TECHNOMETRICS
2021, VOL. 63, NO. 3,329-342
https://doi.org/10.1080/00401706.2020.1817790

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates ‘

Gaussian Process Assisted Active Learning of Physical Laws

Jiuhai Chen?, Lulu Kang?, and Guang Lin®

2Department of Applied Mathematics, lllinois Institute of Technology, Chicago, IL; *Department of Mathematics, Purdue University, West Lafayette, IN

ABSTRACT

In many areas of science and engineering, discovering the governing differential equations from the noisy
experimental data is an essential challenge. Itis also a critical step in understanding the physical phenomena
and prediction of the future behaviors of the systems. However, in many cases, it is expensive or time-
consuming to collect experimental data. This article provides an active learning approach to estimate the
unknown differential equations accurately with reduced experimental data size. We propose an adaptive
design criterion combining the D-optimality and the maximin space-filling criterion. In contrast to active
learning for other regression models, the D-optimality here requires the unknown solution of the differential
equations and derivatives of the solution. We estimate the Gaussian process (GP) regression models from
the available experimental data and use them as the surrogates of these unknown solution functions.
The derivatives of the estimated GP models are derived and used to substitute the derivatives of the
solution. Variable selection-based regression methods are used to learn the differential equations from the
experimental data. Through multiple case studies, we demonstrate the proposed approach outperforms the
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D-optimality and the maximin space-filling design alone in terms of model accuracy and data economy.

1. Introduction

A wide variety of physical phenomena such as sound, heat, elec-
trostatics, electrodynamics, fluid dynamics, elasticity, or quan-
tum mechanics, are governed by physical laws that are often
described by differential equations. Thus, differential equations,
such as ordinary differential equations (ODE) and partial differ-
ential equations (PDE), play an important role in many areas of
science and engineering. However, for many complex systems,
it is difficult for researchers to deduce the governing equations
from noisy data. Therefore, discovering the governing equa-
tions from noisy data is an essential task in many sciences and
engineering disciplines, and is critical to the understanding of
physical phenomena and prediction of the future behaviors of
the systems under study.

There have been many methods developed to achieve this
goal. Among them, one earlier approach was delivered by
Bongard and Lipson (2007). It was the first method that can
automatically generate symbolic equations for a nonlinear cou-
pled dynamical system directly from time-series data. Pursuing
the same direction, quite a few new ideas have been introduced.
Brunton, Proctor, and Kutz (2016) used sparse regression to
determine the terms in the dynamic equations. Following
this idea, Schaeffer (2017) applied the shrinkage method and
minimized the L;-norm regularized least squares to identify
the underlying PDE. Long et al. (2017) introduced a new feed-
forward deep neural network, called PDE-Net, to accurately
predict the dynamics of complex systems and to uncover the
underlying hidden PDE models. More recently, Zhang and Lin
(2018) proposed to select candidate terms for the underlying

equations using dimensional analysis and approximate the
weights of the terms using threshold sparse Bayesian regression.

These works have significantly advanced the progress of data-
driven modeling of differential equations. But they are all based
on a large quantity of data. Especially for the PDE-net method,
a huge amount of data is required to train the neural net-
work. One exception in the existing literature is introduced by
Raissi and Karniadakis (2018). Their method does not require
a large amount of data, as it leverages the underlying laws of
physics, meaning that the time-dependent PDEs are assumed
to be known. The main task of learning is to identify a few
unknown parameters in the known equations. As effective as
this approach is, it is not applicable when the explicit form of
the time-dependent PDEs are unknown to the experimenter.

In many disciplines, data collection, or experimentation,
takes time and resources. When a researcher cannot afford the
experiment’s cost, the insufficient data could lead to incorrect
mathematical models. On the contrary, if the researcher collects
more data than necessary, it would cause a waste of time and
resources. Without knowing how much data are required,
either scenario is likely to occur. This practical challenge and
how sequential approaches can be used to overcome it is well-
demonstrated in Section 5.

In Section 5, we illustrate an air pollution monitoring appli-
cation, where the data are collected via sensors. For example, in
Cheng et al. (2011), each sensor measures the concentration of
the pollutant, such as carbon monoxide, or CO. Sensors, such as
CO monitors, can be expensive. If all the data are collected in
a single trial, the experimenter requires a sufficient number of
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sensors to take measurements from different spatial locations
spreading out across the domain. Fortunately, the sensors in
this scenario are mobile, as shown in Cheng et al. (2011). The
experimenter can quickly move the sensors (by manpower or
automation) to the new locations and collect a new batch of
data. The compromising assumption is that the data collected
sequentially at very short time intervals can be approximately
considered from the same time point. It is reasonable to assume
so as long as the diffusion process is slow enough and does
not change significantly in a short time period. But if this
assumption does not stand, alternatively, the experimenter can
restart the diffusion process and move the sensors to the new
locations and collect a new batch of data at the same time
point.

We propose an active learning approach that combines the
optimal design method and the variable selection technique,
to identify the significant terms in the mathematical equations.
The optimal design criterion combines the maximin space-
filling criterion and the D-optimality. The latter ensures the
accurate estimation of the differential equations by linear
regression. However, the D-optimality involves the equations’
unknown solution functions and their unknown derivatives,
and thus we substitute them via the Gaussian process (GP)
surrogate models and their derivatives. This is why we also need
the design to be space-filling so that it can explore the design
space more thoroughly to fit the GP models. The weights of
combining the two criteria are calculated adaptively from the
currently estimated differential equations and the GP models.
We give the adaptively combined D-optimal and space-filling
criterion an acronym ACDS. Details are explained in Section 3.
Through case studies in Sections 4 and 5, we show that the
proposed method outperforms the space-filling and D-optimal
design alone in terms of model accuracy and economy of the
experimental run size. More remarks on the case studies are
elaborated in Section 6. The article is concluded with some
discussion in Section 7. The codes and data are included the in
the supplementary materials and available from https://github.
com/ACDS-code/ACDS.git.

2. Discovery of Physical Law
2.1. General Review

There are many physical laws represented by various kinds
of differential equations. In the scope of this article, we only
consider differential equations of the form in PDEs (1) and
ODEs (2). Specially, the type of PDEs we focus on is

a_u = f(x, Zu),

= e Q,te[0,T], 1
a7 x [0, T] (1)

where u(x,t) € R? denotes the state of a system at time f,
that is, the solution of (1), x € RP represents other variables
required to specify the state of the system, such as the spatial
location in the system, @ C RP? and [0, T] are the domain of
x and time in which the equations are established, and .%, is a
linear or nonlinear operator applied to u. The subscript in .Z%
denotes that the differentiation is in x. The function f is a vector
of polynomial functions in R and has the input x and .Z,u. The

operator % and the function f together define the dynamic
constraints of the systems. The explicit form of f and .Z; are
unknown and are the target of learning from experimental data.
Following the PDE learning approach proposed by Raissi and
Karniadakis (2018), we restrict that f(x, Z;u) does not contain
any polynomial terms of t variable. With this assumption, we
only need data at a particular time point, ¢t = ¢, to learn
fx, Zu).

