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ABSTRACT

Controlled experiments are widely used in many applications to investigate the causal rela-
tionship between input factors and experimental outcomes. A completely randomised design
is usually used to randomly assign treatment levels to experimental units. When covariates of
the experimental units are available, the experimental design should achieve covariate balanc-
ing among the treatment groups, such that the statistical inference of the treatment effects is
not confounded with any possible effects of covariates. However, covariate imbalance often
exists, because the experiment is carried out based on a single realisation of the complete ran-
domisation. It is more likely to occur and worsen when the size of the experimental units is
small or moderate. In this paper, we introduce a new covariate balancing criterion, which mea-
sures the differences between kernel density estimates of the covariates of treatment groups.
To achieve covariate balance before the treatments are randomly assigned, we partition the
experimental units by minimising the criterion, then randomly assign the treatment levels to the
partitioned groups. Through numerical examples, we show that the proposed partition approach
can improve the accuracy of the difference-in-mean estimator and outperforms the complete
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randomisation and rerandomisation approaches.

1. Introduction

The controlled experiment is a useful tool for inves-
tigating the causal relationship between experimental
factors and responses. It has broad applications in many
fields, such as science, medicine, social science, busi-
ness, etc. The construction of the experimental design
for a controlled experiment has two steps. First, a facto-
rial experimental design, that is the treatment settings
of the experimental factors, is specified. By treatment
settings or treatment levels, we mean the combinations
of the different factorial settings of all factors. There is a
rich body of literature of classic and new methods on a
factorial design (Wu & Hamada, 2011), and it is beyond
the scope of this paper. The second step is to assign
treatment settings to the available experimental units. A
factorial design can involve only one factor with L treat-
ment levels, or multiple factors with L combinations
of treatment settings, which is decided by the design.
In either case, there are L—1 treatment effects, such as
main effects or interactions between multiple factors,
and they are commonly estimated using the difference-
in-mean estimator. Although practitioners usually use
a completely randomised design for the second step, it
has some limitations, as we are going to discuss next. In
this paper, we focus on the second step, how to assign
experimental units to treatment levels to improve the
accuracy of the difference-in-mean estimator.

In many applications, the experimental units are var-
ied with different covariates information. The response
measurement of an experimental unit can be influ-
enced by both the treatment setting and the covariates
information of the experimental unit. For instance, in a
clinical trial of a new hypoglycaemic agent, the experi-
mental factor is the treatment that a patient receives and
it has two levels, the new agent (with a fixed dosage)
and placebo. The experimental units are the patients
who participate in the clinical trial. The patients are
partitioned into two groups. The group that receives
the placebo is typically called the control group, and the
group that receives the new agent is called the treat-
ment group. The treatment effect of the new agent is
then estimated by the difference of the average blood
glucose level of the treatment group and that of the con-
trol group. This estimator is called mean-difference or
difference-in-mean estimator (Rubin, 2005). The covari-
ates of experimental units include the patients’ age, gen-
der, weight, and other physical and medical informa-
tion. Naturally, the blood glucose level of a patient (the
response) is related to the treatment, as well as the phys-
ical and medical background (covariates information)
of the patient. If the distributions of covariates of the
treatment and control groups are significantly different,
the estimated treatment effect via the difference-in-
mean estimator can be confounded with some covariate
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effects. If the number of experimental units is large rel-
ative to L, the confounding problem can be elevated
by a completely randomised design. Asymptotically, the
completely randomised design results in the same dis-
tribution of covariates for all partitioned groups. In
other words, it achieves covariates balance. However,
in practice, the experimenter only conducts the exper-
iment once or a few times, each time using a single
realisation of the complete randomisation, and usually
for a finite number of experimental units. As pointed
out by many existing works in the causal inference lit-
erature, relying on complete randomisation can be dan-
gerous (Bertsimas et al., 2015; Morgan & Rubin, 2012).
Especially, when the number of experimental units is
small or moderate, covariate imbalance among the par-
titioned groups under complete randomisation could
be surprisingly significant, leading to inaccurate esti-
mates and incorrect statistical inference of treatment
effects (Bertsimas et al., 2015).

