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ABSTRACT

Controlled experiments are widely used in many applications to investigate the causal rela-
tionship between input factors and experimental outcomes. A completely randomised design
is usually used to randomly assign treatment levels to experimental units. When covariates of
the experimental units are available, the experimental design should achieve covariate balanc-
ing among the treatment groups, such that the statistical inference of the treatment effects is
not confounded with any possible effects of covariates. However, covariate imbalance often
exists, because the experiment is carried out based on a single realisation of the complete ran-
domisation. It is more likely to occur and worsen when the size of the experimental units is
small or moderate. In this paper, we introduce a new covariate balancing criterion, which mea-
sures the differences between kernel density estimates of the covariates of treatment groups.
To achieve covariate balance before the treatments are randomly assigned, we partition the
experimental units byminimising the criterion, then randomly assign the treatment levels to the
partitionedgroups. Throughnumerical examples,we show that theproposedpartition approach
can improve the accuracy of the difference-in-mean estimator and outperforms the complete
randomisation and rerandomisation approaches.
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1. Introduction

The controlled experiment is a useful tool for inves-

tigating the causal relationship between experimental

factors and responses. It has broad applications inmany

fields, such as science, medicine, social science, busi-

ness, etc. The construction of the experimental design

for a controlled experiment has two steps. First, a facto-

rial experimental design, that is the treatment settings

of the experimental factors, is specified. By treatment

settings or treatment levels, we mean the combinations

of the different factorial settings of all factors. There is a

rich body of literature of classic and new methods on a

factorial design (Wu&Hamada, 2011), and it is beyond

the scope of this paper. The second step is to assign

treatment settings to the available experimental units. A

factorial design can involve only one factor with L treat-

ment levels, or multiple factors with L combinations

of treatment settings, which is decided by the design.

In either case, there are L−1 treatment effects, such as

main effects or interactions between multiple factors,

and they are commonly estimated using the difference-

in-mean estimator. Although practitioners usually use

a completely randomised design for the second step, it

has some limitations, as we are going to discuss next. In

this paper, we focus on the second step, how to assign

experimental units to treatment levels to improve the

accuracy of the difference-in-mean estimator.

Inmany applications, the experimental units are var-

ied with different covariates information. The response

measurement of an experimental unit can be influ-

enced by both the treatment setting and the covariates

information of the experimental unit. For instance, in a

clinical trial of a new hypoglycaemic agent, the experi-

mental factor is the treatment that a patient receives and

it has two levels, the new agent (with a fixed dosage)

and placebo. The experimental units are the patients

who participate in the clinical trial. The patients are

partitioned into two groups. The group that receives

the placebo is typically called the control group, and the

group that receives the new agent is called the treat-

ment group. The treatment effect of the new agent is

then estimated by the difference of the average blood

glucose level of the treatment group and that of the con-

trol group. This estimator is called mean-difference or

difference-in-mean estimator (Rubin, 2005). The covari-

ates of experimental units include the patients’ age, gen-

der, weight, and other physical and medical informa-

tion. Naturally, the blood glucose level of a patient (the

response) is related to the treatment, as well as the phys-

ical and medical background (covariates information)

of the patient. If the distributions of covariates of the

treatment and control groups are significantly different,

the estimated treatment effect via the difference-in-

mean estimator can be confoundedwith some covariate
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effects. If the number of experimental units is large rel-

ative to L, the confounding problem can be elevated

by a completely randomised design. Asymptotically, the

completely randomised design results in the same dis-

tribution of covariates for all partitioned groups. In

other words, it achieves covariates balance. However,

in practice, the experimenter only conducts the exper-

iment once or a few times, each time using a single

realisation of the complete randomisation, and usually

for a finite number of experimental units. As pointed

out by many existing works in the causal inference lit-

erature, relying on complete randomisation can be dan-

gerous (Bertsimas et al., 2015; Morgan & Rubin, 2012).

Especially, when the number of experimental units is

small or moderate, covariate imbalance among the par-

titioned groups under complete randomisation could

be surprisingly significant, leading to inaccurate esti-

mates and incorrect statistical inference of treatment

effects (Bertsimas et al., 2015).

The problem of inaccurate estimates induced by the

covariate imbalance could be addressed by two types

of methods. One type of method is for observational

data. The premise is that a completely randomised

design is used to assign treatment levels to experimen-

tal units before data are collected. Then some adjusting

methods are applied at the data analysis stage. These

adjustingmethods include post-stratification (McHugh

& Matts, 1983; Xie & Aurisset, 2016), propensity score

matching (Pearl, 2000; Rosenbaum & Rubin, 1983),

Doubly-robust estimator (Funk et al., 2011), coars-

ened exact matching (CEM) (Blackwell et al., 2009),

etc. The common theme of these methods is to apply

sophisticated weighting schemes to improve the origi-

nal difference-in-mean estimator and reduce the mean

squared error (consisting of the bias and variance) of

the estimator the imbalance of covariates. The alterna-

tive estimators also include the least-square estimator

(Wu & Hamada, 2011) of the treatment effects which

is based on parametric model assumption. The litera-

ture on the observational study in Causal Inference is

vast and we refer readers to Imbens and Rubin (2015)

and Rosenbaum (2017) for a more comprehensive

review.

