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ABSTRACT
We propose a new family of depth measures called the elastic depths that can be used to greatly improve
shape anomaly detection in functional data. Shape anomalies are functions that have considerably different
geometric forms or features from the rest of the data. Identifying them is generally more difficult than
identifying magnitude anomalies because shape anomalies are often not distinguishable from the bulk
of the data with visualization methods. The proposed elastic depths use the recently developed elastic
distances to directly measure the centrality of functions in the amplitude and phase spaces. Measuring
shape outlyingness in these spaces provides a rigorous quantification of shape, which gives the elastic
depths a strong theoretical and practical advantage over other methods in detecting shape anomalies. A
simple boxplot and thresholdingmethod is introduced to identify shape anomalies using the elastic depths.
We assess the elastic depth’s detection skill on simulated shape outlier scenarios and compare them against
popular shape anomaly detectors. Finally, we use hurricane trajectories to demonstrate the elastic depth
methodology on manifold valued functional data.
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1. Introduction

As data collectionmethods rapidly advance, functional data and
functional data analysis (FDA) have become more prevalent.
Functional data refer to data collected continuously across a
compact domain, such as a fixed length of time or region of
space, and where an observation is an entire curve or sur-
face over the domain, rather than a single value. Examples of
functional data include growth rate curves, electrocardiogram
(ECG) data, temperature profiles, imaging data containing geo-
metric shapes, and hurricane trajectories (see Figure 1).

As with traditional data analysis methods, it is critical to per-
form exploratory data analysis with functional data. Exploratory
analysis can reveal significant trends or anomalies, which could
bias post-processing analysis such as model fitting. Functional
anomalies are of particular interest because of the adverse effects
they can have on statistical models. Functional anomalies can
also be interesting in their own right and can even be the
primary focus of study.

The hurricane trajectories in Figure 1 present a challenge
to current functional shape anomaly detectors. Due to the vast
distances hurricanes travel, their trajectories resemble paths
along the surface of a sphere. Existing methods do not handle
spherical valued data, or more generally manifold valued data,
so they have to approximate these paths with two-dimensional
trajectories. This approximation distorts the distances between
curves and consequently has a strong influence on the detec-
tion of anomalies. Furthermore, exploratory analysis shows that
these trajectories exhibit substantial phase variability that could
affect shape outlier detection (Srivastava et al. 2011).

CONTACT Trevor Harris trevorh2@illinois.edu Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL 61820.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/TECH.

In the functional data setting, identifying functional anoma-
lies, that is, identifying an entire function as an outlier, is not as
straightforward as identifying univariate outliers with visualiza-
tion methods. By definition, a functional anomaly is a function
that is significantly more “extreme” in its characteristics than
the rest of the functional data. Generally, functional anomalies
are categorized into two types: magnitude and shape anomalies
(Dai and Genton 2018). Magnitude anomalies are functions
that clearly lie outside of the range of all other functions and
are usually detected through data visualization methods (e.g.,
Hyndman and Shang 2010; Sun and Genton 2011; Myllymäki
et al. 2017). On the other hand, shape anomalies take on a
different shape or pattern than the rest of the data. They aremore
challenging to identify with visualization methods because they
can lie hidden among the rest of the functions (Arribas-Gil and
Romo 2014). Examples of shape anomalies include trajectories
with more or less curvature, trajectories with more or fewer
oscillations, or trajectories sampled from a process having a
different mean function than the rest of the data. These are only
a few examples; the possible ways a trajectory can be shape out-
lying are innumerable. Furthermore, the information contained
in the shapes of curves “matters a great deal” (Horváth and
Kokoszka 2012) and can be quite different from the information
contained in their magnitudes. Therefore, it is important to
developmethods that can isolate shape information and identify
shape outliers from the rest of the data.

Many methods for identifying shape outliers rely on the
notion of functional data depth. Functional data depth is a
family of methods used to define centrality and induce a
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Figure 1. Hurricane trajectories from the HURDAT2 database. Trajectories are col-
ored from red to blue, with red indicating the origin of the hurricane. The familiar
“U-shaped” pattern emerges as hurricanes generally start near the coast of Africa,
migrate to North America, and then curve back toward Europe. This type of data
poses many challenges to existing shape outlier methodology. Trajectories are
multivariate (latitude and longitude), exist on the surface of a nonlinear manifold
(S2), and exhibit significant phase and magnitude variability independent of their
shape.

center-outward ordering on the sample functions (Liu, Parelius,
and Singh 1999; Zuo and Serfling 2000; Mosler and Polyakova
2012). All depth measures rank functions from most central
(higher depth values) to least central (lower depth values) and
are typically scaled to take on values in [0, 1].

Many outlier detection methods based on depth decompose
total depth (or outlyingness) into magnitude and shape depth
(or outlyingness). Arribas-Gil and Romo (2014) proposed the
outliergram (OG), a visualization tool for the shape and mag-
nitude components of trajectories, using the half-space depth
(Tukey 1977) and the band depth (Lopez-Pintado and Romo
2009). Later, Huang and Sun (2019) introduced the total vari-
ation depth, which they decomposed into magnitude and shape
components. In Dai and Genton (2019), the authors pointed
out that these methods, which rely on integrated depth, do
not efficiently represent the centrality of functions. To rem-
edy this, Rousseeuw, Raymaekers, and Hubert (2018) and Dai
and Genton (2019) simultaneously proposed the concept of
directional outlyingess. Directional outlyingness has since been
used as the basis of the functional outlier map (Rousseeuw,
Raymaekers, and Hubert 2018) and the magnitude-shape plot
tool (Dai and Genton 2018). Both of these methods again
decompose their depth measures into magnitude and shape
components, for the separate identification of magnitude and
shape anomalies.

