and (iv)
the performance of RecWalk with respect to using the base model W directly (Figure 2(D)).

in accordance with the methodology described in the seminal papers [8, 25]; in our setting, however, all users are equally

represented in the test set.
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Fig. 2. Fig (A) reports the performance of RecWalk in terms of NDCG@10 as a function of the steps for

different values of the parameter α . Fig (B) plots the spectrum of the RecWalk transition probability matrix

for different values of α . Fig (C) reports the peak performance for the different values of α , as well as the
number of steps for which it is achieved (on top of each bar). Fig (D) reports RecWalk performance (with

α fixed at 0.005) for different number of steps compared to the performance one would get using the item

model directly (blue dashed line).

We find that as the value of α gets smaller the top-n recommendation quality increases and
stabilizes for α < 0.01. Similarly the number of steps that yield the best performance increase (see
Figure 2(C)). The spectrum of the corresponding transition probability matrices reflects the theo-
retically predicted properties of the model. Indeed for very small values of α , we observe that the
subdominant eigenvalues cluster near the value 1, thus forming the slowly varying component of
matrix P, which ensures that the successive landing probabilities of the random walk are influ-
enced by the initial state for longer. Furthermore, we find that the proposed methodology entails
a significant increase in performance with respect to what one would get by using the proposed
base item-model directly. In particular, the recommendation performance of the K-step landing
probabilities of RecWalk overpasses the performance of the base model (see Figure 2(D)) for a
wide range of steps up to a maximum increase of 39.09% for K = 18 steps. Finally, notice that
when the number of steps becomes very large the recommendation performance decays, as every
πu starts to converge to the same stationary distribution π . In other words, as K gets larger and
larger similar recommendations will be produced for every user in the system. Due to the mixing
properties of the RecWalk chain, however, one can ensure that such outcome will not occur for
small K—thereby allowing RecWalk to effectively explore the underlying network without losing

focus of the user-specific initialization.
Our results suggest that the mixing properties of the RecWalk chain are indeed intertwined

with the top-n recommendation quality and can lead to a significant boost in performance. This
justifies the intuition that motivated the particular design of the walk. For additional experiments
regarding the effects of sparsity on the performance of RecWalk see Appendix D.
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Table 2. Top-n Recommendation

Quality Under Different Random

Walk Constructions

Method COS SLIM
Base model 17.61 27.28
SRW 17.82 25.37
PR 18.11 25.37
RecWalkK-step 20.52 31.87
RecWalkPR 20.33 31.80
RecWalk[MI]

K-step 17.85 31.41
RecWalk[MI]

PR 20.27 31.78

Hyperparameters: SRW: K∈ {1, . . . , 50};
PR: p ∈ {0.1, . . . , 0.9}; SLIM: λ, β ∈ {0.1,
0.5, 1, 3, 5, 10, 20}; RecWalk: α = 0.005

and K ∈ {1, . . . , 30} for RecWalkK-step and

η ∈ {0.1, 0.2, . . . , 0.9} for RecWalkPR.

7.2 RecWalk as a Framework

In the definition of the inter-item transition probability matrix, we proposed a particular strat-
egy for constructing matrix W that was designed to promote locality on the direct item-to-item
transitions while being easy to compute. Instead of this particular matrix W one could use any
model that captures inter-item relations. But does our approach offer any benefit with respect to
performing simple random walks (SRW) on the corresponding item-model or to simply using the
item model directly?
Here we explore this question by empirically evaluating two commonly used item models.

Namely:

(1) a cosine similarity model Wcos defined such that its ij-th element is given by
rTi rj/(‖ri ‖‖rj ‖); and

(2) a SLIM model which learns a matrix Wslim by solving an �1, �2 regularized optimization
problem (see [41] for details).

