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Diastolic dysfunction is a common pathology occurring in about one third of patients
affected by heart failure. This condition may not be associated with a marked decrease
in cardiac output or systemic pressure and therefore is more difficult to diagnose than its
systolic counterpart. Compromised relaxation or increased stiffness of the left ventricle
induces an increase in the upstream pulmonary pressures, and is classified as secondary
or group Il pulmonary hypertension (2018 Nice classification). This may result in an
increase in the right ventricular afterload leading to right ventricular failure. Elevated
pulmonary pressures are therefore an important clinical indicator of diastolic heart failure
(sometimes referred to as heart failure with preserved ejection fraction, HFpEF), showing
significant correlation with associated mortality. However, accurate measurements of this
quantity are typically obtained through invasive catheterization and after the onset of
symptoms. In this study, we use the hemodynamic consistency of a differential-algebraic
circulation model to predict pulmonary pressures in adult patients from other, possibly
non-invasive, clinical data. We investigate several aspects of the problem, including
the ability of model outputs to represent a sufficiently wide pathologic spectrum, the
identifiability of the model’s parameters, and the accuracy of the predicted pulmonary
pressures. We also find that a classifier using the assimilated model parameters as
features is free from the problem of missing data and is able to detect pulmonary
hypertension with sufficiently high accuracy. For a cohort of 82 patients suffering from
various degrees of heart failure severity, we show that systolic, diastolic, and wedge
pulmonary pressures can be estimated on average within 8, 6, and 6 mmHg, respectively.
We also show that, in general, increased data availability leads to improved predictions.

Keywords: computational physiology, data assimilation, predictive models for pulmonary pressures, model-based
disease detection, lumped parameter hemodynamic modeling, adaptive Markov chain Monte Carlo
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1. INTRODUCTION

Diastolic heart failure (sometimes referred to as heart failure
with preserved ejection fraction or HFpEF, see Tablel) is
a serious, often fatal, cardiovascular pathology. Recent
reviews (Obokata et al, 2020) report that this pathology is
often associated with several comorbidities, making the selection
of homogeneous treatment groups difficult. It is, however,
commonly characterized by elevated left ventricular filling
pressures and normal systemic circulatory indicators such as left
ventricular ejection fraction, cardiac output, and mean arterial
pressure (Bonow and Udelson, 1992). In 2013, heart failure was
mentioned in one of every nine death certificates in the United
States, and was the underlying condition in roughly 20% of these
cases. The number of deaths attributable to heart failure was
approximately as high in 1995 as it was in 2013, with hospital
discharges remaining stable from 2000 to 2010 (Mozaffarian
et al.,, 2016). It is also estimated that about one-third of the
patients with congestive heart failure (CHF) have a normal left
ventricular ejection fraction (LVEEF see e.g., Zile and Brutsaert,
2002).

It has been observed that pulmonary hypertension (PH) is
highly prevalent and often severe in HFpEF and that both
pulmonary venous and arterial hypertension contribute to the
severity of HFpEF with a marked correlation between systolic
pulmonary arterial pressure (sPAP) and mortality (Lam et al.,
2009; Obokata et al., 2020). A recent paper reviewing the current
understanding of etiology and treatment of HFpEEF, reports that
multiple non-diastolic abnormalities contribute to the syndrome
of HFpEE including LV systolic dysfunction, pulmonary
hypertension, RV and LA dysfunction, vascular stiffening,
ventricular interdependence, and coronary microcirculation
dysfunction (Obokata et al., 2020). Additionally, homogeneous
treatment of HFpEF is made difficult by the multitude of
phenotypes induced by obesity, ischemia, and cardiometabolic
abnormalities. This is consistent with the findings in Shah
et al. (2015) where a machine learning-based approach is
used to cluster patients with HFpEF in three phenogroups
with common characteristics, providing a way to go beyond
a homogeneous treatment of HFpEF that has so far produced
unsatisfactory results. Even though these studies highlight the
current challenges in the treatment of HFpEE, they both seem
to agree on the strong association between PH and HFpEF.
In this regard, Obokata et al. (2020) mentions how “PH is
extremely common in HFpEEF, seen in roughly 80% of patients,
and mortality is increased in this cohort,” whereas in Shah
et al. (2015), elevated PH was one of the main criteria for
patient recruitment.

While non-invasive echocardiography and machine learning
may be useful for phenotyping classification and treatment
selection (Obokata et al., 2020), early diagnosis of HFpEF
relies on invasive pressure acquisition through right-heart
catheterization, often performed following the manifestation of
symptoms (Fisher et al., 2009; Galie et al., 2009). Therefore, it
is evident that methods enabling accurate indirect estimation
of pulmonary pressures using minimally invasive clinical data
would be extremely beneficial for early diagnosis of HFpEF in a

TABLE 1 | List of acronyms.

Acronym Description Acronym Description
CHF Congestive heart failure PH Pulmonary
hypertension
CVP Central venous PVR Pulmonary vascular
pressure resistence
CO Cardiac output NM Nelder-Mead
DBP Diastolic blood MAP Maximum a posteriori
pressure
dPAP Diastolic pulmonary MCMC Markov chain Monte
arterial pressure Carlo
EHR Electronic health record mPAP Mean pulmonary
arterial pressure
FIM Fisher information RAP Mean right atrial
matrix pressure
HFpEF Heart failure with REDCap Research electronic
preserved ejection data capture
fraction
HR Heart rate RC Resistance-
capacitance
KL Kullback-Leibler RCR Resistance-
capacitance-resistance
LPN Lumper parameter RLC Resistance-
network inductance-
capacitance
LVEDV Left ventricular end RVEDP Right ventricular end
diastolic volume diastolic pressure
LVEF Left ventricular ejection RVEF Right ventricular
fraction ejection fraction
OOP Object oriented SBP Systolic blood pressure
programming
PAP Pulmonary artery sPAP Systolic pulmonary
pressure arterial pressure
PCW Pulmonary capillary SVR Systemic vascular

wedge pressure resistance

way that could trigger lifestyle changes that will, in turn, prevent
other co-morbidities from developing. Thus, in this study, we
investigate how the physics-based consistency of a lumped
parameter hemodynamic model containing three compartments,
i.e., a four-chamber heart, systemic and pulmonary circulation
compartments, may be used to monitor PH in patients from
non-invasive and uncertain clinical measurements.

