
Event-Based Signal Temporal Logic Synthesis for Single and

Multi-Robot Tasks

David Gundana and Hadas Kress-Gazit

Abstract— We propose a new specification language and
control synthesis technique for single and multi-robot high-level
tasks; these tasks include timing constraints and reaction to
environmental events. Specifically, we define Event-based Signal
Temporal Logic (STL) and use it to encode tasks that are reac-
tive to uncontrolled environment events. Our control synthesis
approach to Event-based STL tasks combines automata and
control barrier functions to produce robot behaviors that satisfy
the specification when possible. Our method automatically
provides feedback to the user if an Event-based STL task
can not be achieved. We demonstrate the effectiveness of the
framework through simulations and physical demonstrations of
multi-robot tasks.

I. INTRODUCTION

High-level specifications have been used to describe com-

plex robotics behaviors such as search and rescue missions

and other planning and coordination tasks. Researchers have

used control synthesis approaches to automatically generate

controllers that satisfy high-level specifications described by

temporal logic. Temporal logics such as Linear Temporal

Logic (LTL) are synthesized into controllers [1] for single-

robot systems, multi-robot systems (e.g. [2]–[4]), and swarms

(e.g. [5], [6]). In other work, robot controllers have been

synthesized for discrete-time continuous systems from Signal

Temporal logic (STL) [7] and Metric Temporal Logic (MTL)

specifications [8]. These specification languages can capture

timing constraints associated with complex tasks [9]. In this

paper we propose a specification formalism and associated

control synthesis algorithm that combines the continuous

(timing) properties of STL with the event-based nature of

discrete logics, such as LTL, to enable users to specify tasks

that have both timing constraints and desired reaction to

external events.

Synthesizing STL: Authors of [10]–[12] present methods

to design controllers for STL tasks. Work in [10] provides

a framework for solving a fragment of STL for multi-robot

tasks. This method is robust to robot attrition and used for

large teams of robots; however, the control is calculated

before execution therefore it is not robust to disturbances

encountered at runtime. The control synthesis approaches

of [11], [12] provide robustness to disturbances. These

methods rely on solving computationally expensive mixed-

integer linear programs. The computation complexity makes

This paper was recommended for publication by Editor Lucia Pallot-
tino upon evaluation of the Associate Editor and Reviewers’ comments.

D. Gundana and H. Kress-Gazit are with Sibley School of Mechanical
and Aerospace Engineering, Cornell University, Ithaca, NY, 14853 USA.
{dog4,hadaskg}@cornell.edu. This work is supported by the National GEM
Consortium, Cornell Sloan Fellowship, and NSF IIS-1830471.

Digital Object Identifier (DOI): see top of this page.

it challenging to implement in real time, especially in the

presence of dynamic obstacles.

The authors of [13] create control barrier functions (CBFs)

and provide feedback control laws for a robot navigating

in an environment with obstacles. These CBFs ensure that

a system remains inside of a pre-defined set of allowable

states, the safe-set, for all trajectories. [6], [14] leverage the

work in [13] to create safe control for multi-robot systems

and swarms.

The work in [15] uses time-varying CBFs to create a

feedback control law that satisfies STL tasks for robotic

systems in order to reduce the computational burden as-

sociated with solving mixed-integer linear programs. [16]

extends [15] for multi-robot systems and introduces variables

that relax CBFs and find a least violating solution when

tasks conflict. Further, [17] creates a systematic procedure for

constructing these CBFs to satisfy given STL tasks for multi-

robot systems. In later work, [18] proposes a framework for

satisfying STL tasks through automata based planning and

timed signal transducers that represent temporal and Boolean

operators [18]. We leverage [15]–[18] in our work and extend

its capabilities to include tasks that require the robot to react

to events in the environment.

Reactive STL: Researchers have investigated satisfying

STL tasks that are reactive to external disturbances from the

environment in order to encompass a larger set of complex

tasks [19]. These reactive STL tasks have been satisfied using

model predictive control solved through mixed-integer linear

programs. Disturbances are bounded and the authors make

assumptions about the behaviour of the environment and ad-

versaries in [19]. In this paper, we propose a framework that

considers these environment inputs to be discrete external

events such as alarms and signals that have uncontrolled

timings. To capture such tasks we create an extension of

STL – Event-based STL – which can encode tasks where

the robot must react to external events.

Assumptions: In this paper, we assume that the initial

state of the robot and the initial state of the environment, that

is whether environment events are triggered, do not violate

the specification. In essence, we require that the system does

not violate the specification before it starts executing. We

also assume that all robots in the system are holonomic,

meaning that the number of controllable degrees of freedom

is equal to the total degrees of freedom. In multi-robot tasks

we assume all robots can detect the state of the other robots,

and that each robot computes its own control signal.

Contributions: We propose a framework for encoding

tasks that contain timing constraints and reaction to environ-

mental events, creating a control strategy to satisfy the task

using CBFs, and providing feedback on the feasibility of

these tasks. We present three main contributions: 1) a novel

specification formalism, Event-based STL, that can capture

tasks that cannot be expressed in current STL synthesis

techniques, 2) an automata-based synthesis framework for

generating decentralized controllers for multi-robot systems

under an Event-based STL specification using time-varying

CBFs, thus reducing the computational burden of current

reactive STL approaches and 3) automated feedback to the

user on the feasibility of Event-based STL tasks a-priori

and at runtime for robots with bounded control inputs. Our

approach is sound but not complete in that we may not find

a control strategy even if one exists. We provide feedback to

the user in such cases.

