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Abstract— We propose a new specification language and
control synthesis technique for single and multi-robot high-level
tasks; these tasks include timing constraints and reaction to
environmental events. Specifically, we define Event-based Signal
Temporal Logic (STL) and use it to encode tasks that are reac-
tive to uncontrolled environment events. Our control synthesis
approach to Event-based STL tasks combines automata and
control barrier functions to produce robot behaviors that satisfy
the specification when possible. Our method automatically
provides feedback to the user if an Event-based STL task
can not be achieved. We demonstrate the effectiveness of the
framework through simulations and physical demonstrations of
multi-robot tasks.

I. INTRODUCTION

High-level specifications have been used to describe com-
plex robotics behaviors such as search and rescue missions
and other planning and coordination tasks. Researchers have
used control synthesis approaches to automatically generate
controllers that satisfy high-level specifications described by
temporal logic. Temporal logics such as Linear Temporal
Logic (LTL) are synthesized into controllers [1] for single-
robot systems, multi-robot systems (e.g. [2]-[4]), and swarms
(e.g. [5], [6]). In other work, robot controllers have been
synthesized for discrete-time continuous systems from Signal
Temporal logic (STL) [7] and Metric Temporal Logic (MTL)
specifications [8]. These specification languages can capture
timing constraints associated with complex tasks [9]. In this
paper we propose a specification formalism and associated
control synthesis algorithm that combines the continuous
(timing) properties of STL with the event-based nature of
discrete logics, such as LTL, to enable users to specify tasks
that have both timing constraints and desired reaction to
external events.

Synthesizing STL: Authors of [10]-[12] present methods
to design controllers for STL tasks. Work in [10] provides
a framework for solving a fragment of STL for multi-robot
tasks. This method is robust to robot attrition and used for
large teams of robots; however, the control is calculated
before execution therefore it is not robust to disturbances
encountered at runtime. The control synthesis approaches
of [11], [12] provide robustness to disturbances. These
methods rely on solving computationally expensive mixed-
integer linear programs. The computation complexity makes
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it challenging to implement in real time, especially in the
presence of dynamic obstacles.

The authors of [13] create control barrier functions (CBFs)
and provide feedback control laws for a robot navigating
in an environment with obstacles. These CBFs ensure that
a system remains inside of a pre-defined set of allowable
states, the safe-set, for all trajectories. [6], [14] leverage the
work in [13] to create safe control for multi-robot systems
and swarms.

The work in [15] uses time-varying CBFs to create a
feedback control law that satisfies STL tasks for robotic
systems in order to reduce the computational burden as-
sociated with solving mixed-integer linear programs. [16]
extends [15] for multi-robot systems and introduces variables
that relax CBFs and find a least violating solution when
tasks conflict. Further, [17] creates a systematic procedure for
constructing these CBFs to satisfy given STL tasks for multi-
robot systems. In later work, [18] proposes a framework for
satisfying STL tasks through automata based planning and
timed signal transducers that represent temporal and Boolean
operators [18]. We leverage [15]-[18] in our work and extend
its capabilities to include tasks that require the robot to react
to events in the environment.

Reactive STL: Researchers have investigated satisfying
STL tasks that are reactive to external disturbances from the
environment in order to encompass a larger set of complex
tasks [19]. These reactive STL tasks have been satisfied using
model predictive control solved through mixed-integer linear
programs. Disturbances are bounded and the authors make
assumptions about the behaviour of the environment and ad-
versaries in [19]. In this paper, we propose a framework that
considers these environment inputs to be discrete external
events such as alarms and signals that have uncontrolled
timings. To capture such tasks we create an extension of
STL — Event-based STL — which can encode tasks where
the robot must react to external events.

Assumptions: In this paper, we assume that the initial
state of the robot and the initial state of the environment, that
is whether environment events are triggered, do not violate
the specification. In essence, we require that the system does
not violate the specification before it starts executing. We
also assume that all robots in the system are holonomic,
meaning that the number of controllable degrees of freedom
is equal to the total degrees of freedom. In multi-robot tasks
we assume all robots can detect the state of the other robots,
and that each robot computes its own control signal.