We consider the respective base models alongside six approaches based on randomwalks, namely:

(i) SRW, which recommends using the K-step distribution of a simple random walk on W

with transition probability matrix S initialized with ϕT
u as in (2);

(ii) PR, which produces recommendations based on S as in (3);
(iii) RecWalk K-step;
(iv) RecWalk PR;
(v) RecWalk [MI]

K-step, which produces recommendations as in (2) but using the RecWalk
inter-item transition probability matrix introduced in (8) instead of S; and

(vi) RecWalk [MI]
PR, which produces recommendations as in (3) using RecWalk’s MI in-

stead of S.

We run all models on the movielens dataset and in Table 2 we report their performance on the
NDCG@n metric. We see that RecWalkK-step and RecWalkPR were able to boost the performance
of both itemmodels (up to +16.52% for COS and +16.82% for SLIM) with the performance difference
between the two variants being insignificant. Applying SRW or random walks with restarts (PR)
directly to the row-normalized version of the item graph does not perform well (+2.84% in case
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Fig. 3. The figure plots the spectra of the transition probability matrices S (gold line) andMI (maroon line)

defined using the corresponding item models.

of COS and -7% in case of SLIM). In particular in the case of SRW we observed a rapid decay in
performance (after the first step for SLIM and after the first few steps for COS); similarly in case
of PR the best performance was obtained for very small values of p—essentially enforcing the K-
step landing probabilities after the first few steps to contribute negligibly to the production of the
recommendation scores (cf. (3)). Using RecWalk’s inter-item transition probability matrix alone,
on the other hand, performed very well especially when we use the SLIM model as a base.
To gain more insight into the observed differences in performance of the walks on the item

graphs, we also plot the spectra of the transition probability matricesMI , alongside the spectra of
the respective matrices S (Figure 3). We see that in case of S the magnitude of the eigenvalues cause
the walks to mix very quickly. In case of matrixMI on the other hand, the eigenvalues decay more
gracefully and on the SLIM graph in particular, there appears to be a large number of eigenvalues
near 1, which delay the convergence of the landing distributions towards equilibrium. This effect
is not as pronounced in case of COS which is reflected in the small increase in performance in case
of RecWalk[MI]

K-step.
Again our experiments reveal a clear connection between the mixing properties of the walks

and their potential in achieving good recommendation quality. Note also that the stochasticity
adjustment strategy proposed in Equation (8) seems to promote slow mixing in itself. However,
using MI alone cannot in general guarantee this property irrespectively of the underlying item
model whereas using the complete RecWalk model can give absolute control over convergence
(as Theorem 5.1 predicted).

7.3 Performance Against Competing Approaches

We evaluate the top-n recommendation accuracy of RecWalkK-step and RecWalkPR against eight
competing approaches, namely:

i. the well-known PureSVD method [8], which produces recommendations based on the
truncated SVD of R;

ii. the well-known item-based method SLIM [41], which builds a sparse item model by
solving an �1, �2-regularized optimization problem;

iii. the random-walk approach RP3b [5], which recommends based on a short-length walk
on the user-item graph after rescaling the landing probabilities to compensate for the
inherent bias of the walk towards popular items;

iv. the EigenRec method [35], which builds a factored item model based on a scaled cosine
similarity matrix;
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v-vi. Mult-VAE and Mult-DAE [27], which extend variational and denoising autoencoders
to collaborative filtering using a multinomial likelihood and were shown to achieve
state-of-the-art recommendation quality, outperforming several other deep-network-
based approaches;

vii. APR [16], which extends the popular pairwise ranking method BPR [46] by incorporat-
ing adversarial training; and

viii. NAIS [17], which generalizes the well-known FISM [21] recommendation algorithm em-
ploying an attention mechanism;