The problem of inaccurate estimates induced by the
covariate imbalance could be addressed by two types
of methods. One type of method is for observational
data. The premise is that a completely randomised
design is used to assign treatment levels to experimen-
tal units before data are collected. Then some adjusting
methods are applied at the data analysis stage. These
adjusting methods include post-stratification (McHugh
& Matts, 1983; Xie & Aurisset, 2016), propensity score
matching (Pearl, 2000; Rosenbaum & Rubin, 1983),
Doubly-robust estimator (Funk et al., 2011), coars-
ened exact matching (CEM) (Blackwell et al., 2009),
etc. The common theme of these methods is to apply
sophisticated weighting schemes to improve the origi-
nal difference-in-mean estimator and reduce the mean
squared error (consisting of the bias and variance) of
the estimator the imbalance of covariates. The alterna-
tive estimators also include the least-square estimator
(Wu & Hamada, 2011) of the treatment effects which
is based on parametric model assumption. The litera-
ture on the observational study in Causal Inference is
vast and we refer readers to Imbens and Rubin (2015)
and Rosenbaum (2017) for a more comprehensive
review.

Another kind of method aims at achieving covariate
balance before the random assignment of the treatment
levels (Kallus, 2018) at the design stage and before data
collection. First, the experimental units are partitioned
into L groups according to a certain covariate balanc-
ing criterion. Then, the L treatment levels are ran-
domly assigned to the L groups. Such methods include
randomised block designs (Bernstein, 1927), reran-
domisation (Morgan & Rubin, 2012, 2015), and the
optimal partition proposed by Bertsimas et al. (2015)
and Kallus (2018), etc. With a randomised block
design, the experimental units are divided into sub-
groups called blocks such that the experimental units
have similar covariates information in each block.

Then, the treatment levels are randomly assigned to
the experimental units within each block. Similar to
the post-stratification method, blocking can not be
directly applied when the covariates are continuous
or mixed. Users need to choose a discrete block fac-
tor based on continuous or mixed covariates. Morgan
and Rubin (2012) and Morgan and Rubin (2015) pro-
posed a rerandomisation method in which the experi-
menter keeps randomising the experimental units into
L groups to achieve a sufficiently small Mahalanobis
distance of the covariates between the groups. In Bert-
simas et al. (2015), the imbalance is measured as the
sum of discrepancies in group means and variances,
and the desired partition minimises this imbalance cri-
terion. Kallus (2018) proposed a new kernel allocation
to divide the experimental units into balanced groups.

In this paper, we only consider the controlled exper-
iments with continuous covariates. We propose a new
criterion to measure the covariate imbalance, and
the corresponding optimal partition minimises this
new criterion and achieves the best covariates bal-
ance between L treatment groups. The problem set-
up and assumptions are introduced in Section 2. In
Section 3, we propose the new covariate balancing cri-
terion, which measures the differences between the
kernel density estimates of the covariates of the L
groups of experimental units. In Section 4, we for-
mulate the partition problem into a quadratic integer
programming and discuss the choice of the parame-
ters in kernel density estimates and optimisation. The
proposed approach is compared with complete ran-
domisation and rerandomisation through simulation
and real examples in Section 5. We conclude this paper
with some discussions and potential research directions
in Section 6.

2. Problem set-up

In this work, we assume that the controlled experiment
has N experimental units and they are predetermined
and fixed through the data collection process. We first
illustrate the problem set-up using the case of L = 2,
based on which we derive the covariates balancing cri-
terion in Section 3. In the second part of Section 3,
we extend the design criterion from L = 2 case to the
general L > 2 case.

We assume that the response variable follows a gen-
eral model

yi=hz)+axi+e€, i=1,...,N. (1)

Here x; € {0,1} is the indicator of which of the two
treatment levels the experimental unit i recieves. Con-
ventionally, we use x; = 0 to present a baseline level, or
control, and x; = 1 to present the other level, or treat-
ment. We loosely use the terms control and treatment
just to make the distinction between the two different
levels. Assume the covariates of a experimental unit is



zeQCRY and z; = [z11, . .. ,zia] T is the observed
covariates of the ith experimental unit. The function
h is a square-integrable function. When x; = 0, h(z;)
is the mean of the response y;. The parameter « is
the treatment effect and ¢; is the random noise with
zero mean and constant variance o2, Furthermore, ¢;
is independent of the covariates of all the experimental
units, treatment assignment, and the random noise of
other experimental units.