II. PRELIMINARIES

A. Signal Temporal Logic (STL)

Consider a continuous time dynamical system representing

robot motion:

ẋ = f(x) + g(x)u (1)

Where x ∈ R
n is the state of the system, u∈ U ⊆ R

m is the

bounded control input of the system, and f and g are locally

Lipschitz continuous functions.

Let µ ∈ {True, False} represent a predicate whose truth

value is defined by the evaluation of a predicate function

h(xt) where xt is the state of the system at time t.

µ ::=

{

False ⇒ h(xt) < 0

True ⇒ h(xt) ≥ 0
(2)

Syntax: An STL formula φ is defined recursively as

φ ::= True | µ | ¬φ | φ1∧φ2 | F[a,b]φ | G[a,b]φ | φ1U[a,b]φ2

(3)

where φ is an STL formula, a, b ∈ R
+ are timing bounds, ¬

is “not”, ∧ is “and”, F is “eventually”, G is “always”, and

U is ”Until” [9].

Semantics: The semantics of STL are evaluated over trajec-

tories of the dynamical system in eqn. 1:

xt � µ ⇔ h(xt) ≥ 0
xt � ¬φ ⇔ xt 6� φ

xt � φ1 ∧ φ2 ⇔ xt � φ1 and xt � φ2

xt � F[a,b]φ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. xt1 � φ

xt � G[a,b]φ ⇔ ∀t1 ∈ [t+ a, t+ b], xt1 � φ

xt � φ1U[a,b]φ2 ⇔ ∃t2 ∈ [t+ a, t+ b] s.t. xt2 � φ2

and ∀t1 ∈ [t+ a, t2], xt1 � φ1

Intuitively, F[a,b]φ is True if there exists a time between

a and b where φ is True, G[a,b]φ is True if φ is True for

all time between a and b, and φ1U[a,b]φ2 is True if φ1 is

True from time a until φ2 becomes True, and φ2 becomes

True sometime in the interval [a, b] .

B. CBFs for STL specifications

CBFs were proposed in [20] and used to define safe-

sets for a system and ensure that the safe-set is forward

invariant: if a system starts in the set it will always stay

in that set. CBFs ensure forward invariance without deter-

mining the entire reachable set of system. Lindemann and

Dimarogonas [15] propose a process to generate control for

robotic systems to satisfy STL formulas using CBFs. To

ensure a task is satisfied given the timing constraints of

an STL formula, [15] creates CBFs cbf(xt) that are time

varying and forward invariant. These CBFs are constructed

using predicate functions of the STL formula, h(xt). Given

a CBF, if eqn. 4 holds for all xt, then the system is forward

invariant, i.e. if cbf(x0) ≥ 0, then cbf(xt) ≥ 0 for all t.

sup
u∈U

∂cbf(xt)
T

∂x
(f(xt)+g(xt)ut)+

∂cbf(xt)

∂t
≥ −ν(cbf(xt))

(4)

where ν : R≥0 → R≥0 is a locally Lipschitz continuous

class K function.

In [15] III.A, the authors describe in detail the process for

generating CBFs such that if we can find a control input u

that satisfies eqn. 4, the system is guaranteed to satisfy the

associated STL formulas with timing constraints. Intuitively,

we require (i) the CBF to be valid, i.e. satisfy cbf(xt) ≥
0, ∀t. To ensure the timing constraints in the STL formulas

are met, we require (ii) cbf(xt) ≤ h(xt) based on predicate

µ and the associated temporal operator; at some t in the

interval for F[a,b], for all t in the interval for G[a,b], etc. The

combination of these constraints guarantees h(xt) ≥ 0 at the

required times thus satisfying the STL formula.

We can combine STL formulas and create controllers that

do not violate any of the individual CBFs in order to express

more complex tasks. This is done using an approximation

for the minimum of the barrier functions for each task. One

can design a single CBF, cbfφ, such that if cbfφ ≥ 0, then

cbfi ≥ 0 ∀i [15]:

cbfφ = − ln
(

I
∑

i=1

exp(−cbfi(xt))
)

(5)

where I is the number of CBFs in a given specification.

C. Linear Temporal Logic (LTL) and Büchi Automata

An LTL formula γ is constructed from a set of atomic

propositions AP using the following grammar

γ ::= π| ¬γ | γ1 ∧ γ2 | Xγ | γ1Uγ2 (6)

where π ∈ AP , ¬ and ∧ are the Boolean operators “not”

and “and”, X is the temporal operator “next”, and U is

the temporal operator “Until”. From these operators we can

define the temporal operators “eventually” (Fγ = TrueUγ)

and “always” (Gγ = ¬F¬γ). The semantics of LTL are

defined over an infinite sequence σ = σ1, σ2..., where

σi ⊆ AP represents the set of propositions that are True in

position i of the sequence.