The development of computer models to study
hemodynamics in humans started in the 1960s and 1980s (Snyder
and Rideout, 1969; Avanzolini et al., 1985, 1988; Ursino, 1998),
with application in pediatrics developed in the 2000s for
single-ventricle congenital heart disease (Pennati et al., 1997),
Norwood physiology (Migliavacca et al., 2001), and systemic-
to-pulmonary artery shunts (Pennati et al., 2010). Approaches
for automatic parameter estimation date back to the late
1970s (Deswysen, 1977; Deswysen et al., 1980), ranging from
two-stage Prony-Marquardt optimization (Clark et al., 1980)
and adaptive control systems for left ventricular bypass assist
devices (McInnis et al., 1985; Shimooka et al., 1991) to Kalman
filters (Yu et al., 1998, 2001) and recursive least squares (Ruchti
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et al,, 1993). An iterative, proportional gain-based identification
method is presented in Revie et al. (2013) and an application
to coronary artery disease is discussed in Sughimoto et al.
(2013). Other studies include estimation of three-element
Windkessel boundary conditions (Spilker and Taylor, 2010) and
left ventricular viscoelasticity (Cappello et al., 1987; Avanzolini
et al., 1992). More recently, examples of automatic parameter
tuning in lumped circulatory models have included the
physiology of children with congenital heart disease undergoing
the first stage (i.e, Norwood) of single ventricle palliation
surgery (Schiavazzi et al, 2016), construction of optimally
trained patient-specific models for coronary artery disease (Tran
et al., 2017) and predicting time evolution of ventricular dilation
and thickening (Witzenburg and Holmes, 2018). A study using
lumped parameter models in diastolic heart failure is finally
discussed in Luo et al. (2011), while parameter identification for a
mice model with chronic hypoxia and drug-induced pulmonary
hypertension is proposed in Tewari et al. (2013).

Circuit models in hemodynamics typically contain a large
number of parameters which need to be trained from clinical
records collected at multiple visits, including a variable
but typically sparse number of clinical measurements. This
aggravates the ill-conditioning of the inverse problem, where
model outputs do not change in response to perturbations along
a number of unidentifiable linear combinations of parameters.
In these circumstances, optimization may not be successful
in identifying global optima and sequential Monte Carlo
techniques (Del Moral et al., 2006) may underperform in practice,
as data typically represent extremes (maxima/minima) or mean
values of clinical indicators over one heart cycle.

Two technological trends make the present contribution
particularly timely. On the one hand, there is increasing
importance attributed to the availability of large training datasets
which is at the base of the current revolution in AI and deep
learning (see, e.g., LeCun et al., 2015). This includes anonymous
electronic health records (EHRs) for specific sub-populations
affected by a common clinical condition. On the other hand, there
is an increasing availability of computational resources on the
cloud, creating a perfect infrastructure for distributed computing
with lightweight models. For these reasons, we envision an
increased adoption of numerical models as regularizers to
determine physics-informed predictive distributions for missing
data in EHRs, going beyond currently adopted, physics-agnostic
multiple imputation methods (Schafer, 1999). This study aims
to be the first step in this direction and provides the following
new contributions:

e We propose a systematic approach to train patient-specific
circulatory models with clinical data uncertainty, and
demonstrate the results obtainable on a modest cohort of
82 patients.

e Explore optimal parameter training as a possible approach to
increase the feature space in order to facilitate classification of
cardiovascular anomalies.

In section 2.2, we discuss the differential formulations of a
compartmental circulation model for human adults, including
circuit elements, a generic heart model, and the governing

equations for the aortic, systemic, and pulmonary compartments.
This is followed by an analysis of two datasets in section 2.3,
the first used for validation, while the second contains EHRs for
82 patients. Our numerical investigation is articulated through
answers to the questions formulated in section 2.4, using the
numerical algorithms and tools briefly introduced in sections 2.5
and 2.6. Section 3 highlights the results of both the model analysis
and the predictive results of the model. This section addresses the
physiological admissibility of the selected model, the ability of the
model to capture dysfunction mechanisms, and the sensitivity
and identifiability of input parameters. On the predictive side,
this section addresses the predictive performance of pulmonary
pressures, non-pulmonary target ranking, and viability of model-
based PH classifiers. Conclusions are discussed in section 4.
Finally, for convenience, a list of acronyms is provided in Table 1.

2. MATERIALS AND METHODS
2.1. Compliance With Ethical Standards

This study was classified as research not involving human
subjects and was approved on June 13th, 2019, by the Office
of Research Compliance and Institutional Review Board at the
University of Notre Dame under IRB#19-05-5371. This work
utilizes data resulting from external studies that involved human
participants. The medical procedures that occurred in these
studies were performed in accordance with both the ethical
standards of the institutional and national research committee
and with the 1964 Helsinki declaration and its later amendments.
As this study is a retrospective study, formal consent from the
involved human participants was not required.

2.2. Modeling Approach

Blood circulation in adults can be simulated through a lumped
parameter model (sometimes also referred to as zero-dimensional
or 0D model). The foundation beneath a lumped parameter
model lies in the equations that govern the voltage and current
in an electrical circuit. The equations that underlie the voltage
and current of an electrical circuit stem from the principles
of the conservation of energy. Utilizing the hydrodynamic
analogy (see, e.g., Rideout and Dick, 1967), these equations can
also be used to govern the pressure and flow of blood where
voltage corresponds to pressure and current corresponds to flow.
In this study, we consider patient-specific 0D representations
containing seven compartments: the four chambers in a bi-
ventricular heart, a compliant aortic arch, and the pulmonary
and systemic circulations. The pulmonary compartment is
represented through an RC circuit, as shown in Figure 1.

2.2.1. Generic Heart Model Compartment

The four heart chambers are represented by a series arrangement
of a pressure-volume generator, an inductor, an ideal
unidirectional valve, and a resistor, following prior work.
The atrial and ventricular pressure-volume generators are
formulated through a combination of an activation function
and active/passive pressure curves (Avanzolini et al., 1985;
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FIGURE 1 | Lumped parameter hemodynamic model with RC pulmonary circuit.

Migliavacca et al., 2001),

Pi,act = Ei,act(Vi - Vi,0)>
Pipas = Kipasi [ o Kipas2 (Vi—Vig) _ 1] ,Pi = P, pas + A Piaets (1)

where the index i refers to either the right-left or atrial-
ventricular chamber, i € {ra,rv,la,lv}. The active pressure
curve is assumed linear and characterized by an active elastance
Eiat and an unstressed chamber volume Viy. Additionally,
passive volumes and pressures are related through an exponential
relation, characterized by two elastance coefficients Kjpgs,1 and
Kipasp (Avanzolini et al., 1985; Migliavacca et al., 2001). This
is the simplest formulation compatible with the finite strains
experienced by the ventricle during filling (see, e.g., Mirsky,
1976). The pressure-volume generator is completed by an atrial
and ventricular activation functions A, A,,; of the form

1 tma
—|1—cos|2mr— )|, ifty, <t

Aa,i == 2 |: < tsa )] e Sa >
0,

otherwise,

1 t,

- |:1 — cos <2nﬂ>i| , ity < te
Av,i =12 Lsy

0,

otherwise,

)

where ty; = t; - tsys and ts, = t, - tsys are the atrial and ventricular
relative activation times, respectively, and f. = 60.0/HR is the
heart cycle duration in seconds. Additionally, t,,, =t — |t/t.] t,
is the time from the beginning of systole (start of the cardiac
cycle), tpw = tc/tpws is the atrial relative activation time delay and
tma = (t + tsa — tpw) — | (t + tsa — tpw)/tc | tc. The model inputs
are fes, toys and tpy5. The chamber volume is determined through
the equations

D Qs = Quarv 10 2 = Quare b1 = Quuga-
dt = Ksys,v ra,rv T> dr = Kra,rv T rv,pa P>
avy, avy,
dr = qul - Qla,lv oM W = Qlu,lv “ oM — le,uo “Pa,

A3)

where ¢;,i € {T,P,M,A} are valve activation functions for
the tricuspid (T), pulmonary (P), mitral (M), and aortic (A)
valve, respectively. These are equal to one for a negative pressure
gradient through the valve and zero otherwise. Moreover, valves
are modeled as perfect, without accounting for possible leakage
or regurgitation. For models including valve prolapse and
consequent regurgitation the reader is referred to, e.g., Pant et al.
(2016). An inductance element located downstream with respect
to the pressure-volume generator simulates the inertia of the

Frontiers in Physiology | www.frontiersin.org 4

July 2021 | Volume 12 | Article 666915



Harrod et al.