Another kind of method aims at achieving covariate

balance before the random assignment of the treatment

levels (Kallus, 2018) at the design stage and before data

collection. First, the experimental units are partitioned

into L groups according to a certain covariate balanc-

ing criterion. Then, the L treatment levels are ran-

domly assigned to the L groups. Such methods include

randomised block designs (Bernstein, 1927), reran-

domisation (Morgan & Rubin, 2012, 2015), and the

optimal partition proposed by Bertsimas et al. (2015)

and Kallus (2018), etc. With a randomised block

design, the experimental units are divided into sub-

groups called blocks such that the experimental units

have similar covariates information in each block.

Then, the treatment levels are randomly assigned to

the experimental units within each block. Similar to

the post-stratification method, blocking can not be

directly applied when the covariates are continuous

or mixed. Users need to choose a discrete block fac-

tor based on continuous or mixed covariates. Morgan

and Rubin (2012) and Morgan and Rubin (2015) pro-

posed a rerandomisation method in which the experi-

menter keeps randomising the experimental units into

L groups to achieve a sufficiently small Mahalanobis

distance of the covariates between the groups. In Bert-

simas et al. (2015), the imbalance is measured as the

sum of discrepancies in group means and variances,

and the desired partition minimises this imbalance cri-

terion. Kallus (2018) proposed a new kernel allocation

to divide the experimental units into balanced groups.

In this paper, we only consider the controlled exper-

iments with continuous covariates. We propose a new

criterion to measure the covariate imbalance, and

the corresponding optimal partition minimises this

new criterion and achieves the best covariates bal-

ance between L treatment groups. The problem set-

up and assumptions are introduced in Section 2. In

Section 3, we propose the new covariate balancing cri-

terion, which measures the differences between the

kernel density estimates of the covariates of the L

groups of experimental units. In Section 4, we for-

mulate the partition problem into a quadratic integer

programming and discuss the choice of the parame-

ters in kernel density estimates and optimisation. The

proposed approach is compared with complete ran-

domisation and rerandomisation through simulation

and real examples in Section 5. We conclude this paper

with some discussions and potential research directions

in Section 6.

2. Problem set-up

In this work, we assume that the controlled experiment

has N experimental units and they are predetermined

and fixed through the data collection process. We first

illustrate the problem set-up using the case of L = 2,

based on which we derive the covariates balancing cri-

terion in Section 3. In the second part of Section 3,

we extend the design criterion from L = 2 case to the

general L ≥ 2 case.

We assume that the response variable follows a gen-

eral model

yi = h(zi) + αxi + εi, i = 1, . . . ,N. (1)

Here xi ∈ {0, 1} is the indicator of which of the two

treatment levels the experimental unit i recieves. Con-

ventionally, we use xi = 0 to present a baseline level, or

control, and xi = 1 to present the other level, or treat-

ment. We loosely use the terms control and treatment

just to make the distinction between the two different

levels. Assume the covariates of a experimental unit is
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z ∈ � ⊂ R
d, and zi = [zi1, . . . , zid]

� is the observed

covariates of the ith experimental unit. The function

h is a square-integrable function. When xi = 0, h(zi)

is the mean of the response yi. The parameter α is

the treatment effect and εi is the random noise with

zero mean and constant variance σ 2. Furthermore, εi
is independent of the covariates of all the experimental

units, treatment assignment, and the random noise of

other experimental units.

Based on (1), the sample means of the response in

two groups are calculated as

ȳT =

∑N
i=1 yixi

nT
, ȳC =

∑N
i=1 yi(1 − xi)

nC
,

where nT and nC are number of experimental units in

treatment group and control group, respectively. The

most commonly used estimator for the treatment effect

α is the difference-in-mean estimator

α̂ = ȳT − ȳC

= α +

∫
h(z)dF̂T(z) −

∫
h(z) dF̂C(z) + ε̄T − ε̄C,

(2)

where F̂T and F̂C are the empirical distributions of the

covariates of the treatment group and control group,

respectively, and ε̄T =
∑N

i=1 εixi
nT

and ε̄T =
∑N

i=1 εi(1−xi)
nC

are the mean errors in the corresponding groups.

Before conducting the experiment, the randomness

of α̂ comes from three sources: random noise, the par-

tition of experimental units in the two groups (if it is

done through randomisation), and the random assign-

ment of two levels to the two partitioned groups. More

importantly, the three sources of randomness are inde-

pendent of each other in our framework. Accordingly,

the mean of estimator α̂ is

E(α̂) = Eε

{
EPartition

[
ELA

(
α̂

∣∣∣F̂1, F̂2, ε
)∣∣∣ ε

]}
,

where F̂1 and F̂2 are the empirical distribution of par-

titioned Group 1 and Group 2, respectively. The parti-

tion can be random or deterministic, depending on the

partition method used. Define LA as the Bernoulli ran-

dom variable representing the Level Assignment. Let

LA = 0 if Group 1 is assigned as the treatment group

and LA = 1 if Group 1 is assigned as the control group,

and Pr(LA = 0) = Pr(LA = 1) = 1
2 . Obviously, if we

only consider the random level assignments given the

partition and random noise,

ELA

(
α̂

∣∣∣F̂1, F̂2, ε
)

= α + Pr(LA = 0)

(∫
h(z)dF̂1(z) −

∫
h(z)dF̂2(z)

)

+ Pr(LA = 1)

(∫
h(z)dF̂2(z) −

∫
h(z)dF̂1(z)

)

+ ε̄T − ε̄C

= α + ε̄T − ε̄C.

Since the random noise is independent of partition,

regardless of distribution of the partition,

E(α̂) = Eε {EPartition (α + ε̄T − ε̄C)} = α.