Contributions: We propose a framework for encoding
tasks that contain timing constraints and reaction to environ-



mental events, creating a control strategy to satisfy the task
using CBFs, and providing feedback on the feasibility of
these tasks. We present three main contributions: 1) a novel
specification formalism, Event-based STL, that can capture
tasks that cannot be expressed in current STL synthesis
techniques, 2) an automata-based synthesis framework for
generating decentralized controllers for multi-robot systems
under an Event-based STL specification using time-varying
CBFs, thus reducing the computational burden of current
reactive STL approaches and 3) automated feedback to the
user on the feasibility of Event-based STL tasks a-priori
and at runtime for robots with bounded control inputs. Our
approach is sound but not complete in that we may not find
a control strategy even if one exists. We provide feedback to
the user in such cases.

II. PRELIMINARIES

A. Signal Temporal Logic (STL)

Consider a continuous time dynamical system representing
robot motion:

x = f(x) + g(x)u (1)

Where x € R" is the state of the system, uc U C R is the
bounded control input of the system, and f and g are locally
Lipschitz continuous functions.

Let i € {True, False} represent a predicate whose truth
value is defined by the evaluation of a predicate function
h(x;) where x, is the state of the system at time ¢.

o False
o= True

= h(x;) <0
= h(x¢) >0 @

Syntax: An STL formula ¢ is defined recursively as

pu=True | p|=¢| d1Ab2 | Flapd | Glan® | 91U b2
3)

where ¢ is an STL formula, a, b € R™ are timing bounds, —

is “not”, A is “and”, F' is “eventually”, G is “always”, and

U is ”Until” [9].

Semantics: The semantics of STL are evaluated over trajec-

tories of the dynamical system in eqn. 1:

X¢ F S h(x) >0

x¢ F —¢ S X i

Xt E @1 A @2 < Xt F ¢1 and x¢ F ¢

X; F Fla ¢ S 3deft+a,t+b]st.x, Fo
x; F G[a,b]qﬁ & Vi € [t—l—a,t—t—b}, X, F ¢

x; F ¢1U[a,b]¢2 St €t +a,t+b] st x¢, E o

and Vt; € [t + a,ta],Xs, F 1

Intuitively, Fi, ¢ is True if there exists a time between
a and b where ¢ is True, G, ¢ is True if ¢ is True for
all time between a and b, and ¢ U, p)¢2 is True if ¢ is
True from time a until ¢o becomes True, and ¢ becomes
True sometime in the interval [a, b] .

B. CBFs for STL specifications

CBFs were proposed in [20] and used to define safe-
sets for a system and ensure that the safe-set is forward
invariant: if a system starts in the set it will always stay
in that set. CBFs ensure forward invariance without deter-
mining the entire reachable set of system. Lindemann and
Dimarogonas [15] propose a process to generate control for
robotic systems to satisfy STL formulas using CBFs. To
ensure a task is satisfied given the timing constraints of
an STL formula, [15] creates CBFs cbf(x;) that are time
varying and forward invariant. These CBFs are constructed
using predicate functions of the STL formula, h(x;). Given
a CBEF, if eqn. 4 holds for all x;, then the system is forward
invariant, i.e. if ¢bf(xg) > 0, then ¢bf(x;) > 0 for all t.

debf (x)" deb f(xt)

lsllelg T(f(xt)Jrg(xt)ut)JrT > —v(cbf(xt))
“)
where v : R>g — R>¢ is a locally Lipschitz continuous

class K function.

In [15] III.A, the authors describe in detail the process for
generating CBFs such that if we can find a control input u
that satisfies eqn. 4, the system is guaranteed to satisfy the
associated STL formulas with timing constraints. Intuitively,
we require (i) the CBF to be valid, i.e. satisfy cbf(x;) >
0,Vt. To ensure the timing constraints in the STL formulas
are met, we require (ii) cbf(x;) < h(x;) based on predicate
1 and the associated temporal operator; at some t in the
interval for Fj, y), for all ¢ in the interval for G|, 3}, etc. The
combination of these constraints guarantees h(x;) > 0 at the
required times thus satisfying the STL formula.

We can combine STL formulas and create controllers that
do not violate any of the individual CBFs in order to express
more complex tasks. This is done using an approximation
for the minimum of the barrier functions for each task. One
can design a single CBF, cbfy, such that if cbf, > 0, then
ebf; >0 Vi [13]:

I
ebfs = —In (D can(~cbfi(x,))) )
i=1

where [ is the number of CBFs in a given specification.