The system of ODEs can also be expressed by a simpler
version of (1). The state of the system u(t) only depends on the
variable ¢, and the system of ODE:s is

du
- =ftw, telo,T], )

where f is the governing function of the system dynamics. We
assume f is a vector of polynomial functions of t and u. For ODEs,
since t is the only input variable of u, it does not matter if f (¢, u)
explicitly contains any terms of ¢.

A wide range of physical laws can be represented by the types
of PDEs (1) and ODEs (2). One such PDE example of (1) is the

classic heat equation
N 82u>
— |-
0x3

ou 3%u n
ool ==
at dx?

It describes how the distribution of some quantity, such as heat,
evolves over time in a homogeneous and isotropic medium.
The function u(x,t) is the temperature of location x at time
t. Another ODE example of (2) is the kinematic equation,
which models the free-falling object problem. Assume L is the
displacement, g stands for the acceleration of the object, and v
is the initial velocity. The kinematic equation is % =v+gxt
We also show some other famous PDE and ODE examples in
Sections 4 and 5.

To explain the general data-driven modeling framework, we
use a simple PDE as an example.

3%u
9x3

ou

5t = f(u,uy),x € [a,b],t € [0, T].
Both u and f are one-dimensional functions. At time ¢ = £, the
observed data are

Xis Uiy \ — s\ & >
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where u; = u(xi,to), (5)i = it (Fi = Fxt).
As pointed out by Raissi and Karniadakis (2018), we do not
need the observations at other time points to estimate f (1, uy)
because it does not involve the variable t, which greatly reduces
the amount of data required. In the framework introduced by
Bongard and Lipson (2007) and many other following ones,
f(u,uy) is assumed to be a linear combination of some terms
(or bases). Linear regression combined with variable selection
methods is used to identify the significant terms from a group
of preset candidate terms. The linear coefficients of these terms
are estimated in the process. For this example, we pick thgt set
u

of candidate basis functions to be {1, u, (g—‘;), u?, (%)2, u(§h)}.



The linear regression is applied to the following model.
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where € = [e1,€2,...,¢ex]" is the model error. Different

factors can contribute to creating the model error, such
as model inadequacy and measurement noise. Numerical
errors are also likely to occur when some of the derivatives
are not observed but calculated by finite-difference from
observations. It is difficult to quantify how the errors and noise
contained by {u, (%—”t‘),-, (%)i}fil are aggregated in f(u, uy).
Therefore, for simplicity, all the existing methods assume
€ ~ N(0,0%Iy). The data-driven modeling is to estimate
ﬂ = [ﬂOa ﬂla ﬂza ﬂ3’ ﬂ4a ﬂsa ﬂﬁ]T with certain sparSitY‘

To sum up, the proposed active learning methods can be used
to recover the underlying differential equations taking the form
of (1) and (2). They satisfy (1) f is a vector of polynomial func-
tions of their inputs; (2) for PDEs, f cannot explicitly contain any
terms involving ¢, and the differential operator L, is only applied
to x; (3) for ODEs, f does not contain any derivative terms of u.

2.2. Candidate Set of Basis Functions

In general, the preset candidate of basis functions should
be large enough to include the actual terms contained by
the underlying differential equations. Domain knowledge is
certainly helpful to construct the basis functions. In Zhang
and Lin (2018), the authors illustrated using tensor product
to construct the basis functions as follows

b } > (4)

k1 { 8”1
® Lx,u,—,..
8X1

where the second ellipsis represents the partial derivatives of u;
fori = 1,...,d to certain elements of x up to a user specified
order k;. The operation ®k1 S denote tensor product of k;
copies of set S. For example, assume p = 2, k; = 1,and k; = 2,
and then the candidate set is

{ du du 0*u du

duy duy duy

.,8x1,...,8xp,...,axp,..

I 3%u

sy X1, X2, Uy — —, > > .

b2 3X1 sz 82361 8ZX2 3x18x2

In another example, let p = 1 and k; = ky = 2, and the

candidate set is
2

du 9%u
® Lx,u,—,—1¢.
ax’ 02x
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Clearly, the tensor product can easily construct a large pool of
basis functions. Zhang and Lin (2018) then proposed to screen
the basis functions by comparing the “dimensionality” of the
two sides of the equation. For instance, if the unit of % is
meter per second, then the units of all the basis functions should
also be meter per second. Any terms having different units (or
dimensions in physics) should be screened out from the pool of
candidates.

2.3. Variable Selection

As reviewed in Section 1, various methods have been proposed
to estimate the linear coefficients, 8. Essentially, it is a prob-
lem of variable selection for the linear regression model. Many
existing methods can be used together with the later proposed
active learning approach. We have tried three variable selection
methods. They are the best subset selection (Beale, Kendall,
and Mann 1967; Hocking and Leslie 1967), stepwise selection
(Draper and Smith 2014), and shrinkage methods like Lasso
(Tibshirani 1996). The best subset selection we have tried is the
formulation of Bertsimas et al. (2016), which turns the variable
selection into a mixed-integer programming problem. Based on
our investigation, we choose the forward stepwise regression
combined with the Bayesian information criterion (BIC) as
the variable selection method to illustrate the proposed active
learning approach. Here are the reasons.

First, forward stepwise regression is easier to implement and
faster to compute than the best subset selection by Bertsimas
et al. (2016), even though the two have similar performances.
Second, BIC returns sparser regression models than some other
criteria such as AIC, and it suits the purpose of learning differen-
tial equations since most underlying differential equations have
few terms. More importantly, as shown in our comparison with
Lasso in Figure 5, the forward stepwise regression combined
with BIC is more accurate than Lasso in terms of identifying
correct terms. This point is also illustrated in Zhang and Lin
(2018), in which the authors proposed a new variable selection
that outperforms Lasso. We admit that the stepwise regression
might not perform well in the face of strong collinearity, and it
could introduce biases since it is a greedy search. But these issues
have not shown up in our studies. Ultimately, the specification
of a variable selection method is not the primary focus of this
article, and we encourage readers to choose the suitable one for
their applications.

3. Active Learning
3.1. Motivation of a New Design Criterion

The active learning is also known as the sequential experimental
design method in statistics. Various versions and different appli-
cations of active learning have been introduced. The early works
include Chernoff (1959) and Blot and Meeter (1973). Recent
ones can be found in Williams, Santner, and Notz (2000), Lin
et al. (2004), Dror and Steinberg (2008), Dasgupta et al. (2008),
Deng et al. (2009), etc. In general, active learning consists of the
following steps.