Other outlier detection methods proposed in the recent
literature account for the geometry of the functions. Kuhnt
and Rehage (2016) developed the functional tangential angle
(FUNTA) pseudo-depth based on the tangential angles of the
intersections of the centered data. Nagy, Gijbels, and Hlu-
binka (2017) proposed two modifications of previous depth
notions to better identify shape outliers by emulating deriva-
tives with multidimensional projections. Xie et al. (2017) sep-
arated the variability of functional data into amplitude and
phase components, using the registration methods of Srivastava
et al. (2011), and displayed this variability using independent
boxplots for each component. Xie et al. (2017) showed how

treating the phase and amplitude components of trajectories
separately could greatly improve the detection rate of shape
outliers. Their method, however, falls short of fully charac-
terizing the shape distribution and instead relies on an opti-
mization procedure to approximate the boundary of the inlier
distribution.

Finally, there are methods based on functional principal
component analysis (FPCA), which extract the features of nor-
mal shapes and detect anomalies by finding functions with
abnormal features. These methods include a step-wise func-
tional outliers detection test (Yu, Zou, and Wang 2012) and
an FPCA score based distance test (Ren, Chen, and Zou
2017). FPCA based feature extraction can be quite powerful
for detecting many types of shape anomalies, but FPCA is
also known to be deficient when temporal variability is present
(Srivastava et al. 2011; Tucker, Wu, and Srivastava 2013). Fur-
thermore, these methods are not designed to explicitly iden-
tify shape anomalies separately from magnitude anomalies.
Because we assume that both temporal variability and mag-
nitude variability are present and are nuisance properties that
mask shape, the problems and data considered here are quite
different from the ones considered by FPCAmethods. For those
reasons, thesemethods were not included in the comparisons in
Section 5.2.

In this article, we introduce a new family of depth measures,
called the elastic depths, based on the elastic shape distances
used in Xie et al. (2017). We first use the elastic distances to
directly measure the distance between the shapes of individual
trajectories. This allows us to define a notion of data depth
that appropriately captures the distribution of the trajectories’
shapes and allows for the explicit identification of shape outliers.
Current literature falls short of fully representing the shape
distribution and instead uses either a surrogate for shape or only
approximates the shape distribution. Explicitly using the shape
distribution, aswe do in this article, also confers several practical
benefits, namely

1. Finding the inner quartile regions and outlier bound is
trivial due to our depth based representation. The outlier
bound does not require any optimization procedures and
has only a single input parameter. We demonstrate in Sec-
tion A.5 of the online supplement that the performance of
our method is relatively insensitive to the value of the input
parameter.

2. In Sections A.3 and 5.2, we empirically demonstrate the
highly competitive and often superior outlier detection skill
of the elastic depth based boxplots. We show that the elastic
depths are consistently the top performing detection method
across many different shape classes and that they can identify
shape outliers in the presence of substantial translation and
phase noise.

3. Shape distributions can easily be generalized tomanifold val-
ued trajectories, such as the hurricane trajectories (Figure 1),
because the elastic depths are based purely on distance. Dif-
ferent manifolds merely require different distance metrics. In
Section 6, we show the elastic depths applied to theHurricane
trajectories and in Section A.7 of the online supplement we
show additional examples of the elastic depths applied to R

and R
2 valued data.
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2. Background

2.1. Data Depth

Data depth is a general notion of measuring the centrality of
observations with respect to a distribution. In the FDA litera-
ture, data depth is the dominant method used to define central-
ity and induce ordering on a function space. Given a distribution
P on a function space F, a depth function maps each trajectory
f ∈ F to a value in [0, 1], such that the closer a trajectory is to
the center of P, the higher its depth value is. If this mapping is
monotonic, that is, higher depth values necessarily mean higher
centrality, then the depth function induces a center-outward
ordering on the function space F with respect to P. This makes
depth a natural framework for evaluating the outlyingess of
observations. High depth values mean an observation is very
close to the center of P so, conversely, low depth values mean
an observation is very far from the center of P. Therefore,
trajectories with extremely low depth values, as compared to the
rest of the distribution, are likely to be outlying or anomalous.

2.2. Elastic Shape Analysis

Elastic shape analysis (ESA) is a collection of techniques for
registering functional data through a phase-amplitude separa-
tion procedure and for performing statistical analysis on the
separated phase and amplitude components (Kurtek, Srivastava,
and Wu 2011; Srivastava et al. 2011; Tucker, Wu, and Srivastava
2013). Phase and amplitude represent two orthogonal compo-
nents of a function’s variability. The amplitude component rep-
resents variability in shape, where shape refers to the properties
of a function that remain unchanged under the shape preserving
transformations: rotation, translation, scaling, and phase (Sri-
vastava and Klassen 2016). The phase component represents
the “domain” or “timing” variability of the trajectories. Because
amplitude is invariant to these phase transformations, amplitude
is distinct from the usual concept of magnitude. Magnitude
measures the size of the observed realization of a trajectory
while amplitude measures the size of the trajectories shape.