Predictive Modeling of Secondary PH

blood in the chamber, according to the differential equation
dQ;/dt = (P; — Py — R; Qi)/Li, if P; > Pgy @)
0, otherwise,

where Q; is the volumetric blood flow going through the i-th
chamber, P; and Py, the pressure in the i-th and downstream
chamber, respectively, R; the viscous resistance located between
chamber i and chamber dn, and L; an inductance parameter.

Additionally, the selected model is fully capable of
representing the physiologic consequences of a stenotic valve,
as an increase in the resistance of the associated compartment
would accentuate the pressure drop across the valve and lead
to an increase of the upstream pressure. Finally, we remark
that systolic and diastolic functions are separately represented
in this model, using three parameters for each chamber, i.e.,
E; act> Kipas,1> and K pas 2. Identification of these parameters from
clinical health records would therefore be informative of systolic
and diastolic chamber function.

Note that the RL parameters of each cardiac chamber
remain fixed in this study (see Supplementary Table 1). In other
words, we assume that valvular stenosis has been excluded
as a possible cause of pulmonary hypertension, for example,
exclusion through a non-invasive echocardiographic assessment.

2.2.2. Aortic and Systemic Compartment

An aortic compartment consisting of an isolated capacitor is
positioned downstream of the left ventricular outflow, modeled
through an equation of the form

dpao _ Qup - an

dt ~— Cu )

where Q,p and Qg are the volumetric flow rate from the left
ventricle and abdominal aorta, respectively, P,, is the aortic
pressure and C,, the aortic compliance. We compare the value
of P;, computed by this model with the clinically acquired
brachial pressure.

An RCR circuit simulates the systemic circulation, with Cgys
used to represent the overall systemic compliance, while two
resistors simulate the viscous resistance in arteries and veins Ryys.a
and Ry, respectively. The algebraic-differential equations for
the systemic compartments are therefore:

Puo_Psys Psy — Prq
Q N = = Q y = >
sys,a Rsys,a Sys,v Rsys,v
dPsys _ sts,a - sts,v (6)
dr Coys '

2.2.3. Pulmonary Compartment
The pulmonary circulation is represented through a RC circuit
with equations

Ppu_Pla

dppu _ Qrv,pa N ¢P - qu
Rpa ’

> -

7

Qpa =

where the pulmonary, left atrial and right ventricular pressures
are denoted by Py,, Pj;, and Py, and pulmonary capacitance

and resistance are Cp, and Ry, respectively. The pulmonary flow
rate is denoted as Qpq, while Qy, indicates the flow across the
pulmonary valve, having activation equal to,

0 if Ppa > Ppy

1 otherwise

¢p = (8)

2.2.4. Initial Conditions

Initial conditions are specified for all state variables in the system
of ODE. These include ventricular and atrial chamber volumes
(Vivinis Vivini> Vreajini> Vigini)- Additionally, the model contains
one state variable for every capacitor and inductor. Inductors
are located at each valve, so initial conditions must be specified
within the model for the initial flow across the tricuspid (Qrgrv),
pulmonary (Qrypa), mitral (Qpy), and aortic (Qp,q0) valve.
Finally, an initial pressure is specified for capacitors located in
the aorta (Py,), pulmonary (Pp,) and systemic (Psys) circulation.

2.3. Available Data Sets

Two data sets are used throughout this study. Synthetic patient-
agnostic clinical measurements representing increasing severity
of diastolic left ventricular dysfunction are used initially, while
anonymized patient-specific electronic health records (EHR) for
a cohort of 82 patients are utilized in the second part of the study.

2.3.1. Validation Data Set

The validation data set (Table 2) contains the mean and standard
deviation of thirteen different clinical targets for three different
heart failure groups: healthy patients, mild heart failure patients,
and patients with severe heart failure. Normal physiologic
clinical targets were determined from the literature (Edwards
Lifesciences Corporation, 2009), while targets associated with
severe left ventricular diastolic dysfunction were assigned with
the supervision of a clinician. The values for mild heart failure
patients were obtained through a linear interpolation between
severe dysfunction and healthy conditions. The selected targets
for severe HF conditions are characterized by a normal SBP and
DBP accompanied by a slight reduction in CO.

2.3.2. EHR Data Set

Completely anonymized patient-specific clinical measurements
for 82 adult patients were provided in the context of a research
project funded by Google through its ATAP initiative, focusing
on Modeling Non-invasive Measurements of Cardiovascular
Dynamics. There are 26 clinical data targets, which are listed
below in Table 3. Missing data were present with the pattern
highlighted in Figure 2, with patients having zero to nineteen
of the clinical targets. Two of the 84 patients in the dataset
did not have any of the relevant clinical targets and were
therefore excluded from the study (see the two patients with
zero available targets in Figure 2A). The remaining 82 patients
had between one and nineteen clinical targets. All patients
but one had measurements for three clinical targets: heart
rate, diastolic blood pressure, and systolic blood pressure. No
single patient had all 26 measurements. Finally, the standard
deviations for each target are also shown in Table 3. Their value
was determined through a preliminary literature review (see,
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TABLE 2 | Validation data set containing the mean and standard deviation of clinical targets for three levels of increasing diastolic heart failure severity.

Qty Description Units Severe HF Moderate HF Healthy o
HR Heart rate bpm 80 80 80 3
RAP Right atrial pressure mmHg 15 9 4 0.5
sPAP Systolic pulmonary artery pressure mmHg 50 35 20 1
dPAP Diastolic pulmonary artery pressure mmHg 25 19 12 1
PCW Pulmonary capillary wedge pressure mmHg 25 17 9 1
SBP Systolic blood pressure mmHg 120 120 120 1.5
DBP Diastolic blood pressure mmHg 80 80 80 1.5
SVR Systemic vascular resistance dynes-s-cm—® 1800 1575 1350 50
CO Cardiac output L/min 3.5 4.375 5.25 0.2
sRV Systolic right ventricular pressure mmHg 50 35 20 1
RVEDP Right ventricular end diastolic pressure mmHg 15 9 4 1
sLV Systolic left ventricular pressure mmHg 120 120 120 1.5
LVEDP Left ventricular end diastolic pressure mmHg 25 16 6 2
TABLE 3 | Patient-specific EHR data set.

