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Many applications involve data with qualitative and quantitative Received 16 July 2020
responses. When there is an association between the two responses, Accepted 2 May 2021

a joint model will produce improved results than fitting them sepa- KEYWORDS

rately. In this paper, a Bayesian method is proposed to jointly model Bayesian model; latent
such data. The joint model links the qualitative and quantitative variable; MCMC sampling;
responses and can assess their dependency strength via a latent vari- quantitative and qualitative
able. The posterior distributions of parameters are obtained through responses

an efficient MCMC sampling algorithm. The simulation is conducted

to show that the proposed method improves the prediction capac-

ity for both responses. Further, the proposed joint model is applied

to the birth records data acquired by the Virginia Department of

Health for studying the mutual dependence between preterm birth

of infants and their birth weights.

1. Introduction

In many applications, mutually dependent quantitative and qualitative (QQ) types of out-
come data are simultaneously observed. It is important to jointly model them to make
accurate estimation and inferences, which provide scientific and meaningful conclusions.
In this paper, our application focuses on a birth records study examining the mutual depen-
dency of birth weight and preterm birth. The birth weight of the infant, a quantitative
outcome, is an important variable that doctors need to monitor [1]. The average birth
weight of healthy infants is about 3.5 kg. Children with low birth weight are more likely
to have complications soon after birth and later in life, compared to children with normal
birth weights [2,3]. The birth weight is known to be related to another key variable, preterm
birth, a qualitative outcome whose value is set to be 1 if an infant is born before 36 gesta-
tional weeks and is 0 otherwise. Several factors are related to low birth weight and preterm
birth. Such factors include the socio-economic and health status of the mother, stresses
caused by the environment, etc. [4,5]. Naturally, a preterm born infant is more likely to
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suffer from low birth weight, and the two are highly correlated. Both preterm birth and
low birth weight are rare outcomes in the population, accounting for less than 10% of all
live births. Meanwhile, they have a significant effect on the health of the population, as well
as the economy in general, due to the expenses spent on caring and monitoring infants [6].

Modernized maternal care is designed to provide personalized health care to mothers
and children. It is important to understand how various factors affect both preterm birth
and low birth weight. A statistical model that accurately predicts both quantitative and
qualitative outcomes may offer useful information to health practitioners and expectant
mothers. Many other applications are in need of such a joint model for quantitative and
qualitative responses. For example, in [7,8], the total thickness variation (continuous) and
the site total indicator reading (binary) are both measured to evaluate the quality of the
wafer after the lapping stage in the wafer manufacturing process. In [9], survey data with
both quantitative scores and categorical answers are jointly analysed. More applications
and methodologies on the mixed types of quantitative and qualitative response data are
reviewed in Section 2.

In this article, a Bayesian hierarchical model is developed for the mixed quantitative
and qualitative types of responses. A latent variable is introduced to connect the two
types of responses, which is similar to the joint model in [10]. This joint model is suit-
able for the data on the birth records study described previously. It is much simpler than
the joint models by Dunson [11] and yet still sufficiently effective. In [10], the joint dis-
tribution is factorized into two regression components — the marginal distribution of
the continuous outcome and the conditional distribution of the binary outcome condi-
tioned on the continuous outcome. The latter is obtained through the latent variable,
which is correlated with the observed continuous outcome. Based on the factorization,
the estimation is done in two steps. The first step is to estimate the marginal regression
model of the continuous outcome. The second step is to estimate the probit regression
model of the binary outcome conditioned on the continuous outcome. The generalized
estimating equations approach is used to obtain the estimation. Different from Catalano
and Ryan [10], this work incorporates the Bayesian framework, assumes the proper prior
and hyperprior distributions, derives the posterior distributions, and then develops the
MCMC sampling procedure to obtain the posterior distributions. Compared to the fre-
quentist approach in [10], there are some merits with the Bayesian approach. First, the
posterior distribution of the latent variable is available. Second, the Bayesian inference
is more accurate since it is not based on the asymptotic distribution as in maximum
likelihood estimation. Third, sparsity on both regression models of the two outcomes is
induced due to the informative prior distributions, which are assumed for the regression
coeflicients.

The remainder of the article is outlined as follows. Section 2 provides a literature of
recent work on modelling quantitative-qualitative responses. Section 3 introduces the
joint quantitative-qualitative model via latent variable within the Bayesian framework, as
well as the full-conditional distributions of the parameters and the leave-one-out condi-
tional posterior distribution of the latent variable. Section 4 lays out the MCMC sampling
procedures. Numerical study and the case study in birth records are provided in Sec-
tions 5 and 6 to illustrate the merits of the proposed model. This article concludes in
Section 7.
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2. Literature review

Some works in the literature have tackled the issue of mixed quantitative and qualitative
types of outcomes. Some of them, such as Wang and Tsung [12], Liu and Huang [13], Cheng
et al. [14], Zhou et al. [15] and Shi [16], modelled the two types of responses separately.
They overlooked the possible association that may exist between the two types of responses.
As aresult, if there exists a dependency between the two types of responses, separate mod-
elling could lead to less accurate prediction and misinterpretation compared to the joint
models. Most other works are on joint models for mixed types of outcomes, including
[7-11,17-21]. Some interesting practical application cases can be found in [15,22-25].

These works can be further categorized into different groups. From the perspective
of estimation methods, they can be divided into Bayesian methods, such as [8,11,18],
and non-Bayesian methods, for example, [7,9,10,20]. Depending on the form of the joint
model, Fitzmaurice and Laird [19], Deng and Jin [7] and Kang et al. [8] considered
modelling the quantitative response conditioned on the qualitative response, leading to
conditional linear regression models and marginal classification models, whereas other
methods such as [9-11,18,20] used a latent variable to link the quantitative and qualitative
outcomes.

Some representatives of the latent variable models are highlighted below. Motivated to
analyse a toxicity experiment, Catalano and Ryan [10] used a latent variable to obtain a joint
distribution of mixed responses. The joint distribution is a product of a linear regression
model for the quantitative variable and a probit model for the qualitative variable. Dun-
son [11] suggested using the generalized linear models to describe the joint distribution of
variables and proposed a Markov chain Monte Carlo (MCMC) sampling algorithm for esti-
mating the posterior distributions of the parameters. Dunson [18] extended the previous
work to multidimensional longitudinal data. However, such early methods focus on model
estimation without investigating a sparse and interpretable model. Different from Catalano
and Ryan [10], the latent variables in [11,18] appear in the generalized linear model as the
linear coefhicients. But in [10], the latent variable is used to define the probit model for the
binary outcome.