The distinguishing feature of ESA is the use of the square
root slope function (SRSF) for registration (Kurtek, Srivastava,
and Wu 2011). For real valued trajectories, the SRSF bijectively
maps, up to an additive constant, a real valued function f to
its normalized gradient f ′/

√|f ′|. Under ESA, two real valued
trajectories are registered by elastically deforming the domain of
one function such that the L2 distance between the SRSFs of the
two functions is minimized (Section 2.3). The amount of elastic
deformation needed to register two functions is measured by
the phase distance (Section A.1), while the residual L2 distance
between the SRSFs, post registration, defines the amplitude
distance between them (Section 2.3). Together the amplitude
and phase distance are known as the elastic distances. The key
insight of ESA is that by registering SRSFs, instead of trajectories
directly, the amplitude distances are proper metrics and they
are invariant to the shape preserving transformations. Thus,
amplitude distance can be used to define the distance between
the shapes of functions.

Later the square root slope velocity function (SRVF)
(Srivastava et al. 2011) was introduced to registerRn valued tra-
jectories and the transported square root slope velocity function

(TSRVF) (Su et al. 2014) was introduced to register Riemannian
manifold valued trajectories, such as trajectories observed on
the unit sphereS2. These notions allowus to calculate amplitude
distances between multivariate functions and manifold valued
functions, respectively. We present the details for computing
amplitude distances forR valued trajectories in Section 2.3. The
details forRn valued and S2 valued trajectories are deferred to
the appendix (Section A.1).

The advantages of the ESA approach to shape analysis have
previously been shown in the works of Srivastava et al. (2011),
Kurtek, Srivastava, and Wu (2011), Tucker, Wu, and Srivastava
(2013), and Su et al. (2014). ESA rigorously defines the shape
space for a given class of trajectories and then defines a way to
construct a proper distancemetric on that shape space. The ESA
based metrics are preserved under the shape preserving trans-
formations: translation, scale, rotation, and reparameterization
(phase). This improves theoretically over alternative shape met-
rics, such as Huang and Sun (2016), Dai and Genton (2018),
and Dai and Genton (2019), that do not guarantee invariance or
equivariance to shape transformations. The ESA framework is
also general enough to apply to data observed inR,Rn,S2, and
any Riemannian manifoldM that has an intrinsic metric. This
is important for our motivating example, Atlantic hurricane
trajectories (Figure 1), which are observed on the surface of a
sphere.

2.3. Amplitude Distance forR Valued Functions

Let FR = {f : [0, 1] �→ R, f differentiable} be the class of
differentiable trajectories on [0, 1]mapping toR. The SRSF was
introduced in Srivastava et al. (2011) as the following transfor-
mation on trajectories f ∈ FR:

Definition 2.1. Let f be a differentiable trajectory in FR, the SRSF
of f is

qf (t) = f ′(t)√|f ′(t)| .

As was shown in their article, the SRSF is a bijectivemapping,
up to an additive constant, from the space FR to the space of
square integrable functions L2. This means that for two func-
tions f , g ∈ FR, the norm on L2

||qf − qg ||2 =
√∫ 1

0
|qf (t) − qg(t)|2dt, (1)

where qf , qg are f and g’s associated SRSFs, is a proper distance
between f and g. This norm is particularly important for shape
analysis because it is phase invariant (Srivastava and Klassen
2016). That is, for any phase function γ ∈ �

||qf ◦γ − qg◦γ ||2 = ||qf − qg ||2,
where f ◦ γ (t) = f (γ (t)), ∀t ∈ [0, 1]. Technical descriptions
of phase functions γ and phase space � are can be found in
SectionA.1 or (Srivastava et al. 2011), but γ functions essentially
act to deform the domain [0, 1].

Phase invariance means that Equation 1 is measuring some
quantity that is independent of the representation, or phase,with
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which two functions are observed. This is only true if f and g
share a common phase representation, so to find the amplitude
distance between two arbitrary f , g ∈ FR we need to first place
them in phase with each other. That is, we need to find some
γ ∗ ∈ � such that

γ ∗ = arg inf
γ∈�

||qf − qg◦γ ||2,

so that ||qf − qg◦γ ∗ ||2 measures the difference in their ampli-
tudes. This can bemore directly stated by defining the amplitude
distance between f and g as in Srivastava et al. (2011).

Definition 2.2 (Amplitude distance). Let f and g be two trajecto-
ries in FR, then the amplitude distance between f and g is

da(f , g) = inf
γ∈�

||qf − qg◦γ ||2,

where qf and qg◦γ denote the SRSF’s of f and g ◦ γ , respectively.

3. Elastic Depth

3.1. Definition of Elastic Depth

The exact analytic form of the elastic depths will greatly depend
on the manifold on which the functional objects live. This is
because the elastic depths are a robust summary of the dis-
tances between functional objects and the definition of distance
between functional objects will inherently depend on the man-
ifold on which they are observed. For instance, the distance
between trajectories in Rn is very different from the distance
between trajectories on S2. For the elastic distances to exist,
however, it is only required that the data live on a Riemannian
manifold (Section 3.1), such as Rn or S2, because the TSRVF
of Su et al. (2014) can always be used to construct appropriate
phase and amplitude distances. Therefore, we will only assume
that our data live on a RiemannianmanifoldM with an intrinsic
metric, so the space of functions we consider is defined as

FM = {f : [0, 1] �→ M,
f is differentiable and M is a Riemannian manifold}.