7.3.1 Results. Table 3 reports the top-n recommendation performance of the competing ap-
proaches. The performance was measured in terms of HR@n, ARHR@n, and NDCG@n, focusing
on the n = 10. Model selection was performed for each dataset and metric following the procedure
detailed in Section 6.2 and considering for each method the hyperparameters reported on Table 3.
From the deep network methods, NAIS, Mult-VAE, and Mult-DAE manage to perform very

well, with the latter two showing more consistent performance across datasets. At the same time
Mult-VAE, Mult-DAE where significantly more efficient to compute than NAIS (50x–200x faster
training time per epoch). SLIM, does remarkably well in all cases, managing to reach and surpass
the performance of deep nets in most datasets (except Mult-VAE and Mult-DAE in pinterest).
From the simple latent factor models, EigenRec performed well in several cases, while also being
very efficient and scalable. RP3b did remarkablywell inmovies&tv, books, and especially electronics,
where it was found to perform better than every method except RecWalkK-step; its performance
inmovielens, yahoo, and pinterest, however, was not competitive to the neural nets and EigenRec.
We see that both variants of RecWalk perform very well on every metric and for all datasets.

The results indicate the potential of the proposed methodology in achieving high quality top-n
recommendations.
Importantly, the best performing RecWalkK-step models also managed to ensure excellent

itemspace coverage. This is in contrast to SLIM, where coverage and accuracy do not necessar-
ily go hand-in-hand (a comparison of the coverage properties of RecWalkK-step and SLIM can be
found in Appendix B).

7.4 Runtimes

Table 4 reports the wall-clock timings for training RecWalk, as well as the rest of the competing
methods included in Table 3.
Notice that RecWalk can be trained significantly faster than the deep-net-based alternatives—

attaining runtimes comparable to highly efficient methods like PureSVD and EigenRec. Further
training times of RecWalk on datasets with large itemspaces can be found in Appendix C.

8 RELATEDWORK

Neighborhood-based methods [40] and in particular item-based models [9, 41] are among the most
popular and effective approaches to tackle the top-n recommendation task. A notable such ex-
ample is SLIM [41], which generalizes the traditional item-based CF approaches [48] to learn a
sparse linear item-to-item model. SLIM has been shown repeatedly to yield state-of-the-art top-n
recommendation accuracy, and has inspired the proposal of several new methods in recent years
[42, 51, 61]. Despite their success, however, item-based models are known to be negatively im-
pacted by sparsity which can lead to decay in recommendation performance and poor itemspace
coverage. Latent Spacemethods [8, 20, 25, 35, 55] are particularly well-suited to alleviate such prob-
lems. Generally speaking, the methods of this family work by projecting the elements of the rec-
ommender database into a denser subspace that captures their most salient features, giving them
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Table 3. Top-n Recommendation Quality of the Competing Approaches

in Terms of HR@10, ARHR@10, and NDCG@10

movielens yahoo
Method HR[%] ARHR[%] NDCG[%] HR[%] ARHR[%] NDCG[%]
PureSVD 44.14 19.33 25.36 38.68 18.30 22.62
SLIM 46.34 21.39 27.28 52.24 23.21 30.03
EigenRec 45.21 20.44 26.35 48.12 23.30 29.23
Mult-DAE 44.06 18.97 24.83 45.37 21.46 27.07
Mult-VAE 44.35 19.50 25.31 45.09 21.22 26.80
APR 42.45 18.69 24.24 44.75 19.50 25.36
RP3b 34.87 15.02 19.66 41.51 17.82 22.94
NAIS 46.36 20.65 26.68 50.53 23.64 29.91
RecWalkK-step 50.28 27.20 33.13 55.02 28.94 35.10

RecWalkPR 52.52 27.74 33.57 54.78 28.71 34.87
pinterest movies&tv

Method HR[%] ARHR[%] NDCG[%] HR[%] ARHR[%] NDCG[%]
PureSVD 30.97 11.85 16.30 22.58 09.88 12.86
SLIM 34.17 13.63 18.57 27.26 12.95 16.37
EigenRec 33.81 13.51 18.41 25.22 11.44 14.66
Mult-DAE 35.03 13.79 18.77 27.10 11.96 15.50
Mult-VAE 35.13 13.73 18.71 26.72 12.05 15.40
APR 33.93 13.11 17.94 22.99 09.46 12.58
RP3b 27.01 8.07 12.45 26.52 11.79 15.22
NAIS 34.06 12.95 17.82 24.35 10.87 13.99
RecWalkK-step 35.38 14.07 18.95 28.34 12.99 16.51

