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ABSTRACT

Many applications involve data with qualitative and quantitative
responses. When there is an association between the two responses,
a joint model will produce improved results than fitting them sepa-
rately. In this paper, a Bayesian method is proposed to jointly model
such data. The joint model links the qualitative and quantitative
responses and can assess their dependency strength via a latent vari-
able. The posterior distributions of parameters are obtained through
an efficient MCMC sampling algorithm. The simulation is conducted
to show that the proposed method improves the prediction capac-
ity for both responses. Further, the proposed joint model is applied
to the birth records data acquired by the Virginia Department of
Health for studying the mutual dependence between preterm birth
of infants and their birth weights.
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1. Introduction

In many applications, mutually dependent quantitative and qualitative (QQ) types of out-

come data are simultaneously observed. It is important to jointly model them to make

accurate estimation and inferences, which provide scientific and meaningful conclusions.

In this paper, our application focuses on a birth records study examining themutual depen-

dency of birth weight and preterm birth. The birth weight of the infant, a quantitative

outcome, is an important variable that doctors need to monitor [1]. The average birth

weight of healthy infants is about 3.5 kg. Children with low birth weight are more likely

to have complications soon after birth and later in life, compared to children with normal

birth weights [2,3]. The birth weight is known to be related to another key variable, preterm

birth, a qualitative outcome whose value is set to be 1 if an infant is born before 36 gesta-

tional weeks and is 0 otherwise. Several factors are related to low birth weight and preterm

birth. Such factors include the socio-economic and health status of the mother, stresses

caused by the environment, etc. [4,5]. Naturally, a preterm born infant is more likely to
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suffer from low birth weight, and the two are highly correlated. Both preterm birth and

low birth weight are rare outcomes in the population, accounting for less than 10% of all

live births. Meanwhile, they have a significant effect on the health of the population, as well

as the economy in general, due to the expenses spent on caring andmonitoring infants [6].

Modernized maternal care is designed to provide personalized health care to mothers

and children. It is important to understand how various factors affect both preterm birth

and low birth weight. A statistical model that accurately predicts both quantitative and

qualitative outcomes may offer useful information to health practitioners and expectant

mothers. Many other applications are in need of such a joint model for quantitative and

qualitative responses. For example, in [7,8], the total thickness variation (continuous) and

the site total indicator reading (binary) are both measured to evaluate the quality of the

wafer after the lapping stage in the wafer manufacturing process. In [9], survey data with

both quantitative scores and categorical answers are jointly analysed. More applications

and methodologies on the mixed types of quantitative and qualitative response data are

reviewed in Section 2.

In this article, a Bayesian hierarchical model is developed for the mixed quantitative

and qualitative types of responses. A latent variable is introduced to connect the two

types of responses, which is similar to the joint model in [10]. This joint model is suit-

able for the data on the birth records study described previously. It is much simpler than

the joint models by Dunson [11] and yet still sufficiently effective. In [10], the joint dis-

tribution is factorized into two regression components – the marginal distribution of

the continuous outcome and the conditional distribution of the binary outcome condi-

tioned on the continuous outcome. The latter is obtained through the latent variable,

which is correlated with the observed continuous outcome. Based on the factorization,

the estimation is done in two steps. The first step is to estimate the marginal regression

model of the continuous outcome. The second step is to estimate the probit regression

model of the binary outcome conditioned on the continuous outcome. The generalized

estimating equations approach is used to obtain the estimation. Different from Catalano

and Ryan [10], this work incorporates the Bayesian framework, assumes the proper prior

and hyperprior distributions, derives the posterior distributions, and then develops the

MCMC sampling procedure to obtain the posterior distributions. Compared to the fre-

quentist approach in [10], there are some merits with the Bayesian approach. First, the

posterior distribution of the latent variable is available. Second, the Bayesian inference

is more accurate since it is not based on the asymptotic distribution as in maximum

likelihood estimation. Third, sparsity on both regression models of the two outcomes is

induced due to the informative prior distributions, which are assumed for the regression

coefficients.

The remainder of the article is outlined as follows. Section 2 provides a literature of

recent work on modelling quantitative–qualitative responses. Section 3 introduces the

joint quantitative-qualitative model via latent variable within the Bayesian framework, as

well as the full-conditional distributions of the parameters and the leave-one-out condi-

tional posterior distribution of the latent variable. Section 4 lays out the MCMC sampling

procedures. Numerical study and the case study in birth records are provided in Sec-

tions 5 and 6 to illustrate the merits of the proposed model. This article concludes in

Section 7.
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2. Literature review

Some works in the literature have tackled the issue of mixed quantitative and qualitative

types of outcomes. Someof them, such asWang andTsung [12], Liu andHuang [13], Cheng

et al. [14], Zhou et al. [15] and Shi [16], modelled the two types of responses separately.

They overlooked the possible association thatmay exist between the two types of responses.

As a result, if there exists a dependency between the two types of responses, separate mod-

elling could lead to less accurate prediction and misinterpretation compared to the joint

models. Most other works are on joint models for mixed types of outcomes, including

[7–11,17–21]. Some interesting practical application cases can be found in [15,22–25].

These works can be further categorized into different groups. From the perspective

of estimation methods, they can be divided into Bayesian methods, such as [8,11,18],

and non-Bayesian methods, for example, [7,9,10,20]. Depending on the form of the joint

model, Fitzmaurice and Laird [19], Deng and Jin [7] and Kang et al. [8] considered

modelling the quantitative response conditioned on the qualitative response, leading to

conditional linear regression models and marginal classification models, whereas other

methods such as [9–11,18,20] used a latent variable to link the quantitative and qualitative

outcomes.

Some representatives of the latent variable models are highlighted below. Motivated to

analyse a toxicity experiment, Catalano andRyan [10] used a latent variable to obtain a joint

distribution of mixed responses. The joint distribution is a product of a linear regression

model for the quantitative variable and a probit model for the qualitative variable. Dun-

son [11] suggested using the generalized linear models to describe the joint distribution of

variables and proposed aMarkov chainMonte Carlo (MCMC) sampling algorithm for esti-

mating the posterior distributions of the parameters. Dunson [18] extended the previous

work tomultidimensional longitudinal data. However, such early methods focus onmodel

estimationwithout investigating a sparse and interpretablemodel. Different fromCatalano

and Ryan [10], the latent variables in [11,18] appear in the generalized linear model as the

linear coefficients. But in [10], the latent variable is used to define the probit model for the

binary outcome.