The amplitude distance between two functions f1, f2 ∈ FM
will generically be denoted as da(f1, f2) and the phase distance
between them as dp(f1, f2). The exact form of these distances is
left unspecified because the amplitude distance is highly depen-
dent on the manifold M. See Section 2.3 for the definition of
amplitude distance forR valued trajectories and A.1 for the def-
initions of phase distance and amplitude distance forRn valued
and S2 valued trajectories. We now define the elastic depths for
data observed on a manifold M using the associated amplitude
and phase distances. Let P denote a distribution supported on
the space FM and suppose we observe a function f ∈ FM .
We first introduce the idea of outlyingness, which describes
the degree to which f is an outlier relative to P. We further
divide this concept into amplitude andphase outlyingness, using
the amplitude and phase distances, respectively. This is done to
separately quantify the shape outlyingness and phase outlying-
ness of f relative to P. Amplitude and phase outlyingness are,

respectively, denoted as Oa and Op and are defined as

Oa(f ,P) = inf
t∈R+

{
P(da(f ,X) ≤ t) ≥ 1

2

}
, and

Op(f ,P) = inf
t∈R+

{
P(dp(f ,X) ≤ t) ≥ 1

2

}
,

where X is a random function in FM and drawn from the distri-
bution P. The outlyingness functions Oa and Op robustly sum-
marize the pairwise distances between f and all other functions
X ∈ FM . These two functions define a measure of outlyingness
such that if Oa(f ,P) is large then f is generally dissimilar in
amplitude from other functions X ∈ FM , with respect to the
distribution P. Likewise, if Oa(f ,P) is small then f is similar in
amplitude to other functions X ∈ FM .

To convert Oa and Op into depth functions we invert them
with the type B depth construction of Zuo and Serfling (2000):

Da(f ,P) = (1 + Oa(f ,P))−1, (2)
Dp(f ,P) = (1 + Op(f ,P))−1. (3)

Da(f ,P) and Dp(f ,P) are, respectively, called the amplitude
depth and phase depth of f with respect toP. Togetherwe denote
them the elastic depths. The purpose of inverting the outlying-
ness functions in this manner is to create bounded measures
of centrality, that is, depths, on the amplitude and phase spaces
associated with FM . When depths, such asDa andDp, satisfy the
properties outlined in Section 3.2, they provide a nonparametric
and moment free characterization of the distribution P. Larger
depth values indicate higher centrality and low outlyingness,
while lower values indicate higher outlyingness. Thus, Da and
Dp provide a simple and rigorous way to identify outliers based
on the underlying distribution P.

3.2. Properties

Within the depth literature there have been many desirable
properties discussed for both multivariate and functional data
depths; see Zuo and Serfling (2000) and Mosler and Polyakova
(2012) for comprehensive reviews. These properties ensure that
a depth function properly measures the notion of depth or
centrality. For instance, a depth function needs to be location
and scale invariant (or equivariant) and it should decrease
monotonically from a natural point of symmetry. Since our
depth is purely for functional data we concentrate on the central
properties ofMosler and Polyakova (2012). These properties are
established for the amplitude depths because amplitude is the
primary concern of shape analysis.

The elastic depths are based on proper distance metrics so
they inherit certain properties such as translation invariance
and scale equivariance automatically. On some manifolds, such
as R2, scale equivariance can be promoted to scale invariance
because the trajectories are constrained to live on an L2 ball.
Invariance to simultaneous reparameterization (simultaneous
phase invariance) was shown in Srivastava et al. (2011) for
amplitude distances betweenR andRn valued trajectories and
then later extended to S

2 valued trajectories in Su et al. (2014).
Consequently, the amplitude depths are also invariant to simul-
taneous reparameterization.
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Other properties, such as phase invariance, maximality of
the center, and convex level sets are essential for shape anomaly
detection but are not simple corollaries of the amplitude dis-
tance. We outline these properties, as they apply to amplitude
depth, below. All proofs are deferred to the online supplement
Section A.2.

Proposition 3.1 (Phase invariance). Let � be the space of warp-
ing, or phase, functions defined in Section A.1 and let γ ∈ �.
Let FM be the space M-valued differentiable functions as in
Section 3.1, let f ∈ FM and suppose P is a distribution supported
on FM . Then

Da(f ◦ γ ,P) = Da(f ,P),

whereDa(·,P) is the amplitude depth of trajectories on FM with
respect to P.

This property is unique to the elastic depths and ensures
that the amplitude depths are invariant to the phase under
which each trajectory is observed. This property, in conjunc-
tion with translation and scale invariance (equivariance), means
that the amplitude depth is invariant to the shape preserving
transformations. We can, therefore, say that amplitude depths
are appropriately capturing our definition of shape.

Proposition 3.2 (Maximality of the center). Let FM be the space
M-valued differentiable functions as in Section 3.1, let f ∈ FM
and suppose P is a distribution supported on FM . A trajectory
s ∈ FM is the amplitude Fréchet median of P if and only if s =
argmaxf∈FM Da(f ,P), where Da(·,P) is the amplitude depth of
trajectories on FM with respect to P.

Maximality of the center guarantees that the maximizer of
the amplitude depths, denoted the amplitude depth median,
is the actual Fréchet median of the distribution. The Fréchet
median is the trajectory that minimizes the median distance
between itself and all other points in the space. This property
ensures that the amplitude depths start their ordering from the
true amplitude center of the distribution.

Proposition 3.3 (Convex level sets). Let FM be as in Section 3.1,
let f ∈ FM and suppose P is a distribution supported on FM . Let
Da,α(P) = {f ∈ FM : Da(f ,P) ≥ α} be the upper level sets for
the amplitude elastic depth for all α ∈ [0, 1]. Then Da,α(P) is
a convex set. Similarly the upper level sets for the phase elastic
depth Dp,α(P) = {f ∈ FM : Dp(f ,P) ≥ α} are convex for all
α ∈ [0, 1].