Step I: Construct an initial design, such as space-filling design,
collect the data, and build an initial model.
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Step 2: Based on the current fitted model, update the user-
specified design criterion, and select the next batch of
design points by optimizing the criterion.

Step 3: Collect the data and update the model.

Step 4: Iterate Steps 2 and 3 until the stop condition is satisfied.

The design criterion used in Step 2 should fit the purpose of
the experiment. In our case, the accuracy of the estimated coef-
ficients of the linear regression model is crucial. A model-based
optimal design criterion can be used (Fedorov2010). Among the
various optimal designs, the D- and A-optimal design focuses
on the variance of the estimated coefficients. We choose the
more widely used D-optimal design to select the design points
in variable x.

For a regular linear regression model, the D-optimal design
maximizes det(M ' M) with respect to the design points, where
M is the N x k model matrix of k basis functions evaluated
at the N design points. The k basis functions are the model
terms specified by the experimenter. Their values at the potential
design points can be easily calculated. But this is not the case
for learning differential equations, where the candidate basis
functions involve the unknown solution of the differential equa-
tions and its derivatives. For instance, the basis functions in the
example in (3) include {u, uy, u?, (y)?, uuy}. In the process of
active learning, we only have observations of u, uy, and u; at the
existing design points (at time t = £,), but not at the potential
design points.

To construct the model matrix M, we need to evaluate u(x, t)
and its derivatives at the potential design points at time t = t;.
One option is to solve the currently estimated version of the dif-
ferential equations. But this can be prohibitively difficult because
the estimated differential equations still contain a large number
of terms when only a few data are collected. Some terms, such as
the higher-order derivatives of u(x, t) or the products between
derivatives, might not be contained by the true differential equa-
tions, but are not yet screened out in the early iterations. They
make the differential equations complex and computational to
solve. Moreover, the early estimated differential equations are
more likely to differ from the true equations significantly. As a
result, the solution u(x, t) would behave differently from the true
system in the unexplored design space. The derivatives of the
solution might diverge further from the true derivatives. There-
fore, even if we can solve the estimated differential equations in
the early stages of active learning, the solution could lead to the
“wrong” design points for the subsequent learning.

Alternatively, we can build a surrogate model of u(x, t;) based
on the current available observations {x;, u(x;, t;)}_, for i =
1,2,...,n, where n is the currently available sample size. The
surrogate model is an empirical statistical model that is often
used to analyze the outputs from computer experiments or
simulations, in which the functional relationship between the
input variables and outputs is complex and highly nonlinear.
For example, many computer experiments are run through
complex numerical PDE solvers. Among all statistical modeling
methods, GP regression, also known as kriging, has been widely
used for computer experiments (Santner et al. 2003) for several
reasons. First, due to the mathematical simplicity of the GP
assumption, it is relatively easy to obtain the prediction and
statistical inference. Second, the GP predictor with nugget effect

(or the posterior mean if Bayesian framework is used) is iden-
tical to the kernel ridge regression based on reproducing kernel
Hilbert space (RKHS) (Kanagawa et al. 2018). Therefore, the GP
regression possesses the same theoretical properties of RKHS
regression which provides a clear analysis of the approximation
error (Wendland 2004).

We choose the GP regression as the surrogate model for
u(x, t;) to construct the basis functions. Besides the above rea-
sons, we have a more important motive. The properties of the
covariance function around x = 0 determine the smoothness
properties of the GP. So we only need to choose the proper
kernel as the covariance function to match the smoothness of
GP to u(x, t). Thanks to this property, we can first build the GP
regression to replace u(x, t = t;) and then obtain the derivatives
of the fitted GP model analytically, which are used to replace
derivatives of u(x, t = t;) of x. Other statistical models, such as
splines, are mostly based on low-order polynomial functions of
x. If these methods are used, we need to build separate models
for each of u(x, t) and its derivatives, because the polynomials
may not match the smoothness of the u(x, t).

In the remaining section, we first introduce the ACSD design
criterion, then review the GP model and derive its derivatives,
and lastly elaborate the entire active learning procedure to iden-
tify the unknown differential equations.

3.2. ACDS Design Criterion

The classic D-optimal design criterion is det(MTM). It does
not depend on the response observations. If there have been
n design points in the design, the model matrix M,, contains
n rows and k columns. To add the next design point, the D-
optimal design is the solution of the following maximization
problem.

Xpt+1 = arg max det(MI+1MH+1)
xeQ
= arg mas)z( det(MIMn + m(x)m(x)T)
xXe

= arg mas)z((l + m(x)T(MnTMn)_lm(x)) det(MIMn),
xe

where m(x) is the k x 1 vector of basis functions evaluated at
x. Since the previous # design points have been chosen already,
det(MIMn) is invariant with respect to x,1, and thus shall be
omitted from the objective function. We need to find x,,+; such
that

%np1 = argmax(l + m(x) " (M M) 'm(x)).
xe

When # is small (but still larger than the number of columns),
we can add a regularization term to mitigate the ill-conditioning
problem.

K1 = argmax(l + m(x) ' (M, My + plo) ™ m(x).  (5)
xe

Here, p is the noise-to-signal ratio. If u(x, t) is one-dimensional,
roughly, p can be computed by 62 /52, where &2 is the estimated
variance of the linear regression model with current n observa-
tions, and s? is the sample variance of the column of %—l[‘ Ifu(x,t)
is multidimensional, it is the average of the noise-to-signal ratio
for each dimension of u(x, t).



During the active learning process, the model matrix M,, can
be updated by removing some insignificant columns of bases,
as long as variable selection is performed whenever new data
are collected. But sometimes the variable selection is not reliable
when only a small amount of data has been collected. Certain
columns that are contained by the true differential equations
might be dropped by mistake, which misleads the subsequent
data collection. To avoid this possibility, we decide not to update
the model matrix by removing any candidate columns from M,
throughout the active learning procedure.

As explained earlier, we need to build a GP regression model
as the surrogate of u(x,t) to construct the basis functions at
the potential design points. But D-optimal design alone cannot
facilitate a reasonable estimation of the GP model, as the optimal
design points are usually clustered at a few local regions in the
whole design space. It could lead to numerical issues and cause
the covariance matrix of the GP to be ill-conditioned. Besides,
the fitted GP model will not be a globally accurate surrogate if
only a few regions are explored.

Space-filling design (Joseph 2016) has been used frequently
in combination with the GP model for computer experiments.
The design points are spread through the entire design
space measured by various design criteria. Sequential design
approaches, such as Harari and Steinberg (2014) and Binois et al.
(2019), iteratively update the GP model using newly collected
data and then select the next design point(s) to optimize some
criterion, such as the mean square prediction error of the GP
prediction.