Intuitively, Xγ is True if for every execution γ is True

in the next position of the sequence, Fγ is True if for every

execution γ is True at some position in the sequence, Gγ

is True if for every execution γ is True at all positions of

the sequence, and γ1Uγ2 is True if for every execution γ1
is True until γ2 becomes True.

A nondeterministic Büchi automaton is a tuple

B = (S, s0,Σ, δ, F) (7)

where S is a finite set of states, s0 is the initial state, Σ
is a finite input alphabet, δ ⊆ S × Σ × S is the transition

relation, and F ⊆ S is a set of accepting states. A run of

a Büchi automaton on input word ω = ω1, ω2..., ωj ∈ Σ
is an infinite sequence of states s0, s1, s2, ... s.t. ∀j ≥
1, (sj−1, ωj , sj) ∈ δ. We define inf(ω) as a set of states that

are visited infinitely often on the input word ω. A run is

accepting iff inf(ω) ∩ F 6= 0.

Given an LTL formula γ, one can construct a nondetermin-

istic Büchi automaton Bγ such that Bγ only accepts input

words that satisfy γ [21], [22]. In the following we use the

LTL to Büchi automaton tool Spot [23].

III. EVENT-BASED STL

We define a new specification formalism, Event-based

STL, to describe tasks that have not been previously ad-

dressed by STL synthesis techniques. This formalism can

capture tasks where the system needs to react to uncontrolled

environmental events that may or may not occur during

execution. Examples of these events are fire alarms in

an evacuation scenario, a person entering in a room in a

workspace environment, or a command from a user.

A. System Representation

The system model is defined by eqn. 1. In addition to the

system model, we consider discrete environmental events.

These environmental events are uncontrolled by the system

and are represented as Boolean propositions π ∈ AP . We

define σt ⊆ AP as the set of atomic propositions that are

True at time t.

B. Syntax of Event-Based STL

We define Event-based STL formulas Ψ as follows:

ϕ ::=µ | ¬µ | ϕ1 ∧ ϕ2 (8)

α ::=π | ¬α | α1 ∧ α2 (9)

Ψ ::=G[a,b] ϕ | F[a,b] ϕ | ϕ1 U[a,b] ϕ2 |

G(α ⇒ Ψ) | G(ϕ ⇒ Ψ) | Ψ1 ∧Ψ2

(10)

where µ is a predicate representing h(xt) as described in eqn.

2, α is a Boolean formula over environment propositions

π ∈ AP , ⇒ is the implication operator, and the temporal

operators follow the conventions of STL, as defined in Sec.

II-A. If the ”always” operator G does not contain a timing

bound [a, b], we assume the timing bound is [0,∞]. We

interpret the interval [a, b] in continuous time similar to the

fragment of STL in [15]. When executing the control on a

simulated or physical system with a clock, we evaluate the

dynamics of the system and the environment at a set sam-

pling rate. For demonstrations we assume that the interval

[a, b] is a multiple of this sampling rate and environment

events last longer than the sampling period.

C. Semantics of Event-Based STL

We define the semantics of Event-based STL over (xt, σt)
where xt is the state of the system at time t and σt is a set

of environment propositions that are True at time t.

(xt, σt) � µ ⇔ h(xt) ≥ 0
(xt, σt) � ¬µ ⇔ h(xt) < 0
(xt, σt) � ϕ1 ∧ ϕ2 ⇔ (xt, σt) � ϕ1 and (xt, σt) � ϕ2

(xt, σt) � π ⇔ π ∈ σt

(xt, σt) � ¬α ⇔ (xt, σt) 2 α

(xt, σt) � α1 ∧ α2 ⇔ (xt, σt) � α1 and (xt, σt) � α2

(xt, σt) � F[a,b]ϕ ⇔ ∃t1 ∈ [t+a, t+b] s.t. (xt1 , σt1) � ϕ

(xt, σt) � G[a,b]ϕ ⇔ ∀t1 ∈ [t+ a, t+ b], (xt1 , σt1) � ϕ

(xt, σt) � ϕ1U[a,b]ϕ2 ⇔ ∃t2 ∈ [t + a, t + b]s.t. (xt2 , σt2) �
ϕ2 and ∀t1 ∈ [t+a, t2], (xt1 , σt1) � ϕ1

(xt, σt) � G(α ⇒ Ψ)⇔ ∀t, (xt, σt) 2 α or (xt, σt) � Ψ
(xt, σt) � G(ϕ ⇒ Ψ)⇔ ∀t, (xt, σt) 2 ϕ or (xt, σt) � Ψ
(xt, σt) � Ψ1 ∧Ψ2 ⇔ (xt, σt) � Ψ1 and (xt, σt) � Ψ2

IV. PROBLEM FORMULATION

Problem: Given a dynamical system (eqn. 1) and its state

x, environment events AP , and an Event-based STL formula

Ψ, find control u such that (x0, σ0) � Ψ , if possible.

We describe our approach to synthesizing the control in

Section V, and discuss feedback and guarantees in Section

VI. For multi-robot tasks, we propose a decentralized control

strategy where each robot satisfies the Event-based STL

formulas that affect them. We do this in order to distribute

the computational burden associated with finding control

inputs for each robot. In this framework each robot knows

the position of the other robots in the system, but not their

control inputs or goals.