Based on (1), the sample means of the response in
two groups are calculated as

oy = Zilyixi’ So = YLyl — xi)
nr nc
where nt and n¢ are number of experimental units in
treatment group and control group, respectively. The
most commonly used estimator for the treatment effect
« is the difference-in-mean estimator

a=yr—yc
=+ / h(z)dEr(z) — / h(z) dFc(z) + ér — éc,
(2)

where Fr and F¢ are the empirical distributions of the
covariates of the treatment group and control group,
respectively, and €7 = %Te’x’ and €7 = Z{V:+C(l_x’)
are the mean errors in the corresponding groups.

Before conducting the experiment, the randomness
of @ comes from three sources: random noise, the par-
tition of experimental units in the two groups (if it is
done through randomisation), and the random assign-
ment of two levels to the two partitioned groups. More
importantly, the three sources of randomness are inde-
pendent of each other in our framework. Accordingly,
the mean of estimator & is

E(a) = Ec {EPartition [ELA <& ‘ﬁl,ﬁz,é)‘ 6]} ’

where F) and F, are the empirical distribution of par-
titioned Group 1 and Group 2, respectively. The parti-
tion can be random or deterministic, depending on the
partition method used. Define LA as the Bernoulli ran-
dom variable representing the Level Assignment. Let
LA = 0 if Group 1 is assigned as the treatment group
and LA = 1if Group 1 is assigned as the control group,
and Pr(LA = 0) = Pr(LA = 1) = 1. Obviously, if we
only consider the random level assignments given the
partition and random noise,

ELA (& ‘Fl,ﬁ2,6>
=a + Pr(LA = 0) < / h(z)dF (z) — / h(z)dﬁz(z))

+Pr(LA =1) ( / h(z)dE,(z) — / h(z)dﬁl(z))
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+eér—ec
=a+ €T — €C.

Since the random noise is independent of partition,
regardless of distribution of the partition,

E(@) = Ec¢ {Epartition (¢ + €T — €0)} = .
Therefore, it does not matter what kind of par-
tition method we use, random or deterministic,
the difference-in-mean estimator is always unbiased
(Kallus, 2018), as long as the Level Assignment is fairly
and randomly assigned to the two partitioned groups.

Similarly, considering the three sources of random-
ness, the variance of & is

var(&) = E [( / h(z)dFr(2)
R 2
—/h(z) dFc(z) +€r — €c> :|
. . 2
=E |:</ h(z)dFr(z) — / h(z) ch(z)> :|
1 1
+ o2 (— + —) . (3)
nr  nc
In (3), the expectation in the last equation is with
respect to the randomness in the partition of the exper-
imental units, and the randomness of level assignment.

We can use a more detailed but cumbersome notation
and derive

2
E [(/ h(z)dEr(z) — / h(z)dﬁc(z)) }
= Epartition {ELA [ ( / h(z)dFr(z)
2
- / h(z)dirc(z)> ﬁl,ﬁz} }
= Epartition {Pr(LA =0) ( / h(z)dF, (2)

2
- f h(z)dﬁz(z>)

+ Pr(LA = 1) ( f h(z)dF,(z)

2
- / h(z)dfa(z)) }
. . 2
= Epartition [( / h(z)dF;(z) — / h(Z)sz(z)> }

As a result, once the partition of the experimental
units is established, the variance of difference-in-mean
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estimator var(a) in (3) is invariant to the treatment
assignment of the two groups, that is,

var(@) = Epartition [( / h(z)dF, (z)

. 2 1 1
—/h(Z)sz(Z)) } + o2 <— + —).
nr  nc

(4)

Thus, the experimenter should focus on the partition of
the experimental units to reduce var(&@). In the follow-
ing section, we propose an alternative partition method
that aims at regulating the variance of the difference-in-
mean estimator &.

3. Kernel density estimation based covariate
balancing criterion

In this section, we first show the derivation of the KDE-
based covariate balancing criterion for the L = 2 fol-
lowing the set-up in Section 2. Then we extend the
balancing criterion to the general L > 2 case.