Deng and Jin [7] proposed the QQ model for joint fitting quantitative and qualitative
responses by the maximum likelihood estimation and identified the significant variables
by imposing non-negative garrotte constraints on the likelihood function. The likelihood
of the joint QQ model is the product of the conditional distribution of the quantitative
responses conditioned on the qualitative responses and the marginal distribution of the
qualitative responses. The authors also developed an iterative algorithm to solve the con-
strained optimization problem. Consequently, the classic asymptotical distribution of the
maximum likelihood estimation cannot be easily applied, hence, making it difficult to con-
duct statistical inference. Using the same QQ model in [7] as the sampling distribution of
the data, Kang et al. [8] introduced a sparse hierarchical Bayesian framework, which can
easily provide statistical inference on the estimated parameters and prediction of the QQ
model. However, since they constructed their model by fitting the quantitative response
conditioned on the qualitative response, Deng and Jin [7] and Kang et al. [8] appeared to
improve the prediction accuracy for the quantitative response, while the model of qual-
itative response would be similar as it was modelled independently of the quantitative
response.
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3. Bayesian QQ model with a latent variable
3.1. Sampling distribution

Denote the observed data as (x;, yi,2i),i = 1,...,n, where y; € R and z; € {0, 1} are the
continuous and binary observations, respectively. Here the vector x = (x1,. .. ,xp)’ con-
tains p predictors (intercept is included if needed). To jointly model the mixed types of
responses Y and Z given x, the key is to describe the association between them. Hence, a
latent variable U for the binary response Z is introduced to facilitate this task. Assume the
binary response follows the Bernoulli distribution

z={ L ifU>0 with U8, x ~ N(* By, 1). (1)

0, elseif U <0

This kind of latent variable approach is also used in cases other than the mixed types
of outcomes. For example, Holmes and Held [26] used an auxiliary variable in Bayesian
binary and multinomial regression. Regarding the quantitative response Y, its marginal
distribution is assumed to be

Y|B,, 0% x ~ N(¥'B,,0%). )

To link the continuous and binary responses, a joint distribution of (U, Y) is introduced,
with an assumption of a bivariate normal distribution for parameters 8 = (8, 85,02, p)
as follows:

U N . | ¥B |1 po
[Y]’&x N, X) wnhﬂ_[x/ﬂz}’z_[pa 02:|.

If p is positive, meaning that Y and the probability of Z = 1is positively correlated, then the
larger the value of Y the more likely that Z would be equal to 1. Therefore, to conclude the
association between Y and Z, the key is to estimate p and make inference on the estimation.

3.2. Full-conditional distributions

In this part, the joint posterior distribution p(8|y, z, X) is derived, wherey = (y1,...,y,)/,
z = (z1,...,2,)" and X is the model matrix of the regression with each row as x/. Based
on the model assumption in Section 3.1, the joint distribution of (Y, Z, U) can be directly
written as follows, given a single point of input x:

p(z=1y,uld,x) = Pr(Z = 1|{U = wp(u, y10,x) = I(u = 0)p(u, y|0,x),
p(z=0,y,ul0,x) =Pr(Z =0|U = w)p(u,y0,x) = I(u < 0)p(u, y/0, x),
p(z,y,ul0,x) = [zI(u > 0) + (1 — 2)I(u < 0)]p(u, |0, x).

The joint sampling distribution of the two response variables is

P(oy10,%) = (1 — 2p(lf,2) + 22 — 1) / I(u > 0)p(u, y16, %) du

To obtain the exact form of [ I(u > 0)p(u, y|0, x) du, the probability density p(u, y|6, x) is
rewritten into p(uly, @, x)p(y|0, x). Based on the bivariate normal distribution of (U, Y),
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the distribution U|Y = y is
P
Ul ,x ~ N (B, + 20— ¥B). (1= p)).
Hence, it is easy to obtain the following

/I(u > 0)p(u, y10,x) du = /I(u > 0)p(uly,0,x)p(y|0, x) du

KB+ 2y —x'By)

)0) b
V(1 =p? g x)

where ®(-) represents the cumulative distribution function of the standard normal random
variable. To simplify the notation, define

=P()/|0,x)q><

KB+ L(y—xB,)

V(1= p?)

Consequently, the joint distribution of (Z, Y) can be written as

S(}’|0)x) =

p(z.10,x) = p(y10,x) [(1 — @ (s(»)|6, %)) + 22D (s(»)|0,x) — 1)],

or more explicitly

p(z=1,y10,x) = p(y|0,x)P(s(»)0,x), p(z=0,y6,x) =p(y|0,x)(1 — P(s(»)|0,x)).
The conditional distribution of the latent variable Ulz, y,0, x is

p(zy,ulf,x)  [zI(u>0)+ (1 —2)I(u < 0)]p(u, y|0,x)
pyle,x) (1= @) +2Q2P — DIp(y6,%)
1—=Iu>0)+zQ2Iu=>0)—1)
1—-®)+2z2d—-1)

p(ulz,y,0,x) =

= p(uly,6,x)

In the above equation, ® stands for ®(s(y)|@,x). Write the conditional distribution
separately and obtain

I(u>0)
D(s(»)10,%)’

1—1I(u>0)
1—®(s(»)16,x)

pluly,z=1,8,%) = N (ulv'B, + £ — ¥, (1 - p?))
o
plulyz=0,0,0) = N (ulx'B, + =y ¥5), (1= p))

Clearly, the latent variable U, given the two response variables and the parameters, follows
two different truncated normal distributions.
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Since the outputs of different experimental runs are independent of each other, the
sampling distribution for all the data {x;, z;, y;}_; is

p(z.y10,X) = [ | p(zi» yil6, )

i=1
= [ [pGil6, x)[(1 — ®(s(31)10, %)) + zi 2D (s(7:) 16, x;) — 1)]
i=1

= NIXBy,o’L) [ @G0al0,x) [T (1 = (7016, %) .