Convexity of the level sets implies that depths decrease
monotonically from the center of the distribution. In conjunc-
tionwithmaximality of the center, level set convexity guarantees
that the elastic depths are measuring centrality in amplitude
space and phase space. This property further distinguishes the
elastic depths from previous depth notions because they do not
directly characterize centrality in the appropriate shape spaces.
We use these convex level sets as the theoretical basis for the
construction of the depth boxplots (Section 4.1) and for depth
thresholding (Section 4.2).

3.3. Estimating Elastic Depths

As in Section 3.2, let FM be the space of differentiable functions
on the Riemannian manifold M and let P represent a distri-
bution supported on FM . Suppose we observe f1, . . . , fn ∼ P.
The amplitude and phase depths of each fi, i ∈ 1, . . . , n, can
be estimated empirically using their respective sample outlying-
ness functions. The sample amplitude and phase outlyingness
functions are, respectively, denoted as Oa,n and Op,n and are
defined as

Oa,n(f ,Pn) = median{da(f , f1), . . . , da(f , fn)},
Op,n(f ,Pn) = median{dp(f , f1), . . . , dp(f , fn)},

where Pn denotes the empirical distribution of the functions
f1, . . . , fn. Using the same construction as before, we invert the
sample outlyingness functions into sample depths

Da,n(f ,Pn) = (1 + Oa,n(f ,Pn))−1, (4)
Dp,n(f ,Pn) = (1 + Op,n(f ,Pn))−1, (5)

for amplitude and phase, respectively. The following proposition
asserts the uniform consistency of this depth estimator.

Proposition 3.4 (Uniform consistency). Let FM be as in Sec-
tion 3.1, suppose P is a distribution supported on FM , let
f1, . . . , fn ∼ P, and let Pn represent the empirical distribution
of the sample. Then

lim
n→∞ sup

f∈FM
|Da,n(f ,Pn) − Da(f ,P)| = 0 a.s.,

lim
n→∞ sup

f∈FM
|Dp,n(f ,Pn) − Dp(f ,P)| = 0 a.s.,

where Da(·,P) is the amplitude depth of trajectories on FM
with respect to P, Da,n(f ,Pn) is the amplitude depth’s empirical
counterpart, Dp(·,P) is the phase depth of trajectories on FM
with respect to P, and Dp,n(f ,Pn) is the phase depth’s empirical
counterpart.

4. Identifying Outliers

Data depth is a natural framework for outlier detection because
it provides a center-outward ordering of the data. Functionswith
very low depth values are strong candidates for outliers because
they are statistically far from the center of the distribution. As
mentioned in Section 1, there have been many methods, many
based on functional depth in some way, for detecting shape
anomalies proposed in the literature. These methods typically
construct an outlier cutoff boundary on either the depths or the
functions and classify any trajectory as an outlier if it exceeds
these bounds. In the next two sections, we introduce two simple
ways of defining an outlier cutoff point based on elastic depth.

4.1. Depth Boxplots

The firstmethodwe introduce is called the depth boxplot, which
is a half-boxplot constructed on the elastic depths directly. We
showed in Section 3.2 that the elastic depths decrease mono-
tonically from their unique center, as trajectories become more
outlying, so using the depths directly does not incur a loss
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Figure 2. Diagramof the amplitude depth boxplot, created using Algorithm 1with
k = 1.5, on example data. Thedepthmedian, IQRboundaries,whisker (c), and three
shape outliers have all been labeled accordingly. Each of the trajectories’amplitude
depths has been plotted along the horizontal axis.

of outlyingness information. Additionally, unlike methods that
place bounds on the observed data, using a boxplot on the depth
values circumvents the problem of shape outliers being masked
due to scale, translation, and phase variability. This is because
the boundaries of a depth boxplot correspond to entire central
regions on the shape space of functions, and not merely central
regions on the projections of functions ontoR (orR2 or S2).

Algorithm 1 describes how to construct the amplitude depth
boxplot and how amplitude anomalies are identified with the
whisker c. Phase anomalies can similarly be defined by substitut-
ing amplitude depths for phase depths. The boxplot created in

Algorithm1:Depth boxplots for finding amplitude outliers
Input : Functions f1,…,fn and multiplier k
Output: Outlier status of f1,…,fn given k

1 for i ← 1 to n do
2 Compute amplitude depths DA,n(fi,P)

3 end
4 Compute IQR = max{DA,n(fi,P)} −median{DA,n(fi,P)}
5 Compute c = median{DA,n(fi,P)} − k × IQR.
6 for i ← 1 to n do
7 if DA,n(fi) < c then
8 fi is an outlier
9 else

10 fi is not an outlier
11 end
12 end

Algorithm 1 consists of the following three pieces: the median,
the IQR, and thewhisker c (Figure 2). Themedian of the boxplot
is the largest depth, because as was shown in Section 3.2, the
largest depth corresponds to the median of the distribution.
The IQR is the 50% central region because, as per the IQR
of univariate data, this range contains the inner 50% of the
data. Most importantly is the whisker value c, which determines
which trajectories are considered outliers. Any trajectory with
an amplitude depth of less than c is considered an anomaly
because it is statistically too far from the rest of the data.

The whisker c is determined by a multiplier or inflation
factor k. The quantity k is a free parameter that must be set
to detect anomalies. In classical univariate boxplots, k = 1.5,
so as to achieve approximately 99.3% coverage of the boxplot
on Gaussian data. This guarantee does not necessarily extend

to functional data, but we find empirically that k ∈ [1.5, 2.25]
works well to separate outliers from inliers as long as the sam-
pling frequency is high enough to fully represent the func-
tional data. We investigate the depth boxplot’s dependency on
k numerically in Section A.5 of the online supplement and find
that detection performance is fairly robust to k for a wide range
of values and across many types of data. More details on the
choice of k can also be found in Section 5.2.