3.1. ThecaseoflL = 2

Define a partition of the experimental units as g =
[g15---» gN]T, where g; = 0 if the ith experimental unit
is partitioned into Group 1 and g; = 1 if the ith experi-
mental unit is partitioned into Group 2. Note that g; is
different from the indicator variable x; in (1). The order
of partition and treatment level assignment does not
matter. One can partition the experimental units into
two groups first and then randomly assign treatment
levels. Or, one can randomly assign treatment levels
to the two groups (which are still empty) and fill the
groups with experimental units afterward. Therefore,
Group 1 is not necessarily the treatment or the control
group, that is, gi = 1 does not imply x; = 0 or x; = 1.

To construct a smooth approximation of the empir-
ical distributions of the covariates in two groups, we
estimate the corresponding distributions using the ker-
nel density estimation. The kernel density estimation
(KDE) is a popular technique to estimate the density
function of a multivariate distribution, which is a gen-
eralisation of histogram density estimation but with
improved statistical properties (Simonoff, 2012). We
use this approximation for two reasons: (1) the covari-
ates are continuous in nature, and (2) to bound var(@).
With a sample {z1, . .., z,} of a d—dimensional random
vector drawn from a distribution with density function
£, the kernel density estimate is defined to be

7 _l -1/2 - -1/2/, _ ..
f@ =~H] EK(H (z—2z)), (5)

where K(-) is the kernel function which is a symmetric
multivariate density function, and H is the positive def-
inite bandwidth matrix. With the smooth approxima-
tion of the empirical distributions, by (4), the variance
of the difference-in-mean estimator is approximately
upper bounded by

2
var(@) = E [( / h(z)dF(z) — / h(z)dﬁz(z)> }
+o? (L + i)
nr  nc
R R 2
~E [(/ h(z)fi(z)dz —/h(z)fz(z)dz> :|
+o? (L + i)
nr  nc
A A~ 2
<t [ [ i - ]
)
nr  nc

=i <[ |+ o (o + )

nr ne

(6)

where the inequality follows from Cauchy-Schwarz
inequality, || - ||% denotes the £,-norm of a function,
Fy and F, are empirical distributions of covariates in
Group 1 and 2, and fl andfz are the KDE of the covari-
ates of the two groups, respectively. Here the expecta-
tion is only with respect to the partition g as explained
in (4) in Section 2.

Since var(&) depends on the function 4, we cannot
directly minimise var(é&) with respect to partition with-
out making any assumption on 4 function. To make our
approach robust to any assumption on h, we propose
using

Buie) = [ 2| )

as the covariate balancing criterion to partition the
experimental units. It is the part of the upper bound that
is not a constant and only depends on the partition g.
This criterion also appeared in Anderson et al. (1994),
which proposed the same criterion as a two-sample test
statistic to test whether the two samples are drawn from
the same distribution. Their work further supports the
idea of using BH(g) as the partition criterion from the
covariate balancing perspective. A small By(g) value
suggests that the covariates samples in the two groups
tend to be drawn from the same distribution, then the
covariate information in the two groups is balanced.
To achieve a partition with small By(g), one can
either find the optimal solution that minimises By(g)
or rerandomise the experimental units until a suf-
ficiently small By(g) is obtained. The latter way is



doable when the asymptotic distribution of the crite-
rion is available. The asymptotic distribution of By(g)
can be constructed using bootstrap method (Anderson
et al., 1994). However, different from the simple nor-
mal asymptotic distribution of Mahalanobis distance
derived in Morgan and Rubin (2012), due to the com-
putation cost of the bootstrap method, calculating the
threshold of By(g) is computationally expensive. As a
result, we choose to construct a partition by minimising
By(g), and we call the partition g* = argmin,BH(g)
the KDE-based partition. Since we use the optimisation
approach, our partition scheme is actually determinis-
tic. In other words, the partition scheme we use is to
let g = g* with probability equal to 1. This discussion
also applies to the general L > 2 case. In Section 4, we
discuss in detail about how to construct the KDE-based
partition that minimises BH(g).