Deng and Jin [7] proposed the QQ model for joint fitting quantitative and qualitative

responses by the maximum likelihood estimation and identified the significant variables

by imposing non-negative garrotte constraints on the likelihood function. The likelihood

of the joint QQ model is the product of the conditional distribution of the quantitative

responses conditioned on the qualitative responses and the marginal distribution of the

qualitative responses. The authors also developed an iterative algorithm to solve the con-

strained optimization problem. Consequently, the classic asymptotical distribution of the

maximum likelihood estimation cannot be easily applied, hence, making it difficult to con-

duct statistical inference. Using the same QQ model in [7] as the sampling distribution of

the data, Kang et al. [8] introduced a sparse hierarchical Bayesian framework, which can

easily provide statistical inference on the estimated parameters and prediction of the QQ

model. However, since they constructed their model by fitting the quantitative response

conditioned on the qualitative response, Deng and Jin [7] and Kang et al. [8] appeared to

improve the prediction accuracy for the quantitative response, while the model of qual-

itative response would be similar as it was modelled independently of the quantitative

response.



4 X. KANG ET AL.

3. Bayesian QQmodel with a latent variable

3.1. Sampling distribution

Denote the observed data as (xi, yi, zi), i = 1, . . . , n, where yi ∈ R and zi ∈ {0, 1} are the

continuous and binary observations, respectively. Here the vector x = (x1, . . . , xp)
′ con-

tains p predictors (intercept is included if needed). To jointly model the mixed types of

responses Y and Z given x, the key is to describe the association between them. Hence, a

latent variable U for the binary response Z is introduced to facilitate this task. Assume the

binary response follows the Bernoulli distribution

Z =

{

1, if U ≥ 0

0, else if U < 0
with U|β1, x ∼ N(x′β1, 1). (1)

This kind of latent variable approach is also used in cases other than the mixed types

of outcomes. For example, Holmes and Held [26] used an auxiliary variable in Bayesian

binary and multinomial regression. Regarding the quantitative response Y, its marginal

distribution is assumed to be

Y|β2, σ
2, x ∼ N(x′β2, σ

2). (2)

To link the continuous and binary responses, a joint distribution of (U,Y) is introduced,

with an assumption of a bivariate normal distribution for parameters θ = (β1,β2, σ
2, ρ)

as follows:
[

U

Y

]∣

∣

∣

∣

θ , x ∼ N(µ,�) with µ =

[

x′β1

x′β2

]

,� =

[

1 ρσ

ρσ σ 2

]

.

Ifρ is positive,meaning thatY and the probability ofZ = 1 is positively correlated, then the

larger the value of Y the more likely that Z would be equal to 1. Therefore, to conclude the

association betweenY andZ, the key is to estimate ρ andmake inference on the estimation.

3.2. Full-conditional distributions

In this part, the joint posterior distribution p(θ |y, z,X) is derived, where y = (y1, . . . , yn)
′,

z = (z1, . . . , zn)
′ and X is the model matrix of the regression with each row as x′

i. Based

on the model assumption in Section 3.1, the joint distribution of (Y ,Z,U) can be directly

written as follows, given a single point of input x:

p(z = 1, y, u|θ , x) = Pr(Z = 1|U = u)p(u, y|θ , x) = I(u ≥ 0)p(u, y|θ , x),

p(z = 0, y, u|θ , x) = Pr(Z = 0|U = u)p(u, y|θ , x) = I(u < 0)p(u, y|θ , x),

p(z, y, u|θ , x) = [zI(u ≥ 0) + (1 − z)I(u < 0)]p(u, y|θ , x).

The joint sampling distribution of the two response variables is

p(z, y|θ , x) = (1 − z)p(y|θ , x) + (2z − 1)

∫

I(u ≥ 0)p(u, y|θ , x) du.

To obtain the exact form of
∫

I(u ≥ 0)p(u, y|θ , x) du, the probability density p(u, y|θ , x) is

rewritten into p(u|y, θ , x)p(y|θ , x). Based on the bivariate normal distribution of (U,Y),



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 5

the distribution U|Y = y is

U|y, θ , x ∼ N
(

x′β1 +
ρ

σ
(y − x′β2), (1 − ρ2)

)

.

Hence, it is easy to obtain the following

∫

I(u ≥ 0)p(u, y|θ , x) du =

∫

I(u ≥ 0)p(u|y, θ , x)p(y|θ , x) du

= p(y|θ , x)�

(

x′β1 + ρ
σ
(y − x′β2)

√

(1 − ρ2)

∣

∣

∣

∣

∣

y, θ , x

)

,

where�(·) represents the cumulative distribution function of the standard normal random

variable. To simplify the notation, define

s(y|θ , x) =
x′β1 + ρ

σ
(y − x′β2)

√

(1 − ρ2)
.

Consequently, the joint distribution of (Z,Y) can be written as

p(z, y|θ , x) = p(y|θ , x)
[

(1 − �(s(y)|θ , x)) + z(2�(s(y)|θ , x) − 1)
]

,

or more explicitly

p(z = 1, y|θ , x) = p(y|θ , x)�(s(y)|θ , x), p(z = 0, y|θ , x) = p(y|θ , x)(1 − �(s(y)|θ , x)).

The conditional distribution of the latent variable U|z, y, θ , x is

p(u|z, y, θ , x) =
p(z, y, u|θ , x)

p(z, y|θ , x)
=

[zI(u ≥ 0) + (1 − z)I(u < 0)]p(u, y|θ , x)

[(1 − �) + z(2� − 1)]p(y|θ , x)

= p(u|y, θ , x)
(1 − I(u ≥ 0)) + z(2I(u ≥ 0) − 1)

(1 − �) + z(2� − 1)
.

In the above equation, � stands for �(s(y)|θ , x). Write the conditional distribution

separately and obtain

p(u|y, z = 1, θ , x) = N
(

u|x′β1 +
ρ

σ
(y − x′β2), (1 − ρ2)

) I(u ≥ 0)

�(s(y)|θ , x)
,

p(u|y, z = 0, θ , x) = N
(

u|x′β1 +
ρ

σ
(y − x′β2), (1 − ρ2)

) 1 − I(u ≥ 0)

1 − �(s(y)|θ , x)
.

Clearly, the latent variableU, given the two response variables and the parameters, follows

two different truncated normal distributions.
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Since the outputs of different experimental runs are independent of each other, the

sampling distribution for all the data {xi, zi, yi}
n
i=1 is

p(z, y|θ ,X) =

n
∏

i=1

p(zi, yi|θ , xi)

=

n
∏

i=1

p(yi|θ , xi)[(1 − �(s(yi)|θ , xi)) + zi(2�(s(yi)|θ , xi) − 1)]

= N(y|Xβ2, σ
2In)

∏

zi=1

�(s(yi)|θ , xi)
∏

zi=0

(

1 − �(s(yi)|θ , xi)
)

.

The conditional distribution for u = (u1, . . . , un)
′ is

p(u|y, z, θ ,X)

= N
(

u|Xβ1 +
ρ

σ
(y − Xβ2), (1 − ρ2)In

)

∏

zi=1

I(ui ≥ 0)

�(s(yi)|θ , xi)

∏

zi=0

1 − I(ui ≥ 0)

1 − �(s(yi)|θ , xi)
.