RecWalkPR 35.29 14.07 19.00 28.15 13.13 16.51

books electronics
Method HR[%] ARHR[%] NDCG[%] HR[%] ARHR[%] NDCG[%]
PureSVD 46.84 25.84 30.81 9.60 3.71 5.07
SLIM 56.72 34.50 39.67 13.64 6.05 7.85
EigenRec 52.89 29.36 34.93 11.83 4.68 6.34
Mult-DAE 54.66 29.75 35.60 13.40 5.10 7.18
Mult-VAE 53.85 29.24 35.08 13.43 5.56 7.32
APR 51.12 24.96 31.10 11.91 4.37 6.11
RP3b 55.60 31.68 37.35 14.49 6.08 8.03
NAIS 51.18 28.36 33.65 12.68 5.17 6.84
RecWalkK-step 57.73 34.71 40.05 14.65 6.25 8.05

RecWalkPR 57.73 34.65 39.94 14.25 6.18 7.96

Hyperparameters: RecWalk: (fixed) α = 0.005, C = {2.5%, 5%, 7.5%, 10%, 25%} of |I |, γ1 ∈ {1, 3, 5, 10},
γ2 ∈ {0.1, 0.5, 1, 3, 5, 7, 9, 11, 15, 20} and K ∈ {3, . . . , 20}; for RecWalkPR η = {0.05, . . . , 0.95}.
PureSVD: f ∈ {10, 20, . . . , 1000}. RP3b: b ∈ {0, 0.05, . . . , 1}. SLIM: We used the implementation [43],

λ, β ∈ {0.1, 0.5, 1, 3, 5, 10, 20}. EigenRec: f ∈ {10, 20, . . . , 1000}, d ∈ {−2, −1.95, . . . , 2}. Mult-DAE-

Mult-VAE: we used the hyperparameter tuning approach provided by the authors in their publicly

available implementation; we considered both architectures proposed in [27]; namely [I − 200 − I ] and
[I − 600 − 200 − 600 − I ]. APR: We used the implementation provided by [16], considering the hyper-

parametric setting discussed therein; NAIS: We used the implementation provided by [17], considering

the parametric ranges discussed in the article, namely, α, k ∈ {8, 16, 32, 64}, β = 0.5 and regularization

parameters λ ∈ {10−6, . . . , 1}.
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Table 4. Training Runtimes of the Competing Methods on the

Datasets Considered in Table 3

movielens yahoo pinterest movies&tv books electronics

RP3b <1 s <1 s <1 s <1 s <1 s <1 s
PureSVD <1 s <1 s 8.1 s <1 s 1.5 m <1 s
EigenRec <1 s <1 s 6.8 s 2.1 s 1.5 m <1 s
Mult-VAE 7.9 m 9.1 m 1.7 h 14.5 m 2.8 h 3.9 m
Mult-DAE 7.2 m 8.3 m 1.6 h 13.1 m 2.7 h 3.7 m

NAIS 6.3 h 2.1 h 7.3 h 4.3 h 21.2 h 12.6 m
SLIM 20.9 s 14.7 s 14 s 29.4 s 2.5 m 1.1 s
APR 6.9 h 4.1 h 50 h 5 h 51.7 h 43.3 m

RecWalk 2 s 1.3 s 9 s 2.1 s 21 s <1 s

Experiments are ran on a single Intel Xeon Gold 6148 CPU @ 2.40 GHz Machine with 20 cores and