C. Linear Temporal Logic (LTL) and Biichi Automata

An LTL formula ~ is constructed from a set of atomic
propositions AP using the following grammar

yu=a| oy [ A | Xy | Uy (6)

where m € AP, — and A are the Boolean operators “not”
and “and”, X is the temporal operator “next”, and U is
the temporal operator “Until”. From these operators we can
define the temporal operators “eventually” (F'y = TruelU~)
and “always” (Gy = —F—v). The semantics of LTL are
defined over an infinite sequence o = o01,03..., where
o; C AP represents the set of propositions that are T'rue in
position ¢ of the sequence.

Intuitively, X+ is T'rue if for every execution vy is True
in the next position of the sequence, F'y is T'rue if for every



execution ~ is True at some position in the sequence, G-y
is True if for every execution « is True at all positions of
the sequence, and v1 U~ is True if for every execution 7;
is T'rue until v, becomes True.

A nondeterministic Biichi automaton is a tuple

B:(Svsoaza(S?F) (7)

where S is a finite set of states, sg is the initial state, >
is a finite input alphabet, § C S x X x S is the transition
relation, and F' C S is a set of accepting states. A run of
a Biichi automaton on input word w = wi,ws..., wWj; € X
is an infinite sequence of states sg,si,S2,... s.t. Vj >
1,(sj—1,wj,s;5) € 6. We define inf(w) as a set of states that
are visited infinitely often on the input word w. A run is
accepting iff inf(w) N F #£ 0.

Given an LTL formula ~, one can construct a nondetermin-
istic Biichi automaton B., such that B, only accepts input
words that satisfy v [21], [22]. In the following we use the
LTL to Biichi automaton tool Spot [23].

III. EVENT-BASED STL

We define a new specification formalism, Event-based
STL, to describe tasks that have not been previously ad-
dressed by STL synthesis techniques. This formalism can
capture tasks where the system needs to react to uncontrolled
environmental events that may or may not occur during
execution. Examples of these events are fire alarms in
an evacuation scenario, a person entering in a room in a
workspace environment, or a command from a user.

A. System Representation

The system model is defined by eqn. 1. In addition to the
system model, we consider discrete environmental events.
These environmental events are uncontrolled by the system
and are represented as Boolean propositions m € AP. We
define o0, C AP as the set of atomic propositions that are
True at time t.

B. Syntax of Event-Based STL
We define Event-based STL formulas ¥ as follows:

o u=p | | o1 Aps (®)
an=m | ma ] ap Aas )
U =Glap @ | Fap) ¢ | €1 Upap) @2 |

where p is a predicate representing h(x;) as described in eqn.
2, o is a Boolean formula over environment propositions
m € AP, = is the implication operator, and the temporal
operators follow the conventions of STL, as defined in Sec.
II-A. If the "always” operator G does not contain a timing
bound [a,b], we assume the timing bound is [0,oc]. We
interpret the interval [a, b] in continuous time similar to the
fragment of STL in [15]. When executing the control on a
simulated or physical system with a clock, we evaluate the
dynamics of the system and the environment at a set sam-
pling rate. For demonstrations we assume that the interval
[a,b] is a multiple of this sampling rate and environment
events last longer than the sampling period.

(10)

C. Semantics of Event-Based STL
We define the semantics of Event-based STL over (x;, o)

where X; is the state of the system at time ¢ and o is a set
of environment propositions that are 7T'rue at time ¢.

<~ h(xt) > 0
< h(x) <0
= (Xt,a't) = ©1 and (Xt,()'t) = V2

(Xtaat) = M
(Xt,0¢) F —p
(Xt,0¢) F o1 A2

(Xt70't) ': T
(Xt,O't> ': -
(Xt,00) F a1 A

& T E O
= (Xt,Ut)#Oé
=4 (Xt,O't) F oy and (Xt,O't) F as

(Xt,0¢) F Flap ¢ < 3ty € [t+a, t+b] s.t. (X¢y,0¢,) F @
(Xt,O't) = G[n,,b](;o = th S [t+a,t—|—b], (th,O'tl) = %2
(x¢t,00) F 01U o2 & o € [t +a,t + bls.t. (X¢y,04,) F
o and YVt € [t-‘ra,tg], (Xt170t1) E o
(x¢,00) EGla= V) & Vi, (x¢,00) Eaor (x¢,0¢) ETU
(Xt,O't) = G(QO = \I/) 4 Vt, (Xt,O't) ¥ @ or (Xt7at) EWU
(Xt,O't) EU AT, < (Xt,Ut) F ¥, and (Xt,O't) E v,

IV. PROBLEM FORMULATION

Problem: Given a dynamical system (eqn. 1) and its state
x, environment events AP, and an Event-based STL formula
U, find control w such that (xo,00) F ¥ , if possible.