To obtain the joint posterior distribution p(θ |y, z,X), we first derive the conditional

distribution p(β1,β2|y, z, u, , σ
2, ρ,X). To simplify the notation, the matrix X in all the

conditional side of the distribution is omitted, as X is always considered to be known in all

Bayesian regression modelling. The previous regression model for (u, y) is written via the

following matrix form

[

u

y

]

2n×1

= Xβ + ε, where X = I2 ⊗ X =

[

X 0

0 X

]

2n×2p

and β =

[

β1

β2

]

2p×1

.

Here I2 is a 2 × 2 identity matrix and the symbol ⊗ stands for the Kronecker product

between two matrices. The covariance matrix of the noise ε as well as the vector (u′, y′)′ is

�ε = cov(ε) = � ⊗ In =

(

In ρσ In
ρσ In σ 2In

)

,

where In is the n × n identity matrix. Denote the conjugate prior for β as

β =

[

β1

β2

]

∼ N(0,�0), where �0 =

[

V1 0

0 V2

]

. (3)

Such prior covariance matrix assumes that β1 and β2 are independent. Consequently, the

full-conditional distribution of β is as follows:

β =

[

β1

β2

]
∣

∣

∣

∣

y, u, σ 2, ρ ∼ N(µβ ,�β), (4)

where the covariance is

�β = (�−1
0 + X

′�−1
ε X)−1 = (�−1

0 + �−1 ⊗ X′X)−1. (5)
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The inverse matrix �−1 is easily computed by

�−1 =

[

1 ρσ

ρσ σ 2

]−1

=
1

(1 − ρ2)σ 2

[

σ 2, −ρσ ,

−ρσ , 1

]

.

The mean of the full conditional is

µβ = (�−1
0 + X

′�−1
ε X)−1

X
′�−1

ε

[

u

y

]

= (�−1
0 + �−1 ⊗ X′X)−1(�−1 ⊗ X′)

[

u

y

]

=
1

(1 − ρ2)σ 2
(�−1

0 + �−1 ⊗ X′X)−1

[

σ 2X′u − ρσX′y

−ρσX′u + X′y

]

. (6)

As regards the priors for the parameters σ 2 and ρ, a weekly informative prior for σ 2

is adopted as σ 2 ∼ Inv−χ2(0.001, 0.001), and the uniform prior for ρ is employed, i.e.

p(ρ) ∼ Unif(−1, 1). Let ηi = ui − x′
iβ1 and ϕi = yi − x′

iβ2, then the posterior distribu-

tions of σ 2 and ρ are easily derived as

p(σ 2|y, u,β , ρ) ∝
1

(σ 2)
n
2

exp

{

−
1

2

n
∑

i=1

(ηi,ϕi)�
−1(ηi,ϕi)

′

}

1

(σ 2)
2+0.001

2

exp

{

−
10−6

2σ 2

}

∝
1

(σ 2)
n+2+0.001

2

× exp

{

−
1

2σ 2

[

1

1 − ρ2

n
∑

i=1

(σ 2η2i − 2ρσϕiηi + ϕ2
i ) + 10−6

]}

, (7)

and

p(ρ|y, u,β , σ) ∝
1

(1 − ρ2)
n
2

exp

{

−
1

2

n
∑

i=1

(ηi,ϕi)�
−1(ηi,ϕi)

′

}

∝
1

(1 − ρ2)
n
2

exp

{

−
1

2σ 2(1 − ρ2)

n
∑

i=1

(σ 2η2i − 2ρσϕiηi + ϕ2
i )

}

. (8)

Since their posteriors are not from any known distributions, theMetropolis-Hasting (MH)

algorithm is used to draw the samples of σ 2 and ρ.

3.3. Leave-one-out sampling of u

One might think that the simplest way to sample from p(θ |y, z) is to use Gibbs sampling

that draws θ and u iteratively in the following steps:

(1) uj ← p(u|y, z,β j−1, σ
2
j−1, ρj−1),

(2) β j ← p(β|y, uj, σ
2
j−1, ρj−1),

(3) σ 2
j ← p(σ 2|y, uj,β j, ρj−1)

(4) ρj ← p(ρ|y, uj,β j, σ
2
j ).
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However, as discussed in [26], a potential problem lurks in the strong posterior correla-

tion betweenβ1 and u, as assumed in themodel u|θ ∼ N(Xβ1, In). This strong correlation

would cause slowmixing in the MCMC chain and thus lead to large computation. Instead,

we follow the approach suggested by Holmes and Held [26] and update β and u jointly by

making the factorization

p(β , u|y, z, σ 2, ρ) = p(u|y, z, σ 2, ρ)p(β|y, u, σ 2, ρ).

The distribution of β|(y, u, σ 2, ρ) is the normal distribution in (4). The distribution of

u|(y, z, σ 2, ρ) can be obtained by integrating p(β)p(u|β , y, z, σ 2, ρ) with respect to β .

Given the prior of β in (3), one can obtain

u|y, z, σ 2, ρ ∼ N

(

ρ

σ
y, (1 − ρ2)In + XV1X

′ +
ρ2

σ 2
XV2X

′

)

Ind(y, z, u),

where Ind(y, z, u) is an indicator function that truncates the multivariate normal distribu-

tion into the appropriate region. It is well known that directly sampling from a truncated

multivariate normal distribution is difficult, as pointed out by Holmes and Held [26].

Hence, a more straightforward Gibbs sampling method is used as

ui|u−i, y, zi, σ
2, ρ ∼

{

N(mi, vi)I(ui ≥ 0), if zi = 1,

N(mi, vi)I(ui < 0), if zi = 0,

where u−i denotes all the latent variables u without ui. The mean mi and variance vi for

i = 1, . . . , n are obtained from the leave-one-out marginal predictive distributions,

mi =
ρ

σ
yi +

[

x′
i,−

ρ

σ
x′
i

]

µβ ,−i,

vi =
[

x′
i,−

ρ

σ
x′
i

]

�β ,−i

[

xi,

− ρ
σ
xi

]

+ (1 − ρ2).

Its detailed derivation is provided in Appendix 1. The notations µβ ,−i and �β ,−i are the

mean and covariance matrices of the distribution of β|(u−i, y, σ
2, ρ). Since these two need

to be calculated frequently, a shortcut formula is derived to facilitate the computation in

Appendix 2.

4. MCMC sampling

In this section, the prior distribution is specified for the parameter β as well as hyperprior

distributions for the hyperparameters r1, r2, τ
2
1 , τ

2
2 . Then the corresponding posteriors of

these parameters are obtained. The Gibbs sampling algorithm is laid out to sample the

posterior distributions.