4.2. Depth Thresholding

Boxplots and other hard cutoffs are not the only way to inves-
tigate shape anomalies. The quantiles of the depth distribution
itself can also be used to investigate the most extreme data. The
elastic depths induce a proper center-outward ordering of the
trajectories, so the most extreme, that is, smallest, depth values
correspond to the most extreme trajectories. Therefore, if we
wanted to view the 5%most extreme functions, we could simply
select the functions with the 5% smallest elastic depth values.
More generally, the 100×(1−p)%most outlying functions have
depth values below the (1 − p)th quantile of the depth’s distri-
bution. This type of thresholding is quite useful in exploratory
analysis for comparing, say, the 1%, 5%, and 10% most outlying
shapes with the 1%, 5%, and 10% most inlying shapes.

The limitation of thresholding is that it will always select
100 × (1 − p)% of the data to be outlying, so as an anomaly
detector it is insufficient on its own. However, it can be paired
with the depth boxplots to produce amore robust depth boxplot.
Algorithm 2 extends Algorithm 1 to include a thresholding
parameter p so that to be considered an outlier, a function must
have a depth value below the whisker c and below the (1− p)th
quantile of the depth’s distribution.

Algorithm2:Depth boxplots for finding amplitude outliers
with thresholding
Input : Functions f1,…,fn, multiplier k, and threshold p
Output: Outlier status of f1,…,fn given k and p

1 for i ← 1 to n do
2 Compute amplitude depths DA(fi,P)

3 end
4 Compute IQR = max{DA(fi,P)} −median{DA(fi,P)}
5 Compute c = median{DA(fi,P)} − k × IQR.
6 Compute q = (1 − p)th quantile of {DA(fi,P)}
7 for i ← 1 to n do
8 if DA(fi) < min{c, q} then
9 fi is an outlier

10 else
11 fi is not an outlier
12 end
13 end

The purpose of p is mainly to control the number of false
positives when detecting outliers. If p = 0.95, then at most 5%
of the trajectories will be considered outlying, no matter what
the whisker value is.While the whisker is generally sufficient for
achieving good coverage of the depth distribution and detecting
anomalies, there are situations, such as low sampling frequency
(Section A.5 of the online supplement), where the whisker can
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fall short unless the multiplier k is set higher. In these situations,
p will act to effectively increase the k so that better coverage is
achieved.

5. Simulation Study

A simulation study was conducted to comprehensively assess
the performance of the elastic depths and the depth boxplots.
We compared our method against nine other shape anomaly
detectors: the OG (Arribas-Gil and Romo 2014), sequential
transformations (ST-T1, ST-T2, ST-D1) (Dai et al. 2018), the
functional outlier map (FOM) (Rousseeuw, Raymaekers, and
Hubert 2018), total variation depth (TVD) (Huang and Sun
2016), the magnitude-shape (MS) plot (Dai and Genton 2018),
the robust functional tangential angle pseudo-depth (rFUNTA)
(Kuhnt and Rehage 2016), order extended integrated depth
(FDJ and IDJ) (Nagy, Gijbels, and Hlubinka 2017), geometric
boxplots (GEOM) (Xie et al. 2017), and directional outlying-
ness (DIR) (Dai and Genton 2019). In the following sections
comparisons to TVD, MS, DIR, and GEOM are included while
the rest are deferred to the appendix. These four methods were
consistently the strongest competitors across each of the outlier
models. We describe their implementation here briefly.

The TVD outliers were found using the detectOutlier
function in the TVD R package with an empFactor = 1.5. MS
outliers were found by computing the MO and VO quanti-
ties then using the cerioli2010.irmcd.test function
in the CerioliOutlierDetection R package to compute
the boundary with a coverage probability of 99.3%. DIR out-
liers were found using the authors dir.out function with
Mahalanobis distance and the default parameters fac = 0.154,
and cutoff = 6.91. GEOM outliers were found using the
AmplitudeBoxplot function in the fdasrvf R package
using k = 1. Implementation details for the detectors that are
deferred to the appendix have likewise been deferred to the
appendix (Section A.4 of the online supplement). Elastic depths
(ED) outliers were identified using the depth boxplots with
k = 1.8. Boxplots were computed on both the amplitude and
phase depths separately. The results using amplitude depth are
denoted as ED-A and the results using phase depths are ED-P.

5.1. Simulation Design

We define seven different shape outlyingness scenarios to test
the effectiveness of the above shape outlier detectors. Each
of these scenarios is represented by one of the seven models
detailed below. The first six correspond to amplitude (shape)
outliers while the seventh is for phase outliers.

1. Model 1 (Amplitude increase). Main model: X(t) =
sin(5π t) + 4t + e(t) + δ and contamination model: X(t) =
4 sin(5π t) + 4t + e(t) + δ, where t ∈ [0, 1], e(t) is a cen-
tered Gaussian process with covariance function γ (x, x′) =
exp{−(x − x′)2/0.5}, and δ ∼ N(0, 1) is a random additive
translation term. The purpose of δ is to shift each curve by
a random amount so as to mask shape outliers that could
accidentally be identified as magnitude outliers.

2. Model 2 (Amplitude decrease). Main model: X(t) =
sin(5π t) + 4t + e(t) + δ and contamination model: X(t) =

1
6 sin(5π t) + 4t + e(t) + δ, where t ∈ [0, 1], and e(t) is the
Gaussian process fromModel 1.