N. REDCap token Description Units Measurement type o N.
1 heart_rate2 Heart rate bpm NI 3.0 81
2 systolic_bp_2 Systolic blood pressure mmHg NI 1.5 81
3 diastolic_bp_2 Diastolic blood pressure mmHg NI 1.5 81
4 cardiac_output Cardiac output L/min Invasive TD or NI echo 0.2 65
5 systemic_vascular_resistan Systemic vascular resistance dynes-s-cm~° from RAP, SBP, and CO 50.0 64
6 pulmonary_vascular_resista Pulmonary vascular resistance dynes-s-cm~° from PAP, PCW, and CO 5.0 50
7 cvp Central venous pressure mmHg NI (CVP~RAP) or JVP/IVC ClI 0.5 30
8 right_ventricle_diastole Right ventricle diastolic pressure mmHg Invasive catheter 1.0 ik
9 right_ventricle_systole Right ventricle systolic pressure mmHg NI echo and invasive catheter 1.0 46
10 rvedp Right ventricle EDP mmHg NI same as RAP with no TS 1.0 46
11 aov_mean_pg Average PG across aortic valve mmHg NI echo 0.5 2
12 aov_peak_pg Peak PG across aortic valve mmHg NI echo 0.5 37
13 mv_decel_time Mitral valve deceleration time ms NI echo 6.0 41
14 mv_e_a_ratio Mitral valve E/A ratio - NI echo 0.2 39
15 pv_at Pulmonary valve acceleration time ms NI echo 6.0 18
16 pv_max_pg Peak PG across pulmonary valve mmHg NI echo 0.5 31
17 ra_pressure Mean right atrial pressure mmHg NI (CVP~RAP) or JVP/IVC ClI 0.5 50
18 ra_vol_a4c Right atrial volume mL NI echo 3.0 4
19 la_vol_adc Left atrial volume mL NI echo 3.0

20 lv_esv Left ventricular end systolic volume mL NI echo 10.0 1
21 Iv_vol_adc Left ventricular volume mL NI echo 20.0 5
22 Ivef Left ventricular ejection fraction - NI echo 2.0 53
23 lvot_max_flow Peak flow velocity across LVOT cm/s NI echo - 0
24 pap_diastolic Diastolic PAP mmHg Invasive catheter 1.0 65
25 pap_systolic Systolic PAP mmHg Invasive catheter 1.0 65
26 wedge_pressure Pulmonary wedge pressure mmHg Invasive catheter 1.0 50

NI, non-invasive; echo, Doppler echocardiography; PAF, pulmonary arterial pressure; JVF, jugular vein pressure; IVC Cl, Inferior vena cava collapsibility index; RAR, right atrial pressure;
TD, thermo dilution; PG, pressure gradient; EDR, end diastolic pressure; LVOT, left ventricular out flow tract; TS, tricuspid stenosis.

e.g., Gordon et al., 1983; Maceira et al., 2006; Yared et al.,

2011).

A histogram of clinical data occurrences is illustrated in
Figure 2A and displays three main modes. Most patients
have either four, eight, or 17 available clinical measurements,

likely due to the data aggregation produced by screening
protocols. Additionally, a heat map of the EHRs is illustrated
in Figure 2B. Each row of the heat map was normalized to a
zero to one range to highlight the relative magnitude of the

clinical target.
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Note how the size of the selected cohort (84 patients) is modest
but sufficient to investigate the effectiveness of Bayesian inference
in the context of a simple physiologic model. Acquisition
of larger data sets is possible but made non-trivial by the
need to automatically extract large volumes of clinical targets
from text reports written following echocardiographic and
catheter lab examinations. In such cases, using natural language
processing tools is key to make larger EHR data sets available
for research.

Finally, this data set focuses on cases of secondary PH, where
areversible increase of PVR follows an increase in left ventricular
filling pressures. Therefore, this study does not consider primary
PH and does not make any claim of differentiating primary from
secondary PH.

2.4. Methodological Approach

This study is articulated through a number of logically
consequential questions driving our numerical experiments.
These questions are:

1. Physiological admissibility of 0D representations under
normal and heart failure conditions—Are the model outputs
able to reproduce sets of clinical targets ranging from healthy
to pathological conditions? In other words, is the identification
problem well-posed, in the sense that model outputs are able
to represent a wide spectrum of conditions from health to
disease? We answer this question in section 3.1.

2. Ability to model distinct diastolic/systolic dysfunction
mechanisms—Is the selected model formulation able to
separately represent the systolic and diastolic functions of the
heart muscle? And does the alteration of these properties
produce expected modifications in the physiology represented
through model outputs? We answer this question in
section 3.2.

3. Parameter sensitivity and identifiability—Once a set of
quantities whose prediction is of interest (e.g., pulmonary
arterial pressure) has been identified, do they show non-
negligible sensitivity with respect to changes in the parameters
associated with physiologically relevant mechanisms affecting
these quantities? Moreover, are these parameters identifiable
so that it is possible to uniquely estimate their distribution
from the available clinical data? Is this estimate robust (i.e.,
characterized by a limited uncertainty)? We answer this
question in section 3.3.

4. Predictive ability of optimally trained models—Are models
trained from clinical data other than the pulmonary pressures
able to predict such pressures, and what is their accuracy? We
answer this question in section 3.4.

5. Relative importance of non-pulmonary clinical targets—
Which minimal set of clinical targets should be collected to
guarantee accurate model predictions for systolic, diastolic
pulmonary pressure and pulmonary venous wedge pressure?
In other words, we would like to rank the non-pulmonary
targets, starting with those producing maximally accurate
predictions on the pulmonary arterial pressure. This allows
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for identification of a minimal set of maximally informative
clinical quantities for predicting specific model outputs. We
answer this question in section 3.5.

6. Detecting pulmonary arterial hypertension from
assimilated circulation models—Group II pulmonary
arterial hypertension is typically detected by a mean
pulmonary pressure higher than 25 mmHg or a systolic
pulmonary pressure higher than 35 mmHg (Simonneau
et al., 2013). Instead of direct characterization based on
clinical data, would it be possible to detect pulmonary arterial
hypertension by classification from the parameters of a model
trained with non-invasive measurements? Once assimilated,
a model can be used to generate a large number of features,
leading to a higher dimensional space with possibly improved
separability (Cover, 1965). We answer this question in
section 3.6.