4.1. Prior and hyperprior distributions

The marginal prior components for β1 and β2 are

β i ∼ N(0, τ 2i Ri) for i = 1, 2. (9)

The correlation matrices in (9) in the marginal prior components for β1 and β2 are

assumed to be diagonal, which means that the coefficients are independent of each other.
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This assumption is reasonable if the orthogonal polynomial basis of x is used, consisting

of the intercept, the linear effects, the quadratic effects, and the interactions, etc., up to a

user-specified order. If the controllable variable settings are from a full factorial design or

an orthogonal design, the full or near orthogonality between the bases can be achieved.

For the bases involving covariates, it is not likely to achieve full or near orthogonality. But

we still assume independence for simplicity and leave the data to correct it in the posterior

distribution. Let Ri = diag{1, ri, . . . , ri, r
2
i , . . . , r

2
i , . . .} for i = 1, 2, 3, where ri ∈ (0, 1) is a

user-specified tuning parameter. The power index of ri is the same as the order of the corre-

sponding polynomial term. For example, if the polynomial regression terms of x ∈ R
2 is a

full quadratic model and contains the term {1, x1, x2, x
2
1, x

2
2, x1x2}, the corresponding prior

correlationmatrix should specified asR = diag{1, r, r, r2, r2, r2}. In this way, the prior vari-

ance of the effect is decreasing exponentially as the order of effect increases, following the

hierarchy ordering principle defined in [27]. The hierarchy ordering principle can reduce

the size of the model and avoid including higher order and less significant model terms.

Such prior distribution was firstly proposed by Joseph [28], and later used in [8,29,30].

Additionally, the hyperprior distributions for the hyperparameters τ 21 , τ
2
2 ∼iid Inv−χ2

(ν, δ2) and r1, r2 ∼iid Beta(a, b) are used in this work, where Inv−χ2(ν, δ2) stands for the

scaled inverse-chi-square distribution with ν degrees of freedom and scale δ2. Beta distri-

bution is a reasonable prior for ri since ri ∈ (0, 1). Accordingly, it is not difficult to derive

the posterior distributions for r1, r2, τ
2
1 and τ 22 listed below

τ 21 |rest parameters, y, z ∼ Inv−χ2

(

ν + p,
1

ν + p
[β ′

1R
−1
1 β1 + νδ2]

)

, (10)

τ 22 |rest parameters, y, z ∼ Inv−χ2

(

ν + p,
1

ν + p
[β ′

2R
−1
2 β2 + νδ2]

)

, (11)

p(r1|rest parameters, y, z) ∝ |R1|
− 1

2 exp

{

−
1

2τ 21
β ′
1R

−1
1 β1

}

ra−1
1 (1 − r1)

b−1, (12)

p(r2|rest parameters, y, z) ∝ |R2|
− 1

2 exp

{

−
1

2τ 22
β ′
2R

−1
2 β2

}

ra−1
2 (1 − r2)

b−1. (13)

The posterior samples of τ 21 and τ 22 are drawn directly from their respective scaled

inverse-chi-square distributions, and the Metropolis–Hastings (MH) algorithm is applied

to sample r1 and r2 from (12) and (13).

4.2. Gibbs sampling algorithm

The following Gibbs sampling algorithm is employed to generate the posterior distribu-

tions for the (hyper)parameters and the latent variable.

Step 0 Set up the initial values for the parameters and the latent variable. Set the counter

j = 0. For the counter j = 1, 2, . . . ,B.

Step 1 Sample uj from p(u|y, z, σ 2
j−1, ρj−1) by drawing ui,j from the leave-one-out

marginal distribution p(ui|u−i,j−1, y, zi, σ
2
j−1, ρj−1) for i = 1, . . . , n.

Step 2 Sample β j from p(β|y, uj, σ
2
j−1, ρj−1) according to (5) and (6).

Step 3 Sample σ 2
j and ρj from (7) and (8) by the MH algorithm.
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Step 4 Sample τ 21,j and τ 22,j from (10) and (11).

Step 5 Sample r1,j and r2,j by the MH algorithm from distributions (12) and (13).

Step 6 Do Step 1–Step 5 until the MCMC chain converges.

The initial values of β2 are set to be the least square estimate from y = Xβ2 + ε2, and

the initial σ 2 value is the mean squared error of the linear regression model. The initial

values of β1 are the MLE of the probit regression of z with the same model matrix X. The

estimated link function values of the probit regression can be the initial values of u. The

initial value of ρ is calculated from the sample correlation between u and y.

In Step 1, given the current �β and µβ , the short-cut formula in Appendix 2 is used

to calculate �β ,−i and µβ ,−i. After each ui is updated, the vector of uj−1 is updated to be

(u1,j, . . . , ui,j, ui+1,j−1, . . . , un,j−1). The covariance �β remains the same for all i, butµβ ,−i

needs to be updated using (u1,j, . . . , ui,j, ui+1,j−1, . . . , un,j−1).

5. Numerical study

In this section, the performance of the proposed model is examined and compared with

two approaches SM(F) and SM(B), where the qualitative variable Z and quantitative vari-

able Y are modelled separately. Hence, both SM(F) and SM(B) ignore the association

between variables Z and Y. SM(F) employs a logistic model for the variable Z, and a linear

regression model to fit Y. The LASSO regularization is applied for both logistic and linear

regressionmodels to select the significant variables. SM(B) denotes the separate modelling

of Z using probit regression and of Y using linear regression under the Bayesian frame-

work. SM(B) sets the marginal normal priors for the parameters in both linear and probit

models.

Since the parameter ρ reflects the strength and direction of the relationship between

the value of Y and the probability Z = 1, five different cases are considered: (1) ρ = 0; (2)

ρ = 0.3; (3) ρ = 0.85; (4) ρ = −0.3; (5) ρ = −0.85. In each case, we generate n = 100

training data points and n = 100 testing data points based on models (1) and (2). All data

are independently and identically distributed from normal with mean 0 and covariance

matrix �x = (σij)p×p with σij = 0.5|i−j|. The variance σ 2 in model (2) is set to be 2. To

further examine the performance of the proposed model, different settings of model size

p ∈ {10, 30} and different proportions of sparsity s ∈ {20%, 50%} are considered, where the

value of s represents the proportion of nonzero entries in the parameter vector β1 and β2.

Overall, the full combinations have 5 × 2 × 2 = 20 settings.

For the true values of β1 and β2, firstly their zeroes are randomly placed. Then the

values of non-zeroes are generated from N(3, 1) independently, with positive signs and

negative signs randomly assigned to the non-zeroes elements of β1 and β2. To evaluate the

estimation accuracy of eachmethod with respect to β1 and β2, the following loss measures

are used

L2(β̂1) = ‖β̂1 − β1‖
2
2 and L2(β̂2) = ‖β̂2 − β2‖

2
2,

where ‖ · ||2 denotes the vector L2 norm.Additionally, to gauge the performance of variable

selection for β = (β ′
1,β

′
2)

′, false-positive (FP) and false-negative (FN) cases are consid-

ered. An FP occurs if a nonsignificant predictor in the true model is incorrectly identified

as a significant one. Similarly, an FN occurs if a significant predictor in the true model



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 11

Table 1. The averages and standard errors (in parenthesis) of loss measures when p = 10.