In general, the mean squared error (MSE) of the GP
prediction is smaller if the design has better space-filling
property. Loeppky, Moore, and Williams (2010) found out
that the maximin-distance designs perform comparably well
with sequential designs that aim to reduce the MSE of the GP
model. Therefore, we choose the maximin-distance criterion to
measure the quality of the space-filling design. To add the design
points sequentially, maximin design selects the next design x,,41
that maximizes the minimum distance between x,, 1 and the
current design points (Johnson, Moore, and Ylvisaker 1990),

(6)

Xpy1 = argmax min dist(x, x;),
xeQ i=1,...,n
where dist(x;, x;) is the chosen distance metric for 2. We simply
use Euclidean distance ||x — x;l|2.

The proposed sequential design criterion must consider
two fronts, the linear regression part that learns the significant
terms in the differential equations and the GP surrogate model
part that construct all the basis functions at the potential
design points. So we combine the D-optimal criterion and the
maximin-distance criterion into one by linear combination.

2
IIx—xillz}

tay [1 + m(x)T(MIMn)*lm(x)]} .

Xp4] = argmax o [ min
x€Q i=1,...,n

7)

Here, 1 and o are the weights, and will be specified later. But
to properly choose the weights, we need to scale the two criteria
into the same range. The tight upper bound for the D-optimality
is

UD = max(l + mT(MIMn)_lm%
meF
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where F is the feasible region for all m(x) and x € Q. Rigorously,
Up can be calculated via quadratic programming if F can
be decided based on the surrogate model of u(x,t). Because
minj—;, . |lx — xl-||% < % Z?Zl [lx — xi||%, an upper bound

for the minimum distance is
n
1 2
Ug = max — E [lx — xill5,
xeQ N “ I
i=

which can also be solved by quadratic programming. To sim-
plify the computation, we obtain Up and Us from the pool
of potential design points, which can be seen as a heuristic
optimal solution. Including the upper bounds, the proposed
design criteria is

. are max | o minj—1, || — xil/3
1= 1
ks & xeQ Us

[1 + m(x)T(MnTMn)—lm(x)]}
“+ay .
Up

(8)

Intuitively, the weights a1 and «» should adjust the balance
between the two design criteria. Ideally, such adjustment should
be data-driven and thus we compute «; and o as follows.

~2 A2
T o
(9%
o] = 3 x50 0y = ~A (9)
2 2 2 2
T, t+o 1=

Here, 62 is the estimated variance for € from the stepwise linear
regression, and 2, is the leave-one-out cross-validation error
from GP model (Dubrule 1983), which can be calculated via

1
(Kxxy)i A2
~ 1 cv
XX )i

. (i — P0,i—i)?
Yi— Y6,i—i = = Z %-
i=1

Note that when u is multidimensional, 72, is the average of the
leave-one-out cross-validation error from each GP model fitting
each dimension of u.

The weights defined in (9) are automatically updated based
on the goodness of fit of the GP model and the regression model
in each iteration. If 5% is significantly larger than 72, it indicates
that among the two fitted model, it is more urgent to collect
the subsequent observations to improve the linear regression
fit. Thus, o, is significantly larger than o, which makes the
D-optimality dominate the combined criterion (8). Conversely,
the space-filling criterion dominates the criterion (8) if fczv is
significantly larger than 2. We name the proposed criterion (8)
and the weights (9) adaptively combined D-optimal and space-
filling criterion, or ACDS for short.

3.3. Gaussian Process Regression and Its Derivatives

In this part, we review the GP regression model and derive its
first- and second-order derivatives. Using the general notation,
we observe the data {x;,y;}! | withx € @ C RP,and y; € R
is the univariate response observation for x = x;. The GP
assumption says

y(x) = pn(x) + Z(x) + ¢,
€~ N(O,GOZ),

where Z(x) ~ GP(0,k(-,-)) and
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with

L4 Y
k(xi,xj) = 7 exp :_Z%}
S

s=1

For simplicity, we assume p(x) is an unknown constant .
The bandwidth parameter w; is positive for s = 1,...,p. The
parameters @ = (u, T2, ®,0¢) are estimated by maximizing the
log-likelihood (10) based on the data.

2logL = —(y—,uvl,,)—'—f(;x1 (y—nly,)—log det(K,,) — constant,
(10)
where y is the vector of the observations y;’s, Koo = Koo + agl,
and K, denotes the covariance matrix with entries [Kyx]ij =
k(x;, xj). Once the parameters are replaced by the maximum
likelihood estimates, the conditional mean of the response y(x*)
corresponding to new inquiry point x* is given by,
I) = i+ kL Ky — Aly). (11)
It gives the predictor formula of the GP surrogate model. The
vector k;';x = [k(x*,x1),...,k(x*,x,)] is the vector of covari-
ance between x* and x;’s, and 4 = lan(;xly/l;lrf(xxln. We
omit to review the conditional variance of the GP predictor, as
we do not need inference information of the GP predictor in
the proposed active learning approach. In the predictor y(x*),
only the vector K.+, contains the variable x*. The first-order
derivatives of the surrogate model are

y(x*) _ Zn: ok(x*, x;)

% %
e s

[y (v — A1)l forj=1,....p,

and

Ok(x*,xp) (' — xij)

* )
ij wj

k(x*,xi).

The second-order derivatives are

Ppxt) Z 02 k(x*, x;)

ko Kk * 0 K
Bxl axj ax, 8xj

K, (y— Al forj,l=1,...,p,
i=1

where

O%k(x*,x;) ((xf —Xif) (¢ —xp) 1

— =& ) k(x*, x;
836}"896}k w; w] w;j lj) ( 2

with 8 = 1if I = jand 0 otherwise. The derivatives of the
GP model with more general form can be found in Eriksson
etal. (2018). Higher-order derivatives can be obtained similarly.
Please note that this review is for the univariate response case.
When u € R? is multidimensional (d > 1), we only fit the GP
model to each dimension of u individually instead of fitting all
the dimensions into one joint model. Based on the application,
readers can use the joint GP model for multivariate responses,
such as co-kriging (Myers 1982), but more parameters have to
be estimated due to the correlation between responses.

3.4. Active Learning Procedure

We summarize the proposed active learning procedure into
Algorithm 1. In the for-loop of the algorithm, when a new design
point is added, a short cut formula

A laaTA™!

A aaT _1=A_1——
(A+aa’) T aTaTa

can be used to update (Mz+j71Mﬂ+j—1)7l to (MLJ»M,H_]-)’I.
Also in the for-loop, the new rows in M, are the basis func-
tions of the selected design points, which are calculated based
on the GP surrogate model and its derivatives. Once the new
data are collected, the newly added rows of the model matrix

M,, need to be updated using the actual observations.