zi=1 zi=0
The conditional distribution for u = (uy,...,uy) is

p(uly,z,0,X)

I(u; > 0) 1—[ 1—1I(u; > 0)
D (s(y1)10, xi) 1— @(s(y)|0, i)

= N (X, + 2 X8, (1= 1) [

zi=1 zi=0

To obtain the joint posterior distribution p(@|y,z,X), we first derive the conditional
distribution p(B1, 8,1y 2, u,,02,0,X). To simplify the notation, the matrix X in all the
conditional side of the distribution is omitted, as X is always considered to be known in all
Bayesian regression modelling. The previous regression model for (u, y) is written via the
following matrix form

[u] =XB+e, whereX:Iz®X:|:X O:| andﬂ:[ﬂl} .
y 2nx1 0 X 2nXx2p ﬂz 2px1

Here I, is a 2 x 2 identity matrix and the symbol ® stands for the Kronecker product
between two matrices. The covariance matrix of the noise € as well as the vector (¢, y’)’ is

Eezcov(e)=2®1n=< Iy 'OUI”),

pol, 21,

where I, is the n x n identity matrix. Denote the conjugate prior for 8 as

=

1 ] ~ N(0,X(), whereX,= |: Vi 0 ] (3)
B,

0 Vv,

Such prior covariance matrix assumes that 8, and f, are independent. Consequently, the
full-conditional distribution of B is as follows:

ﬂ=[§;”%mﬁm~Nw@Em (@)

where the covariance is

Tp=C +XEIX) T =@+l ex X)L (5)
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The inverse matrix X! is easily computed by

_ 1  po ! 1 0%, —po,
Z = 2 = = .
po o (1—p?o2 | —po, 1
The mean of the full conditional is
ng =, +X'TX)7IX'E! [ ; } =, +2'exx) '@ ®X/)|: ; }

1
=+ exx)! [

o*X'u — poX'y ©)
(1—p?)o? '

—poX'u+X'y
As regards the priors for the parameters 02 and p, a weekly informative prior for o
is adopted as 02 ~ Inv—2(0.001,0.001), and the uniform prior for p is employed, i.e.

p(p) ~ Unif(—1,1). Let n; = u; — x}B, and ¢; = y; — x;B,, then the posterior distribu-
tions of 2 and p are easily derived as

1 I, Sxlor o 1 107°
zgexp —Eg(m)%) (ni> i) Wexp _F

1

n+2+0.001
2

p(aly,u, B, p) x
(o

x
(02)

X exp { [ pe Z(G — 2p09mi + ¢}) + 10_6} } , ()

and

1 1 1 ’
ploly,u, B,0) m exp {—5 ;(n,,w,)E > ¢i) }
1

O((l—pz)geXp{ 2(1 Z)Z(“ —2P0¢znz+¢,)} (8)

Since their posteriors are not from any known distributions, the Metropolis-Hasting (MH)
algorithm is used to draw the samples of % and p.

3.3. Leave-one-out sampling of u

One might think that the simplest way to sample from p(@|y, z) is to use Gibbs sampling
that draws 8 and u iteratively in the following steps:

(D) wj < p(uly,z,Bj_1,0% 1, pj-1);
2) B < p(Bly, w01, pj-1),

(3) o} < p(a’ly,uj, Bj pj-1)

@) pj < p(ply, uj, Bj, o).
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However, as discussed in [26], a potential problem lurks in the strong posterior correla-
tion between $, and u, as assumed in the model |0 ~ N (X, I,,). This strong correlation
would cause slow mixing in the MCMC chain and thus lead to large computation. Instead,
we follow the approach suggested by Holmes and Held [26] and update 8 and u jointly by
making the factorization

p(B.uly,z,0% p) = p(uly,z,0% p)p(Bly, u, 0%, p).

The distribution of B|(y,u, 02, p) is the normal distribution in (4). The distribution of
u|(y,z,02%, p) can be obtained by integrating p(B)p(ulB,y, z,02, p) with respect to B.
Given the prior of 8 in (3), one can obtain

2
uly,z,a%,p ~N (gy, (1—pHI, + XV X + S—ZXVzX/> Ind(y, z, u),

where Ind(y, z, u) is an indicator function that truncates the multivariate normal distribu-
tion into the appropriate region. It is well known that directly sampling from a truncated
multivariate normal distribution is difficult, as pointed out by Holmes and Held [26].

Hence, a more straightforward Gibbs sampling method is used as
N(m;,v)I(u; > 0), ifz; =1,

. . o2 ~ i Vi i i
uilu—iy:2i0%, p { N@m;, v)I(u; < 0), ifz; =0,

where u_; denotes all the latent variables u without u;. The mean m; and variance v; for
i=1,...,nare obtained from the leave-one-out marginal predictive distributions,

p p
mi = —yi+ I:x;, ——x;] ng—i>
o o

o™

p Xi,
vi = [xﬁ» —O—,xi] Xg i [ o ] + (1= p?).

Its detailed derivation is provided in Appendix 1. The notations ug _; and X g _; are the
mean and covariance matrices of the distribution of 8| (u_;, y, o2, p). Since these two need
to be calculated frequently, a shortcut formula is derived to facilitate the computation in
Appendix 2.

4. MCMC sampling

In this section, the prior distribution is specified for the parameter f as well as hyperprior
distributions for the hyperparameters 1, r2, T2, T7. Then the corresponding posteriors of
these parameters are obtained. The Gibbs sampling algorithm is laid out to sample the
posterior distributions.