3.2. General case of L > 2

For the general case of L > 2, the covariate balancing
criterion is generalised as follows

(8)

2
2

BH(g) = max Hﬁ —f
Ls=1,...,L

Extending g to the case of L>2, the partition is
defined as g =[g1,. ..,gN]T, with g €{0,...,L —
1}, i=1,...,N. To show the generalised criterion
in (8) is reasonable, we explain it under two scenar-
ios: (1) the experiment involves only one factor with L
treatment settings; (2) the experiment involves multiple
factors and the experimental design contains L different
combinations of the treatment settings of these factors.
In the first scenario, the treatment effects of interest
are the pairwise contrasts between any two treatment
levels. The linear model in (1) is extended to

-1
yi = h(zi) + ZO[inl +e€, i=1,...,N.
=1

Here x;i’s are the dummy variables corresponding to the
assigned treatment level for the ith unit, and x; = 1 if
the ith unit is assigned to treatment level [, and x;; = 0
otherwise, for/ = 1,...,L — 1. Using this notation, the
treatment level L is set to be the baseline, and the rest
of the treatment levels are compared to it. The treat-
ment effectso; for/ = 1,...,L — 1 are estimated by the
difference-in-mean estimator
a; =y —yL, for I=1,...,L —1,

where yi is the sample mean of the observations
with treatment level k for k=1,...,L. Often, an
experimenter is interested in the pairwise contrasts
of the treatment effects o — a5, ,s = 1, ..., L. There-
fore, one would aim at minimising the largest vari-
ance of the corresponding estimator &; — &;, that is,
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maxje_;, 1 var(& — &;). Following the same deviation
in the L = 2 case, @; — @; is unbiased with variance

var(Q; — @)

2
= Epartition [( / h(z)dF(z) — / h(z)dﬁs(z)) }
+ o2 <l + l) .
nj N

Using the similar argument in (6), the largest variance
is approximately upper bounded by

max var(q; — Q)

Is=1,..,L

A~ A2 1 1
< max h||2E — H +o2—+—)}.
Nl,s:l,...,L{” Iz fi i 2 ny o n

Assuming all the L treatment groups have very similar
or the same size of experimental units, one should aim
at minimising max;,_; |[ﬁ —ﬂ||%. Thus, a natural
covariates balancing criterion is

2
-

Bate) = mox [

When L = 2, the criterion reduces to (7).

In the second scenario, we explain it via a simple
2 x 2 full factorial design with two two-level factors,
denoted by A and B. The full factorial design contains
L = 4 treatment settings. Using the generic notation
in the design of experiments literature, the four treat-
ment settings are (+,+), (+,—), (— +), and (—, —).
The sample mean of the observations in each treatment
group is y; and the sample size is ) for [ =1,...,L.
There are L—1 = 3 effects to be estimated, which are
main effects of A and B (denoted as a4 and ap) and
their interaction effect (denoted by a4 ). For simplicity,
we assume 1] = ... = ny = n, and the total number
of experimental units is N = 4n. The commonly used
difference-in-mean estimators for o4, ag, and a4 p are

0lA=%()71+)72—)73—)74)
OlB=%()71+)73—)72—)74)
aap=75 (1 —y2—y3+4).

Following the same derivation of (4), we obtain the
variance of 4

var(@s) = E B ( / h(z) [dﬁl (2) + dﬁz(z)]

2

2
—/h(z) [dfg(z) +dﬁ4(z)]> } + 07
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Using the argument of (6), var(&a) is approximately
upper bounded
2 0'2
]+
2 n

In this upper bound, only |[f1 + fz - f3 — f4||2 depends
on the partition. By triangle inequality,

o1 e s o
var(@) 5 7 IhIGE [Hfl +h =~

i +h-h -],
<o 5], + 57
i)

Similarly, the corresponding norms in the upper
bounds of var(&g) and var(dap) are upper bounded by

>

2

=

i +5 -1,
< -]+ -5
i +i -5 -5,
< -] A

=il + 2L

fi-il,+ Al

Therefore, to regulate the worst-case variance of these
three estimators, it makes sense to minimise the largest
pairwise difference ||f’l —fs||2, I,s=1,...,4. Thus, we
reach the same criterion as above

2
.

Bh(g) = max Hﬁ —fs
Ls=1,...,4

For general full or fractional factorial design, if there are
L treatment settings, there would be L sample means
of the response from each treatment group. If all the
L—1 effects (main effects, two-factor interactions, etc)
are parameters of interests, then all the pairwise dis-
tance of ||f; — fs||2 should be as small as possible so
that the covariate balancing is achieved at best across
all treatment groups. If only some of the L—1 effects are
of interest, it is still ideal to reach covariate balancing
across all treatment groups because the difference-in-
mean estimators are essentially linear combinations of
the group sample means.