3. Model 3 (Mixed polynomials).Mainmodel:X(t) = t3−2t2+
0.5t+e(t) and contaminationmodel:X(t) = 2t3+t2−0.5t+
e(t).

4. Model 4 (Covariance change). Main model: X(t) =
sin(5π t) + 4t + e1(t) + δ and contamination model: X(t) =
sin(5π t)+ 4t+ e2(t)+ δ, where t ∈ [0, 1] and e1(t) and e2(t)
are centered Gaussian processes with covariance functions
γ (x, x′) = exp{−(x − x′)2/50} and γ (x, x′) = exp{−(x −
x′)2/2}, respectively.

5. Model 5 (Frequency increase). Main model: X(t) =
sin(2π t) + 4t + e1(t) + δ and contamination model: X(t) =
sin(12π t) + 4t + e(t) + δ where t ∈ [0, 1] and e(t) is the
Gaussian process fromModel 1.

6. Model 6 (Jump contamination). Main model: X(t) =
sin(5π t) + 4t + e(t) + δ and contamination model: X(t) =
sin(5π t)−21(t<T) +31(T≤t) +4t+ e(t)+δ, where t ∈ [0, 1]
and T is distributed uniformly on [0.4, 0.6].

7. Model 7 (Phase contamination). Main model: X(t) =
sin(5π t) + 4t + e(t) + δ and contamination model: X(t) =
sin(5πγ (t)) + 4γ (t) + e(γ (t)) + δ, where t ∈ [0, 1] and
γ is a random phase function from �. The functions γ are
generated from the first two Fourier basis functions with
random amplitudes distributed as N(0, σ) on the tangent
space to the unit Hilbert sphere. We use σ = 6 to impose
a large amount of phase variability on the contamination
model (Figure 5).

Each of these models, except model 7, was then further con-
taminated with two additional sources of noise: compositional
(phase) noise and magnitude outliers. Compositional noise was
added by composing each trajectory with a random phase func-
tion generated by the rgam function in the fdasrvf package
with sigma = 0.1. Magnitude outliers were added by randomly
shifting 10% of the generated functions by ±10. Model 7 was
only contaminated with magnitude outliers because adding
phase noise would destroy the difference in phases that we are
trying to detect. These two noise sources introduce a level of
realism to our simulations because nuisance phase and mag-
nitude outlyingness are often present when analyzing shapes.
The base amplitude outliermodels without additional phase and
magnitude noise are pictured in Figure 3.

5.2. Contamination byMultiple Anomalies

We considered the case when 10% of the data is outlying in
shape. We compared the performance of the detection methods
on the seven outlier models using the F1 score (Chinchor 1992)
for outlier classification. The F1 score is a comprehensive mea-
sure of classification accuracy that considers both the precision
(positive predictive value) and the recall (true positive rate)
of a detection method. A method that perfectly classifies all
outliers as outliers and all inliers as inliers will have an F1
score of 1. Methods that do not perfectly classify will have F1
scores less than 1. The F1 score was traditionally defined as
the harmonic mean of precision and recall, but it can also be
expressed in terms of true positive (TP), false negative (FN), and
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Figure 3. Main model (blue solid lines) versus Contamination model (red lines) in each of the amplitude outlier models.

Figure 4. F1 score comparison of the top five models (ED-A, MS, DIR, TVD, and GEOM) on each of the six amplitude outlier models.

false positives (FP) quantities:

F1 = 2TP
2TP + FN + FP

.

90 inlying trajectories and 10 outlying trajectories were sam-
pled from the main model and contamination model, respec-
tively. Compositional noise and magnitude outliers were again
added to each of the models, except for model 7 (phase contam-
ination) where onlymagnitude outliers were added. Trajectories

were sampled on an equidistant 30 point grid over [0, 1] and
1000 simulations were performed for each of the six models.
The results for the top models are summarized in Figure 4. Full
results for all considered models are available in the appendix.

Figure 4 shows that, across the six amplitude outlier models,
the elastic depths maintained the highest average F1 score. The
amplitude depth based boxplots have an average F1 score of
around 0.95–1.0, indicating that in each scenario, regardless of
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Figure 5. Panel A: Example inlier trajectories (blue) versus a phase outlying trajectory (red). Panel B: F1 score comparison of the top five models (ED-P, MS, DIR, TVD, and
GEOM) on the phase outlier model. ED-P and TVD both have nearly perfect detection rates, with TVD slightly winning out in this simulation.

outlier or inlier type, the amplitude depths can achieve near-
perfect detection. Consistently high performance of the elastic
depths is notable because existing methods, while strong in
some cases, suffer major losses of power in others. For instance,
on some models, such as model 3 (mixed polynomials) and
model 4 (covariance change), the amplitude depth based box-
plot was the only method able to detect the shape outliers
consistently. Even GEOM, which uses the elastic distances, was
unable to consistently separate these outliers from the inliers.
Together, the results show that because the elastic depth based
boxplots use the shape distribution, albeit indirectly via data
depth, they can consistently and skillfully detect a wide variety
of shape outliers. They do not generally suffer a loss of power
due to compositional (phase) noise, translation noise, presence
of magnitude outliers, or even inlier and outlier type.

Figure 5 shows that, across the top phase outlier detection
models, ED-P, the phase counterpart of ED-A, has near-perfect
detection skill. The TVD, however, maintains a slightly higher
F1 score. Our conjecture is that the data generation process
may have incidentally induced non-phase based differences into
the phase outliers. TVD, MS, and DIR could potentially take
advantage of this non-phase information to improve their score,
whereas ED-P and GEOM could not because they only use
phase information. See a small simulation example in Section
A.6 in the online supplement.