2.5. Inference

Consider a set of m measured clinical targets represented through
the random vector d € R with each component d; ~ pi(d;),i =
1,...,mand joint density d ~ p(d) = p1(d1) p2(d2) - - - pm(dm)-
In other words, each quantity d;,i = 1,...,m measured in
the clinic has marginal density p;(d;),i = 1,...,m, and we
assume all these measurements to be independent, i.e., their joint
probability factors. We design a physiological 0D circuit model
with n parameters y € R”, so its outputs match the observed
targets or, in other words, we introduce a statistical model of
the form

di=Gi(y)+ei=o0i+¢, i=1,...,m, )

and assume each noise component ¢ ~ N (O,Uiz) to
follow a zero-mean Gaussian distribution. Note that the i-
th realization from the parameter vector y is denoted by
y® and that the i-th model output is denoted by o; =
Gi(y), while the vector o € R™ contains the complete set
of model outputs.

Each model is trained using two different approaches,
ie., by determining a maximum a posteriori estimate of the
parameters y using repeated Nelder-Mead optimization (Nelder
and Mead, 1965), and by solving an inverse problem through
adaptive Markov chain Monte Carlo sampling, specifically,
through the differential evolution adaptive Metropolis
algorithm (Vrugt et al., 2009; Vrugt, 2016) and assessing
convergence through the Gelman-Rubin diagnostic (Gelman
and Rubin, 1992). In both cases, the posterior distribution
P(y|d) is obtained by combining a uniform prior P(y) (see the
admissible parameter ranges in Supplementary Table 1) with a
Gaussian likelihood,

P(yld) o< P(dly) - P(y),

P(dly) =

1 & [di - Gy
exp<_2z[2]).

i=1 !

(zn)m l_[:ll 01'2

2.6. Computational Tools

The TULIP (Tools for Uncertainty quantification, Lumped
modeling and Identification of Parameters) software framework
was developed to answer the above research questions. Tulip is
a OOP C++ code designed to simplify the task of estimating
parameters of lumped models for human circulation and
contains abstractions for computational models, operations
performed on these models (e.g., optimization, Bayesian
estimation, local and global sensitivity analysis, etc.) and data
sources used to store the available clinical targets. For an overview
of the procedures for statistical data assimilation used in this
study, the interested reader is referred to Schiavazzi et al. (2016)
and Akintunde et al. (2019).

3. RESULTS
3.1. Physiological Admissibility

The circulation model discussed in section 2.2 was first trained
on the validation dataset in section 2.3.1. We then generated a
collection of model outputs using a subset y?, i = 1,...,5,000
parameter realizations from the converged MCMC samples,
and compared the resulting distributions (after post-processing
with Gaussian kernel density estimation) with the distributions
assumed for the targets d. Specifically, we assumed that each
clinical target follows a normal distribution with the mean
and standard deviations listed in Table 2. The Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) was used to
determine the agreement between the model-based predictions
and measurements. The KL divergence measures how much
information is lost when one uses the predicted, instead of
the assumed, target distribution and a small KL divergence
suggests physiological admissibility. As shown in Figure 3, the
KL divergence is negligible for all targets, and the relative percent
difference between mean target value and MAP model outputs is
also generally small (see Table 4).

3.2. Inverse Assessment of Dysfunction

Mechanisms

We now focus on the ability of our model to distinguish between
diastolic and systolic dysfunction mechanisms when trained
based on conditions reported in Table 2. Specifically, we aim to
determine whether the selected model parameterization is able to
separately represent the relaxation or contraction (i.e., diastolic
or systolic) function of the heart muscle. Recall that diastolic
function, and therefore left ventricular stiffness, during relaxation
relate to the linear and exponential passive curve parameters
Kipas,1 and K; pas2 in equation (1). These two parameters directly
relate to the condition that we aim to assess.

Figure 4 shows the mean diastolic and systolic chamber
function parameters and associated 10-90% confidence intervals,
grouped by anatomical relevance (ie., left ventricle, right
ventricle) and plotted for healthy patients and patients with mild
and severe heart failure, respectively. Comparison between heart
failure conditions allows one to assess how model parameters
change due to disease progression. This change is shown in
Figure 4, where many of the parameters related to pulmonary
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FIGURE 3 | KL divergence between predicted and assumed clinical targets for varying heart failure severity.
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FIGURE 4 | Variation of mean parameter values and associated confidence intervals under increasing heart failure severity. Right and left ventricular model parameters
shown in the Figure are the ventricular passive curve slope Kpas,i,1, exponent factor Kpas,,2, active curve slope Epax,; and unstressed ventricular volume Vo (where
i€ {rv,Iv}). Also shown: Rp, (pulmonary resistance), Rsys,a (arterial systemic resistance), Rsys, (venous systemic resistance).

TABLE 4 | Percent differences between model outputs for MAP parameter estimates and clinical targets in the validation data set, for various degrees of heart

failure severity.

Healthy Mild Severe
Target Computed Error (%) Target Computed Error (%) Target Computed Error (%)
HR 80 80.8 0.94 80 80.6 0.81 80 81.3 1.63
RAP 4 4.1 1.70 9 9.0 0.21 15 15.0 0.19
sPAP 20 18.7 6.59 35 33.0 5.70 50 49.3 1.49
dPAP 12 11.9 0.84 19 18.6 2.34 25 24.4 2.22
PCW 9 9.1 1.65 17 16.4 3.80 25 251 0.34
SBP 120 118.3 1.43 120 116.6 2.84 120 117.4 2.15
DBP 80 79.5 0.61 80 78.4 1.96 80 78.9 1.37
SVR 1350 1397.4 3.51 1575 1594.8 1.26 1800 1819.7 1.09
CcO 5.25 5.4 2.62 4.375 4.4 0.28 3.5 3.6 2.51
sRvV 20 214 6.79 35 35.4 115 50 50.0 0.02
RVEDP 4 4.2 4.96 9 8.5 5.46 15 15.2 1.27
sLv 120 121.4 1.18 120 118.9 0.94 120 119.9 0.07
LVEDP 6 4.9 19.04 16 151 5.38 25 231 7.50
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hypertension change as patients progress from healthy to mild,
and mild to severe diastolic dysfunction.

The results show that the passive left ventricular curve slope
Ky pasy and the pulmonary resistance increase from healthy
to mild and mild to severe PH. Additionally, changes in
the left ventricular active elastance parameter E,,, ), remain
limited, i.e., the model correctly predicts a practically unaltered
systolic function. This confirms the ability of the physiological
model used in this study to link PH with diastolic dysfunction
and increased pulmonary resistance. Since Figure 4 combines
quantities with different units, we have also looked at the left
ventricular active and passive pressure-volume slope at Vj.
The active curve slope at Vy is equal to E,,, 1, whose MAP
estimates are 3.01, 2.23, 2.02 Barye/mL for healthy, mild, and
severe PH, respectively. The passive curve slope at Vy is instead
Kpasivy * Kpasp (see Equation 1) equal to 0.06, 0.12, 0.15
Barye/mL. Therefore, from healthy to mild PH the active slope
changes by —25.8%, while the passive slope changes by +113.1%.
From mild PH to severe PH, the active slope drops by —9.4%,
while the passive slope increases by +24.3%. This perspective
supports our conclusion that our model consistently captures
increased severity in underlying PH through more relevant
variations in the diastolic rather than systolic left ventricular
properties. Finally, the significant variability in the unstressed
ventricular volumes is explained by the presence of multiple
local peaks in the posterior distribution, i.e., reasonable PV loops
compatible with the clinical targets produced by wildly different
unstressed volumes.