4. Construction of KDE-based partition

Constructing a KDE-based partition of the experimen-
tal units is essentially an optimisation problem.

N A2
min max - 9a
g l,S:l,...,L ﬁ f; 2 ( )
st. 0<g<L-1, i=1,..,N, (9b)

N
D Hg=p=np j=0,...L—1 (%)

i=1

g integer, i=1,...,N. (9d)

Here J*(, is the indicator function that ¥4, = 1 if A
is true, and W (4} = 0 otherwise, and n; is the size of
the experimental units in the (j + 1)th group. This is
an integer programming problem which can be difficult
and computational to solve. In the next part, we formu-
late (9) into a quadratic integer programming problem
for L = 2. It can be solved efficiently using modern
optimisation tools.

4.1. Optimisation

To facilitate the formulation and computation of the
optimisation problem, we derive a more concrete for-
mula of By(g) defined in (8) for general L > 2. For
simplicity, we assume the number of experimental units
is equal for all groups, so N is divisible by L. Denote
the number of experimental units in the Ith partitioned
groupasn,and N = nL.Foranyl,s =1, ..., L, wehave

= [ i@ -i@| &

=/ R Y K (H - 2)

gi=Il-1

fi

2
—%|H|%gi;11< (H’%(z - zk)) dz
2

= n2|1H| / Z K<H_%(z—z,~)> dz

gi=l-1

2

+/ Z K(H*%(z—zk)) dz

gi=s—1

Z K (H_%(z — zk)) dz

gi=s—1

1
= 2 [sum(Wy) + sum(Wq,) — 2sum(Wi)],
where the matrix operator sum(A) =), j AG,j) is
defined as the summation of all the entries of a matrix.
Then, By(g) can be computed as

Bh(g) =  max e [sum(Wu)
L
+sum(Wg) — 25um(Wl,S)] , (10)

where the matrix W is a symmetric matrix of size N X
N, with elements defined as,

W(i, i) = /K(H_l/z(z— )’ dz, (11)



W, j) = WG, i)
= f K(H 'z —z)) K (H2(z - z))) de.
(12)

It is well-known that the choice of kernel function
K is not essential to the KDE (Silverman, 1986).
To illustrate the partition method, we choose the
commonly used multivariate Gaussian kernel K(x) =
(2m)~4/2 exp(— %x’ x). The entries of W using the Gaus-
sian kernel can be calculated analytically,

W, j)

= /Rd K (H_%(z - z,-)) K <H_%(z - zj)) dz
= / 2m) % exp (—l [(z —z)H Yz -2z)
Rd 2

+(z — zj)’Hfl(z —z)])dz

= (Zn)_d/ exp (— (z — m) H-!
RP 2

Zi+2z2j 1 oy—
(z— 5 ]>_Z(z"_zf)H 1(z,'—zj)>dz

S _’|H|2e( 1@i—z)H  @i~z))

As a special case, W(i, i) = |H|%2_dn_g. Note that
the above calculation applies when the domain of z,
denoted by €2, is unbounded, i.e. 2 = R4 If Q is a sub-
set of R?, we can derive the integration in the range of
2, and the resulting formula would involve the CDF of
normal. But here we still integrate with the range of R,
and the approximation error is small since the value of
the estimated density function should be small outside
of Q.

Given a specific partition g, we partition the W
matrix into L x L sub-matrices accordingly, such that
each sub-matrix W, corresponds to the experimental
units in group r and s. That is, the entries of sub-matrix
W, s are W(i, j) such that g; = r — 1 and gj = s — 1 for
r,s = 1,..., L. Notice that such a definition of the block
matrices depends on the partition g. Thus, the entries
of the sub-matrices would change as the partition is var-
ied. But the entries of the W for each pair of (z;,z))
remain the same for all 4,j = 1,...,N. So the entries
of the matrix W only need to be computed once for
computing By (g) values for different partitions.