BLQQ SM(F) SM(B)

ρ s = 0.2 s = 0.5 s = 0.2 s = 0.5 s = 0.2 s = 0.5

0 RMSE 0.315 (0.021) 0.469 (0.016) 0.327 (0.016) 0.459 (0.014) 0.425 (0.014) 0.473 (0.013)
ME 0.044 (0.005) 0.044 (0.004) 0.054 (0.004) 0.059 (0.005) 0.082 (0.005) 0.103 (0.005)
FSL 0.700 (0.115) 0.500 (0.112) 7.160 (0.365) 5.640 (0.209) 0.540 (0.087) 0.420 (0.099)

L2(β̂1) 9.061 (2.372) 13.19 (1.580) 18.65 (7.801) 24.53 (8.101) 8.961 (2.963) 13.34 (2.664)

L2(β̂2) 0.140 (0.019) 0.247 (0.021) 0.224 (0.025) 0.333 (0.028) 0.301 (0.020) 0.349 (0.022)
ρ̂ 0.047 (0.038) −0.017 (0.030) – – – –

0.3 RMSE 0.322 (0.019) 0.414 (0.020) 0.367 (0.014) 0.432 (0.016) 0.453 (0.014) 0.453 (0.017)
ME 0.048 (0.004) 0.038 (0.003) 0.071 (0.004) 0.063 (0.004) 0.099 (0.005) 0.085 (0.004)
FSL 0.760 (0.150) 0.460 (0.108) 6.840 (0.341) 5.360 (0.215) 0.380 (0.090) 0.540 (0.108)

L2(β̂1) 9.411 (1.361) 8.229 (0.704) 9.937 (1.955) 24.56 (8.897) 15.10 (0.297) 17.58 (0.335)

L2(β̂2) 0.139 (0.016) 0.239 (0.029) 0.239 (0.024) 0.345 (0.035) 0.329 (0.020) 0.362 (0.034)
ρ̂ 0.296 (0.034) 0.261 (0.034) – – – –

0.85 RMSE 0.315 (0.018) 0.424 (0.020) 0.363 (0.022) 0.473 (0.019) 0.456 (0.015) 0.481 (0.019)
ME 0.065 (0.004) 0.061 (0.004) 0.086 (0.004) 0.074 (0.004) 0.110 (0.005) 0.096 (0.005)
FSL 0.680 (0.138) 0.740 (0.106) 5.540 (0.389) 5.680 (0.195) 0.300 (0.071) 1.160 (0.096)

L2(β̂1) 3.789 (0.808) 7.425 (1.013) 37.68 (21.65) 28.64 (9.023) 10.74 (1.707) 15.72 (3.115)

L2(β̂2) 0.130 (0.016) 0.267 (0.047) 0.197 (0.022) 0.378 (0.032) 0.324 (0.020) 0.395 (0.032)
ρ̂ 0.749 (0.015) 0.785 (0.017) – – – –

−0.3 RMSE 0.370 (0.023) 0.425 (0.016) 0.410 (0.019) 0.437 (0.014) 0.460 (0.017) 0.466 (0.012)
ME 0.057 (0.005) 0.055 (0.005) 0.099 (0.004) 0.076 (0.005) 0.125 (0.005) 0.101 (0.004)
FSL 0.800 (0.125) 0.660 (0.133) 6.620 (0.362) 5.560 (0.227) 0.620 (0.114) 0.680 (0.119)

L2(β̂1) 4.430 (0.487) 15.38 (1.267) 4.808 (0.540) 15.49 (2.665) 7.574 (0.266) 35.57 (0.369)

L2(β̂2) 0.188 (0.025) 0.239 (0.021) 0.262 (0.030) 0.330 (0.022) 0.352 (0.029) 0.342 (0.021)
ρ̂ −0.341 (0.026) −0.322 (0.035) – – – –

−0.85 RMSE 0.364 (0.023) 0.370 (0.016) 0.370 (0.017) 0.417 (0.015) 0.453 (0.015) 0.444 (0.012)
ME 0.069 (0.004) 0.060 (0.003) 0.086 (0.005) 0.085 (0.004) 0.105 (0.004) 0.104 (0.005)
FSL 0.600 (0.164) 0.300 (0.071) 6.020 (0.335) 5.620 (0.228) 0.560 (0.149) 0.360 (0.085)

L2(β̂1) 3.744 (0.391) 11.18 (0.875) 4.931 (0.204) 28.12 (11.949) 4.464 (0.234) 24.91 (0.361)

L2(β̂2) 0.182 (0.027) 0.204 (0.020) 0.254 (0.028) 0.305 (0.021) 0.336 (0.028) 0.313 (0.021)
ρ̂ −0.799 (0.011) −0.693 (0.021) – – – –

is incorrectly estimated as a nonsignificant one. The loss FSL = FP+ FN, which is the

total number of FP and FN cases, is reported as the performance measure of variable

selection. In the SM(F) method, the significant predictors are selected by the LASSO. For

the proposed model and SM(B), the variable selection is conducted based on the 95%

credible intervals constructed from the MCMC samples after the burn-in period. Fur-

thermore, the model’s prediction capacity is evaluated using the root-mean-square error

RMSE =
√

1
n

∑n
i=1(yi − ŷi)2 for the quantitative variable Y, where ŷi is the predicted value

for yi in the testing data set. The misclassification error ME = 1
n

∑n
i=1 I(zi �=ẑi) is used to

measure themodel’s prediction performance on the qualitative variableZ, where I(·) stands

for the indicator function and ẑi is the predicted value for zi. For the proposed model, set

(ν, δ2, a, b) = (2, 2, 0.1, 0.1) and initial values (τ 21,0, τ
2
2,0, r1,0, r2,0) = (0.5, 0.5, 0.3, 0.3). The

length of the MCMC chain is 10,000 with the first 1000 as the burn-in period. Tables 1

and 2 report the simulation results for each loss measure of estimates obtained from

each approach over 50 replicates. Only the proposed approach (BLQQ column) shows the

average and standard error (in the parenthesis) of the 50 replicates of the estimated ρ̂.

From Tables 1 to 2, it is clear to see the following results.
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Table 2. The averages and standard errors (in parenthesis) of loss measures when p = 30.