A. Examples

Single-Robot Example: We consider a holonomic robot

operating in an obstacle-free workspace. The robot’s motion

is described by eqn. 1 where xt ∈ R
2 is the state of the

robot [xt, yt]
T at time t, f(xt) = 0, g(xt) = I2, and ut is

the control input [uxt
, uyt

]T . We define AP = {alarm} as

the set of environment events. The robot’s task is whenever

it senses the alarm, to arrive, within 10 time steps, at a point

within 1 unit from [5, 5]. The task is captured by the Event-

based STL formula

Ψ = G(alarm ⇒ F[0,10](‖ x − [5, 5]T ‖< 1))

Here, h(xt) = (1− ‖ xt − [5, 5]T ‖).
Multi-Robot Example: We consider four holonomic

robots operating in an obstacle-free workspace. The dy-

namics of the robots are described by eqn. 1, where x

describes the state of the robots x = [x1, x2, x3, x4], xi =
[xi,t, yi,t, θi,t], f(xi) = 0, g(xi) = I3, u = [u1, u2, u3, u4],
and ui = [ui,xt

, ui,yt
, ui,θt] for each robot i.

We define AP = {approach, align}. The multi-robot task

is captured by the following Event-based STL formula Ψ =

Ψ1 ∧Ψ2 ∧Ψ3 ∧Ψ4 ∧Ψcollision ∧Ψapproach ∧Ψalign where

the subformulas are

• Ψ1 = F[0,10](‖ x1 − [3, 1]T ‖< 0.5)
• Ψ2 = F[5,15](‖ x2 − [3, 2]T ‖< 0.5)
• Ψ3 = F[0,10](‖ x3 − [3, 0]T ‖< 0.5)
• Ψ4 = F[0,10](‖ x4 − [3, 2]T ‖< 0.5)
• Ψcollisionij

= G[0,30](‖ xi − xj ‖> 0.3), ∀i 6= j

• Ψapproachi
= G(approach ⇒ F[0,10](‖ xi − [6, 2]T ‖<

1)), i = 1, 3
• Ψaligni

= G(align ⇒ F[0,10](| |θi| − π | < 0.1)), i =
2, 4

Subformulas Ψ1,2,3,4 describe when the robots should be

in a certain region. Ψcollisionij
describes six subformulas

for collision avoidance which states that each robot must

maintain a distance of at least 0.3 units from every other

robot. Ψapproachi
states that, for robots 1 and 3, if the

environment event approach is sensed, then they should

arrive close to [6, 2] (no more than 1 away) within 10

time units. Ψaligni
states that, for robots 2 and 4, if the

environment event align is sensed, they both should, within

10 time units, be facing the -x direction of the global

reference frame.

V. SYNTHESIS FOR EVENT-BASED STL

Algo. 1 describes our approach to automatically synthesiz-

ing control given a high-level task encoded in Event-based

STL. The inputs to this algorithm are an Event-based STL

formula ΨSTL, the number of robots n, σt, xt, and the

functions hi(xt). The outputs are the control inputs ui ∈ Ui

for each robot, that satisfy ΨSTL.

Algo. 1 has two phases; first, before execution, we create

template CBFs based on the predicates in Ψ and create a

Büchi automaton that we use to temporally compose CBFs

based on environmental events (Section V-A). Then, during

execution, we choose a transition in the Büchi automaton

that corresponds to the currently sensed events in the envi-

ronment (Section V-B) and create the control from the CBFs

that correspond to that transition (Section V-C.) The Büchi

automaton acts as a centralized symbolic planner. Given a

transition in the Büchi automaton, each robot determines

their own control strategy in a decentralized manner.

A. CBFs and Abstracted Automaton

Given an Event-based STL formula ΨSTL we first create

template CBFs corresponding to the predicates in ΨSTL. We

then abstract the formula into an LTL formula ΨLTL and

create a Büchi automaton BΨLTL
that we use to choose the

CBFs that are executed.

Creating CBF templates cbfµi
(Line 1 of Algo. 1):

Given an STL formula φ, Lindemann et. al. [15] provide a

method for constructing CBFs that satisfy time constrained

STL specifications assuming unbounded control. Here, we

use the methods from [15] to create CBF formula templates

that use parameters from an Event-based STL formula.

We create a control barrier function template, eqn. 11,

that changes linearly with time and utilizes the entirety of

Algorithm 1: Control synthesis for Event-based STL

Input : ΨSTL, n, σt, xt, hi(xt),
Output: u

1 ∀i, cbfµi
= CBFTemplate(hi(xt));

2 (ΨLTL,Πµ) = STL2LTL(ΨSTL);
3 BΨLTL

= LTL2Buchi(ΨLTL);
4 currS = s0;

5 σ−1 = σ0;

6 (σcurrS,nextS ,Πµact
, currS) =

findTransition(σ0, x0, BΨLTL
, hi(x0), currS);

7 while True do

// check whether reached nextS or

environment event changed

8 if (σcurrS,nextS is True) or σt 6= σt−1 then

9 (σcurrS,nextS ,Πµact
, currS) =

findTransition(σt, xt, BΨLTL
, hi(xt), currS);