4.1. Prior and hyperprior distributions
The marginal prior components for 8, and §, are
B; ~ N(0,t’R;) fori=1,2. 9)

The correlation matrices in (9) in the marginal prior components for 8, and B, are
assumed to be diagonal, which means that the coefficients are independent of each other.
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This assumption is reasonable if the orthogonal polynomial basis of x is used, consisting
of the intercept, the linear effects, the quadratic effects, and the interactions, etc., up to a
user-specified order. If the controllable variable settings are from a full factorial design or
an orthogonal design, the full or near orthogonality between the bases can be achieved.
For the bases involving covariates, it is not likely to achieve full or near orthogonality. But
we still assume independence for simplicity and leave the data to correct it in the posterior
distribution. Let R; = diag{1,7;,..., 1,7, ...,17,...} fori = 1,2,3, wherer; € (0,1) isa
user-specified tuning parameter. The power index of r; is the same as the order of the corre-
sponding polynomial term. For example, if the polynomial regression terms of x € R? is a
full quadratic model and contains the term {1, x1, x2, xf, x%, x1x2}, the corresponding prior
correlation matrix should specified as R = diag{1,7,r, 2,72, r*}. In this way, the prior vari-
ance of the effect is decreasing exponentially as the order of effect increases, following the
hierarchy ordering principle defined in [27]. The hierarchy ordering principle can reduce
the size of the model and avoid including higher order and less significant model terms.
Such prior distribution was firstly proposed by Joseph [28], and later used in [8,29,30].

Additionally, the hyperprior distributions for the hyperparameters 77, 73 ~;g Inv—x2
(v,8%) and r1, 7, ~iig Beta(a, b) are used in this work, where Inv— x2(v, §) stands for the
scaled inverse-chi-square distribution with v degrees of freedom and scale §2. Beta distri-
bution is a reasonable prior for r; since r; € (0, 1). Accordingly, it is not difficult to derive
the posterior distributions for ry, 5, rlz and 1:22 listed below

1
1:12|rest parameters, y,z ~ Inv—)(2 (v +p, Tp[ﬂ’lRl_lﬂl + v82]> , (10)
v
1
7 |rest parameters, y, z ~ Inv— x> <v +p, Tp[ﬂ/sz_lﬂz + v82]> , (11)
v

1
p(r1|rest parameters, y, z) |R1|7% exp {—Fﬂ/lRl_lﬂl} r‘f_l(l — rl)hfl, (12)
31

1
p(r2|rest parameters, y,2) |R2|_% exp {—Fﬁ;Rzlﬂz} rgfl(l — rz)b_l. (13)
%)

The posterior samples of 2 and 75 are drawn directly from their respective scaled
inverse-chi-square distributions, and the Metropolis—Hastings (MH) algorithm is applied
to sample r; and r, from (12) and (13).

4.2. Gibbs sampling algorithm

The following Gibbs sampling algorithm is employed to generate the posterior distribu-
tions for the (hyper)parameters and the latent variable.

Step 0 Set up the initial values for the parameters and the latent variable. Set the counter
j = 0. For the counterj = 1,2,...,B.

Step 1 Sample u; from p(uly,z, ojz_l, pj—1) by drawing u;; from the leave-one-out
marginal distribution p(u;|u_;j_1,y, zi, orjz_l,pj_l) fori=1,...,n.

Step 2 Sample ,Bj from p(Bly, uj, O}al, pj—1) according to (5) and (6).

Step 3 Sample o*j2 and p;j from (7) and (8) by the MH algorithm.



10 (& X KANGETAL

Step 4 Sample tﬁj and 1:22’]- from (10) and (11).
Step 5 Sample r1j and 5 by the MH algorithm from distributions (12) and (13).
Step 6 Do Step 1-Step 5 until the MCMC chain converges.

The initial values of 8, are set to be the least square estimate from y = Xf, + €5, and
the initial o2 value is the mean squared error of the linear regression model. The initial
values of 8, are the MLE of the probit regression of z with the same model matrix X. The
estimated link function values of the probit regression can be the initial values of u. The
initial value of p is calculated from the sample correlation between u and y.

In Step 1, given the current Xg and pg, the short-cut formula in Appendix 2 is used
to calculate Xg _; and pg ;. After each u; is updated, the vector of u;_; is updated to be
(415 - - o> Uijs Ui 1j—15- - - » Unj—1). The covariance X g remains the same for all 4, but KB,
needs to be updated using (uyj, ..., Uij Uit1,j—1>- - > Unj—1)-

5. Numerical study

In this section, the performance of the proposed model is examined and compared with
two approaches SM(F) and SM(B), where the qualitative variable Z and quantitative vari-
able Y are modelled separately. Hence, both SM(F) and SM(B) ignore the association
between variables Z and Y. SM(F) employs a logistic model for the variable Z, and a linear
regression model to fit Y. The LASSO regularization is applied for both logistic and linear
regression models to select the significant variables. SM(B) denotes the separate modelling
of Z using probit regression and of Y using linear regression under the Bayesian frame-
work. SM(B) sets the marginal normal priors for the parameters in both linear and probit
models.

Since the parameter p reflects the strength and direction of the relationship between
the value of Y and the probability Z = 1, five different cases are considered: (1) p = 0; (2)
p =0.3;(3) p =085 (4) p = —0.3; (5) p = —0.85. In each case, we generate n = 100
training data points and n = 100 testing data points based on models (1) and (2). All data
are independently and identically distributed from normal with mean 0 and covariance
matrix Xy = (0jj)pxp With 0 = 0.5/, The variance o2 in model (2) is set to be 2. To
further examine the performance of the proposed model, different settings of model size
p € {10, 30} and different proportions of sparsity s € {20%, 50%} are considered, where the
value of s represents the proportion of nonzero entries in the parameter vector 8; and f8,.
Opverall, the full combinations have 5 x 2 x 2 = 20 settings.