Therefore, it does not matter what kind of par-

tition method we use, random or deterministic,

the difference-in-mean estimator is always unbiased

(Kallus, 2018), as long as the Level Assignment is fairly

and randomly assigned to the two partitioned groups.

Similarly, considering the three sources of random-

ness, the variance of α̂ is

var(α̂) = E

[(∫
h(z)dF̂T(z)

−

∫
h(z) dF̂C(z) + ε̄T − ε̄C

)2
]

= E

[(∫
h(z)dF̂T(z) −

∫
h(z) dF̂C(z)

)2
]

+ σ 2

(
1

nT
+

1

nC

)
. (3)

In (3), the expectation in the last equation is with

respect to the randomness in the partition of the exper-

imental units, and the randomness of level assignment.

We can use a more detailed but cumbersome notation

and derive

E

[(∫
h(z)dF̂T(z) −

∫
h(z)dF̂C(z)

)2
]

= EPartition

{
ELA

[(∫
h(z)dF̂T(z)

−

∫
h(z)dF̂C(z)

)2
∣∣∣∣∣ F̂1, F̂2

]}

= EPartition

{
Pr(LA = 0)

(∫
h(z)dF̂1(z)

−

∫
h(z)dF̂2(z)

)2

+ Pr(LA = 1)

(∫
h(z)dF̂2(z)

−

∫
h(z)dF̂1(z)

)2
}

= EPartition

[(∫
h(z)dF̂1(z) −

∫
h(z)dF̂2(z)

)2
]
.

As a result, once the partition of the experimental

units is established, the variance of difference-in-mean
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estimator var(α̂) in (3) is invariant to the treatment

assignment of the two groups, that is,

var(α̂) = EPartition

[(∫
h(z)dF̂1(z)

−

∫
h(z)dF̂2(z)

)2
]

+ σ 2

(
1

nT
+

1

nC

)
.

(4)

Thus, the experimenter should focus on the partition of

the experimental units to reduce var(α̂). In the follow-

ing section, we propose an alternative partitionmethod

that aims at regulating the variance of the difference-in-

mean estimator α̂.

3. Kernel density estimation based covariate
balancing criterion

In this section, we first show the derivation of the KDE-

based covariate balancing criterion for the L = 2 fol-

lowing the set-up in Section 2. Then we extend the

balancing criterion to the general L ≥ 2 case.

3.1. The case of L = 2

Define a partition of the experimental units as g =

[g1, . . . , gN]
�, where gi = 0 if the ith experimental unit

is partitioned into Group 1 and gi = 1 if the ith experi-

mental unit is partitioned into Group 2. Note that gi is

different from the indicator variable xi in (1). The order

of partition and treatment level assignment does not

matter. One can partition the experimental units into

two groups first and then randomly assign treatment

levels. Or, one can randomly assign treatment levels

to the two groups (which are still empty) and fill the

groups with experimental units afterward. Therefore,

Group 1 is not necessarily the treatment or the control

group, that is, gi = 1 does not imply xi = 0 or xi = 1.

To construct a smooth approximation of the empir-

ical distributions of the covariates in two groups, we

estimate the corresponding distributions using the ker-

nel density estimation. The kernel density estimation

(KDE) is a popular technique to estimate the density

function of a multivariate distribution, which is a gen-

eralisation of histogram density estimation but with

improved statistical properties (Simonoff, 2012). We

use this approximation for two reasons: (1) the covari-

ates are continuous in nature, and (2) to bound var(α̂).

With a sample {z1, . . . , zn} of a d−dimensional random

vector drawn from a distribution with density function

f, the kernel density estimate is defined to be

f̂ (z) =
1

n
|H|−1/2

n∑

i=1

K
(
H

−1/2(z − zi)
)
, (5)

where K(·) is the kernel function which is a symmetric

multivariate density function, and H is the positive def-

inite bandwidth matrix. With the smooth approxima-

tion of the empirical distributions, by (4), the variance

of the difference-in-mean estimator is approximately

upper bounded by

var(α̂) = E

[(∫
h(z)dF̂1(z) −

∫
h(z)dF̂2(z)

)2
]

+ σ 2

(
1

nT
+

1

nC

)

≈ E

[(∫
h(z)f̂1(z)dz −

∫
h(z)f̂2(z)dz

)2
]

+ σ 2

(
1

nT
+

1

nC

)

≤ E

[∫
|h(z)|2dz

∫ ∣∣∣f̂1(z) − f̂2(z)
∣∣∣
2
dz

]

+ σ 2

(
1

nT
+

1

nC

)

= ‖h‖22E

[∥∥∥f̂1 − f̂2

∥∥∥
2

2

]
+ σ 2

(
1

nT
+

1

nC

)
,

(6)

where the inequality follows from Cauchy-Schwarz

inequality, ‖ · ‖22 denotes the L2-norm of a function,

F̂1 and F̂2 are empirical distributions of covariates in

Group 1 and 2, and f̂1 and f̂2 are the KDE of the covari-

ates of the two groups, respectively. Here the expecta-

tion is only with respect to the partition g as explained

in (4) in Section 2.

Since var(α̂) depends on the function h, we cannot

directlyminimise var(α̂)with respect to partition with-

outmaking any assumption on h function. Tomake our

approach robust to any assumption on h, we propose

using

BH(g) =
∥∥∥f̂1 − f̂2

∥∥∥
2

2
(7)

as the covariate balancing criterion to partition the

experimental units. It is the part of the upper bound that

is not a constant and only depends on the partition g.