3.3. Sensitivity and Identifiability of

Circulation Model Parameters

Results from the above sections confirm the well-posedness
of the selected model formulation for the full spectrum of
diastolic dysfunction, from mild to severe. We now focus
on determining the most relevant model parameters that
significantly alter the main quantities of interest, particularly the
systolic, diastolic, and pulmonary wedge pressures. In addition,
we study both the structural and practical identifiability in an
effort to determine unimportant parameters and their non-
identifiable combinations.

3.3.1. Average Local Sensitivities
Non-dimensional local sensitivities are computed for all
outputs as

A .
201,

Yimap

Ao; Yimap

Ay (11)

, where

Oi,map

so that we consider the relative change in model outputs that
correspond to a 1% variation in each parameter. The maximum
a posteriori parameter vector Ymap and the corresponding model
outputs Omap = G(Ymap) are computed from MCMC for each of
the 82 patients in the cohort, and used to compute the sensitivities
in Equation (11). The resulting sensitivities are then averaged
across all patients.

Figure 5A illustrates the average sensitivities obtained by
training our model with the complete list of clinical targets,

including systolic, diastolic, and venous wedge pulmonary
pressures and pulmonary vascular resistance. We note that
large sensitivities are apparent for the heart rate across all
outputs while at the same time, accurate measurements of
heart rate are easy to obtain non-invasively. Additionally, to
check how the sensitivities were affected by the availability
of pulmonary pressure targets (i.e., the very same quantities
we would like to predict), we re-computed sensitivities using
parameter estimates ymap obtained by excluding the pulmonary
pressure targets during training. The average sensitivities appear
to be minimally affected by the selective exclusion of pulmonary
pressure targets.

Figure 5B suggests the following important parameters.
Changes in the heart rate or t, directly affect the amount
of blood flow ejected by the ventricles, altering the mean
pulmonary pressures under a constant PVR and initial condition
(i.e., Ppg,ini). As already discussed in the above sections, the
left ventricular diastolic pressure/volume ratio Kj, pgs1 and
the associated exponential factor Kj, 45, govern the diastolic
properties of the left ventricle, while the E,,,; is instead
responsible for the systolic function. The left atrioventricular and
aortic valve resistance Ry, ), and Ry, 4,, respectively, govern the
pressure drop from the left atrium to the left ventricle and from
the left ventricle to the aorta. These two parameters therefore
affect the left atrial and ventricular pressures and, in turn, the
upstream pulmonary pressures. Mitral or aortic valve stenosis
are typical examples of this mechanism (see, e.g., Tracy et al.,
1990). The pulmonary resistance and capacitance parameters,
Rpg and Cpg, clearly affect the mean pulmonary pressures and
their range. In contrast, changes in systemic vascular resistance,
Rsysa and Rgysy, affect the left ventricular afterload and, in turn
the pulmonary pressures.

3.3.2. Structural Identifiability

Structural identifiability analysis is performed to gain an
understanding of our ability to recover a given set of model
parameters through the solution of an inverse problem from
idealized noiseless clinical targets that belong to the model range.
This contrasts with the analysis in the next section of the practical
identifiability, where real clinical data are used instead. We
solve the model for the default parameter combination (see
Supplementary Table 1) and regard the outputs as data, from
which a MAP estimate of the default parameter values is re-
computed by MCMC followed by NM optimization. We would
like to point out that the parameters in Supplementary Table 1
correspond to a healthy patient. Therefore no attempt is made in
this section to represent hypertensive physiological conditions.
Additionally, histograms are generated using 5,000 samples
from the MCMC parameter traces and compared to the default
(true) parameter set. The results for right ventricular, left
ventricular, and resistor parameters can be seen in Figures 6A-C,
respectively. The true parameters are always found within the
parameter distributions from MCMC and often correspond to
the mode of the histogram. Some deviations may be observed in
Figure 6C regarding the arterial and venous systemic resistance.
In such a case, since SVR is the sum of such resistances,
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FIGURE 5 | Average local sensitivities using a perturbation factor of 1%. (A) Average local sensitivity table for all parameters and model outputs. (B) Average local
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to 25 and 12.5 for (A,B), respectively.
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the increase in the first is compensated by a reduction in
the second.

The coefficients of variation for the model parameters
marginal posteriors and associated learning factors are shown
in Figure7. While parameters with a higher coeflicient of
variation have a greater spread relative to their mean, the
learning factor quantifies how much the marginal variance is
reduced by conditioning the model output to the available
observations or, in other words, how much the marginal variance
is reduced from the prior to the posterior (Schiavazzi et al., 2016).
Figure 7 shows that the parameters with the largest coefficient
of variation are also the parameters with the smallest learning
factor, as expected. Heart timing parameters, parameters for
systemic and pulmonary resistance and compliance, the aortic

compliance parameter, and the active ventricular parameters are
generally well-learned.

The analysis is completed by a comparison between the
true and optimal physiology, calculated using 5,000 parameter
combinations from the MCMC traces, and analyzed over a
single heart cycle. The results for the aortic, pulmonary, and left
ventricular pressures and flows, and the left and right ventricular
pressure-volume loop are reported in Figure 8. Pressures, flows,
and volumes agree well with those generated from the default
parameter set.

3.3.3. Practical Identifiability
We also perform local identifiability analysis through the Fisher
information matrix rank (Rothenberg, 1971) to determine
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where the precision matrix B contains the inverse target variances,
ie, Bj; = l/a,-2 and B;j = 0 for i # j. Rank deficiency

0 G(Ymap)
dy

0 G(Ymap)
dy

the presence of non-identifiable parameter combinations and
unimportant parameters. To do so, we compute the matrix
0 G(Ymap)/0y of local derivatives for our output quantities
Omap = G(Ymap) with respect to the parameters y. The Fisher
Information matrix Z(ymap) can be computed as

I(Ymap) = [ (12)
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FIGURE 9 | (A) Scatter plot of eigenvalues vs. eigenvectors for all patients. Red horizontal line represents selected cut-off value. FIM eigenvalues at identified
parameters plotted in increasing order. (B) Plot of number of patients selected (eigenvalues less than cut-off) for each eigenvector. (C,D) Selection of two of the 17
total radar plots of all parameters whose eigenvalues are less than the selected cut-off. (C) Example of unimportant initial condition, i.e., whose perturbation has no
effect on the model results. (D) Example of non-identifiable parameter combinations where no dominant parameter can be identified and where the combination
significantly changes across patients.

in Z(ymap) reveals the presence of non-identifiable parameter Eigenvectors for all patients whose corresponding eigenvalues
combinations as illustrated in Figure 9A by plotting the Fisher  were less than a selected cut-off were superimposed on the same
information matrix (FIM) eigenvalues ordered by magnitude for ~ radar plot to search for situations characterized by dominant
all patients. Small eigenvalues are observed across all analyzed = components, representative of unimportant parameters. This
patients, confirming a lack of local identifiability. process is visualized in Figure 9A, illustrating all eigenvalues
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colored uniquely per patient and Figure 9B, showing the effect
of changing the cut-off value on the number of selected patients.
Specifically, it shows that no significant changes result by
adopting cut-offs in the range [1 x 107!2,1 x 107!6].