BLQQ SM(F) SM(B)

ρ s = 0.2 s = 0.5 s = 0.2 s = 0.5 s = 0.2 s = 0.5

0 RMSE 0.647 (0.030) 0.804 (0.023) 0.633 (0.023) 0.842 (0.021) 0.896 (0.025) 0.936 (0.021)
ME 0.087 (0.005) 0.161 (0.008) 0.094 (0.006) 0.148 (0.007) 0.130 (0.005) 0.144 (0.006)
FSL 2.800 (0.206) 5.640 (0.298) 19.60 (0.648) 16.98 (0.483) 2.720 (0.216) 5.220 (0.332)

L2(β̂1) 11.59 (0.847) 67.07 (4.089) 17.03 (3.243) 81.64 (3.192) 20.79 (0.389) 89.91 (0.911)

L2(β̂2) 0.605 (0.055) 0.874 (0.052) 0.600 (0.046) 1.075 (0.059) 1.376 (0.068) 1.368 (0.060)
ρ̂ −0.027 (0.040) 0.017 (0.041) – – – –

0.3 RMSE 0.639 (0.031) 0.819 (0.025) 0.700 (0.024) 0.863 (0.024) 0.880 (0.018) 0.947 (0.021)
ME 0.121 (0.006) 0.163 (0.008) 0.125 (0.005) 0.165 (0.007) 0.126 (0.006) 0.168 (0.005)
FSL 3.720 (0.256) 5.130 (0.309) 17.28 (0.682) 16.72 (0.463) 4.480 (0.259) 9.087 (0.379)

L2(β̂1) 19.39 (1.718) 44.02 (4.091) 19.93 (0.930) 54.50 (2.342) 19.26 (0.363) 56.38 (0.642)

L2(β̂2) 0.527 (0.054) 0.965 (0.058) 0.742 (0.063) 1.331 (0.055) 1.343 (0.065) 1.438 (0.053)
ρ̂ 0.356 (0.034) 0.359 (0.036) – – – –

0.85 RMSE 0.671 (0.028) 0.761 (0.019) 0.702 (0.031) 0.865 (0.019) 0.926 (0.025) 0.906 (0.020)
ME 0.091 (0.006) 0.141 (0.006) 0.115 (0.005) 0.181 (0.005) 0.135 (0.005) 0.180 (0.005)
FSL 2.100 (0.210) 5.020 (0.302) 17.86 (0.794) 16.14 (0.472) 3.320 (0.247) 10.12 (0.309)

L2(β̂1) 24.35 (1.555) 64.11 (2.646) 26.51 (1.617) 79.71 (3.457) 43.79 (0.470) 90.35 (0.620)

L2(β̂2) 0.583 (0.049) 0.768 (0.050) 0.769 (0.072) 1.160 (0.057) 1.507 (0.082) 1.278 (0.060)
ρ̂ 0.801 (0.017) 0.737 (0.018) – – – –

−0.3 RMSE 0.654 (0.029) 0.833 (0.022) 0.640 (0.020) 0.851 (0.020) 0.894 (0.018) 0.936 (0.020)
ME 0.098 (0.006) 0.166 (0.007) 0.108 (0.006) 0.168 (0.007) 0.146 (0.005) 0.163 (0.005)
FSL 1.980 (0.205) 7.489 (0.287) 18.30 (0.680) 15.66 (0.448) 2.520 (0.216) 11.36 (0.269)

L2(β̂1) 20.00 (4.174) 84.23 (3.303) 20.69 (2.890) 99.35 (3.508) 27.31 (0.482) 102.1 (0.861)

L2(β̂2) 0.534 (0.048) 0.954 (0.054) 0.741 (0.053) 1.263 (0.061) 1.316 (0.053) 1.431 (0.062)
ρ̂ −0.281 (0.033) −0.228 (0.044) – – – –

−0.85 RMSE 0.635 (0.029) 0.779 (0.029) 0.639 (0.019) 0.829 (0.020) 0.858 (0.021) 0.919 (0.021)
ME 0.108 (0.007) 0.157 (0.007) 0.122 (0.006) 0.160 (0.006) 0.136 (0.005) 0.161 (0.005)
FSL 2.280 (0.239) 7.000 (0.310) 18.70 (0.687) 17.28 (0.447) 3.380 (0.214) 10.64 (0.318)

L2(β̂1) 20.61 (1.468) 65.37 (2.751) 25.34 (2.245) 83.97 (2.848) 28.64 (0.369) 81.76 (0.726)

L2(β̂2) 0.549 (0.059) 0.991 (0.078) 0.795 (0.056) 1.345 (0.078) 1.269 (0.060) 1.469 (0.077)
ρ̂ −0.754 (0.018) −0.765 (0.028) – – – –

• In the case of ρ = 0, the proposed method is comparable to SM(F) and slightly better

than SM(B) in terms of RMSE. Regarding the loss ME, the proposed method shows

better performance when p = 10 and a comparable, sometimes even worse perfor-

mance when p = 30. The proposed model is always inferior to SM(B) with respect to

FSL. Additionally, the proposed method performs the best under L2(β̂2). However, for

L2(β̂1), it is worse than SM(B)when p = 10 and better than SM(B) in the case of p = 30.

Overall, the proposedmethod performs comparably when ρ = 0. This is expected since

there is no association between the variables Y and Z. Hence, the proposed joint model

does not show its advantages.

• When ρ = 0.3, the proposed method remarkably outperforms the other two

approaches, since SM(F) and SM(B) ignore the dependency between variables Y and Z

in this case. Specifically, the proposed method gives superior performance over SM(F)

regarding every criterion, especially in terms of FSL. Compared with SM(B), although

the proposedmethod is comparable or even inferior underFSLwhen themodel is sparse

as s = 0.2, it is better when the true model becomes denser as s = 0.5. For other com-

parison criteria, the proposedmethod greatly outperforms SM(B). The results from this

case demonstrate the advantages of the proposed joint model over the separate models.

• When the variables Y and P(Z = 1) are negatively correlated as ρ = −0.3, the con-
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clusions are very similar to those for ρ = 0.3. The proposed method consistently

outperforms SM(F) and SM(B) which ignore the association between Y and Z. We

also observe the same results when ρ = ±0.85 that the proposed method gives supe-

rior performance over other comparedmethods by taking advantage of the dependency

between two responses.

Figure 1. Histograms for the selected parameters of one replicate from ρ = 0.3 when p = 10 and
s = 0.5.

Figure 2. Trace plots for the selected parameters of one replicate from ρ = 0.85 when p = 10 and
s = 0.2.
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• The proposedmethod is able to provide an estimate ofρ, while the other two approaches

cannot. This correlation indicates both the strength and direction of the association

between Y and the probability of Z = 1. Hence, the estimated ρ̂ provides us with more

insight to understand data.

For illustration, based on a single simulation, Figure 1 displays the histograms for the pos-

terior samples of some randomly selected parameters after the burn-in period with their

true values indicated by the solid vertical lines. Such histogram and posterior distributions

can be used for inferences. Figure 2 depicts the trace plots of posterior draws for some

parameters. It is clear to see that the plots fluctuate around the mean values, indicating the

MCMC chains converge. To further examine the convergence property of our interests β1,

β2 andρ, theGelman–Rubin diagnostic is employed, which evaluatesMCMCconvergence

by analysing the difference between multiple Markov chains. The convergence is assessed

by comparing the estimated between-chains andwithin-chain variances. The averaged val-

ues of the potential scale reduction factor of setting ρ = 0.85, p = 10 and s = 0.2 over

50 replicates are 1.198, 1.002 and 1.088 for β1, β2 and ρ, respectively, with their standard

errors 0.095, 0.0002 and 0.032, further confirming the convergence of theirMCMC chains.