This criterion also appeared in Anderson et al. (1994),

which proposed the same criterion as a two-sample test

statistic to test whether the two samples are drawn from

the same distribution. Their work further supports the

idea of using BH(g) as the partition criterion from the

covariate balancing perspective. A small BH(g) value

suggests that the covariates samples in the two groups

tend to be drawn from the same distribution, then the

covariate information in the two groups is balanced.

To achieve a partition with small BH(g), one can

either find the optimal solution that minimises BH(g)

or rerandomise the experimental units until a suf-

ficiently small BH(g) is obtained. The latter way is
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doable when the asymptotic distribution of the crite-

rion is available. The asymptotic distribution of BH(g)

can be constructed using bootstrap method (Anderson

et al., 1994). However, different from the simple nor-

mal asymptotic distribution of Mahalanobis distance

derived in Morgan and Rubin (2012), due to the com-

putation cost of the bootstrap method, calculating the

threshold of BH(g) is computationally expensive. As a

result, we choose to construct a partition byminimising

BH(g), and we call the partition g∗ = argmingBH(g)

the KDE-based partition. Since we use the optimisation

approach, our partition scheme is actually determinis-

tic. In other words, the partition scheme we use is to

let g = g∗ with probability equal to 1. This discussion

also applies to the general L ≥ 2 case. In Section 4, we

discuss in detail about how to construct the KDE-based

partition that minimises BH(g).

3.2. General case of L ≥ 2

For the general case of L ≥ 2, the covariate balancing

criterion is generalised as follows

BH(g) = max
l,s=1,...,L

∥∥∥f̂l − f̂s

∥∥∥
2

2
. (8)

Extending g to the case of L>2, the partition is

defined as g = [g1, . . . , gN]
�, with gi ∈ {0, . . . , L −

1}, i = 1, . . . ,N. To show the generalised criterion

in (8) is reasonable, we explain it under two scenar-

ios: (1) the experiment involves only one factor with L

treatment settings; (2) the experiment involvesmultiple

factors and the experimental design contains L different

combinations of the treatment settings of these factors.

In the first scenario, the treatment effects of interest

are the pairwise contrasts between any two treatment

levels. The linear model in (1) is extended to

yi = h(zi) +

L−1∑

l=1

αjxil + εi, i = 1, . . . ,N.

Here xil’s are the dummy variables corresponding to the

assigned treatment level for the ith unit, and xil = 1 if

the ith unit is assigned to treatment level l, and xil = 0

otherwise, for l = 1, . . . , L − 1. Using this notation, the

treatment level L is set to be the baseline, and the rest

of the treatment levels are compared to it. The treat-

ment effects αl for l = 1, . . . , L − 1 are estimated by the

difference-in-mean estimator

α̂l = ȳl − ȳL, for l = 1, . . . , L − 1,

where ȳk is the sample mean of the observations

with treatment level k for k = 1, . . . , L. Often, an

experimenter is interested in the pairwise contrasts

of the treatment effects αl − αs, l, s = 1, . . . , L. There-

fore, one would aim at minimising the largest vari-

ance of the corresponding estimator α̂l − α̂s, that is,

maxl,s=1,...,L var(α̂l − α̂s). Following the same deviation

in the L = 2 case, α̂l − α̂s is unbiased with variance

var(α̂l − α̂s)

= EPartition

[(∫
h(z)dF̂l(z) −

∫
h(z)dF̂s(z)

)2
]

+ σ 2

(
1

nl
+

1

ns

)
.

Using the similar argument in (6), the largest variance

is approximately upper bounded by

max
l,s=1,...,L

var(α̂l − α̂s)

� max
l,s=1,...,L

{
‖h‖22E

[∥∥∥f̂s − f̂l

∥∥∥
2

2

]
+ σ 2

(
1

nl
+

1

ns

)}
.

Assuming all the L treatment groups have very similar

or the same size of experimental units, one should aim

at minimising maxl,s=1,...,L ‖f̂l − f̂s‖
2
2. Thus, a natural

covariates balancing criterion is

BH(g) = max
l,s=1,...,L

∥∥∥f̂l − f̂s

∥∥∥
2

2
.

When L = 2, the criterion reduces to (7).

In the second scenario, we explain it via a simple

2 × 2 full factorial design with two two-level factors,

denoted by A and B. The full factorial design contains

L = 4 treatment settings. Using the generic notation

in the design of experiments literature, the four treat-

ment settings are (+,+), (+,−), (−,+), and (−,−).

The sample mean of the observations in each treatment

group is ȳl and the sample size is nl for l = 1, . . . , L.

There are L−1 = 3 effects to be estimated, which are

main effects of A and B (denoted as αA and αB) and

their interaction effect (denoted by αAB). For simplicity,

we assume n1 = . . . = nL = n, and the total number

of experimental units is N = 4n. The commonly used

difference-in-mean estimators for αA,αB, and αAB are

α̂A = 1
2

(
ȳ1 + ȳ2 − ȳ3 − ȳ4

)

α̂B = 1
2

(
ȳ1 + ȳ3 − ȳ2 − ȳ4

)

α̂AB = 1
2

(
ȳ1 − ȳ2 − ȳ3 + ȳ4

)
.