We describe our approach to synthesizing the control in
Section V, and discuss feedback and guarantees in Section
VI. For multi-robot tasks, we propose a decentralized control
strategy where each robot satisfies the Event-based STL
formulas that affect them. We do this in order to distribute
the computational burden associated with finding control
inputs for each robot. In this framework each robot knows
the position of the other robots in the system, but not their
control inputs or goals.

A. Examples

Single-Robot Example: We consider a holonomic robot
operating in an obstacle-free workspace. The robot’s motion
is described by eqn. 1 where x; € R? is the state of the
robot [z, ;)7 at time ¢, f(x¢) = 0, g(x;) = I, and w; is
the control input [u,,,u,,]T. We define AP = {alarm} as
the set of environment events. The robot’s task is whenever
it senses the alarm, to arrive, within 10 time steps, at a point
within 1 unit from [5,5]. The task is captured by the Event-
based STL formula

U = G(alarm = Fy10)(]| x — [5, 5]T < 1))

Here, h(x;) = (1— | x, — [5,5]” |)-

Multi-Robot Example: We consider four holonomic
robots operating in an obstacle-free workspace. The dy-
namics of the robots are described by eqn. 1, where x
describes the state of the robots x = [x1,X2,X3,X4], X; =
[@itsYits Oiels F(Xi) =0, g(x;) = I3, u = [ug,ug,u3,uy,
and w; = [u; z,, U; y,, Uip,] for each robot 1.

We define AP = {approach, align}. The multi-robot task
is captured by the following Event-based STL formula ¥ =



\Ill A \112 A \IIS A \IJ4 A \Ilcollision A \I]approach A \I]align where
the subformulas are

e U, = F[O,lO](” X1 — [3, 1]T H< 05)
« Uy = Fis 5 (] x2 — [3,2]" [[< 0.5)
o U3 = F0(| x3 —[3,0]" [|< 0.5)
« Uy = Foao(]| x4 = [3,2]" [[< 0.5)

b \chollisionij = G[O,SO](” X; — X ||> 0.3), Vi ;éj
o Vapproach; = G(approach = Fig 10(|| x; — [6, 2T ||<

D) i—1,3
o Watign, = Glalign = Flo1q)(] [0i| — 7 | <0.1)), i =
2.4

Subformulas ¥ 534 describe when the robots should be
in a certain region. Weosion,;; describes six subformulas
for collision avoidance which states that each robot must
maintain a distance of at least 0.3 units from every other
robot. Wopnroach, States that, for robots 1 and 3, if the
environment event approach is sensed, then they should
arrive close to [6,2] (no more than 1 away) within 10
time units. W4, states that, for robots 2 and 4, if the
environment event align is sensed, they both should, within
10 time units, be facing the -x direction of the global
reference frame.

V. SYNTHESIS FOR EVENT-BASED STL

Algo. 1 describes our approach to automatically synthesiz-
ing control given a high-level task encoded in Event-based
STL. The inputs to this algorithm are an Event-based STL
formula ¥Yg7r, the number of robots n, o4, X;, and the
functions h;(x;). The outputs are the control inputs u; € U;
for each robot, that satisfy ¥ gry.

Algo. 1 has two phases; first, before execution, we create
template CBFs based on the predicates in W and create a
Biichi automaton that we use to temporally compose CBFs
based on environmental events (Section V-A). Then, during
execution, we choose a transition in the Biichi automaton
that corresponds to the currently sensed events in the envi-
ronment (Section V-B) and create the control from the CBFs
that correspond to that transition (Section V-C.) The Biichi
automaton acts as a centralized symbolic planner. Given a
transition in the Biichi automaton, each robot determines
their own control strategy in a decentralized manner.

A. CBFs and Abstracted Automaton

Given an Event-based STL formula W g1, we first create
template CBFs corresponding to the predicates in ¥ gry,. We
then abstract the formula into an LTL formula ¥ 1 and
create a Biichi automaton By, ., that we use to choose the
CBFs that are executed.