For the true values of §; and B,, firstly their zeroes are randomly placed. Then the
values of non-zeroes are generated from N(3,1) independently, with positive signs and
negative signs randomly assigned to the non-zeroes elements of 8, and §8,. To evaluate the
estimation accuracy of each method with respect to 8, and 8,, the following loss measures
are used

LB = 1B, — B1I3 and Ly(By) = 1B, — B, 1%

where || - |2 denotes the vector L, norm. Additionally, to gauge the performance of variable
selection for B = (B}, B5)’, false-positive (FP) and false-negative (FN) cases are consid-
ered. An FP occurs if a nonsignificant predictor in the true model is incorrectly identified
as a significant one. Similarly, an FN occurs if a significant predictor in the true model
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BLQQ SM(F) SM(B)
s=02 s =105 s=02 s =105 s=02 s =105

0 RMSE 0.315(0.021) 0.469 (0.016)  0.327 (0.016) 0.459 (0.014) 0.425(0.014)  0.473(0.013)
ME 0.044 (0.005) 0.044 (0.004)  0.054 (0.004) 0.059 (0.005) 0.082 (0.005)  0.103 (0.005)
FSAL 0.700 (0.115) 0.500(0.112)  7.160 (0.365) 5.640 (0.209) 0.540(0.087)  0.420 (0.099)
L(By) 9.061 (2.372) 13.19(1.580) 18.65(7.801) 24.53(8.101) 8.961(2.963) 13.34(2.664)
LZ(BZ) 0.140(0.019) 0.247(0.021)  0.224(0.025) 0.333(0.028) 0.301(0.020)  0.349(0.022)

0 0.047 (0.038)  —0.017 (0.030) - - - -
0.3 RMSE 0.322(0.019) 0.414(0.020) 0.367 (0.014) 0.432(0.016) 0.453(0.014)  0.453(0.017)
ME 0.048 (0.004) 0.038 (0.003)  0.071(0.004) 0.063 (0.004) 0.099 (0.005)  0.085 (0.004)
FS} 0.760 (0.150) 0.460(0.108)  6.840 (0.341) 5.360 (0.215) 0.380(0.090)  0.540 (0.108)
L(By) 9.411(1.361) 8.229(0.704)  9.937 (1.955) 24.56 (8.897) 15.10(0.297)  17.58(0.335)
LZ(Bz) 0.139(0.016) 0.239(0.029) 0.239(0.024) 0.345 (0.035) 0.329(0.020)  0.362(0.034)

0 0.296 (0.034) 0.261 (0.034) - - - -
0.85 RMSE 0.315(0.018) 0.424(0.020) 0.363 (0.022) 0.473(0.019) 0.456 (0.015)  0.481(0.019)
ME 0.065 (0.004) 0.061(0.004)  0.086 (0.004) 0.074 (0.004) 0.110(0.005)  0.096 (0.005)
FSL 0.680 (0.138) 0.740(0.106)  5.540 (0.389) 5.680 (0.195) 0.300(0.071)  1.160 (0.096)
Lz(/?]) 3.789 (0.808) 7.425(1.013) 37.68(21.65) 28.64 (9.023) 10.74(1.707)  15.72(3.115)
L2(B5) 0.130(0.016) 0.267 (0.047)  0.197 (0.022) 0.378(0.032) 0.324(0.020)  0.395(0.032)

0 0.749 (0.015) 0.785(0.017) - - - -
—-03 RMSE 0.370(0.023) 0.425(0.016)  0.410(0.019) 0.437 (0.014) 0.460(0.017)  0.466 (0.012)
ME 0.057 (0.005) 0.055 (0.005)  0.099 (0.004) 0.076 (0.005) 0.125(0.005)  0.101 (0.004)
FSL 0.800 (0.125) 0.660 (0.133)  6.620 (0.362) 5.560 (0.227) 0.620(0.114)  0.680 (0.119)
Lz(/:%) 4.430(0.487) 15.38(1.267)  4.808 (0.540) 15.49 (2.665) 7.574(0.266)  35.57 (0.369)
L2(B5) 0.188 (0.025) 0.239(0.021)  0.262(0.030) 0.330(0.022) 0.352(0.029) 0.342(0.021)

0 —0.341(0.026) —0.322(0.035) - - - -
—0.85 RMSE 0.364 (0.023) 0.370(0.016)  0.370(0.017) 0.417 (0.015) 0.453(0.015)  0.444(0.012)
ME 0.069 (0.004) 0.060 (0.003)  0.086 (0.005) 0.085 (0.004) 0.105 (0.004)  0.104 (0.005)
FSL 0.600 (0.164) 0.300(0.071)  6.020 (0.335) 5.620 (0.228) 0.560 (0.149)  0.360 (0.085)
Lz(B1) 3.744(0.391) 11.18(0.875)  4.931(0.204) 28.12(11.949) 4.464(0.234) 24.91(0.361)
Lz(ﬁz) 0.182(0.027) 0.204 (0.020)  0.254(0.028) 0.305 (0.021) 0.336(0.028)  0.313(0.021)

0 —0.799(0.011)  —0.693 (0.021) - - - -

is incorrectly estimated as a nonsignificant one. The loss FSL = FP + FN, which is the
total number of FP and FN cases, is reported as the performance measure of variable
selection. In the SM(F) method, the significant predictors are selected by the LASSO. For
the proposed model and SM(B), the variable selection is conducted based on the 95%
credible intervals constructed from the MCMC samples after the burn-in period. Fur-
thermore, the model’s prediction capacity is evaluated using the root-mean-square error

RMSE = \/ % > (yi — ¥i)? for the quantitative variable Y, where y; is the predicted value
for y; in the testing data set. The misclassification error ME = % Y oim1 Lzzz,) is used to
measure the model’s prediction performance on the qualitative variable Z, where I.) stands
for the indicator function and Z; is the predicted value for z;. For the proposed model, set
(v,8%,a,b) = (2,2,0.1,0.1) and initial values (rlz’o, ‘L’22’0,1’1,(),7’2,0) = (0.5,0.5,0.3,0.3). The
length of the MCMC chain is 10,000 with the first 1000 as the burn-in period. Tables 1
and 2 report the simulation results for each loss measure of estimates obtained from
each approach over 50 replicates. Only the proposed approach (BLQQ column) shows the
average and standard error (in the parenthesis) of the 50 replicates of the estimated /.
From Tables 1 to 2, it is clear to see the following results.
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Table 2. The averages and standard errors (in parenthesis) of loss measures when p = 30.