Following the same derivation of (4), we obtain the

variance of α̂A

var(α̂A) = E

[
1

4

(∫
h(z)

[
dF̂1(z) + dF̂2(z)

]

−

∫
h(z)

[
dF̂3(z) + dF̂4(z)

])2
]

+
σ 2

n
.
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Using the argument of (6), var(α̂A) is approximately

upper bounded

var(α̂A) �
1

4
‖h‖22E

[∥∥∥f̂1 + f̂2 − f̂3 − f̂4

∥∥∥
2

2

]
+

σ 2

n
.

In this upper bound, only ‖f̂1 + f̂2 − f̂3 − f̂4‖2 depends

on the partition. By triangle inequality,

∥∥∥f̂1 + f̂2 − f̂3 − f̂4

∥∥∥
2

≤ min
{∥∥∥f̂1 − f̂3

∥∥∥
2
+
∥∥∥f̂2 − f̂4

∥∥∥
2
,
∥∥∥f̂1 − f̂4

∥∥∥
2

+
∥∥∥f̂2 − f̂3

∥∥∥
2

}
.

Similarly, the corresponding norms in the upper

bounds of var(α̂B) and var(α̂AB) are upper bounded by

∥∥∥f̂1 + f̂3 − f̂2 − f̂4

∥∥∥
2

≤ min
{∥∥∥f̂1 − f̂2

∥∥∥
2
+
∥∥∥f̂3 − f̂4

∥∥∥
2
,
∥∥∥f̂1 − f̂4

∥∥∥
2
+
∥∥∥f̂3 − f̂2

∥∥∥
2

}
,

∥∥∥f̂1 + f̂4 − f̂2 − f̂3

∥∥∥
2

≤ min
{∥∥∥f̂1 − f̂2

∥∥∥
2
+
∥∥∥f̂3 − f̂4

∥∥∥
2
,
∥∥∥f̂1 − f̂3

∥∥∥
2
+
∥∥∥f̂2 − f̂4

∥∥∥
2

}
.

Therefore, to regulate the worst-case variance of these

three estimators, it makes sense to minimise the largest

pairwise difference ‖f̂l − f̂s‖2, l, s = 1, . . . , 4. Thus, we

reach the same criterion as above

BH(g) = max
l,s=1,...,4

∥∥∥f̂l − f̂s

∥∥∥
2

2
.

For general full or fractional factorial design, if there are

L treatment settings, there would be L sample means

of the response from each treatment group. If all the

L−1 effects (main effects, two-factor interactions, etc)

are parameters of interests, then all the pairwise dis-

tance of ||f̂l − f̂s||2 should be as small as possible so

that the covariate balancing is achieved at best across

all treatment groups. If only some of the L−1 effects are

of interest, it is still ideal to reach covariate balancing

across all treatment groups because the difference-in-

mean estimators are essentially linear combinations of

the group sample means.

4. Construction of KDE-based partition

Constructing a KDE-based partition of the experimen-

tal units is essentially an optimisation problem.

min
g

max
l,s=1,...,L

∥∥∥f̂l − f̂s

∥∥∥
2

2
(9a)

s.t. 0 ≤ gi ≤ L − 1, i = 1, . . . ,N, (9b)

N∑

i=1

�{gi=j} = nj, j = 0, . . . , L − 1, (9c)

gi integer, i = 1, . . . ,N. (9d)

Here �{·} is the indicator function that �{A} = 1 if A

is true, and �{A} = 0 otherwise, and nj is the size of

the experimental units in the (j + 1)th group. This is

an integer programming problemwhich can be difficult

and computational to solve. In the next part, we formu-

late (9) into a quadratic integer programming problem

for L = 2. It can be solved efficiently using modern

optimisation tools.

4.1. Optimisation

To facilitate the formulation and computation of the

optimisation problem, we derive a more concrete for-

mula of BH(g) defined in (8) for general L ≥ 2. For

simplicity, we assume the number of experimental units

is equal for all groups, so N is divisible by L. Denote

the number of experimental units in the lth partitioned

group as n, andN = nL. For any l, s = 1, . . . , L, we have
∥∥∥f̂l − f̂s

∥∥∥
2

2
=

∫ ∣∣∣f̂l(z) − f̂s(z)
∣∣∣
2
dz

=

∫ ⎛
⎝1

n
|H|−

1
2

∑

gi=l−1

K
(
H

− 1
2 (z − zi)

)

−
1

n
|H|−

1
2

∑

gi=s−1

K
(
H

− 1
2 (z − zk)

)
⎞
⎠

2

dz

=
1

n2|H|

⎧
⎨
⎩

∫ ⎡
⎣ ∑

gi=l−1

K
(
H

− 1
2 (z − zi)

)
⎤
⎦
2

dz

+

∫ ⎡
⎣ ∑

gi=s−1

K
(
H

− 1
2 (z − zk)

)
⎤
⎦
2

dz

− 2

∫ ∑

gi=l−1

K
(
H

− 1
2 (z − zi)

)

∑

gi=s−1

K
(
H

− 1
2 (z − zk)

)
dz

⎫
⎬
⎭

=
1

n2|H|

[
sum(Wl,l) + sum(Ws,s) − 2sum(Wl,s)

]
,

where the matrix operator sum(A) =
∑

i,j A(i, j) is

defined as the summation of all the entries of a matrix.

Then, BH(g) can be computed as

BH(g) = max
l,s=1,...,L

l 
=s

1

n2|H|

[
sum(Wl,l)

+sum(Ws,s) − 2sum(Wl,s)
]
, (10)

where the matrix W is a symmetric matrix of size N ×

N, with elements defined as,

W(i, i) =

∫
K
(
H

−1/2(z − zi)
)2
dz, (11)
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W(i, j) = W(j, i)

=

∫
K
(
H

−1/2(z − zi)
)
K
(
H

−1/2(z − zj)
)
dz.