Figures 9C,D shows an example of two of the 17 radar
plots generated for this study. The plot on the left shows
an example of an unimportant parameter with dominant
eigenvalue associated with the parameter Vj,;,, ie., the
initial left atrial volume. Instead, the radar plot on the
right does not show any clear pattern involving parameter
combinations that significantly change across patients. This
local identifiability analysis confirms how initial conditions
for pressures, flows, and volumes (except Ppgini» Pao,ini>» and
Pyysini as per the results of the previous sensitivity analysis) are
generally unimportant.

3.4. Prediction of Pulmonary Pressures

We now focus on the problem of using the physiological
consistency of our compartmental model to predict
pulmonary pressures from other possibly non-invasive
clinical targets. To do so, we have trained our models without
including the pulmonary targets (i.e., systolic, diastolic,
wedge pressures, and pulmonary vascular resistance) and
propagated forward the estimated parameters to quantify the
marginal distributions of these targets. We then evaluated
the error between predicted and true pulmonary pressures
together with their variability. To do so, we first show
four Bland-Altman plots for sPAP, dPAP, mPAP, and PVR,
respectively (Figures 10A,B). Minimal bias is generated when
training the model with the pulmonary pressures and PVR.
Predictions generated by pulmonary pressure-blind training
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FIGURE 10 | (A,B) Bland-Altman plots of sPAP, dPAP, mPAP, and PVR for clinical targets, and as predicted from models trained with and without pulmonary targets,
respectively. Solid horizontal lines represent the mean of all differences, while dashed lines are drawn at 1.96 times the standard deviation. Predictions associated with
gray markers in the Bland-Altman plots result from using less than 15 clinical targets. (C) Predictive performance for pulmonary pressure. Absence of PAP targets in
average prediction errors is represented using dashed lines. The shaded region represents the area bounded by the 5th and 95th percentile from 5,000 random
subsamples from MCMC. (D) Zoom on average errors which correspond to patients with more than 15 available clinical targets.
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does not seem to generate proportional bias except for the
predicted PVR.

In Figure 10C, we also plot the average absolute pressure
error, with associated uncertainty, across 31 patients (those for
which the pulmonary pressure was available and characterized
by having more than six REDCap entries) versus the minimum
number of prescribed clinical targets. Finally, as illustrated in the
closeup shown in Figure 10D, which focuses on patients with
at least 15 REDCap entries, the average errors on the predicted
pressures is around 8 mmHg for systolic PAP, and 6 mmHg for
Diastolic PAP and PCW.

3.5. Relative Importance of Non-pulmonary
Targets

In this section, we investigate which clinical targets are the
most important to include during training, in order to minimize
errors in pulmonary pressure predictions. In other words, we
rank clinical targets starting from those having a more beneficial
impact on the accuracy in predicting pulmonary hypertension.
We achieve this goal through a sequence of optimization steps.
We begin by performing training using optimization with a
single target at a time. The target found to minimize the average
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combined prediction error for pulmonary pressures is ranked
first and permanently added to the list of targets included in all
successive optimization steps. The percent error was computed
for each clinical pulmonary target that was available for each
patient. Percentage error expresses the percentage difference
between the model output and the clinical target. A cumulative
percentage error was calculated by taking the sum of the
percentage errors for each pulmonary target clinically available
for each patient. To avoid bias toward patients with fewer
available pulmonary targets, the cumulative percentage error is
transformed to an average combined prediction error through

division by the number of available pulmonary targets. Let p €
{1,2,3,4} be the number of pulmonary targets available in the
data of a certain patient. The percent error of clinical target
= L,...,p is computed as e; = 100 - [starget —
Si,output|/Sitargets i 1,...,p, while the average combined
prediction error is Z‘:’:l, ei/p.

All remaining targets are iteratively tested, and those
producing the minimum average combined PAP errors (shown
in Figure 11A) are progressively ranked until all targets have
been considered. The process above is repeated for each patient.
Figure 11B shows the resulting average ranking and associated

Sitarget> i

Frontiers in Physiology | www.frontiersin.org

17

July 2021 | Volume 12 | Article 666915



Harrod et al.

Predictive Modeling of Secondary PH

occurrences, i.e., the number of patients where a specific target
was collected.

The list of targets ordered by average rank and filtered by
occurrence is also shown in Table 5. Most of the quantities
(except mPAP, PCW, PVR, and SVR) can be estimated non-
invasively. From RAP (or CVP, RVEDP), SBP-DBP, HR, and
SVR it is possible to estimate the cardiac output. From CO, HR,
and LVEE it is possible to estimate LVEDV, which is correlated
with PCW. This might explain why PCW is always estimated
better than sPAP and dPAP. The mitral valve deceleration time
and velocity E/A ratio are indicators of diastolic LV function
and therefore correlated with PAP. If PVR, CO, and PCW are
known, it is possible to estimate mPAP, which is correlated to
sPAP and dPAP. Finally, the parameter ranking is summarized
for all patients in Figure 12.

3.6. PH Classifiers From Assimilated

Circulation Models

This section explores the use of trained lumped parameter
models for the automatic detection of abnormal pulmonary
pressures from minimally invasive clinical measurements. We
employ a naive Bayes classifiers (see, e.g., Lewis, 1998) to detect
pulmonary hypertension from our dataset. The first step of this
classification process was to generate a ground truth variable
for hypertension that could be used to analyze the accuracy
of our hypertensive classification. Using the patients clinical
data, a binary hypertensive variable was defined using the
criteria from Simonneau et al. (2013). If a patient had mPAP
> 25 mmHG or sPAP > 35 mmHG, then the patient was
classified as hypertensive. Of the 82 patients, 65 of the patients
contained sufficient clinical data to define a ground truth binary
hypertensive variable. The remaining 17 patients did not contain
enough clinical data to determine a ground truth value for
hypertension, so these patients were excluded from the testing
and training datasets.

Before a naive Bayes classification can be performed, the
problem of missing data must first be addressed. Our dataset
representing the cohort of 82 patients contains a non-negligible
ratio of missing data, with patients missing between 1 and
19 of the 24 total clinical targets. To overcome this issue
and to verify how classification results depend on the strategy
selected for missing data imputation, five different missing data
imputation approaches were tested. The first method tested was
complete-case analysis, considering only the 4 variables that were
available for all patients, i.e., heart rate, systolic blood pressure,
diastolic blood pressure, and cardiac output. The remaining
four missing data methods consisted of replacing the missing
values with (1) zeros, (2) the max value of the data set, (3) a
value far outside the range of the data set (10 times the max),
or (4) the median. In addition to the training of five separate
classifiers using five different missing data methods, a sixth
naive Bayes classifier was trained on the MAP parameters of the
model. The data for the MAP parameters from the model is a
complete set, so no missing data method was required. Figure 13
shows how the above imputation approaches affect classification
accuracy. At first sight, the high accuracy produced by a multiple

TABLE 5 | Target list in order of average rank, filtered by occurrence.