BLQQ SM(F) SM(B)
P s=02 s =105 s=02 s =105 s=02 s =105

0 RMSE 0.647 (0.030) 0.804 (0.023)  0.633(0.023) 0.842(0.021)  0.896 (0.025)  0.936(0.021)
ME 0.087 (0.005) 0.161 (0.008)  0.094 (0.006)  0.148 (0.007)  0.130(0.005)  0.144 (0.006)
FSL 2.800 (0.206) 5.640(0.298)  19.60(0.648)  16.98(0.483)  2.720(0.216)  5.220(0.332)
L(B1) 11.59 (0.847) 67.07 (4.089) 17.03(3.243) 81.64(3.192)  20.79(0.389)  89.91(0.911)
Ly ([32) 0.605 (0.055) 0.874(0.052)  0.600 (0 046)  1.075 (0 059) 1.376(0.068)  1.368 (0.060)

o —0.027 (0.040) 0.017 (0.041) - -
0.3 RMSE 0.639(0.031) 0.819(0.025)  0.700 (0.024)  0.863(0.024)  0.880(0.018)  0.947 (0.021)
ME 0.121 (0.006) 0.163 (0.008)  0.125(0.005)  0.165(0.007)  0.126 (0.006)  0.168 (0.005)
FsL 3.720(0.256) 5.130(0.309) 17.28(0.682)  16.72(0.463)  4.480(0.259)  9.087 (0.379)
L(B1) 19.39(1.718) 44.02(4.091) 19.93(0.930) 54.50(2.342) 19.26(0.363) 56.38(0.642)
Ly (sz) 0.527 (0.054) 0.965 (0.058)  0.742 (0 063) 1.331 (0 055)  1.343(0.065)  1.438(0.053)

p 0.356 (0.034) 0.359 (0.036) - -
0.85 RMSE 0.671 (0.028) 0.761(0.019)  0.702(0.031)  0.865(0.019)  0.926 (0.025)  0.906 (0.020)
ME 0.091 (0.006) 0.141 (0.006)  0.115(0.005)  0.181(0.005)  0.135(0.005)  0.180 (0.005)
FSL 2.100(0.210) 5.020(0.302) 17.86(0.794) 16.14(0.472) 3.320(0.247)  10.12(0.309)
Ly (@1 ) 24.35(1.555) 64.11 (2.646)  26.51(1.617)  79.71(3.457)  43.79(0.470)  90.35(0.620)
L(By) 0.583 (0.049) 0.768 (0.050)  0.769(0.072)  1.160 (0 057)  1.507(0.082)  1.278(0.060)

o 0.801(0.017) 0.737 (0.018) - - -
—03 RMSE 0.654 (0.029) 0.833(0.022)  0.640(0.020)  0.851(0.020) 0.894(0.018)  0.936 (0.020)
ME 0.098 (0.006) 0.166 (0.007)  0.108 (0.006)  0.168 (0.007)  0.146 (0.005)  0.163 (0.005)
FSL 1.980 (0.205) 7.489(0.287) 18.30(0.680) 15.66(0.448)  2.520(0.216)  11.36(0.269)
Ly (/:31) 20.00 (4.174) 84.23(3.303)  20.69(2.890)  99.35(3.508)  27.31(0.482) 102.1(0.861)
L(By) 0.534 (0.048) 0.954 (0.054)  0.741 (0 053)  1.263 (0 061) 1316 (O 053)  1.431(0.062)

o —0.281(0.033)  —0.228 (0.044) -
—0.85 RMSE 0.635 (0.029) 0.779(0.029) 0.639(0.019)  0.829(0.020)  0.858(0.021)  0.919(0.021)
ME 0.108 (0.007) 0.157(0.007)  0.122(0.006)  0.160 (0.006)  0.136 (0.005)  0.161 (0.005)
FSL 2.280(0.239) 7.000(0.310) 18.70(0.687)  17.28(0.447)  3.380(0.214)  10.64(0.318)
Ly ([31) 20.61 (1.468) 6537 (2.751)  25.34(2.245) 83.97(2.848) 28.64(0.369) 81.76(0.726)
Ly (Bz) 0.549 (0.059) 0.991(0.078)  0.795 (0 056)  1.345 (0 078)  1.269 (0 060)  1.469(0.077)

p —0.754(0.018)  —0.765 (0.028) -

In the case of p = 0, the proposed method is comparable to SM(F) and slightly better
than SM(B) in terms of RMSE. Regarding the loss ME, the proposed method shows
better performance when p = 10 and a comparable, sometimes even worse perfor-
mance when p = 30. The proposed model is always inferior to SM(B) with respect to
FSL. Additionally, the proposed method performs the best under L, B ,). However, for
L, (ﬁ 1), itis worse than SM(B) when p = 10 and better than SM(B) in the case of p = 30.
Opverall, the proposed method performs comparably when p = 0. This is expected since
there is no association between the variables Y and Z. Hence, the proposed joint model
does not show its advantages.

When p = 0.3, the proposed method remarkably outperforms the other two
approaches, since SM(F) and SM(B) ignore the dependency between variables Y and Z
in this case. Specifically, the proposed method gives superior performance over SM(F)
regarding every criterion, especially in terms of FSL. Compared with SM(B), although
the proposed method is comparable or even inferior under FSL when the model is sparse
as s = 0.2, it is better when the true model becomes denser as s = 0.5. For other com-
parison criteria, the proposed method greatly outperforms SM(B). The results from this
case demonstrate the advantages of the proposed joint model over the separate models.
When the variables Y and P(Z = 1) are negatively correlated as p = —0.3, the con-
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clusions are very similar to those for p = 0.3. The proposed method consistently
outperforms SM(F) and SM(B) which ignore the association between Y and Z. We
also observe the same results when p = 40.85 that the proposed method gives supe-
rior performance over other compared methods by taking advantage of the dependency

between two responses.
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Figure 1. Histograms for the selected parameters of one replicate from p = 0.3 when p = 10 and

s =0.5.
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Figure 2. Trace plots for the selected parameters of one replicate from o = 0.85 when p = 10 and
s =10.2.
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e The proposed method is able to provide an estimate of p, while the other two approaches
cannot. This correlation indicates both the strength and direction of the association
between Y and the probability of Z = 1. Hence, the estimated p provides us with more
insight to understand data.