(12)

It is well-known that the choice of kernel function

K is not essential to the KDE (Silverman, 1986).

To illustrate the partition method, we choose the

commonly used multivariate Gaussian kernel K(x) =

(2π)−d/2 exp(− 1
2x

′x). The entries ofWusing theGaus-

sian kernel can be calculated analytically,

W(i, j)

=

∫

Rd
K
(
H

− 1
2 (z − zi)

)
K
(
H

− 1
2 (z − zj)

)
dz

=

∫

Rd
(2π)−d exp

(
−
1

2

[
(z − zi)

′
H

−1(z − zi)

+(z − zj)
′
H

−1(z − zj)
])
dz

= (2π)−d

∫

Rp
exp

(
−

(
z −

zi + zj

2

)′

H
−1

(
z −

zi + zj

2

)
−

1

4
(zi − zj)

′
H

−1(zi − zj)

)
dz

= 2−dπ− d
2 |H|

1
2 e
(
− 1

4 (zi−zj)
′H−1(zi−zj)

)
.

As a special case, W(i, i) = |H|
1
2 2−dπ− d

2 . Note that

the above calculation applies when the domain of z,

denoted by�, is unbounded, i.e.� = R
d. If� is a sub-

set of R
d, we can derive the integration in the range of

�, and the resulting formula would involve the CDF of

normal. But here we still integrate with the range ofRd,

and the approximation error is small since the value of

the estimated density function should be small outside

of �.

Given a specific partition g, we partition the W

matrix into L × L sub-matrices accordingly, such that

each sub-matrix Ws,r corresponds to the experimental

units in group r and s. That is, the entries of sub-matrix

Wr,s are W(i, j) such that gi = r − 1 and gj = s − 1 for

r, s = 1, . . . , L. Notice that such a definition of the block

matrices depends on the partition g. Thus, the entries

of the sub-matrices would change as the partition is var-

ied. But the entries of the W for each pair of (zi, zj)

remain the same for all i, j = 1, . . . ,N. So the entries

of the matrix W only need to be computed once for

computing BH(g) values for different partitions.

For L = 2, the objective function BH(g) = 1
n2|H|

[sum(W1,1) + sum(W2,2) − 2sum(W1,2)]. Recall that

by the definition of partition vector g = [g1, . . . , gN]
�,

gi = 0 if the ith experimental unit is in Group 1, and

gi = 1 if the ith experimental unit is in Group 2. Then,

the objective function BH(g) could be rewritten as

BH(g) =

N∑

i=1

N∑

j=1

(2gi − 1)W(i, j)(2gj − 1)

= 4

⎡
⎣

N∑

i=1

N∑

j=1

gigjW(i, j) −

N∑

i=1

gi

N∑

j=1

W(i, j)

⎤
⎦

+

N∑

i=1

N∑

j=1

W(i, j)

= 4(g�
Wg − g�w) +

N∑

i=1

N∑

j=1

W(i, j), (13)

where w = [
∑N

j=1 W(1, j), . . . ,
∑N

j=1 W(N, j)]�. As a

result, for L = 2, the optimisation problem (9) is refor-

mulated into

min
g

g�
Wg − g�w (14a)

s.t.

N∑

i=1

gi = N/2, (14b)

gi binary, i = 1, . . . ,N, (14c)

This is a quadratic integer programming that can be

solved efficiently by Gurobi Optimiser (Gurobi Opti-

mization, LLC, 2020) for small- or moderately-sized

experiments. For large-sized experiments or the more

general case ofL ≥ 3, stochastic optimisation tools such

as genetic algorithm (Miller & Goldberg, 1995) and

simulated annealing (Van Laarhoven & Aarts, 1987)

can be adopted to solve the optimisation. Regardless

of the optimisation method, the matrix W is com-

puted only once in the optimisation procedure, which

significantly cuts down the computation.

4.2. Choice of bandwidthmatrix

The accuracy of the KDE is sensitive to the choice of

bandwidth matrix H (Simonoff, 2012; Wand & Jones,

1993). Many methods have been developed to con-

struct H under various criteria (de Lima & Atun-

car, 2011; Duong & Hazelton, 2005; Jones et al., 1996;

Sain et al., 1994; Sheather & Jones, 1991; Wand

& Jones, 1994; Zhang et al., 2006). Besides these meth-

ods,H can be chosen by some rules of thumb, including

Silverman’s rule of thumb (Silverman, 1986) and Scott’s

rule (Scott, 2015). But they may lead to a suboptimal

KDE (Duong & Hazelton, 2003; Wand & Jones, 1993)

due to the diagonality constraint of H. Another rule of

thumb uses a full bandwidth matrix as

H = n−2/(d+4)�̂, (15)

where �̂ is the estimated covariance matrix with sam-

ple size n, and d is the covariate dimension. It can be

considered as a generalisation of Scott’s rule (Härdle

et al., 2012). To compromise between the computa-

tional cost and the accuracy of the KDE, we propose

using the rule of thumb in (15). It is easy to compute

and leads to a more accurate KDE compared to the
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simple diagonal matrix. We did a series of numerical

comparisons to test the impact of H on the KDE-based

partition (not reported here due to the space limit).