Ranks Clinical target Description

1 cvp Central venous pressure

2 right_ventricle_systole Right ventricle systolic pressure

3 rvedp Right ventricle end diastolic pressure

4 heart_rate2 Heart rate

5 systemic_vascular_resistan ~ Systemic vascular resistance

6 systolic_bp_2 Systolic brachial pressure

7 cardiac_output Cardiac output

8 Ivef Left ventricular ejection fraction

9 diastolic_bp_2 Diastolic brachial pressure

10 aov_peak_pg Peak pressure gradient across aortic valve

ik pv_max_pg Peak pressure gradient across pulmonary
valve

12 ra_pressure Mean right atrial pressure

138 pv_at Pulmonary valve acceleration time

14 mv_e_a_ratio Mitral valve E/A ratio

15 mv_decel_time Mitral valve deceleration time

Targets with <5 occurrences were excluded from the ranking order.

imputation strategy using the maximum inter-patient clinical
value (or 10 times its value) may seem surprising. This can be
explained by observing how, in such a case, the probability of the
feature associated with the missing data is practically zero, thus
essentially reducing the number of features and increasing the
resulting accuracy.

We then grouped patients according to a training and a testing
set, consisting of 4/5 and 1/5 of the available data, respectively.
Training and testing is performed either using the raw clinical
data or model parameters assimilated though optimization and
MCMGC, resulting in ~88% accuracy for the classifier trained with
the 24 raw clinical data points and about 76.4% accuracy for the
classifier trained with the 45 assimilated parameter values (see
Table 6).

Of the 82 patients, 65 contained enough information for
ground truth classification of whether the patient should be
identified as hypertensive. Based on these data, we were able to
classify 22 of the 65 patients, or about one-third of the patients,
as being affected by pulmonary hypertension and the remaining
two-thirds with normal PAP pressures. This imbalance is known
to introduce bias (Sun et al., 2009), with the classifier more likely
to label patients as non-hypertensive (as 2/3 of the training data
are non-hypertensive). As a remedy, six different approaches
were applied to deal with this unbalance, which represents a
mixture of over-sampling methods, under-sampling methods,
and a combination of both.

Figure 14 shows the principal component decomposition
and contingency table for the unbalanced data and the data
balanced with centroid clustering. Note how the confusion
matrices are evaluated based on test data, hence 13 patients (1/5
of the 65 patients) for the unbalanced dataset. Undersampling
in centroid clustering reduces the training/testing data from
65 to 33: hence one-fifth of the 33 samples becomes ~7, as
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TABLE 6 | Training accuracy improvements using the original dataset and following pre-processing to balance the relatively small number of hypertensive positives.

Complete data

Pre-processing data for classification

Missing data imputed Balanced data

- " Clinical data
Training data type for classifier
Parameters

0.8082
0.7640 N.A. 1.0

0.8801 1.0

shown in the confusion matrix for the centroid clustering under-
sampling method.

Figure 15 shows the effect of each unbalanced data method on
the overall area under the receiver operating characteristic curve
(ROC) for the classifier trained on the model parameters. For
such a classifier, centroid clustering (Lin et al., 2017) increases
accuracy from 76.4% up to 100%. In addition, data balance using
Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla
et al,, 2002) increases the accuracy of the model trained on the
data from 88 to 100%, as shown in Table 6. We again remark
that the number of patients in this study is small, and future
studies will investigate the generalization of this approach to
larger datasets.

4. CONCLUSION

This study demonstrates that a relatively simple lumped
parameter compartmental model can represent a wide range
of physiologies, spanning healthy patients to patients affected
by severe diastolic left ventricular dysfunction. In this context,
an activation formulation for the heart chambers has proven
important to separately account for systolic and diastolic
pressure-volume behavior. When trained using ideal clinical
data from subjects with diastolic left ventricular dysfunction,
the parameters associated with the governing physiological
mechanisms (i.e., diastolic ventricle relaxation) change in a
way that is consistent with the underlying physiology of the
dysfunction. The average parameter sensitivities are determined
after training with real data from 82 patients, confirming
intuition for the most important parameters. Pulmonary

pressures were found to be primarily sensitive to the following
parameters: heart rate and contraction timing parameters,
diastolic and systolic pressure/volume ratio parameters (K 1,1y,
Kpasp > and Epgypy), left atrioventricular and aortic valve
resistance (Ryg > Riyq0)> pulmonary resistance and capacitance
(Rpa> Cpa) and systemic resistance (Rgys). Additionally, the model
was found to be locally unidentifiable, with initial conditions
generally unimportant. The structural identifiability analysis
showed that inference of model parameters is feasible under
perfect, noiseless conditions and with a sufficiently large number
of available clinical targets. Target ranking based on sequential
optimization reveals the most important non-invasively acquired
clinical targets: heart rate, systemic pressures, peak pressure
gradient across aortic and pulmonary valves, pulmonary valve
acceleration time, mitral valve deceleration time, and mitral
valve E/A peak ratio. The clinical targets that positively affect
the prediction of pulmonary pressures, but require an invasive
practice for their measurement, are central venous pressure,
right ventricular systolic and diastolic pressure, systemic vascular
resistance, cardiac output, and mean right atrial pressure. After
investigating parameter identifiability/sensitivity, the pulmonary
pressures of the 82 patients with various heart failure severities
were predicted from a lumped hemodynamic model, which was
trained based on the remaining clinical targets. The average
absolute pressure error on the 11 patients characterized by at
least 11 distinct clinical entries was found ~8 and 6 mmHg for
systolic and diastolic/wedge pulmonary pressures, respectively.
While these errors may seem large to detect cases of mild
hypertension, they may be more than reasonable depending on
how high are the PA pressures we are trying to predict/detect. In
other words, while an 8 mmHg pressure error may seem relevant
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with an actual pulmonary pressure of 20 mmHg, for cases of
patients with the real disease (i.e., PA pressures of 40, 50, 60
s, etc.), then the difference between (say) 50 and 58 would not
be nearly as large. However, more importantly, our approach
would still identify those patients as patients that would require
further evaluation.

Finally, we have shown that MAP estimates of circulation
model parameters can be used to detect elevated pulmonary
pressures, and that a simple classifier provides high accuracy on
balanced data, even when these parameters are identified without
measuring systolic, diastolic, wedge pulmonary pressures, and
pulmonary vascular resistance. Future work will be devoted
to the systematic demonstration of the proposed approach on
larger patient data sets, opening new avenues for translational
applications of model-based diagnostics, improving model
formulations that target specific diseases, and developing
improved and more efficient estimation approaches.
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