Creating CBF templates cbf,, (Line 1 of Algo. 1):
Given an STL formula ¢, Lindemann et. al. [15] provide a
method for constructing CBFs that satisfy time constrained
STL specifications assuming unbounded control. Here, we
use the methods from [15] to create CBF formula templates
that use parameters from an Event-based STL formula.

We create a control barrier function template, eqn. 11,
that changes linearly with time and utilizes the entirety of

Algorithm 1: Control synthesis for Event-based STL

Input : Ygrp, n, or, X, hi(Xt),

Output: u

Vi, cbf,, = CBFTemplate(h;(x¢));

(\I/LTLan,u) = STLQLTL(\I/STL);

B\pLTL = LTLQBUChi(\IJLTL);

currS = sgp;

o_1 = 00;

(chr'7'S,nemt87 Huact , CUTTS) =
findTransition(oo, X0, By, 1, , hi(Xo), currS);

7 while True do

// check whether reached nextS or

environment event changed

8 if (Ocurrs nexts is True) or oy # o1 then

9 (ch7’rS,nextS7 ... CUTTS) =

findTransition(oy, X¢, By, pp, hi(Xt), currS);

A 1 A W N

10 end
// Execute Barrier Functions
11 for i = 1 to n do

12 | w; = Barrier(Il,,, . t,X;);
13 end

14 if Egn. 18 is infeasible then

15 | Stop;

16 end

17 Ot—1 = O¢;

18 end

the time bound that is given. For this template we use the
predicate function h;(x;), the time that the CBF is initially
activated t;,;, and a, b as place holders for the exact timing
bounds specified in the subformulas of Wgp; these timing
bounds will be instantiated during execution (Sec. V-C).

(t — tint — a)hi(xtm)
b—a

— hi(X¢,,,) + hi(x¢)

(1)
We create CBFs in this way so that a robot has the greatest
opportunity to satisfy its task. The CBF changing linearly and
using the entire time bound represents a worst-case scenario
of the safe-set at a point in time. At t = ¢;,,; + a, the initial
time the CBF becomes activated, cbf,,(x;) = 0. At t =
tint + b, the final time in the interval for the Event-based
STL formula, cbf,, (x;) = hi(Xy).
For example, the predicate from the single robot example

cbfu (x¢) =

int

is p1 =] x[5,5]7 ||< 1. We form a predicate function
hi(x) = 1— || x-[5,5]7 || and construct a template CBF
by (xp) = (et DDy, 5,57 |
= | xe[5,5]" ||

Abstracting Vg (Line 2 of Algo. 1): We abstract Ugpy,
to W rp, by replacing Fi, ) with F', G|, ) with G, and Ul p)
with U. Furthermore, we replace each p,; with a proposition
T la,b) € 11, that we consider a controllable proposition.
Each controllable proposition maintains the timing associated
with its Event-based STL subformula. For example, eqn. 12



is abstracted to eqn. 13.

(12)
13)

Vsr = Glalarm = Fo 10)(|| x-[5,5]" [|< 1))
Vrrr = Glalarm = F(m,, j0,10]))

where 7, [0.19] replaces (|| x-[5,5]7 ||< 1) and the asso-
ciated timing constrains. Event-based STL allows limited
nesting of temporal operators through the formulas with
implications, as long as the antecedent is either a Boolean
combination of environment propositions, or a conjunction
of predicates and their negation. For example, eqn. 14 is
abstracted to eqn. 15

Usrr = G(A = GB = Fjo 9 (]| x-[5,5]" [|[< 1)) (14)
\IJLTL ZG(A:>G(B=>F(7T#17[O,10]))) (15)

Where A and B are external environment events. We do not
allow nesting of any other form.

Generating By, ., (Line 3 of Algo. 1): We create a Biichi
automaton By, ., from Wy using [23]. The transitions
are labeled with Boolean formulas over the set AP UII, as
seen in figure 1. We denote a Boolean formula over APUII,
representing the label of the transition between s; and s; as
Osiys55 iLe. X = {O'S,hsj ‘ Hsi,sj S S, (Si, O-SMSJ"SJ') S (5}

alarm A =1y, [0,10]

jalarm A STy, 10,10]

— 0 1

—alarm Vmy, [o10]

Tyy,[0,10]

Fig. 1: Graphical representation of By, ., for Uy in eqn.
13. The grey circles represent states and the double circle
represents an accepting state. Transitions between states are
labeled with the Boolean formulas o7, s, .