4. Numerical Case Studies

In this section, we use several simulation case studies to
demonstrate the performances of the proposed active learning
approach. We generate the data using a known PDE or ODE
system and then use an active learning method to identify the
differential equations and compare them with the true ones.
We compare the active learning with the ACDS criterion with
maximin space-filling design. Although both final designs are
sequentially constructed, maximin space-filling design does not
need GP surrogate model since it is model-free.

We measure the performance of different methods on three
aspects: variable selection accuracy, parameter estimation accu-
racy, and the size of the total design points denoted as N. On
variable selection, we consider both the number of false-positive
(FP) and false-negative (FN) cases. In the FP case, the variable
selection method mistakenly identifies some terms as signifi-
cant, but they are not included in the underlying equations. The
opposite case is when some terms contained by the true equa-
tions are missed by the variable selection method. We define
the total number of falsely identified terms by y = FP + FN
to account for both cases. To evaluate the parameter estimation
accuracy, I loss is considered as follows

LB) = 1B — Bruell2s

where || - ||, stands for the [, norm, B is estimated parameter
values and B, is true parameter values.

4.1. An ODE System

Consider the two-dimensional ODE system

d

D 0.5y 429
dx

dyz

—= = —2y;1 — 0.5y,
dx J1 72

as the true underlying differential equations. We set the initial
condition to be (y1, ¥2)|x=0 = (2,0). The system is solved by the
MATLAB ODE solver ode45. Independent noise € is added to
dy1/dx and dy, /dx. The ranges of dy; /dx and dy,/dx (without
noise) are [—3.052, 1.392] and [ —4.000, 2.061], and the standard
deviations are 0.544 and 0.519. The variance of noise are set to
be o2 = 0.22,0.5%,0.8%



Algorithm 1: Gaussian Process assisted active learning of
physical laws.

Input : Prescribed tolerance of convergence Tol, the
maximum allowed sample size Ny, and the
batch size B.
Output: Estimated PDE or ODE system
1 Prepare a large set of potential design points C;
2 Choose the set of basis functions of the differential
equations;
3 Derive the formula of the necessary derivative functions of
the GP predictor;
4 Generate the initial design D by random sampling Ny
design points from the potential design points;
5 Collect the data based on the initial design;
6 Initialization: set 8, = 1, B, = 0, the current sample size
n = No;

7 while % > Tol and n < Npax do

8 | Update B, < B

9 | Based on the current observations, construct the basis
functions at the newly selected design points, and form
Mn§

10 | Use forward stepwise regression and BIC criterion to fit
the regression model such as (3). Obtain 62 and
estimate linear coefficients 8, (If a basis function is not
selected into the stepwise regression, set the
corresponding coeflicient to zero.);

11 | Fit the GP surrogate model(s) with the currently
collected data and compute the leave-one-out
cross-validation error £2;

12 | Using the GP predictor(s) and the derivatives (with
estimated parameters), calculate the values of the basis
functions m(x) at the potential design points;

13 | forj=1,...,Bdo

14 Update Us and Up;

15 Compute the ACDS design criterion (8) for each
potential design point in C;

16 Select the design point with largest ACDS criterion
into D and remove it from C;

17 Update (M;,F+J._1M,hLJ-_1)—1 to (MnT+jMn+j)—1;

18 | end

19 | Collect the data for the newly B selected design points;
20 | Updaten < n+ B.

21 end

The linear regression models we use to learn the ODE system
are

d

% =fy2) By
X

dy> _ T
I =fUy2) B

where f(y1,y2) is the vector of candidate basis functions that
are monomials of y; and y; to the fifth degree, and 8, and 8,
are regression coeflicients to be estimated. The potential design
points in C are 3000 equally spaced points in the interval [0, T]
with T = 30. The initial design contains Ny = 16 randomly
selected design points from C. The batch size is B = 16 in
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Table 1. ODE system: identified ODE’s and 95% Cl of parameters.

True system dy1/dx = —0.5y1 + 2y,

dyy/dx = —2y7 — 0.5y

02=022 dyq/dx = —0.499(40.0323)y; + 1.986(40.0487)y,
dyy/dx = —1.974(40.0306)y; — 0.517(+0.0461)y,
o2 =052 dyq/dx = —0.540(£0.0479)y; + 2.070(40.0638)y,
dyy/dx = —1.967(+0.0482)y; — 0.505(+0.0642)y>
o2 =082 dyy/dx = —0.496(%0.0714)y1 + 1.944(£0.0928)y,

dyy/dx = —2.044(£0.0734)y1 — 0.509(=£0.0955)y,

each iteration of active learning. Table 1 shows the identified
ODE system with the 95% confidence intervals of the coefficient
parameters (in the parenthesis) from a single simulation for each
o? setting.

In Figure 1, the progress of the proposed active learning
with the ACDS criterion is shown. In this simulation we set
0% = 0.5% The solution of the estimated ODE system is
compared with the true solution when the sequential design
reaches the size of 48, 64, 80, and 96, and it becomes closer to
the true solution path as more data are collected. Eventually,
the two solution paths almost overlap each other, indicating
the accuracy of the proposed active learning approach. This
case study is also shown in Zhang and Lin (2018), in which
N = 200 design points are used in a nonsequential design of
the experiment. Comparing Figure 1 with Figure 2 in Zhang
and Lin (2018) with 02 = 0.5%, we can see that the active
learning method with ACDS criterion performs equally well as
the threshold sparse Bayesian regression proposed by Zhang and
Lin (2018) in terms of accuracy of model estimation. But the
active learning method uses only about half of the data, and the
forward stepwise regression is a much simpler variable selection
technique than that of Zhang and Lin (2018).

Tables 2 and 3 compare ACDS active learning with sequential
maximin space-filling design. Both show the mean and standard
deviation of the performance measures from the 50 simula-
tions. In Table 2, the sequential procedure is terminated when
convergence is reached, that is, ||8. — B,!|/||1B.] < Tol and
Tol = 1072. We can see from Table 2 that the ACDS criterion
outperforms the maximin space-filling design in terms of the
variable selection and parameter estimation, although it uses a
larger sample to converge. Both methods become worse when
the variance of the noise becomes larger, as expected. In Table 3,
we fix sample size to be N = 112, and thus the convergence
condition is not necessarily always guaranteed for either of the
two methods. It is obvious that given the same amount of data
the ACDS returns a much more accurate identified ODE system
than maximin space-filling design.

4.2. An ODE System With Random Coefficients

To show the robustness of ACDS, we modify the previous
ODE example into a more challenging case. Consider the two-
dimensional ODE system

d
% = —ay; + by,
d
92 _ —by; — aya,
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Figure 1. Four snapshots of the solution of the estimated ODE system. Red line represents solution of the estimated equation and black line represents true solution.

Table 2. Comparison of two methods when both reach convergence for a preset
ODE system.