10 end

// Execute Barrier Functions

11 for i = 1 to n do

12 ui = Barrier(Πµact
, t, xt);

13 end

14 if Eqn. 18 is infeasible then

15 Stop;

16 end

17 σt−1 = σt;

18 end

the time bound that is given. For this template we use the

predicate function hi(xt), the time that the CBF is initially

activated tint, and a, b as place holders for the exact timing

bounds specified in the subformulas of ΨSTL; these timing

bounds will be instantiated during execution (Sec. V-C).

cbfµi
(xt) =

(t− tint − a)hi(xtint
)

b− a
− hi(xtint

) + hi(xt)

(11)

We create CBFs in this way so that a robot has the greatest

opportunity to satisfy its task. The CBF changing linearly and

using the entire time bound represents a worst-case scenario

of the safe-set at a point in time. At t = tint + a, the initial

time the CBF becomes activated, cbfµi
(xt) = 0. At t =

tint + b, the final time in the interval for the Event-based

STL formula, cbfµi
(xt) = hi(xt).

For example, the predicate from the single robot example

is µ1 =‖ x–[5, 5]T ‖< 1. We form a predicate function

h1(x) = 1− ‖ x–[5, 5]T ‖ and construct a template CBF

cbfµ1
(xt) =

(t−tint−a)(1−‖xtint
–[5,5]T ‖)

b−a
+ ‖ xtint

–[5, 5]T ‖

− ‖ xt–[5, 5]
T ‖.

Abstracting ΨSTL (Line 2 of Algo. 1): We abstract ΨSTL

to ΨLTL by replacing F[a,b] with F , G[a,b] with G, and U[a,b]

with U . Furthermore, we replace each µi with a proposition

πµi,[a,b] ∈ Πµ that we consider a controllable proposition.

Each controllable proposition maintains the timing associated

with its Event-based STL subformula. For example, eqn. 12

is abstracted to eqn. 13.

ΨSTL = G(alarm ⇒ F[0,10](‖ x–[5, 5]T ‖< 1)) (12)

ΨLTL = G(alarm ⇒ F (πµ1,[0,10])) (13)

where πµ1,[0,10] replaces (‖ x–[5, 5]T ‖< 1) and the asso-

ciated timing constrains. Event-based STL allows limited

nesting of temporal operators through the formulas with

implications, as long as the antecedent is either a Boolean

combination of environment propositions, or a conjunction

of predicates and their negation. For example, eqn. 14 is

abstracted to eqn. 15

ΨSTL = G(A ⇒ G(B ⇒ F[0,10](‖ x–[5, 5]T ‖< 1))) (14)

ΨLTL = G(A ⇒ G(B ⇒ F (πµ1,[0,10]))) (15)

Where A and B are external environment events. We do not

allow nesting of any other form.

Generating BΨLTL
(Line 3 of Algo. 1): We create a Büchi

automaton BΨLTL
from ΨLTL using [23]. The transitions

are labeled with Boolean formulas over the set AP ∪Πµ as

seen in figure 1. We denote a Boolean formula over AP ∪Πµ

representing the label of the transition between si and sj as

σsi,sj , i.e. Σ = {σsi,sj | ∃si, sj ∈ S, (si,σsi,sj , sj) ∈ δ}

Fig. 1: Graphical representation of BΨLTL
for ΨLTL in eqn.

13. The grey circles represent states and the double circle

represents an accepting state. Transitions between states are

labeled with the Boolean formulas σsi,sj .

Here S = {s0, s1, s2}, s0 is the initial state, and s1
is an accepting state. The transitions between states are

labeled with Boolean formulas over {alarm, πµ1,[0,10]}. For

example, σs0,s1 = ¬alarm∧¬πµ1,[0,10]. The task is satisfied

when the system is in the accepting state and can remain in

a cycle that contains an accepting state, in this case when

the predicate µ1 is True or the alarm is not activated. At

runtime, based on the environment events and state of the

system, we choose the next transition in the automaton, and

then create the control to drive the robot(s).

B. Choosing transitions

Determining Πµact
(Lines 6 and 8 of Algo. 1): During

execution, we create the control for the robot(s) based on

the label of the active transition in BΨLTL
. The active

transition is the transition the system is currently trying to

take, by activating the CBFs associated with the controllable

propositions Πµ.

At each time step, given σt, the set of environment

propositions that are True, and the state of the system xt,

we first determine the truth values of all the propositions

AP ∪Πµ; for π ∈ AP :

π =

{

False if π 6∈ σt

True if π ∈ σt

(16)

and for πµi,[a,b] ∈ Πµ:

πµi,[a,b] =

{

False if hi(xt) < 0

True if hi(xt) ≥ 0
(17)

We then evaluate whether we need to find a new active

transition; this would happen under two conditions, either (1)

the environment propositions changed, i.e. σt 6= σt−1 which

could change the truth value of the formula labeling the

transition σcurrS,nextS , or (2) σcurrS,nextS becomes True

indicating that all the associated predicates µi are True and

the system transitioned to the next state.