Here S = {so,s1,82}, So is the initial state, and s;
is an accepting state. The transitions between states are
labeled with Boolean formulas over {alarm,m,, [0,10]}. For
example, 05, s, = ~alarmA=m,, (0,10]- The task is satisfied
when the system is in the accepting state and can remain in
a cycle that contains an accepting state, in this case when
the predicate p; is T'rue or the alarm is not activated. At
runtime, based on the environment events and state of the
system, we choose the next transition in the automaton, and
then create the control to drive the robot(s).

B. Choosing transitions

Determining 11, .(Lines 6 and 8 of Algo. 1): During
execution, we create the control for the robot(s) based on
the label of the active transition in By, ,,. The active
transition is the transition the system is currently trying to
take, by activating the CBFs associated with the controllable
propositions II,.

At each time step, given oy, the set of environment
propositions that are T'rue, and the state of the system x,

we first determine the truth values of all the propositions
APUIL,; for m € AP:

o False %fﬂgat (16)
True ifmeéeoy
and for m,,; (4.5 € HUy:
False if h;(x¢) <0
Tuslab] = (x:) (17)

True if hi(x¢) >0

We then evaluate whether we need to find a new active
transition; this would happen under two conditions, either (1)
the environment propositions changed, i.e. oy # 041 which
could change the truth value of the formula labeling the
transition O cyrrS,neatss OF (2) OcurrSnests becomes True
indicating that all the associated predicates u; are True and
the system transitioned to the next state.

If one of the above conditions holds, we choose a new
active transition. To choose one, we first find the set of
possible transitions. The system can choose to take transi-
tions that are consistent with the current truth value of the
(uncontrollable) environment propositions AP. Put another
way, the set of possible transitions excludes transitions where
the truth values of the propositions in AP would cause o to
evaluate to False.

Given the set of possible transitions, we search for a
path that will cause the LTL specification to be satisfied.
Specifically, we find a prefiz — a path to an accepting state
and a suf fiz — a cycle that will cause the system to infinitely
visit accepting states; the suffix may be a self transition
on an accepting state. If there are multiple paths, we choose
the shortest prefix path; that being said, due to the structure
of the formulas we allow (no disjunction over predicates or
temporal formulas, no formulas of the form F'(), and as
is the case with all the examples in this paper, the Biichi
automaton By, ., is typically deterministic; therefore, the
choice in paths is due to the possible different values of the
controlled propositions. When deciding on the next state,
if there are multiple paths of the same length, we choose
the path where the next transition has the lowest number of
Tui.la,b) that are True, thereby reducing the number of CBFs
we need to activate.

Given the path, we choose as the active transition the next
transition in this path. We denote the set of 7, 4,5 propo-
sitions that must be True to satisfy the Boolean formula
Ocurrs,s; for this transition as I, ,; this set represents the
CBFs that are activated for that transition to complete.

Using the example, if the system is in state so, the
only path to an accepting state is from state sy to state
s1. For this transition to occur, the controllable proposition
T, [0,10) = T'rue therefore 7, (0,10) € ,,,- The activated
CBF will progress the system towards the accepting state
s1. The system will not reach s; until h;(x;), the predicate
function associated with 7, 0,10), becomes non-negative.

C. Control synthesis
Finding Control input u (Line 12 of Algo. 1): Given the set

of propositions 11, ,, we activate CBFs that are associated



with those propositions for each robot <. Using the time at
which a CBF is activated and the position of the robots
at time ¢, we activate each pre-constructed barrier function
(Section V-A) corresponding to II,, . if ¢ is in the interval
[tint + a, tint +b]. The optimization problem we solve to find
the control for each robot is shown in eqn. 18 where cfby,
is the combination of all activated CBFs for robot ¢ in the
system found from eqn. 5. Eqn. 18 describes the optimization
problem where a control law u; is found that ensures that
chfy, (x¢) > 0 Vt.
min || w; —a; | s.t.
u; €U;
8cbf\p,i (Xt)T f(X u) 4 8cbfq,,i (Xt)
ox ’ ot

where the nominal controller for each robot u; is determined
using the safe-set associated with the activated CBF. We
find a goal point within the safe-set and choose u; in the
direction of the goal point with a magnitude equal to the
maximum control input for the robot. If the optimization
problem is not feasible, it means we cannot find a control
input that satisfies the specification and we stop the execution
and provide feedback to the user.