The results show that (15) leads to similar partitions

compared with the more computationally demanding

methods such as cross-validation (Duong & Hazel-

ton, 2005; Sain et al., 1994) and Bayesian methods

(de Lima & Atuncar, 2011; Zhang et al., 2006). Simi-

lar observations were found in the work by Anderson

et al. (1994). As pointed out in Anderson et al. (1994),

the criterion BH(g) aims at measuring the discrepancy

between the distributions from which the samples are

drawn, but not precisely estimating those distributions.

Although the bandwidth matrix H plays an important

role in the estimation of distribution, it is not surprising

that the KDE-based partition is robust to the choice of

H.

5. Examples

Example 1. Simulation Example. We compare the per-

formance of the proposed KDE-based partition with

complete randomisation and rerandomisation (Mor-

gan & Rubin, 2012) through a simulation example with

d = 2 covariates. Three different types of mean func-

tion h are considered.

Model 1. Linear basis: h(z) = β0 +
∑2

i=1 βizi,

y = αx + β0 +

2∑

i=1

βizi + ε.

Model 2. Quadratic basis: h(z) = β0 +
∑2

i=1 βizi +∑2
i=1 γiz

2
i + θz1z2,

y = αx + β0 +

2∑

i=1

βizi +

2∑

i=1

γiz
2
i + θz1z2 + ε.

Model 3 Sinusoidal model: h(z) = β0 + β1 sin(φ +

πγ1z1 + πγ2z2),

y = αx + β0 + β1 sin (φ + πγ1z1 + πγ2z2) + ε.

The notation x ∈ {0, 1} is the indicator of the treat-

ment level assignment. To generate data from these

models, we need to specify the values of the parame-

ters, including the treatment effect α, and others βi’s,

γi’s, φ and θ . Let α = 2 for all models. In Model 1

and Model 2, the regression coefficients βi’s, γi’s and

θ are sampled from a uniform distributionU[−2, 2]. In

Model 3, β0, β1, γ1 and γ2 are randomly generated from

U[−1, 1], and φ is randomly generated from U[0, 2π].

The observed covariates are generated from multivari-

ate standard normal distributionN(0, I2). All these val-

ues are fixed through the simulations. Since var(α̂) is

only affected by the partition methods and is invariant

to the variance of the noise σ 2, it does not matter to the

comparison of different methods. Therefore in this and

the next example, we set σ = 0.

To compare the proposed approach with other ran-

dom methods, m = 1000 random partitions are gen-

erated via complete randomisation and rerandomi-

sation approaches. For each partition, the treatment

levels are randomly assigned to the two groups, and

m = 1000 designs are generated for the two random

approaches. Since the proposed KDE-partition is an

optimisation-based method, the partition is determin-

istic. With all possible treatment-level assignments,

there are only two designs. For each design obtained

from the three methods, we generate the response

data from the three models with the fixed parame-

ters and covariates. Then, the estimated mean squared

error M̂SE(α̂) = 1
m

∑m
i=1(α − α̂)2 of the difference-

in-mean estimator is calculated for increasing sam-

ple size from N = 20 to N = 100, and they are plot-

ted in Figure 1.When the true relationship between

the response y and covariate z is linear, rerandomi-

sation outperforms the other two methods. Morgan

and Rubin (2012) showed that, compared to complete

randomisation, the rerandomisation with Mahalanobis

distance criterion can reduce var(α̂) significantly when

the mean function h(z) =
∑d

i=0 βjzj contains only the

linear terms of the covariates. When a more compli-

cated relationship such as Model 2 or 3 is considered,

the KDE-based partition outperforms the complete

randomisation and rerandomisation by a large margin.

In practice, the true mean function h is rarely as simple

as a linear function and usually contains higher-order

terms of the covariates. Thus, from a practical perspec-

tive, we suggest that the KDE-based partition is a better

choice.

We further explore the performance of the proposed

KDE-based partition in matching the empirical dis-

tributions of the covariates in two groups. We com-

pare the difference of the empirical distributions under

complete randomisation, rerandomisation, and KDE-

based partition. The discrepancy of the first and second

raw moments of the two empirical distributions over

the m = 1000 partitions are calculated and reported

in Table 1. In general, rerandomisation performs the

best in matching the means of the empirical distribu-

tions, which to some extent implies that it performs the

best under Model 1 (the model with main effect only).

The KDE-based partition consistently outperforms the

complete randomisation and is superior to the other

two methods for the second moments since it matches

the approximated density functions rather than just the

first and second moments.

Example 2. Real Data Example. We compare the

KDE-based partition with the complete randomisation

and rerandomisation using a real data set. The data set

is from a diabetes study (Efron et al., 2004). It contains

422 observations of d = 10 covariates and a univariate

response. The covariates are age, sex, body mass index,
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Figure 1. Comparison of the estimated mean squared error of difference-in-mean estimator using three partition methods for
Example 1.

Table 1. Discrepancy of moments under different partition methods.