We also investigated the sensitivity of the boxplots to the
parameter k via a simulation study in Section A.5 of the online
supplement. Overall, we found that the coverage of the boxplot
on the inlying uncontaminated data is insensitive to the value
of k. Across each model, the coverage of the boxplots steadily
increases from about 95% at k = 1 to around 100% at k = 3.
Some models required higher values of k to achieve the desired
99% coverage, which we found to be due to under sampling, that
is, sampling below the Nyquist rate, of the observed trajectories.
We recommend avoiding this potential issue by ensuring ade-
quate sampling of the trajectories when possible or using k ≈ 2
when this is not possible.

6. Hurricane Trajectories

Our motivating example (Figure 1) comes from the National
Hurricane Center’s (NHC) Atlantic Hurricane Database (HUR-
DAT2) (Landsea and Franklin 2013). The NHC assimilates all
observations, real time and post-storm, for each tropical cyclone

to estimate and record its characteristics and path across the
Atlantic Ocean. The HURDAT2 database contains records for
979 tropical cyclone paths of various lengths, shapes, sizes,
orientations, and placements. We only consider storms with at
least 25 observations because only those paths had sufficient
time to develop. The storms were then further subset to include
only those originating in the ocean and north of South America.

The typical path of a hurricane is “U” shaped, starting in
Africa then cutting across the eastern United States and finally
heading back east toward Europe. Due to the vast distances
hurricanes travel it would be inappropriate to treat them as lying
on a Euclidean plane. Instead, we consider them as trajectories
on the surface of a unit sphere S

2. We used the elastic depth
boxplots with a depth threshold of 0.05 to limit the number of
amplitude outliers to fourteen; the top four ofwhich are pictured
in Figure 6.

Each of the top four outliers is markedly different from the
standard “U” shape. They exhibit an atypical spiraling behavior
as they meander across the Atlantic. The identification of shape
outliers helps climate scientists further investigate what causes
the trajectories to be anomalous. It can be very important for
improving the accuracy of hurricane prediction algorithms if
the dynamics which produce anomalies are well understood.
Further data examples on R and R2 valued trajectories can be
found in Section A.7 of the online supplement.

7. Discussion

In this article, we proposed a new class of functional depths
based on the elastic distance metrics and showed how they may
be used to detect shape outliers. The theoretical properties of
our new elastic depth were investigated, and it was shown that
they satisfy most key properties required of a depth metric.
These include translation, scale, rearrangement, phase invari-
ance (equivariance), maximality of the center, convex level sets
and monotonicity from the center. Rearrangement invariance
and phase invariance were particularly crucial for detecting
shape anomalies because they allowed the amplitude depth to
measure centrality independent of phase.

We demonstrated the empirical performance of our method
together with nine competing methods using extensive simula-
tion studies. It was shown that our method attains the overall
highest average F1 score across all models. On each of the six
amplitude models the amplitude depth based boxplots had an
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Figure 6. Four most shape outlying hurricane trajectories from the HURDAT2 data overlaid on the entire dataset. The starting point for each track is marked by a point and
trajectories become progressively darker as they develop.

average F1 score of around 0.95–1.0, indicating that in each sce-
nario, regardless of outlier or inlier type, the amplitude depths
achieved near-perfect detection on average. On some models,
such as model 3 (mixed polynomials) and model 4 (covari-
ance change), the amplitude depth based boxplot was the only
method able to detect the shape outliers consistently. Together,
these results demonstrate the power of using the shape distribu-
tion, albeit indirectly via data depth, to detect shape outliers.

The simulation results, of course, depend on the boxplot
multiplier k. We recommend setting k = 2 as the default value.
We found through empirical studies (see online supplement
Section A.5) that any k value between 1.5 and 2.25 provides
nearly the same level of detection skill. The value k = 2 had the
most favorable trade-off between false positives and false nega-
tives across all of the outlier models in the simulation. Larger
values (up to around 2.5–2.8) are helpful when the sampling
frequency of the trajectories is too low (see online supplement
Section A.5). If the sample size is large then the depth quantiles,
p, can also be used to help set a minimum value for k. That is,
choose k large enough to make the whisker value less than the
(1 − p)th quantile of the amplitude depth. This guarantees that
the shapes of the inner p×100%of trajectorieswill be considered
as inliers.

Finally, we showed how the elastic depths may be used to
identify shape outliers in functional data observed on the unit
sphereS2.We used theHURDAT2 hurricane track database and
identified the four most shape outlying trajectories. We found
that these trajectories’ paths were remarkably different from
the standard U-shaped paths that hurricanes normally follow.
Further applications in the online supplement A.7 demonstrate
the elastic depths on R, R2 valued functional data. These data
examples illustrated the simplicity and consistency with which
the elastic depths may be applied, regardless of the underlying
geometry of the space.

Supplementary Materials

Supplementary results: PDF file “Supplementary results” containing
detailed descriptions of the elastic distances, proofs for all results in Sec-
tion 3.2, additional simulations, and two additional real data examples.
(pdf file).

Source code: Zip file “Source code” containing code to produce all figures
and results in the article and supplementary file. (zip file)

R-package for elastic depth: R-package “elasticdepth” containing
code to compute the elastic depths and depth boxplots for
R, R

2, and S
2 valued trajectories. Available through GitHub:

trevor-harris/elasticdepth. (GNU zipped tar file)
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