Figure 2 shows the trajectory of an execution of the
motivating example. The safe-set associated with the CBF
is represented as a circle at time ¢y when the proposition
alarm becomes T'rue, and at t ;5,4 = to + 10.

(18)
> —v(cbfw,(x¢))

6 6
Safe-
Set
4 4 4
/7
7/
2 2 7/
7/
0 0
-2 -2
-2 0 2 4 6 -2 0 2 4 6

(a) Initial position of the robot
(filled red circle) at to and cor-
responding safe set

(b) Trajectory from tg to tfinai
after alarm is sensed and the
corresponding safe set at ¢ finai

Fig. 2: Safe sets associated with the CBF and trajectory of
the robot at the time when the robot senses alarm (tp) and
at tinq for the single-robot example

VI. FEEDBACK AND GUARANTEES

We give several forms of feedback regarding the feasibility
of satisfying a task given the Event-based STL specification
and the properties of the robots such as their dynamics and
control bounds. We classify the feedback as a priori feedback
and run-time feedback.

A priori feedback: We provide two types of feedback
based solely on the specification: (i) possibly conflicting
CBFs and (ii) inadmissible environment behaviors. For the
possibly conflicting CBF, we examine the set II,, , of
each transition in By, . If, for a given transition, the

sets h;(x;) associated with II, , are non-intersecting, we
provide feedback to the user that there might not be a control
input that satisfies all the associated CBFs. This feedback is
conservative as it does not take into account the timing of
the STL formulas; depending on the timing, the task may or
may not be feasible.

We place no assumptions on the timing of the environ-
ment events; however, depending on the specifications, there
might be event timings that cause the LTL formula to be
unsatisfiable. To alert the user to such situations, for each
state, we examine the possible transitions out of the state
and find combinations of environment events that are not
allowed i.e., none of the transitions out of the state allows
such a combination. We provide these combinations to the
user.

Run-time feedback: Unknown disturbances such as other
robots in the system, environment disturbances, or deadlocks
can prevent the system from completing the task. We provide
feedback on the feasibility of satisfying a task during an
execution given the configuration of the system, the timing
requirements, and the control bounds of the robots.

At each time-step, we calculate how far the system is
from satisfying the predicate functions by evaluating h(x;).
We then compare this distance to the largest distance the
system can move given the bounds on the control and the
time remaining to satisfy the predicate || wmaz || (0+tine—1).

If the distance to the predicate function is larger than the
maximum distance the system can travel, it means the system
will fail the task and we provide feedback to the user. In this
situation a solution to the optimization problem may still be
found even though the specification will be violated at a
future time. While for the CBF template we present in this
paper this in not the case, other templates may define larger
safe-sets that shrink faster, leading to the robot not being
able to remain in the safe-set in the future.

We check the distance from each individual predicate;
however, even if all predicates are within reach, when
combining several CBFs in the optimization problem eqn.
18, it may become infeasible. This might happen when the
system is trying to reach two predicates that require motion
in opposite direction. In these cases, we stop the system and
provide feedback to the user.

Completeness: Our specification formalism and control
synthesis approach enable a user to capture complex tasks
and automatically execute them; however, our approach is not
complete. There may be a control that could satisfy the task
in situations in which we have determined that we cannot
find a control input. This can occur, for example, when there
are conflicting predicates that may be achieved by adding a
prioritization scheme. The feedback we are providing before
and during execution is meant to mitigate possible execution
failures.

VII. SIMULATION RESULTS

A. Simulation Example Description

We consider 4 holonomic robots that operate in a
shared environment. They are performing the multi-
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Fig. 3: Figure 3a shows the initial position of robot 1 (triangle), robot 2 (unfilled circle), robot 3 (square), and robot 4 (filled
circle). Figure 3b shows robots 1,3, and 4 progressing towards satisfying W1, U3, and W,4. Robot 3 has to change its path
to avoid colliding with robot 1. In figure 3c the robots have satisfied ¥y, ..., U,. At ¢ ~ 12 the robots sense approach and
robots 1 and 3 begin to satisfy Uypproach; and ¥opproachs- At t = 14 the robots sense align and robots 2 and 4 begin to
satisfy Worign, and Wy, (3d and 3e). Figure 3f shows the configuration of the robots at ¢ = 30.