Table 3. Comparison of two methods with the same fixed sample size for a preset
ODE system.

ACDS Maximin space-filling ACDS maximin space-filling
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

y 0.360 (0.598) 0.560 (1.033) y 0.440 (0.675) 0.440 (0.812)
02 =022 L(B) 0.107 (0.099) 0.306 (0.438) 62 =022 h(B) 0.100 (0.072) 0.218(0.163)

N 121.280 (49.033) 93.440 (26.726) N 112 112

y 0.400 (0.670) 1.220 (1.556) y 0.620 (1.067) 1.560 (1.445)
o2 =052 L(B) 0.171(0.156) 1.055 (2.406) o2 =052 L(B) 0.262 (0.209) 0.769 (0.772)

N 169.920 (59.944) 106.240 (29.584) N 112 112

y 0.580 (0.928) 2,400 (1.195) y 1.260 (1.412) 2.320 (1.421)
o2 =082 L(B) 0.271(0.206) 1.162 (0.747) o2 =082 L(B) 0.501 (0.386) 1.299 (0.958)

N 265.280 (84.793) 122.880 (48.211) N 112 112

where a and b are randomly sampled from Uniform[0.5, 1.5]
and Uniform[2, 3]. The variance of the noise is set to be 62 =
0.4%,0.6%,0.82. For a given o2, we run one simulation for a pair
of randomly sampled (g, b) values. We simulate 50 times for each
0% setting and show the mean and standard deviation of y and
I;(B) in Table 4. We use the same settings for active learning as
in the previous case. The sample size for both methods is fixed at
N = 112, and thus the convergence condition is not necessarily
always reached. It is obvious that given the same amount of data
the ACDS returns a much more accurate identified ODE system
and this result is consistent when the underlying ODE systems
are varied.

4.3. Bass Model With Random Coefficients

The Bass model is a simple differential equation that is widely
used in marketing research. It describes the process that new
products get adopted by a mass population. Consider the one-
dimensional Bass model

i
as the true underlying differential equation. The coefficient p
is called the coefficient of innovation, external influence, or
advertising effect, which has a typical range between [0, 0.03].
The coeflicient q is called the coefficient of imitation, internal

(I =F)(p+qF)



Table 4. Comparison of two methods for ODE system with random coefficients.

ACDS Maximin space-filling
Mean (SD) Mean (SD)

y 0.620 (0.855) 1.160 (1.490)
o2 =042 h(B) 0.380 (0.470) 1.221(1.437)

N 112 112

y 0.760 (1.135) 1.800 (1.852)
o2 =062 L(B) 0.614 (0.744) 2.065 (2.153)

N 112 112

y 1.280 (1.565) 2.260 (1.440)
o2 =082 L(B) 1.093 (1.233) 2.332(1.693)

N 112 112

influence, or word-of-mouth effect, with a typical range between
[0.3,0.5] (Mahajan, Muller, and Bass 1995). One nice feature of
this Bass model is that it has a tractable solution,

1 — e~ 0ttt

F® = 1+ ge_(l’"‘q)f'
So we can simply generate the observational data from this
solution instead of solving the original differential equation.
The candidate basis functions for active learning are poly-
nomials of F(t) to the fifth degree. The potential design points
are 3000 equally spaced points in the time interval [0, T] with
T = 30. The initial design contains Ny = 16 randomly
selected design points from the potential design points. The
batch size is B = 16. The coeflicients p and g are randomly
generated from uniform distributions in the range of [0, 0.03]
and [0.3, 0.5]. In Table 5, we compare the proposed ACDS active
learning with maximin space-filling designs. For both methods,
we let the active learning procedure run long enough until the
convergence condition ||8, — B,||/I|8.|| < Toland Tol = 102
is reached. The noise is added directly to F(t) observations, and
we set 02 = 0.012,0.022,0.04%. For each setting of o2, we run
50 simulations. The range of dF/dt (without noise) is [0, 0.091].
As similarly in the previous two examples, the proposed ACDS
active learning is superior to the space-filling design.

4.4. Burgers’ Equation

Burgers’ equation is one of the most important PDEs applied
in various areas of physics, such as fluid mechanics, nonlinear
acoustics, gas dynamics, and traffic flow. It can be derived from

Table 5. Comparison of two methods on the Bass model.

ACDS Maximin space-filling
Mean (SD) Mean (SD)

y 0.420 (0.859) 0.620 (1.105)
o2 =0012 LH(B) 0.068 (0.168) 0.119 (0.260)

N 87.360 (30.531) 90.240 (55.025)

y 0.740 (1.065) 1.020 (1.134)
o2 =0.02? L(B) 0.131(0.261) 0.199 (0.307)

N 139.520 (53.609) 123.200 (56.661)

y 1.300(1.111) 1.660 (1.136)
o2 = 0,042 L(B) 0.271(0.326) 0.375 (0.435)

N 182.720 (87.522) 164.480 (72.356)
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the Navier-Stokes equation for the velocity by dropping the
pressure gradient term. For the one-dimensional space, that is,
x € R, the Burgers equation is

Up + AUty — Aty = 0, (12)

where the parameters (X,A;) are set to be (1,—0.01). The
initial condition is chosen as ug(x) = 2exp(—15(x — 6)%) +
1.5 exp(—15(x+ 1)%) +exp(—25(x+ 5)2). For Burgers equation,
theoretically, x € (—00,00), and thus there is no boundary
condition. But to solve it numerically, we need to restrict x in
a bounded domain. To generate the observation data, we solve
the Burgers’ equation by finite difference with time step 6; =
0.001 and space step 8, = 0.0025 in the region t € [0,1] and
x € [0,10]. Independent noise € is added to u; in (12), and
its variance o2 is set to be 0.22, 0.4? and 0.8%. The range of
uy (without noise) is [—5.8,17.3] and the standard deviation is
1.43. We use the same candidate basis functions as in Schaeffer
(2017), which are

(1w P 2, ey U2, 13, ity WPty uti2, s U2 1,

2 2 2 2
Uldxx, U Uy, Uty Ux Uy Uy Uy, UxUyys UllxUxy ).

As explained in Section 2, to select the significant terms from
these candidates, we can regress u; against these basis functions
that do not involve time ¢. Therefore, we only need to collect the
necessary observations at a certain time point, t = ;. Here, we
choose t; = 0.1 (actually, we can choose any time) and collect
all the necessary of observations of u;, u, and the other basis
functions at t;, = 0.1.