64 Gb DDR4 RAM.

the ability to relate previously unrelated elements, and thus making them less vulnerable to spar-
sity [35]. Another family of approaches that are able to address issues related to sparsity and poor
itemspace coverage are Graph-Based methods [5, 6, 12, 24]. The innate characteristic that makes
the methods of this family suited for alleviating such problems is that they allow elements that are
not directly connected, to “influence” each other by propagating information along the edges of the
underlying user-item bipartite network [33, 40]. The transitive relations captured in such a way,
can be then exploited to estimate measures of proximity between the corresponding nodes [5, 6] or
compute similarity scores between them [12], which can be used afterwards to recommend items
accordingly. Graph-based recommendation methods relying on random walks have also been de-
ployed in several large-scale industrial settings with considerable success [10, 13]. RecWalk com-
bines item-models with random walks, and therefore lies at the intersection of neighborhood-
and graph-based methods; the inter-item transition component captures the neighborhoods of the
items which are then incorporated in a random walk framework to produce recommendations.
Propelled partly by the success of deep learning in areas like speech recognition, computer vi-

sion, and natural language processing, recently, there has been a growing body of work applying
neural networks to collaborative filtering; thereby extending traditional recommendation algo-
rithms to account for non-linearities as well as to exploit neural-network related heuristics like
attention mechanisms and adversarial training. Along these lines, a large number of methods have
been proposed which extend latent space methods [18, 27, 56], learning-to-rank methods [16], fac-
tored item similarity methods [17, 57]. Besides targeting the pure top-n recommendation task deep
nets have also been applied in sequential and session-based recommendation settings [19, 23, 54],
as well as in the proposal of hybrid recommendation models in which the core collaborative filter-
ing component is augmented with available meta-information about the users or the items (for a
recent survey of related techniques the reader can see [60]). Despite their promising performance,
many neural-network-based methods suffer computational and scalability issues; especially when
deeper architectures are being deployed. In large scale settings, this can reduce the frequency by
which the underlying recommendation model can be updated and thus limit their applicability
in rapidly evolving real world recommendation settings. Notable exceptions to this, include the
work by Liang et al. [27] that proposes variational autoencoders to generalize linear latent-factor
models showing promising recommendation accuracy while also being computationally feasible.
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The construction of RecWalk is inspired by the properties of nearly uncoupled Markov chains.
The analysis of nearly uncoupled systems—also referred to as nearly decomposable systems—has
been pioneered by Simon [50], who reported on state aggregation in linear models of economic
systems. However, the universality of Simon’s ideas has permitted the theory to be used with sig-
nificant success in the analysis of complex systems arising in social sciences and economics [2,
45, 47], evolutionary biology [49], cognitive science [28], administrative sciences and manage-
ment [58, 59], and the like. The introduction of these ideas in the fields of computer science and
engineering can be traced back to Courtois [7] who applied Simon’s theory in the performance
analysis of computer systems. More recently, near decomposability has been recognized as a prop-
erty of the Web [22] and it has inspired the development of algorithms for faster computation of
PageRank [4, 63] (building on a large body of related research in the field of numerical linear
algebra; see e.g., [52, 53]) as well as the development of new network centrality measures
[11, 31, 37]. In the field of recommender systems, the notion of decomposability has inspired
the development of methods for incorporating meta-information about the items [33, 38, 39]
with the blocks chosen to highlight known structural/organizational properties of the underlying
itemspace. Here, on the contrary, we exploit decomposability in the time-domain with the blocks
defined to separate the short-term from the long-term temporal dynamics of the walk in order to
effect the desired mixing properties that can lead to improved recommendation performance.
Prior work on alleviating the devastating effects of item-popularity on the accuracy, as well as

the diversity of graph-based methods, includes the hybrid method of Zhou et al. [62], and the re-
ranking approach proposed by Christoffel et al. [5]. While the underlying goals of such methods
are aligned with the motivations behind RecWalk, the approach we follow herein differs signifi-
cantly. RecWalk leverages the spectral properties of nearly uncoupled Markov chains to enforce
a time-scale dissociation of the stochastic dynamics of the walk towards equilibrium which in-
creases the number of successive landing distributions that are still influenced by the user-specific
initialization of the walk. Therefore, contrary to the aforementioned methods, our approach elim-
inates the need of ending the walks early—thereby allowing the walker ample time to explore the
underlying network (and increase coverage), before the produced recommendation vectors start
concentrating probability mass towards the popular items in the system. Furthermore, RecWalk
introduces a novel methodology for incorporating item models in the underlying random-walk-
based framework—leading to significant improvements in recommendation accuracy.