If one of the above conditions holds, we choose a new

active transition. To choose one, we first find the set of

possible transitions. The system can choose to take transi-

tions that are consistent with the current truth value of the

(uncontrollable) environment propositions AP . Put another

way, the set of possible transitions excludes transitions where

the truth values of the propositions in AP would cause σ to

evaluate to False.

Given the set of possible transitions, we search for a

path that will cause the LTL specification to be satisfied.

Specifically, we find a prefix – a path to an accepting state

and a suffix – a cycle that will cause the system to infinitely

visit accepting states; the suffix may be a self transition

on an accepting state. If there are multiple paths, we choose

the shortest prefix path; that being said, due to the structure

of the formulas we allow (no disjunction over predicates or

temporal formulas, no formulas of the form FG), and as

is the case with all the examples in this paper, the Büchi

automaton BΨLTL
is typically deterministic; therefore, the

choice in paths is due to the possible different values of the

controlled propositions. When deciding on the next state,

if there are multiple paths of the same length, we choose

the path where the next transition has the lowest number of

πµi,[a,b] that are True, thereby reducing the number of CBFs

we need to activate.

Given the path, we choose as the active transition the next

transition in this path. We denote the set of πµi,[a,b] propo-

sitions that must be True to satisfy the Boolean formula

σcurrS,sj for this transition as Πµact
; this set represents the

CBFs that are activated for that transition to complete.

Using the example, if the system is in state s2, the

only path to an accepting state is from state s2 to state

s1. For this transition to occur, the controllable proposition

πµ1,[0,10] = True therefore πµ1,[0,10] ∈ Πµact
. The activated

CBF will progress the system towards the accepting state

s1. The system will not reach s1 until h1(xt), the predicate

function associated with πµ1,[0,10], becomes non-negative.

C. Control synthesis

Finding Control input u (Line 12 of Algo. 1): Given the set

of propositions Πµact
, we activate CBFs that are associated

with those propositions for each robot i. Using the time at

which a CBF is activated and the position of the robots

at time t, we activate each pre-constructed barrier function

(Section V-A) corresponding to Πµact
if t is in the interval

[tint+a, tint+b]. The optimization problem we solve to find

the control for each robot is shown in eqn. 18 where cfbΨi

is the combination of all activated CBFs for robot i in the

system found from eqn. 5. Eqn. 18 describes the optimization

problem where a control law ui is found that ensures that

cbfΨi
(xt) ≥ 0 ∀t.

min
ui∈Ui

‖ ui − ûi ‖ s.t.

∂cbfΨi
(xt)

T

∂x
f(x,u) +

∂cbfΨi
(xt)

∂t
≥ −ν(cbfΨi

(xt))
(18)

where the nominal controller for each robot ûi is determined

using the safe-set associated with the activated CBF. We

find a goal point within the safe-set and choose ûi in the

direction of the goal point with a magnitude equal to the

maximum control input for the robot. If the optimization

problem is not feasible, it means we cannot find a control

input that satisfies the specification and we stop the execution

and provide feedback to the user.

Figure 2 shows the trajectory of an execution of the

motivating example. The safe-set associated with the CBF

is represented as a circle at time t0 when the proposition

alarm becomes True, and at tfinal = t0 + 10.

(a) Initial position of the robot
(filled red circle) at t0 and cor-
responding safe set

(b) Trajectory from t0 to tfinal

after alarm is sensed and the
corresponding safe set at tfinal

Fig. 2: Safe sets associated with the CBF and trajectory of

the robot at the time when the robot senses alarm (t0) and

at tfinal for the single-robot example

VI. FEEDBACK AND GUARANTEES

We give several forms of feedback regarding the feasibility

of satisfying a task given the Event-based STL specification

and the properties of the robots such as their dynamics and

control bounds. We classify the feedback as a priori feedback

and run-time feedback.

A priori feedback: We provide two types of feedback

based solely on the specification: (i) possibly conflicting

CBFs and (ii) inadmissible environment behaviors. For the

possibly conflicting CBF, we examine the set Πµact
of

each transition in BΨLTL
. If, for a given transition, the

sets hi(xt) associated with Πµact
are non-intersecting, we

provide feedback to the user that there might not be a control

input that satisfies all the associated CBFs. This feedback is

conservative as it does not take into account the timing of

the STL formulas; depending on the timing, the task may or

may not be feasible.

We place no assumptions on the timing of the environ-

ment events; however, depending on the specifications, there

might be event timings that cause the LTL formula to be

unsatisfiable. To alert the user to such situations, for each

state, we examine the possible transitions out of the state

and find combinations of environment events that are not

allowed i.e., none of the transitions out of the state allows

such a combination. We provide these combinations to the

user.

Run-time feedback: Unknown disturbances such as other

robots in the system, environment disturbances, or deadlocks

can prevent the system from completing the task. We provide

feedback on the feasibility of satisfying a task during an

execution given the configuration of the system, the timing

requirements, and the control bounds of the robots.