Moments

N Method z1 z2 z
2
1 z

2
2 z1z2

20 Random 0.356 0.298 0.605 0.292 0.217
Re-random 0.026 0.021 0.612 0.286 0.235
KDE-based 0.107 0.179 0.390 0.082 0.010

40 Random 0.261 0.235 0.356 0.212 0.249
Re-random 0.019 0.017 0.366 0.233 0.258
KDE-based 0.177 0.011 0.097 0.071 0.272

60 Random 0.204 0.182 0.278 0.181 0.189
Re-random 0.015 0.014 0.282 0.188 0.192
KDE-based 0.048 0.040 0.036 0.006 0.164

80 Random 0.170 0.177 0.234 0.201 0.164
Re-random 0.013 0.013 0.238 0.210 0.163
KDE-based 0.031 0.122 0.182 0.144 0.003

100 Random 0.167 0.150 0.238 0.193 0.161
Re-random 0.013 0.011 0.244 0.198 0.158
KDE-based 0.079 0.063 0.136 0.180 0.068

average blood pressure, and six blood serum measure-

ments of the patients, and the response is a quantita-

tive measure of disease progression. The data are only

observational data and donot contain any experimental

factors.

To use this data, we do not assume any functional

form for h(z). Instead, we assume the observed quanti-

tative measure of disease progression is the sum h(z) +

ε. Let the true value of the treatment effectα = 2. Given

treatment assignment x, the response data including the

treatment effect is, y = αx + h(z) + ε.

For different values of N, ranging from N = 12

to N = 60, m = 1000 partitions are generated using

complete randomisation and rerandomisation. As

explained before, for each N value, the optimal KDE-

based partition is deterministic. For each of the par-

titions obtained from the three methods, we ran-

domly assign treatment settings to the two partitioned

groups to obtain the design, and then compute the

response y accordingly. The estimated mean squared

error M̂SE(α̂) = 1
m

∑m
i=1(α − α̂)2 of the difference-in-

mean estimator is calculated for eachN. They are shown

in Figure 2. The KDE-based partition outperforms the

other two partition methods for all sample sizes.

6. Discussion

In this paper, we introduce a KDE-based partition

method for the controlled experiments. By adopting a

smooth approximation of the covariate empirical dis-

tributions, we propose a new covariate balancing cri-

terion. It measures the difference between the distri-

butions of covariates in the partitioned groups. We

use quadratic integer programming to construct the

partition that minimises the covariate balancing cri-

terion for the two-level experiments. If the number

of treatment settings is more than two, other stochas-

tic optimisation methods can be applied. The design

generated via the KDE-partition can regulate the vari-

ance of the difference-in-mean estimator. Compared

with the complete randomisation and rerandomisa-

tion methods, the simulation and real examples show

that the proposed method leads to a more accurate

difference-in-mean estimation of the treatment effect

when the underlying model involves more compli-

cated functions of the covariates. The simulation exam-

ple also confirms that the covariates’ distributions of

the groups are better matched using the proposed

method.
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Figure 2. Comparison of the estimated mean squared error of difference-in-mean estimator using three partition methods for
Example 2.

It is worth pointing out that, when the KDE-

based partition is used, the classical hypothesis test-

ing procedure for the difference-in-mean estimator

is not applicable, since the partition is a determin-

istic solution and the random treatment assignments

only provide two different designs when L = 2. For-

tunately, a sophisticated testing procedure using boot-

strap method has been established and proven to be

powerful (Bertsimas et al., 2015) for the sharp null

hypothesis (Rubin, 1980), H0 : alltreatmenteffectsare0.

The detailed bootstrap algorithm is in Algorithm 1.

Algorithm 1Hypothesis testing procedure

1: procedure Hypothesis testing of treatment

effect

2: Construct KDE-based partition, randomly

assign treatment levels to treatment groups, apply

treatments, measure the responses yi, i = 1, . . . ,N

and compute the difference-in-mean estimate α̂.

3: for t = 1, . . . ,T do

4: sample itj ∼ unif (1, . . . ,N) independently

for j = 1, . . . ,N,

5: construct KDE-based partition for

zit1
, . . . , zitN

and

6: compute the new difference-in-mean esti-

mate α̂t

7: end for

8: the p-value of H0 is p =
1+
∑T

t=1 1{|α̂t |≥|α̂|}

1+T .

9: end procedure

One limitation of the proposed KDE-based parti-

tion is the ‘curse of dimensionality’. It is well-known

that KDE may perform poorly when the dimension

of the covariate is large relative to the sample size.

To overcome this problem, the experimenter can add

a dimension reduction step prior to the partition of

the experimental units. Based on the properties of the

covariate data, one can choose the appropriate dimen-

sion reduction method from various choices, such as

the principal component analysis (PCA) and the non-

linear variants of PCA. For instance, using PCA, the

experimenter can select a small but sufficient number

of the principal components and apply the KDE-based

partition on the linearly transformed covariates of a

much lower dimension. We also want to alert the read-

ers with another limitation of the KDE-based partition.

Similar to other optimal covariates balancing ideas,

such as Bertsimas et al. (2015) and Kallus (2018), the

KDE-based partition assumes all the influential covari-

ates to the response are known to the experimenter

and their data are included in the observed covari-

ates data. Otherwise, if there are latent but important

covariates, the optimal partitionmethods, including the

proposed KDE-based partition, might lead to an esti-

mator with large variance because it deterministically

balances the experimental units based on incomplete

covariate information. In this case, we recommend the

randomisation or rerandomisation methods.

The proposed KDE-based partition method can be

used in other scenarios beyond controlled experiments.

Essentially, we have proposed a density-based partition

method that minimises the differences of data between

groups. It can be incorporated into any statistical tool

that needs to partition data into similar groups, such

as cross-validation, divide-and-conquer, etc. We hope

to explore these directions in the future. In this work,

we do not assume any interaction terms between the

covariates and the treatment effect. However, interac-

tion effects are likely to occur in practice. Another

interesting direction is the partition of the experimental

units considering the interaction terms in the model.
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