6. Birth records case study

In this section, the proposed method is applied to evaluate its utility in evaluating factors

associated with preterm birth and birth weight, as described in Section 1. The birth record

dataset was acquired from the Virginia Department of Health via a Data Sharing Agree-

ment and this application is approved by the Virginia Department of Health Institutional

Review Board (IRB) (Protocol #40221) and Virginia Tech IRB (Protocol # 16-898). The

full dataset includes over three million observations for more than two decades. Only a

subset of the data was used for this study with a total of 1000 observations. In the original

dataset, the binary outcome variable ‘preterm birth’ is extremely skewed as preterm births,

in general, account for less than 10% of all live births. Hence, a random sample of n = 1000

is chosen such that it is more balanced with an equal number of preterm births and non-

preterm births. This balancing is done for computational reasons. Further enhancements

to the model to handle unbalanced data are feasible due to the Bayesian specification.

There are 9 covariates contained in this dataset, along with the two outcome variables of

interest ‘preterm birth’ or PTB, which is dichotomous, and ‘BirthWeight’, which is contin-

uous (measured in grams). The covariates include the age of the mother, day of birth, day

of the week (previous research has shown seasonal as well as weekly patterns for preterm

birth, e.g.[31,32], parity number (whether this is the first pregnancy carried to 24 weeks

gestation or not), college education of mother (a proxy for socio-economic status of the

mother), etc. A more detailed description is given in Table 3. Intuitively, the two outcome

variables are negatively correlated as children who experience preterm births are alsomore

likely to have lower birth weight.

The number of MCMC iterations is set to be 10,000 with the burn-in period of 2000.

Let (ν, δ2, a, b) = (2, 2, 0.1, 0.1) and initial values (τ 21,0, τ
2
2,0, r1,0, r2,0) = (1.5, 3, 0.3, 0.3) for

the proposed Bayesian model. To evaluate its performance, the whole data set is randomly

split into a training set with 100 observations and a testing set with 900 observations. Such

partitions are repeated 50 times. For each random split, four comparedmethods are applied
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Table 3. The variables used in the birth records case study.

Variable name Variable description Type of variable

z: preterm Birth Indicator variable for whether the child was
born preterm (defined as born before 36
gestational weeks)

Dichotomous dependent variable (1 = preterm, 0
= non preterm)

y: Birth Weight Weight of the infant at birth in grams Quantitative dependent variable
x1 : Day of birth Day of the year (1–366) the infant was born Quantitative independent variable
x2 : Day of week Whether the infant was born on a weekend

or a weekday
Dichotomous independent variable (1 =
weekend, 0 = weekday)

x3 : Age of mother Age of the mother in years Quantitative independent variable
x4 : Race Race reported on the birth record collapsed

to whether the infant is identified as
African-American or not

Dichotomous independent variable (1 =
African-American, 0 = Not African-American)

x5 : Ethnicity Whether the infant is identified as Hispanic
or not

Dichotomous independent variable (1 = Hispanic,
0 = Not Hispanic)

x6 : Mother’s Education Whether the mother completed at least
high school or not

Dichotomous independent variable (1 = More
than High School, 0 = High School or less)

x7 : Marriage status Whether the mother was married at the
time of birth or not

Dichotomous independent variable (1 = Married,
0 = Not Married)

x8 : Sex of child The sex of the infant Dichotomous independent variable (1 = Male
infant, 0 = Female infant)

x9 : Parity Number of pregnancies carried to 24weeks
gestation collapsed to whether this is
the first such pregnancy or not

Dichotomous independent variable (1 = First
pregnancy, 0 = Not first pregnancy)

Figure 3. Boxplots of RMSPE and mis-classification error for preterm birth data for each approach.

to fit the training data, including SM(F), SM(B), the Bayesian Hierarchical QQ Model by

Kang et al. [8] (BHQQ for short) and the proposed Bayesian Latent QQ model (BLQQ).

Then the predictions of two responses are made on the testing data.

Figure 3 shows the root-mean-square prediction error (RMSPE) and misclassification

error (ME) for each method. The separate models, SM(F) and SM(B), perform similarly

to each other, while the proposed method shows better performance than both of them

because of the dependency of two outcome variables. The proposed model gives a signifi-

cantly lowerME, indicating that it can distinguish preterm births from non-preterm births

much more accurately. The proposed model is also better in predicting the birth weight as



16 X. KANG ET AL.

Figure 4. Regression coefficient distributions for the explanatory variables (1 indicates the regression
constant) for the quantitative and qualitative responses across 50 replications.

shown in the boxplot of RMSPE. Besides, the proposed method can account for the cor-

relation between birth weight and the probability of PTB. The average of the estimated

correlation over 50 splits is −0.772 with a standard error of 0.063. We also note that for

each split of the data set, the estimated correlation is negative. It means the smaller the

value of the birth weight variable, the more likely the corresponding birth is preterm. Note
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that the latest method BHQQ is comparable with the proposed method in terms of pre-

diction accuracy for the continuous outcome, but is much worse regarding ME. This is

expected as it has been explained in Section 1. BHQQ uses the marginal logistic regression

model for the binary outcome and thus cannot improve the prediction accuracy for the

binary outcome.

Next, we investigate the analysis results based on one random split of the training and

testing data sets. There are 500 observations with PTB = 1 and 500 observations with PTB

= 0 in the testing set. The estimate of the correlation is−0.85. The trace plots indicate that

Gibbs sampling iterations converge and the ACF plots show that the autocorrelation dies

off. These plots are omitted in the paper. Figure 4 depicts the boxplots of the regression

coefficients across 50 replications (the x-axis is numbered from 1 to 10 to indicate regres-

sion constant and the slopes corresponding to the 9 explanatory variables). The first subplot

corresponds to the regression coefficients for the qualitative response (preterm birth) and

the second subplot corresponds to the regression coefficients for the quantitative response

(birth weight). Given the complex biological and physiological causes of preterm births

and birth weights of children, it is not surprising that the regression coefficients are not

statistically significant at the default 0.05 level.

7. Discussion

In this article, we propose a Bayesian latent variablemodel to jointly fit data with qualitative

and quantitative (QQ) outcomes. The work is motivated by a birth records study involving

two responses: birth weight (quantitative variable) and preterm birth (qualitative variable).