The set C of potential design points contains 4000 equally
spaced points in [0, 10]. The initial design contains Ny = 5
randomly chosen design points from C. The batch size is B = 10.
In Table 6, we show the identified equation with 95% confidence
intervals of the coefficients (in the parenthesis) from a single
simulation for each setting of o-2. In Table 7, we compare active
learning with ACDS and maximin space-filling design. We first
perform the active learning approach and discover that on aver-
age the procedure converges when N reaches approximately
70, 72, 90, and 97 for 02 = 0.22,0.4%, and 0.8%. Thus, we
fix the space-filling design with size N = 70,72,90, and 97.
We run the simulation 100 times and compare the mean and
standard deviation of y and l;(B). For this PDE case study,
the proposed approach still outperforms the random design in
terms of accuracy.

5. A Real Example: Air Pollution Monitoring

To motivate the use of our method in a practical application, we
consider the problem of air pollution monitoring. In particular,
we aim to compute sequential optimal sensor placement for

Table 6. Burgers’ equation: true equation and the identified equation for different
2
o “ value.

True system ut + uuy — 0.0Tuxy =0

02 =022 Ut + 0.9982(2£0.0093)uuy — 0.0108(20.0009)uyy = 0
o2 =042 Ut + 0.9928(£0.0103)uty — 0.0092(40.0009)tyy = 0
o2 =082 Ut + 0.9949(£0.0164)uuy — 0.0114(40.0015)Ux = 0
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Table 7. Comparison of ACDS active learning and maximin space-filling for Burgers’

equation.
ACDS maximin space-filling
Mean (SD) Mean (SD)
y 0.330 (0.668) 0.840 (1.051)
02 =022 L(B) 0.016 (0.031) 0.123 (0.406)
N 68.400 (24.380) 70
y 0.540 (0.834) 1.310(0.961)
02 =042 LH(B) 0.028 (0.041) 0.220 (0.484)
N 72.100 (27.535) 72
y 0.930 (0.946) 1.240 (0.726)
02 =082 L(B) 0.082 (0.183) 0.214 (0.457)
N 97.100 (52.229) 97

systems described by advection and diffusion equation (Egan
and Mahoney 1972; Scheff et al. 1992),

dc

— =V . (DVc¢) — V- (vo),

ot
where c(x, t) is the concentration of air pollution at location x
and time t. Constant D is the diffusion coefficient. The higher
the diffusivity, the faster the pollutant diffuses into the air. The
vector v is the velocity field of air movement. The experimenter
allocates limited sensor to monitor air pollution and then iden-
tifies the diffusion coefficient D (Cheng et al. 2011; Yu, Zavala,
and Anitescu 2018). Unfortunately, the concentration of air
pollution is difficult to assess experimentally due to the limited
number of monitors (Cheng et al. 2011).

The conventional practice is that the experimenter usually
allocates these limited sensors in such a configuration that each
monitor surrounds the air pollution source at different radial
distances and angles (Cheng et al. 2011). Figure 2 illustrates the
placement of sensors for two residential houses with different
shapes. CO monitors are placed on the circles centering at
the CO source. This pattern has two restrictions. First, such
placement can only be implemented when the experimenter
is aware of the pollution source position. But it is not always
the case in practical applications. Second, this experimental
setting assumes that the pollution concentration is spatially
homogeneous within the room. Such placement of sensors in
Figure 2 cannot be used in a more general setting. For instance,
we consider the two-source advection-diffusion model (Scheff

et al. 1992) shown in Figure 3(I)-(a). In this scenario, the con-
centration of air pollution is no longer spatially homogeneous
within an indoor space.

In this section, we consider an experiment on air pollution
monitoring. Besides the maximin space-filling design, we also
compare it with the D-optimality criterion. To implement the
D-optimality in the active learning, we only need to use (7)
rather than (8) and set ; = 0 throughout Algorithm 1. Other
components of Algorithm 1 are still the same. We make the
following assumptions on the experiment.

1. The experimenter is not aware of the location of the source
of pollution, but only the initial condition of the pollution
concentration. The experimenter hopes to collect data and
identify what the diffusion process is, that is, the function
format, as well as the parameters.

2. The underlying pollution concentration is spatially hetero-
geneous, and we further assume the true underlying two-
dimensional diffusion equation

ac

— = Cxx + Cyy»
ot xx Vy

with 0 boundary condition and initial condition shown in
Figure 3(I)-(a). This initial condition is the sum of two mul-
tivariate normal probability density functions with two dif-
ferent means, 1 = (3,5) and u, = (7,5), and a common
covariance matrix ¥ = [0.25,0.3;0.3, 1].

3. The experimenter can either move the sensors to new loca-
tions in a negligible short time or repeat the diffusion process
multiple times with the exact initial condition so that each
new batch of data are collected at the same time point t = .

To implement the proposed active learning approach, we first
construct the candidate basis functions in Table 8. Set the time
t; = 0.0005 and collect all the data at the spatial locations. The
potential design points in C are 32 x 32 equally spaced grid
points in [0, 10] x [0, 10] domain. Let us assume that there are
16 sensors used. The initial design is a Latin hypercube space-
filling design chosen from C and the batch size is B = 16
as shown in Figure 3(II)-(b). In this practical application, we
decide to collect 5 batches of data, and thus the total number
of collected data is Nyax = 16 x 5 = 80. In Table 9, we show the
identified equation with 95% confidence interval of parameters
from a single simulation for different setting of o2. We also

CO Source e
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Figure 2. Air pollution: view of CO monitor placement for two different residential houses. The unfilled star presents the CO point source located at the center of room; the

solid dots represent the CO monitors.



(a) Two-source diffusion model
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Figure 3. Air pollution: four snapshots of sequentially added batch of design points foro?2 = 0.22.

show the progress of the addition of the design points in the
active learning process in Figure 3(II). In each of the sub-figure,
the red dots represent the newly added batch of design points.
The heatmap is generated by the fitted surrogate model of the
available observations. Table 9 and Figure 3 show that ACDS can
identify not only the diftusion coefficient accurately but also the
position of two sources correctly.

Table 10 compares ACDS, D-optimal and maximin space-
filling designs. We simulate over 50 random trials and compare
the mean and standard deviation of y and L,(8). Both ACDS
and D-optimal design approaches are much more accurate
than the maximin space-filling design. Although D-optimal
design achieves almost similar accuracy compared with ACDS,
it sometimes fails to identify the position of two sources as
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Table 8. Basis functions for air pollution monitoring problem.

First order €, Cx, Cy, Cxxs Cyys Cxy

Secondorder 2, ccy, ccy, c,z(, c}%, CyCxs Cex s Cxx Cxs GGy Cyy G, Cyy Cx, Cyy Cy, Cry

Cxy Cx Cxy Cyr Cxxr CxxCyy s CxxCxy s Cxyr Cyyr Cyy Cxy

Table 9. True PDE and identified PDE for air pollution monitoring problem.