For illustration, based on a single simulation, Figure 1 displays the histograms for the pos-
terior samples of some randomly selected parameters after the burn-in period with their
true values indicated by the solid vertical lines. Such histogram and posterior distributions
can be used for inferences. Figure 2 depicts the trace plots of posterior draws for some
parameters. It is clear to see that the plots fluctuate around the mean values, indicating the
MCMC chains converge. To further examine the convergence property of our interests 8,
B, and p, the Gelman-Rubin diagnostic is employed, which evaluates MCMC convergence
by analysing the difference between multiple Markov chains. The convergence is assessed
by comparing the estimated between-chains and within-chain variances. The averaged val-
ues of the potential scale reduction factor of setting p = 0.85, p = 10 and s = 0.2 over
50 replicates are 1.198, 1.002 and 1.088 for 8;, B, and p, respectively, with their standard
errors 0.095, 0.0002 and 0.032, further confirming the convergence of their MCMC chains.

6. Birth records case study

In this section, the proposed method is applied to evaluate its utility in evaluating factors
associated with preterm birth and birth weight, as described in Section 1. The birth record
dataset was acquired from the Virginia Department of Health via a Data Sharing Agree-
ment and this application is approved by the Virginia Department of Health Institutional
Review Board (IRB) (Protocol #40221) and Virginia Tech IRB (Protocol # 16-898). The
full dataset includes over three million observations for more than two decades. Only a
subset of the data was used for this study with a total of 1000 observations. In the original
dataset, the binary outcome variable ‘preterm birth’ is extremely skewed as preterm births,
in general, account for less than 10% of all live births. Hence, a random sample of n = 1000
is chosen such that it is more balanced with an equal number of preterm births and non-
preterm births. This balancing is done for computational reasons. Further enhancements
to the model to handle unbalanced data are feasible due to the Bayesian specification.

There are 9 covariates contained in this dataset, along with the two outcome variables of
interest ‘preterm birth’ or PTB, which is dichotomous, and ‘Birth Weight’, which is contin-
uous (measured in grams). The covariates include the age of the mother, day of birth, day
of the week (previous research has shown seasonal as well as weekly patterns for preterm
birth, e.g.[31,32], parity number (whether this is the first pregnancy carried to 24 weeks
gestation or not), college education of mother (a proxy for socio-economic status of the
mother), etc. A more detailed description is given in Table 3. Intuitively, the two outcome
variables are negatively correlated as children who experience preterm births are also more
likely to have lower birth weight.

The number of MCMC iterations is set to be 10,000 with the burn-in period of 2000.
Let (v,82%,a,b) = (2,2,0.1,0.1) and initial values (7"12,0> Tzz,o’ 1,0, 72,0) = (1.5,3,0.3,0.3) for
the proposed Bayesian model. To evaluate its performance, the whole data set is randomly
split into a training set with 100 observations and a testing set with 900 observations. Such
partitions are repeated 50 times. For each random split, four compared methods are applied
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Table 3. The variables used in the birth records case study.

Variable name Variable description Type of variable

z: preterm Birth Indicator variable for whether the child was  Dichotomous dependent variable (1 = preterm, 0
born preterm (defined as born before 36 = non preterm)
gestational weeks)

y: Birth Weight Weight of the infant at birth in grams Quantitative dependent variable

x1: Day of birth Day of the year (1-366) the infant was born  Quantitative independent variable

x: Day of week Whether the infant was born on a weekend ~ Dichotomous independent variable (1 =
or a weekday weekend, 0 = weekday)

x3: Age of mother Age of the mother in years Quantitative independent variable

X4: Race Race reported on the birth record collapsed  Dichotomous independent variable (1 =
to whether the infant is identified as African-American, 0 = Not African-American)
African-American or not

xs: Ethnicity Whether the infant is identified as Hispanic  Dichotomous independent variable (1 = Hispanic,
or not 0 = Not Hispanic)

Xg: Mother’s Education  Whether the mother completed at least Dichotomous independent variable (1 = More
high school or not than High School, 0 = High School or less)

x7: Marriage status Whether the mother was married at the Dichotomous independent variable (1 = Married,
time of birth or not 0 = Not Married)

xg: Sex of child The sex of the infant Dichotomous independent variable (1 = Male

infant, 0 = Female infant)

Xg: Parity Number of pregnancies carried to 24 weeks  Dichotomous independent variable (1 = First

gestation collapsed to whether this is pregnancy, 0 = Not first pregnancy)

the first such pregnancy or not

RMSPE ME
8 g
S ° ° S 3 .
o : : :
[rog- H ' \
° —
s 2 | : .
o H
o o —
o
o g
T S
S o
©
8
_ 3
v H H E
o ' o
S : —_ @
o " " o
| w0
; ; N N
s S : . 5 ———
' 8 4 ;
T T T T T T T T
SM(F) SM(B) BHQQ BLQQ SM(F) SM(B) BHQQ BLQQ

Figure 3. Boxplots of RMSPE and mis-classification error for preterm birth data for each approach.

to fit the training data, including SM(F), SM(B), the Bayesian Hierarchical QQ Model by
Kang et al. [8] (BHQQ for short) and the proposed Bayesian Latent QQ model (BLQQ).
Then the predictions of two responses are made on the testing data.

Figure 3 shows the root-mean-square prediction error (RMSPE) and misclassification
error (ME) for each method. The separate models, SM(F) and SM(B), perform similarly
to each other, while the proposed method shows better performance than both of them
because of the dependency of two outcome variables. The proposed model gives a signifi-
cantly lower ME, indicating that it can distinguish preterm births from non-preterm births
much more accurately. The proposed model is also better in predicting the birth weight as
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Figure 4. Regression coefficient distributions for the explanatory variables (1 indicates the regression
constant) for the quantitative and qualitative responses across 50 replications.

shown in the boxplot of RMSPE. Besides, the proposed method can account for the cor-
relation between birth weight and the probability of PTB. The average of the estimated
correlation over 50 splits is —0.772 with a standard error of 0.063. We also note that for
each split of the data set, the estimated correlation is negative. It means the smaller the
value of the birth weight variable, the more likely the corresponding birth is preterm. Note
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that the latest method BHQQ is comparable with the proposed method in terms of pre-
diction accuracy for the continuous outcome, but is much worse regarding ME. This is
expected as it has been explained in Section 1. BHQQ uses the marginal logistic regression
model for the binary outcome and thus cannot improve the prediction accuracy for the
binary outcome.