For L = 2, the objective function By(g) = ﬁ
[sum(W1 1) + sum(W, ;) — 2sum(W; )]. Recall that
by the definition of partition vector g = [g1,...,gn] ",
gi = 0 if the ith experimental unit is in Group 1, and
gi = 1if the ith experimental unit is in Group 2. Then,
the objective function By(g) could be rewritten as

N N
=> "> (g — DWG,j)(2g — 1)

i=1 j=1

Bu(g)
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N N N N
=4| ) D> agWG) — D &) WG

i=1 j=1 i=1  j=1

N N
+ D WG, j)

i=1 j=1

N N
=4g " Wg—g'w)+ > Y WGij, 13)
i=1 j=1
where w = [ZJ.N:1 W(1,j),...,2ji1W(N,j)]T. As a

result, for L = 2, the optimisation problem (9) is refor-
mulated into

min g'Wg—g'w (14a)
4
N
> gi=N/2, (14b)
i=1
g binary,i=1,...,N, (14¢)

This is a quadratic integer programming that can be
solved efliciently by Gurobi Optimiser (Gurobi Opti-
mization, LLC, 2020) for small- or moderately-sized
experiments. For large-sized experiments or the more
general case of L > 3, stochastic optimisation tools such
as genetic algorithm (Miller & Goldberg, 1995) and
simulated annealing (Van Laarhoven & Aarts, 1987)
can be adopted to solve the optimisation. Regardless
of the optimisation method, the matrix W is com-
puted only once in the optimisation procedure, which
significantly cuts down the computation.

4.2. Choice of bandwidth matrix

The accuracy of the KDE is sensitive to the choice of
bandwidth matrix H (Simonoff, 2012; Wand & Jones,

1993). Many methods have been developed to con-
struct H under various criteria (de Lima & Atun-
car, 2011; Duong & Hazelton, 2005; Jones et al., 1996;
Sain et al., 1994; Sheather & Jones, 1991; Wand
& Jones, 1994; Zhang et al., 2006). Besides these meth-
ods, H can be chosen by some rules of thumb, including
Silverman’s rule of thumb (Silverman, 1986) and Scott’s
rule (Scott, 2015). But they may lead to a suboptimal
KDE (Duong & Hazelton, 2003; Wand & Jones, 1993)
due to the diagonality constraint of H. Another rule of
thumb uses a full bandwidth matrix as

H=n2/tds (15)

where 3 is the estimated covariance matrix with sam-
ple size n, and d is the covariate dimension. It can be
considered as a generalisation of Scott’s rule (Hérdle
et al, 2012). To compromise between the computa-
tional cost and the accuracy of the KDE, we propose
using the rule of thumb in (15). It is easy to compute
and leads to a more accurate KDE compared to the
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simple diagonal matrix. We did a series of numerical
comparisons to test the impact of H on the KDE-based
partition (not reported here due to the space limit).
The results show that (15) leads to similar partitions
compared with the more computationally demanding
methods such as cross-validation (Duong & Hazel-
ton, 2005; Sain et al., 1994) and Bayesian methods
(de Lima & Atuncar, 2011; Zhang et al., 2006). Simi-
lar observations were found in the work by Anderson
et al. (1994). As pointed out in Anderson et al. (1994),
the criterion By(g) aims at measuring the discrepancy
between the distributions from which the samples are
drawn, but not precisely estimating those distributions.
Although the bandwidth matrix H plays an important
role in the estimation of distribution, it is not surprising
that the KDE-based partition is robust to the choice of
H.

5. Examples

Example 1. Simulation Example. We compare the per-
formance of the proposed KDE-based partition with
complete randomisation and rerandomisation (Mor-
gan & Rubin, 2012) through a simulation example with
d = 2 covariates. Three different types of mean func-
tion h are considered.

Model 1. Linear basis: h(z) = By + 21'2:1 Bizi,

2
y=ozx+,30+Zﬂiz,-+e.
i=1

Model 2. Quadratic basis: h(z) = Bo + 21-2:1 Bizi +
Zfz:1 vizr + 0z122,

2 2
y=ocx+ﬂo+z,3,-z,~+2y,-zi2+921zz + €.
i=1 i=1
Model 3 Sinusoidal model: h(z) = By + B1 sin(¢p +
Ty1z1 + Ty222),

y=ax+ fo+ Pisin(p +wyi1z1 + 7y222) + €.