At each time-step, we calculate how far the system is

from satisfying the predicate functions by evaluating h(xt).
We then compare this distance to the largest distance the

system can move given the bounds on the control and the

time remaining to satisfy the predicate ‖ umax ‖ (b+tint−t).
If the distance to the predicate function is larger than the

maximum distance the system can travel, it means the system

will fail the task and we provide feedback to the user. In this

situation a solution to the optimization problem may still be

found even though the specification will be violated at a

future time. While for the CBF template we present in this

paper this in not the case, other templates may define larger

safe-sets that shrink faster, leading to the robot not being

able to remain in the safe-set in the future.

We check the distance from each individual predicate;

however, even if all predicates are within reach, when

combining several CBFs in the optimization problem eqn.

18, it may become infeasible. This might happen when the

system is trying to reach two predicates that require motion

in opposite direction. In these cases, we stop the system and

provide feedback to the user.

Completeness: Our specification formalism and control

synthesis approach enable a user to capture complex tasks

and automatically execute them; however, our approach is not

complete. There may be a control that could satisfy the task

in situations in which we have determined that we cannot

find a control input. This can occur, for example, when there

are conflicting predicates that may be achieved by adding a

prioritization scheme. The feedback we are providing before

and during execution is meant to mitigate possible execution

failures.

VII. SIMULATION RESULTS

A. Simulation Example Description

We consider 4 holonomic robots that operate in a

shared environment. They are performing the multi-

(a) t = 0 (b) t = 3.5 (c) t = 10

(d) t = 13 (e) t = 16 (f) t = 30

Fig. 3: Figure 3a shows the initial position of robot 1 (triangle), robot 2 (unfilled circle), robot 3 (square), and robot 4 (filled

circle). Figure 3b shows robots 1,3, and 4 progressing towards satisfying Ψ1,Ψ3, and Ψ4. Robot 3 has to change its path

to avoid colliding with robot 1. In figure 3c the robots have satisfied Ψ1, ...,Ψ4. At t ≈ 12 the robots sense approach and

robots 1 and 3 begin to satisfy Ψapproach1
and Ψapproach3

. At t ≈ 14 the robots sense align and robots 2 and 4 begin to

satisfy Ψalign2
and Ψalign4

(3d and 3e). Figure 3f shows the configuration of the robots at t = 30.

robot task described in Sec IV. The robots do not

collaborate and each robot only has information

about the position of the other robots. The initial

state x0 = [x1, y1, θ1, ..., x4, y4, θ4] of the system is

x0 = [0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2.75, 0] and the velocity bound

U = ±[ux1, uy1, uθ1, ..., ux4, uy4, uθ4] of the system is U =
±[0.7, 0.7, 0.5, 0.9, 0.9, 0.5, 0.65, 0.65, 0.5, 0.8, 0.8, 0.5].
The Büchi automaton took 1:15 minutes to compute on a

2.3 GHz Quad-Core CPU with 8 GB of RAM and contains

281 states, 21,121 transitions, and 14 CBFs.

B. Simulation Results

Figure 3 shows the trajectory of the system at different

time steps. All robots are able to satisfy their individual

tasks while avoiding collisions as defined in Ψcollisionij
. The

robots were able to proceed to their goal regions represented

by the circular regions without collision. This simulation was

run at 10Hz and the controllers for all robots in the system

took approximately 0.07 seconds to compute. The simulation

was run on a 2.3 GHz Quad-Core CPU with 8 GB of RAM.

The a priori feedback is that if approach1 or approach3 are

sensed before the predicates in Ψ1 or Ψ3 are satisfied, the

specification may be violated.

VIII. PHYSICAL DEMONSTRATION

A. Example Description

To further show the expressive power of Event-based STL

and the feedback we can generate we conduct a physical

demonstration with two iRobot Creates. We consider the

following Event-based STL specification for the multi-robot

system

• Ψ1 = F[0,15](‖ x1 − [−2, 1]T ‖< 0.5)
• Ψ2 = F[1,16](‖ x2 − [2, 1]T ‖< 0.5)
• Ψ3 = G(alarm ⇒ F[0,10](‖ x1 − [0,−1]T ‖< 0.5))
• Ψ4 = G[0,25](‖ x1 − x2 ‖> 0.5)

The task is defined as the conjunction of all of the Event-

based STL formulas Ψ = Ψ1 ∧Ψ2 ∧Ψ3 ∧Ψ4

B. A priori feedback

Before executing a run, we provide feedback to the user

on the feasibility of a task. To do this we check if conflicting

CBFs exist that may be activated at the same time during an

execution, as outlined in Sec. VI. For the physical demonstra-

tion there are several transitions in the Büchi automaton that

activate conflicting CBFs. These conflicting CBFs come from

the predicate functions associated with Ψ1 and Ψ3 which can

not be satisfied at the same time. This only occurs when the

robot senses alarm and Ψ1 has not been satisfied. We alert

the user of this potential issue so that they can change the

specification accordingly.

C. Physical Demonstration Results

The following section describes the results of the physical

demonstrations where alarm becomes True at different

times. In the first execution alarm never becomes True and

the system remains in an accepting state. Snapshots of this

run are shown in figure 4.

In the second run the robot senses the alarm event at

t ≈ 17. This is after robot 1 has satisfied Ψ1. Figure 5

shows the position of the robots at various timesteps. In this

execution the collision avoidance described by Ψ4 can be

seen as both robots change their paths so that they do not

(a) Initial configuration of
robot 1 and robot 2

(b) Configuration of the robots
at t = 25.