True system = Cxx + Gy

02 =022 ¢ = 0.9988(40.1319)x + 1.0098(=£0.0287)cyy
o2 =042 ¢t = 1.0544(20.2734) e + 1.0145(0.0665)cyy
o2 =082 ¢ = 0.8421(£0.3112)cxx + 0.9951(£0.0770)cyy

Table 10. Comparison of three methods for air pollution monitoring problem.

ACDS D-optimal Maximin space-filling
Mean (SD) Mean (SD) Mean (SD)
y 0.440 (0.577) 0.380 (0.635) 0.780 (0.975)
62=022 h(B) 0.392(0.495) 0.500 (0.960) 1.738(2.947)
y 0.940 (1.114) 0.700 (0.909) 1.420 (0.835)
62 =042 L(B) 1.620(2.029) 1.633 (2.298) 3.293 (4.685)
y 1.620(1.123) 1.520 (1.054) 1.860 (1.030)
62 =082 h(B) 2.697(2564) 3.263 (3.226) 4.894 (6.106)

shown in Figure 4(III). We also compare ACDS with D-optimal
design with a particular initial design generated by the mesh
grid shown in Figure 4(I)-(b). As shown in Figures 4(II) and
(Im), if the initial design has missed covering one of two
hills, ACDS distributes the design points around the missing
hill in the next several sequential, whereas D-optimal would
concentrate around just one hill. Therefore, D-optimal is more
sensitive to the initial design. From the above comparison,
the ACDS outperforms both D-optimal and space-filling
designs.

Lastly, we compare different variable selection methods
based on motivating examples. We consider forward stepwise
regression with BIC criteria and Lasso, which are implemented
in MATLAB functions stepwisefit and lasso. Figure 5 is
boxplots of ,(B) and y over 50 random trials. In terms of I, (8)
the two are equally good, but the forward stepwise regression
plus BIC has a much smaller number of misidentified terms,
measured by y.

6. Remarks on Case Studies

To summarize the numerical studies in both Sections 4 and 5, we
observe the following advantages of the proposed active learning
procedure with the ACDS criterion.

1. Accuracy. If terminated when the convergence is reached,
the proposed method is more likely to identify the correct
terms of the differential equations with parameters closer to
the truth, compared with the space-filling design.

2. Data economy. Although in Table 2 the space-filling design
uses less data on average than the proposed method, it is
not as accurate as of the proposed method. In fact, from
our experience in running these simulations, to achieve the

(a) Two-source diftusion model

(b) Intial design

(a) the 2nd batch (b) the 3rd batch

0 2 4 6 8 10 0 2 4 ] 8 10
i (c) the 4th batch i (d) the 5th batch
0.15
8
3 01
4
0.05
2
0 : - - - . M,
L] 2 4 6 8 10
(II) ACDS

(a) the 2nd batch (b) the 3rd batch

0.35

03

0.25
2 4 6 8_..

10

(d) the 5th batch

(I11) D-optimality

Figure 4. Air pollution: four snapshots of sequentially added batch of design points
fore2 = 0.22 by using ACDS and D-optimal.

same level of accuracy in terms of L,(f) and y, the sample
size of space-filling design and D-optimal design must be
significantly larger, and the algorithm has to use smaller Tol
or terminates at a fixed large sample size N.

3. Variable selection method. Compared with the existing lit-
erature method, as in Zhang and Lin (2018) and Schaeffer
(2017) and others mentioned referred in Section 1, the vari-
able selection we used is much simpler. We believe that the
ACDS criterion and the sequential learning both have made
the variable selection method more accurate.

In these case studies, numerical solvers have to be used first
to solve the equations, which use fine grids in time ¢ and space x
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Figure 5. Air pollution: the comparison between the forward stepwise regression with BIC and the Lasso approach. The two measures /5 (8) and y are changed with
respect to the iteration of the active learning algorithm. The blue solid line connects the means of /(8) and y values of 50 simulations returned by the forward stepwise
regression with BIC method and the red solid line represents the Lasso method. The two ends of each vertical line segment are one standard deviation above and below

the mean.

to apply the finite-difference scheme to obtain the u, uy, uy, . . .,
and then we add the noise to construct the simulated data.
Thus, the selected design points in t and x have to be from the
fine grid-points and cannot be as flexible as in the common
physical experiments. In fact, we have applied the proposed
active learning method to select a subset of the complete outputs
of the numerical solvers. However, it is important to point out
that the proposed method is being demonstrated as a sequential
design method in the case studies, rather than sequential sam-
pling, because we do not use the observed data of the potential
design points when deciding which new batch of points are to be
selected. Therefore, the proposed active learning can be used in
a real physical experiment, in which the data are truly collected
sequentially. Unfortunately, we do not have a real case study for
illustration at this moment.

For a PDE system, the active learning method selects design
points in x € RP, and it does not matter whether the design
points are selected in increasing order in some dimensions.
For an ODE system, the sequential design is in terms of the
variable t. If t denotes something other than time, such as one-
dimensional location, then the proposed method can be used to
learn the ODE system from a physical experiment. However, if
the variable  means time in the physics sense, the sequentially
added design points must be increasing in value because time
only travels in one direction. So in each iteration, the active
learning needs to select the time points of the future, and the

surrogate model must be an accurate forecasting model. The
stationary GP model cannot be applied here. Users must con-
sider other proper stochastic time series model as the surrogate,
which is a question we would investigate in the future. Alter-
natively, using the proposed method, the experimenter needs
to repeat the experiment to collect a new batch of data at the
selected time points.

7. Discussions

In this work, we propose an active learning approach with adap-
tive design criteria combining the D-optimality and maximin
space-filling criterion to learn the unknown differential equa-
tions from the noisy experimental data. The GP model is used
as the surrogate model to replace the unknown function when
the ACDS criterion is computed for the potential design points.
The weights combining the D-optimality and the space-filling
criterion are data-driven, and the active learning procedure is
completely autonomous. Through three simulation case studies,
we show the proposed approach is better than the space-filling
design and the sequential D-optimal design in terms of two dif-
ferent performance measures on the accuracy of the estimated
differential equations.

The proposed method cannot be used to learn the initial and
boundary conditions of the PDEs, as we only use the obser-
vations at t = f, and the observations on the boundary are
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not necessarily available. Hence, we do not need the GP sur-
rogate model to meet the unknown boundary conditions. On
the other hand, if the boundary conditions are known to the
experimenter, the GP models should be fitted with the bound-
ary conditions as shown in Tan (2018). Consequently, the GP
models would be closer to true solutions.

There are several possible avenues for future work. As
pointed out in Section 6, to learn the time-dependent ODE
system from physical experiments, we need to find another
stochastic model of time series that can produce accurate
forecasting. Some other combinations of design criteria can
be combined, such as A/I-optimality for the regression model
and other space-filling or prediction based criteria for the GP
model.

Supplementary Materials

The supplementary materials contain all the Matlab codes and data for the
examples in Sections 4 and 5.
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