9 CONCLUSIONS AND FUTURE DIRECTIONS

Combining random walks with item models has the potential of exploiting better the information
encoded in the item-to-item relations—leading to improved itemspace coverage and increased top-
n recommendation accuracy. To gain such benefits, however, one needs to define judiciously the
transition probabilities of the walks in order to counterbalance their tendency to rapidly concen-
trate towards the central nodes of the graph. To this end, we introduced RecWalk, a novel random
walk framework for top-n recommendations that can provably provide control over convergence
allowing the walk to harvest more effectively the rich network of interactions encoded within the
item model on top of which it is built. Our experiments reveal that the mixing properties of the
walks are indeed intertwined with top-n recommendation performance.
A very interesting direction we are currently pursuing involves the exploration of methods

for statistical learning in the space of landing probabilities [3] produced by RecWalk. Here we
proposed two simple recommendation strategies to exploit these landing probabilities that were
able to provide high top-n recommendation accuracy, outperforming several state-of-the-art com-
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peting approaches. Our findings showcase the value of combining item-models with graph-based
techniques.

APPENDICES

A ERGODICITY OF THE RECWALK CHAIN

Proposition A.1 (Ergodicity of RecWalk). When G is connected and α ∈ (0, 1), the Markov

chain with transition probability matrix P is ergodic.

Proof. It suffices to show that the resulting RecWalk chain will necessarily be irreducible and
its states aperiodic and non-null recurrent [14].
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Proof of Irreducibility: The state space, S, of every Markov chain can be partitioned uniquely
as:

S = T ∪ C1 ∪ C2 · · ·
where Ci are irreducible closed sets of recurrent states, and T is the set transient
states[14]. Therefore, to prove irreducibility, it suffices to show that the transient set T
is empty, and that there exists a single irreducible communicating class C containing all
states. Let i be a recurrent state and let C be the set that contains it.4 We will prove that
starting from i , we can visit every other state of the RecWalk chain—and therefore, every
state belongs to C. Since by assumption α ∈ (0, 1) and graph G is connected, the random
walk can always follow the transitions between the states contained in the stochastic
matrix H. Notice that by definition this matrix can be seen as the transition matrix of a
simple random walk on the undirected graph G. Thus, when α ∈ (0, 1) the connectivity
of G is enough to ensure that state i can communicate with every other state in the chain.
Therefore, as needed, all states belong to C and the transient set T is empty.

Proof of Aperiodicity: The period of a state is defined as the greatest common divisor of the
number of steps at which a return to said state is possible [14]. Moreover, all states within
the same communicating class have the same period [14]. Therefore, due to the irre-
ducibility of the RecWalk chain, to prove aperiodicity it suffices to show that there exists
an integerm and a state i , upon leaving which, there are positive probability randomwalk
trajectories to return to it inm steps, and also inm + 1 steps. In case of RecWalk this can
be seen easily. Let

w � i → · · · → s → · · · → i

be a positive probability trajectory from i to i , that passes through some state s that cor-
responds to a node u ∈ U (notice that when G is connected and α ∈ (0, 1) it is always
possible to find such a trajectory), and letm be its length. We construct a new trajectory
w ′ that coincides withw except for the fact that upon leaving state s it follows a self-loop,
thus returning to s , and then continues exactly like w . Notice that w ′ is also a valid pos-
itive probability trajectory from i to i abiding by the transition probability matrix P and
it has lengthm + 1. Therefore, it is possible to return to i inm and inm + 1 steps, which
means that i and—consequently its communicating class C—is aperiodic as needed.