Fig. 4: The robots do not sense alarm and the robots remain

in an accepting states in the safe-sets defined by Ψ1 and Ψ2

collide with each other. During execution there is no run-

time feedback given because the robots are always able to

satisfy their tasks based on their bounded control inputs.

(a) Initial configuration of
robot 1 and robot 2

(b) Both robots have to change
directions to avoid colliding
with each other

(c) The robots sense alarm

after robot 1 satisfies Ψ1 at ≈
17

(d) Robots in safe-set satisfy-
ing the full specification.

Fig. 5: Snapshots when the robots sense alarm

IX. CONCLUSIONS

We provide a framework for expressing and synthesizing

control for high-level specifications that include reactions to

uncontrolled events and bounds on time and control input.

To do this we create a specification formalism called Event-

based STL and show its capabilities through simulation

and physical demonstrations. Because there are bounded

control inputs and a possibility of unknown disturbances and

environment inputs, we cannot provide a-priori guarantees

that a specification can be satisfied. Instead we provide

feedback to the user as to why the specification can not be

satisfied, when we detect a problem. In future work we will

consider specifications in complex environments and work to

expand the feedback given to users regarding infeasible tasks

and provide suggestions of changes to make the specification

satisfiable.

REFERENCES

[1] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for Robots:
Guarantees and Feedback for Robot Behavior,” Annual Review of

Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 211–
236, 2018.

[2] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on LTL specifications,” Proceedings of the

IEEE Conference on Decision and Control, vol. 1, pp. 153–158, 2004.
[3] I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Decentral-

ized multi-agent control from local LTL specifications,” Proceedings

of the IEEE Conference on Decision and Control, no. 0, pp. 6235–
6240, 2012.

[4] V. Raman and H. Kress-Gazit, “Synthesis for multi-robot controllers
with interleaved motion,” Proceedings - IEEE International Confer-

ence on Robotics and Automation, pp. 4316–4321, 2014.
[5] M. Kloetzer and C. Belta, “Temporal logic planning and control of

robotic swarms by hierarchical abstractions,” IEEE Transactions on

Robotics, vol. 23, no. 2, pp. 320–330, 2007.
[6] J. Chen, S. Moarref, and H. Kress-Gazit, “Verifiable control of robotic

swarm from high-level specifications robotics track,” Proceedings

of the International Joint Conference on Autonomous Agents and

Multiagent Systems, AAMAS, vol. 1, no. 4, pp. 568–576, 2018.
[7] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over

real-valued signals,” in Lecture Notes in Computer Science, vol. 6246
LNCS, pp. 92–106, 2010.

[8] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[9] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” Lecture Notes in Computer Science, vol. 3253, pp. 152–
166, 2004.

[10] A. M. Jones, K. Leahy, C. Vasile, S. Sadraddini, Z. Serlin, R. Tron,
and C. Belta, “ScRATCHS : Scalable and Robust Algorithms for Task-
based Coordination from High-level Specifications,” International

Symposium of Robotics Research, pp. 1–16, 2019.
[11] V. Raman, M. Maasoumy, A. Donze, R. M. Murray, A. Sangiovanni-

Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” Proceedings of the IEEE Conference

on Decision and Control, pp. 81–87, 2014.
[12] Z. Liu, J. Dai, B. Wu, and H. Lin, “Communication-aware motion

planning for multi-agent systems from signal temporal logic specifi-
cations,” Proceedings of the American Control Conference, pp. 2516–
2521, 2017.

[13] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control Barrier
Function Based Quadratic Programs for Safety Critical Systems,”
IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–
3876, 2017.

[14] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[15] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, vol. 3,
no. 1, pp. 96–101, 2019.

[16] L. Lindemann and D. V. Dimarogonas, “Control barrier functions
for multi-agent systems under conflicting local signal temporal logic
tasks,” IEEE Control Systems Letters, vol. 3, no. 3, pp. 757–762, 2019.

[17] L. Lindemann and D. V. DImarogonas, “Decentralized control barrier
functions for coupled multi-agent systems under signal temporal logic
tasks,” in 2019 18th European Control Conference, ECC 2019, pp. 89–
94, 2019.

[18] L. Lindemann and D. V. Dimarogonas, “Efficient Automata-based
Planning and Control under Spatio-Temporal Logic Specifications,”
2020 American Control Conference (ACC), pp. 4707–4714, 2020.

[19] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” Pro-

ceedings of the 18th International Conference on Hybrid Systems:

Computation and Control, HSCC 2015, pp. 239–248, 2015.
[20] P. Wieland and F. Allgöwer, “Constructive safety using control barrier

functions,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 7,
no. PART 1, pp. 462–467, 2007.

[21] P. Gastin and D. Oddoux, “Fast LTL to büchi automata translation,”
in Lecture Notes in Computer Science, pp. 53–65, Springer, 2001.

[22] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on

Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.
[23] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, É. Renault,

and L. Xu, “Spot 2.0 — a framework for LTL and ω-automata
manipulation,” Lecture Notes in Computer Science, vol. 9938 LNCS,
pp. 122–129, 2016.