Next, we investigate the analysis results based on one random split of the training and
testing data sets. There are 500 observations with PTB = 1 and 500 observations with PTB
= 0in the testing set. The estimate of the correlation is —0.85. The trace plots indicate that
Gibbs sampling iterations converge and the ACF plots show that the autocorrelation dies
off. These plots are omitted in the paper. Figure 4 depicts the boxplots of the regression
coeflicients across 50 replications (the x-axis is numbered from 1 to 10 to indicate regres-
sion constant and the slopes corresponding to the 9 explanatory variables). The first subplot
corresponds to the regression coeflicients for the qualitative response (preterm birth) and
the second subplot corresponds to the regression coefficients for the quantitative response
(birth weight). Given the complex biological and physiological causes of preterm births
and birth weights of children, it is not surprising that the regression coeflicients are not
statistically significant at the default 0.05 level.

7. Discussion

In this article, we propose a Bayesian latent variable model to jointly fit data with qualitative
and quantitative (QQ) outcomes. The work is motivated by a birth records study involving
two responses: birth weight (quantitative variable) and preterm birth (qualitative variable).
The proposed model uses a latent variable to link the quantitative and qualitative responses,
improving the prediction accuracy for both variables, while some existing works without
using a latent variable fit one response conditional on the other response, hence improving
the prediction accuracy for only one response. Moreover, the proposed model can capture
the correlation between the quantitative response and the latent variable, which is an indi-
cator of the dependency strength for the quantitative and qualitative responses. Besides, the
proposed Bayesian framework is more convenient to provide statistical inference for the
parameters than the frequentist analysis based on the asymptotic distribution of the esti-
mator, which is complicated and difficult to derive. The merits of the proposed Bayesian
latent variable model is demonstrated by the numerical study and a birth records data set.
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Appendices
Appendix 1

The leave-one-out predictive distribution for u;|u_;, y,z, 52, p can be obtained through
p(uilu—iy,z,0% p) = / pluilyzi B,0%, )p(Blu—iy:2,0% p) dB,

where p(B|u_;, y,z,02, p) can be derived in the same way as we did for (4). The sampling distribu-
tion of (u_;, y) is directly obtain as

[ e~ vecsz),

where X_; is the matrix X with its ith row removed, i.e.

| Xei Op—1yxp
Xﬁl - [ Onxp) X ’

Here X_; is X without its ith row. The covariance matrix X _; is X with the ith row and ith column
removed. For convenience, permute the rows and columns of X so that the ith row and column are
the last,

where I = [01x(1—1),0,...,0,00,0,...,0]. So all the elements of I are zeroes except the (n — 1 +
i)th element is po. Since the prior of 8 is N(0, X), the full-conditional distribution of 8 conditioned
on (u_;,y) is

Blu_i,y,0% p ~ N(pug,_i»Tg—i).
Through direct calculation,

_ _ -1
Zﬂ,_,’ = (201 + X/_i(ze,fi) IX71') >

ng—i= Zﬂ,—iX/_i(ze,fi)_l[ ";i }
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Previously, it has been shown that

/ 1Y ) / 2 I(uizo) e
e N(",’ﬂl + ;(}/z —x8,),1—p )) W) ifzi =1,
B T VPN S () .
(xiﬂl‘i‘g()’z_xiﬂz)»( - p )) 71_¢(5(yi)|0): ifz; =0,

and
0
wilyi8 ~ N (681 + 20i— 5B, (1= p).
o

Hence, the distribution for u;|u_;,y,02, p should also be a normal distribution. Its mean and
variance are

m; = E(uilu_i,y,0%, p)
= Eg (Ey, (wilyi» B.0%, p) lu_iy,0%, p)
0
= Ep (xiB1 + 20 = B2 lu_iy. 0 p)

o P
- L+t

and
vi = var (uilu_i,y,0%,p)
= varg (Ey, (uilyi» B, 0%, p) lu_i,3,0%, p) + Eg (var (uilyi, B, 6%, p) lu_i, .07, p)
= varg (481 + 01 = xiBo)lus3.0%0) + Ep (L= pD)Llu_s3.0% )

P Xis
= [x;,—gx;»] g, [ —éx ] + (1 — p2).

i
Therefore, the leave-one-out distribution for u;|u_;, y, 02, p is N(m;, v;). Adding z, one can obtain

T o2 N(ui|lmi, vi)I(u; > 0),if z; = 1,
pluilu_i, y,zi,0°, p) x {N(ui|mi> vi)I(u; < 0),if z; = 0.

Appendix 2

Since the values of ¢ _; and g _; have to be computed for every u; in each sampling of u, it is

thus necessary to find a quick way to compute both. Suppose (X¢)~! and X g have already been
computed. It can be shown that

n-l Ee- ) ()W (BT, —c(Te-i) 7'
< —cl'(Be-) 7" ¢ ’

where ¢ is the diagonal entry of 2! and ¢ = (07 — I/Ee_)l_l-l)_l. As a result, it is easy to obtain
(i)' = (26_1)—1',—1‘ — (BT W (Eei)) = (26_1)—1',—1‘ —c! (Eé_l)—i,i (Zf_l)i,—i'

Here (X_!)_;; is the ith column of matrix X! without the ith diagonal entry (£!);;, the notation
(E;l)i,_i is the ith row of E;l without the ith diagonal entry, and (Ee):il’_i is the matrix ):E_l with
the ith row and ith column removed. Define

b=X; - X (T U=X;+ X (2;1)_i,i.
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The column vector X; is the transpose of the ith row of X. In addition, we have
XEIX =X (T i) 'X_; + cbb,
Tp = (5 +X'571K)7
= (55" +XL(Be )X+ cbb)
=((Zp_)"" +cbb) .
Thus,
1

Tp-i=(Zp) ' —cbb)”

C
— _Tabb'3,
1—cb'zgb P 7P

The vector X gb can be obtained from an intermediate calculation of pg.

Tpb=c' (ZpX'z)

Wit

Here (EﬁX’E;I)_,i is the ith column of matrix ZﬁX/ZE_I of size 2p x 2n. The mean pg _; is

_ u_;
i =g -iX_;(Zei)" [ yl },

where X g _; can be obtained as above, and (Z¢,_) ! = (.1 i — ¢ HE D i (Z7 i
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