Finally, due to the finiteness of the RecWalk chain, we immediately get that every recurrent
state is necessarily positive-recurrent [14]. Therefore, the chain is ergodic and the proof is
complete. �

B COVERAGE

Table 5 reports the percentage of users for who the recommendation vectors of each method sup-
port at least 50%, and at least 90% of the itemspace. For each method we report the coverage of the
best performing model in terms of NDCG@10, from Table 3.
Note that while in case of RecWalkPR coverage is guaranteed for any η ∈ (0, 1), for

RecWalkK-step coverage is controlled by the selected number of steps K . Our results indicate
that the K that leads to better recommendation accuracy also does an excellent job covering the
itemspace in all datasets. In case of SLIM, on the contrary, we see that coverage and recommen-
dation accuracy do not necessarily accord.

4Note that we can always choose such a state since Markov chains with finite state space are guaranteed to contain at least

one recurrent state [14].
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Table 5. Coverage of SLIM vs RecWalkK-step

SLIM RecWalkK-step

Dataset 50% 90% 50% 90%
movielens 87.7% 38.1% 100% 100%
yahoo 62.2% 10.2% 100% 100%
movies&tv 86.5% 13.9 % 100% 100%
books 25.8% 0.9% 100% 100%
electronics 73.2% 3.8% 100% 100%
pinterest 0.02% 0.0% 100% 100%

C ADDITIONAL RUNTIMES FOR LARGER DATASETS

To further assess the computational efficiency of training RecWalk in settings where the num-
ber of items in the system is large, we train RecWalk on seven larger snapshots of the Amazon
dataset [15] and we report the resulting runtimes in Table 6.

Table 6. Training Times of RecWalk for Larger Datasets

Name #users #items density Training times
Grocery_and_Gourmet_Food 768,438 166,049 1.02 × 10−5 2.3 m
Beauty 1,210,271 249,274 6.71 × 10−6 5.9 m
Health_and_Personal_Care 1,851,132 252,331 6.38 × 10−6 8.9 m
Digital_Music 478,235 266,414 6.56 × 10−6 2.5 m
Cell_Phones_and_Accessories 2,261,045 319,678 4.77 × 10−6 13.3 m
CDs_and_Vinyl 1,578,597 486,360 4.88 × 10−6 20.1 m
Clothing_Shoes_and_Jewelry 3,117,268 1,136,004 1.62 × 10−6 98.9 m

Experiments are ran on a single Intel Xeon Gold 6148 CPU @ 2.40 GHz Machine with 20 cores and 64 Gb

DDR4 RAM. Parameters γ1, γ2 are fixed to the value 10. C is fixed to 200.

Our results indicate that RecWalk can be trained efficiently even for large itemspaces.

D PERFORMANCE FOR DIFFERENT LEVELS OF SPARSITY

To assess the quality of RecWalk in the presence of sparsity, we conduct the following experiment:
we take the movielens data and we create four artificially sparsified versions of the dataset by
randomly selecting to include 40–85% of the available data. We train RecWalk in each setting and
in Figure 4 we report its out-of-sample performance in terms of NDCG@10. For reference, we also
report RecWalk’s performance when all available data are exploited (“100%” bar in Figure 4).
We find that RecWalk manages to retain more that 2/3 of its full recommendation accuracy

even in the case where only 40% of the available feedback is exploited (specifically, RecWalk’s
NDCG@10 on the sparsest case is 33.2% lower than its corresponding performance when all avail-
able data are used). Expectedly, as the percentage of included interactions grows, the quality of the
trained model improves and the recommendation accuracy increases significantly. Finally, we find
that full itemspace coverage is attained for every user in the system even in the sparsest setting.
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Fig. 4. The figure reports the performance of RecWalk on the movielens data, under different spar-

sity settings. Model selection was performed for each setting following the procedure detailed in Sec-

tion 6.2 and by considering the hyperparameters: (fixed) C = 200, (fixed) α = 0.005, γ1 ∈ {1, 3, 5, 10},γ2 ∈
{0.1, 0.5, 1, 3, 5, 7, 9, 11, 15, 20} and K ∈ {3, . . . , 20}.
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