The proposedmodel uses a latent variable to link the quantitative and qualitative responses,

improving the prediction accuracy for both variables, while some existing works without

using a latent variable fit one response conditional on the other response, hence improving

the prediction accuracy for only one response. Moreover, the proposed model can capture

the correlation between the quantitative response and the latent variable, which is an indi-

cator of the dependency strength for the quantitative and qualitative responses. Besides, the

proposed Bayesian framework is more convenient to provide statistical inference for the

parameters than the frequentist analysis based on the asymptotic distribution of the esti-

mator, which is complicated and difficult to derive. The merits of the proposed Bayesian

latent variable model is demonstrated by the numerical study and a birth records data set.
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Appendices

Appendix 1

The leave-one-out predictive distribution for ui|u−i, y, z, σ
2, ρ can be obtained through

p(ui|u−i, y, z, σ
2, ρ) =

∫

p(ui|yi, zi,β , σ
2, ρ)p(β|u−i, y, z, σ

2, ρ) dβ ,

where p(β|u−i, y, z, σ
2, ρ) can be derived in the same way as we did for (4). The sampling distribu-

tion of (u−i, y) is directly obtain as
[

u−i

y

]
∣

∣

∣

∣

θ ∼ N
(

X−iβ ,�ε,−i

)

,

where X−i is the matrix X with its ith row removed, i.e.

X−i =

[

X−i, 0(n−1)×p

0n×p, X

]

.

HereX−i isX without its ith row. The covariance matrix�ε,−i is�ε with the ith row and ith column
removed. For convenience, permute the rows and columns of�ε so that the ith row and column are
the last,

�ε =

[

�ε,−i, l
l′, 1

]

,

where l = [01×(n−1), 0, . . . , 0, ρσ , 0, . . . , 0]. So all the elements of l are zeroes except the (n − 1 +
i)th element is ρσ . Since the prior ofβ isN(0,�0), the full-conditional distribution ofβ conditioned
on (u−i, y) is

β|u−i, y, σ
2, ρ ∼ N(µβ ,−i,�β ,−i).

Through direct calculation,

�β ,−i =
(

�−1
0 + X

′
−i(�ε,−i)

−1
X−i

)−1
,

µβ ,−i = �β ,−iX
′
−i(�ε,−i)

−1

[

u−i

y

]

.
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Previously, it has been shown that

ui|yi, zi, θ ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
(

x′
iβ1 +

ρ

σ
(yi − x′

iβ2), (1 − ρ2)

) I(ui ≥ 0)

�(s(yi)|θ)
, if zi = 1,

N
(

x′
iβ1 +

ρ

σ
(yi − x′

iβ2), (1 − ρ2)

) I(ui < 0)

1 − �(s(yi)|θ)
, if zi = 0,

and

ui|yi, θ ∼ N
(

x′
iβ1 +

ρ

σ
(yi − x′

iβ2), (1 − ρ2)

)

.

Hence, the distribution for ui|u−i, y, σ
2, ρ should also be a normal distribution. Its mean and

variance are

mi = E(ui|u−i, y, σ
2, ρ)

= Eβ

(

Eui
(

ui|yi,β , σ
2, ρ
)

|u−i, y, σ
2, ρ
)

= Eβ

(

x′
iβ1 +

ρ

σ
(yi − x′

iβ2)|u−i, y, σ
2, ρ
)

=
ρ

σ
yi +

[

x′
i,−

ρ

σ
x′
i

]

µβ ,−i

and

vi = var
(

ui|u−i, y, σ
2, ρ
)

= varβ
(

Eui
(

ui|yi,β , σ
2, ρ
)

|u−i, y, σ
2, ρ
)

+ Eβ

(

var
(

ui|yi,β , σ
2, ρ
)

|u−i, y, σ
2, ρ
)

= varβ

(

x′
iβ1 +

ρ

σ
(yi − x′

iβ2)|u−i, y, σ
2, ρ
)

+ Eβ

(

(1 − ρ2)1|u−i, y, σ
2, ρ
)

=
[

x′
i,−

ρ

σ
x′
i

]

�β ,−i

[

xi,
− ρ

σ
xi

]

+ (1 − ρ2).

Therefore, the leave-one-out distribution for ui|u−i, y, σ
2, ρ is N(mi, vi). Adding z, one can obtain

p(ui|u−i, y, zi, σ
2, ρ) ∝

{

N(ui|mi, vi)I(ui ≥ 0), if zi = 1,
N(ui|mi, vi)I(ui < 0), if zi = 0.

Appendix 2

Since the values of �ε,−i and µβ ,−i have to be computed for every ui in each sampling of u, it is

thus necessary to find a quick way to compute both. Suppose (�ε)
−1 and �β have already been

computed. It can be shown that

�−1
ε =

[

(�ε,−i)
−1 + c

(

(�ε,−i)
−1ll′(�ε,−i)

−1
)

, −c(�ε,−i)
−1l

−cl′(�ε,−i)
−1, c

]

,

where c is the diagonal entry of �−1
ε and c = (σ 2

1 − l′�−1
ε,−il)

−1. As a result, it is easy to obtain

(�ε,−i)
−1 =

(

�−1
ε

)

−i,−i
− c
(

(�ε,−i)
−1ll′(�ε,−i)

−1
)

=
(

�−1
ε

)

−i,−i
− c−1

(

�−1
ε

)

−i,i

(

�−1
ε

)

i,−i
.

Here (�−1
ε )−i,i is the ith column of matrix�−1

ε without the ith diagonal entry (�−1
ε )ii, the notation

(�−1
ε )i,−i is the ith row of �−1

ε without the ith diagonal entry, and (�ε)
−1
−i,−i is the matrix �−1

ε with
the ith row and ith column removed. Define

b = Xi − X
′
−i(�ε,−i)

−1l = Xi + c−1
X

′
−i

(

�−1
ε

)

−i,i
.
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The column vector Xi is the transpose of the ith row of X. In addition, we have

X
′�−1

ε X = X
′
−i(�ε,−i)

−1
X−i + cbb′,

�β =
(

�−1
0 + X

′�−1
ε X

)−1

=
(

�−1
0 + X

′
−i(�ε,−i)

−1
X−i + cbb′

)−1

=
(

(�β ,−i)
−1 + cbb′

)−1
.

Thus,

�β ,−i =
(

(�β)−1 − cbb′
)−1

= �β +
c

1 − cb′�βb
�βbb

′�β .

The vector �βb can be obtained from an intermediate calculation of µβ .

�βb = c−1
(

�βX
′�−1

ε

)

.,i
.

Here (�βX
′�−1

ε ).,i is the ith column of matrix �βX
′�−1

ε of size 2p × 2n. The mean µβ ,−i is

µβ ,−i = �β ,−iX
′
−i(�ε,−i)

−1

[

u−i

y

]

,

where �β ,−i can be obtained as above, and (�ε,−i)
−1 = (�−1

ε )−i,−i − c−1(�−1
ε )−i,i(�

−1
ε )i,−i.
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