robot task described in Sec IV. The robots do not
collaborate and each robot only has information
about the position of the other robots. The initial
state  Xq [®1,91,601,...,24,ys,04] of the system is
xp =[0,0,0,0,1,0,0,2,0,0,2.75,0] and the velocity bound
U = £[ug1, Uy1, o1, ---s Uga, Uya, Ugs] Of the system is U =
+[0.7,0.7,0.5,0.9,0.9,0.5,0.65,0.65,0.5,0.8,0.8,0.5].
The Biichi automaton took 1:15 minutes to compute on a
2.3 GHz Quad-Core CPU with 8 GB of RAM and contains
281 states, 21,121 transitions, and 14 CBFs.

B. Simulation Results

Figure 3 shows the trajectory of the system at different
time steps. All robots are able to satisfy their individual
tasks while avoiding collisions as defined in W coy1ision,,; - The
robots were able to proceed to their goal regions represented
by the circular regions without collision. This simulation was
run at 10Hz and the controllers for all robots in the system
took approximately 0.07 seconds to compute. The simulation
was run on a 2.3 GHz Quad-Core CPU with 8 GB of RAM.
The a priori feedback is that if approach, or approachs are
sensed before the predicates in Wy or W3 are satisfied, the
specification may be violated.

VIII. PHYSICAL DEMONSTRATION
A. Example Description

To further show the expressive power of Event-based STL
and the feedback we can generate we conduct a physical
demonstration with two iRobot Creates. We consider the
following Event-based STL specification for the multi-robot
system

Uy = Fio5 (]| x1 = [-2,1]" [[< 0.5)
Wy = Fiy 1)(| %2 — [2,1)7 [|< 0.5)
W3 = G(alarm = Fig10)(| x1 — [0, —1]" [[< 0.5))
\114 = G[0725](” X1 — X2 H> 05)

The task is defined as the conjunction of all of the Event-
based STL formulas ¥ = ¥y A Uy A U3 AUy

B. A priori feedback

Before executing a run, we provide feedback to the user
on the feasibility of a task. To do this we check if conflicting
CBFs exist that may be activated at the same time during an
execution, as outlined in Sec. VI. For the physical demonstra-
tion there are several transitions in the Biichi automaton that
activate conflicting CBFs. These conflicting CBFs come from
the predicate functions associated with U; and W3 which can
not be satisfied at the same time. This only occurs when the
robot senses alarm and ¥ has not been satisfied. We alert
the user of this potential issue so that they can change the
specification accordingly.

C. Physical Demonstration Results

The following section describes the results of the physical
demonstrations where alarm becomes True at different
times. In the first execution alarm never becomes True and
the system remains in an accepting state. Snapshots of this
run are shown in figure 4.

In the second run the robot senses the alarm event at
t 17. This is after robot 1 has satisfied ¥;. Figure 5
shows the position of the robots at various timesteps. In this
execution the collision avoidance described by W, can be
seen as both robots change their paths so that they do not

~
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(a) Initial configuration of (b) Configuration of the robots
robot 1 and robot 2 at t = 25.

Fig. 4: The robots do not sense alarm and the robots remain
in an accepting states in the safe-sets defined by ¥; and ¥o

collide with each other. During execution there is no run-
time feedback given because the robots are always able to
satisfy their tasks based on their bounded control inputs.

| > Y
~~ Robot 1

\

Robot 1—

ﬁ.
JRobot 2

(a) Initial configuration of
robot 1 and robot 2

(b) Both robots have to change
directions to avoid colliding
with each other
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(d) Robots in safe-set satisfy-
ing the full specification.

(c) The robots sense alarm
after robot 1 satisfies ¥; at =~
17

Fig. 5: Snapshots when the robots sense alarm

IX. CONCLUSIONS

We provide a framework for expressing and synthesizing
control for high-level specifications that include reactions to
uncontrolled events and bounds on time and control input.
To do this we create a specification formalism called Event-
based STL and show its capabilities through simulation
and physical demonstrations. Because there are bounded
control inputs and a possibility of unknown disturbances and
environment inputs, we cannot provide a-priori guarantees
that a specification can be satisfied. Instead we provide
feedback to the user as to why the specification can not be
satisfied, when we detect a problem. In future work we will
consider specifications in complex environments and work to
expand the feedback given to users regarding infeasible tasks
and provide suggestions of changes to make the specification
satisfiable.
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