The notation x € {0, 1} is the indicator of the treat-
ment level assignment. To generate data from these
models, we need to specify the values of the parame-
ters, including the treatment effect o, and others §;’s,
yi’s, ¢ and 6. Let o = 2 for all models. In Model 1
and Model 2, the regression coefficients B;’s, y;’s and
6 are sampled from a uniform distribution U[—2,2]. In
Model 3, By, B1, y1 and y, are randomly generated from
U[—1,1], and ¢ is randomly generated from U[0, 2r].
The observed covariates are generated from multivari-
ate standard normal distribution N (0, I). All these val-
ues are fixed through the simulations. Since var(Q) is
only affected by the partition methods and is invariant
to the variance of the noise o', it does not matter to the

comparison of different methods. Therefore in this and
the next example, we set & = 0.

To compare the proposed approach with other ran-
dom methods, m = 1000 random partitions are gen-
erated via complete randomisation and rerandomi-
sation approaches. For each partition, the treatment
levels are randomly assigned to the two groups, and
m = 1000 designs are generated for the two random
approaches. Since the proposed KDE-partition is an
optimisation-based method, the partition is determin-
istic. With all possible treatment-level assignments,
there are only two designs. For each design obtained
from the three methods, we generate the response
data from the three models with the fixed parame-
ters and covariates. Then, the estimated mean squared
error MSE(&) = # >, (e —@&)* of the difference-
in-mean estimator is calculated for increasing sam-
ple size from N = 20 to N = 100, and they are plot-
ted in Figure 1.When the true relationship between
the response y and covariate z is linear, rerandomi-
sation outperforms the other two methods. Morgan
and Rubin (2012) showed that, compared to complete
randomisation, the rerandomisation with Mahalanobis
distance criterion can reduce var(¢) significantly when
the mean function h(z) = Y4, Bizj contains only the
linear terms of the covariates. When a more compli-
cated relationship such as Model 2 or 3 is considered,
the KDE-based partition outperforms the complete
randomisation and rerandomisation by a large margin.
In practice, the true mean function h is rarely as simple
as a linear function and usually contains higher-order
terms of the covariates. Thus, from a practical perspec-
tive, we suggest that the KDE-based partition is a better
choice.

We further explore the performance of the proposed
KDE-based partition in matching the empirical dis-
tributions of the covariates in two groups. We com-
pare the difference of the empirical distributions under
complete randomisation, rerandomisation, and KDE-
based partition. The discrepancy of the first and second
raw moments of the two empirical distributions over
the m = 1000 partitions are calculated and reported
in Table 1. In general, rerandomisation performs the
best in matching the means of the empirical distribu-
tions, which to some extent implies that it performs the
best under Model I (the model with main effect only).
The KDE-based partition consistently outperforms the
complete randomisation and is superior to the other
two methods for the second moments since it matches
the approximated density functions rather than just the
first and second moments.

Example 2. Real Data Example. We compare the
KDE-based partition with the complete randomisation
and rerandomisation using a real data set. The data set
is from a diabetes study (Efron et al., 2004). It contains
422 observations of d = 10 covariates and a univariate
response. The covariates are age, sex, body mass index,
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Figure 1. Comparison of the estimated mean squared error of difference-in-mean estimator using three partition methods for

Example 1.

Table 1. Discrepancy of moments under different partition methods.

Moments
N Method 7 2 z 2
20 Random 0.356 0.298 0.605 0.292 0.217
Re-random 0.026 0.021 0.612 0.286 0.235
KDE-based 0.107 0.179 0.390 0.082 0.010
40 Random 0.261 0.235 0.356 0.212 0.249
Re-random 0.019 0.017 0.366 0.233 0.258
KDE-based 0.177 0.011 0.097 0.071 0.272
60 Random 0.204 0.182 0.278 0.181 0.189
Re-random 0.015 0.014 0.282 0.188 0.192
KDE-based 0.048 0.040 0.036 0.006 0.164
80 Random 0.170 0.177 0.234 0.201 0.164
Re-random 0.013 0.013 0.238 0.210 0.163
KDE-based 0.031 0.122 0.182 0.144 0.003
100 Random 0.167 0.150 0.238 0.193 0.161
Re-random 0.013 0.011 0.244 0.198 0.158
KDE-based 0.079 0.063 0.136 0.180 0.068

average blood pressure, and six blood serum measure-
ments of the patients, and the response is a quantita-
tive measure of disease progression. The data are only
observational data and do not contain any experimental
factors.

To use this data, we do not assume any functional
form for h(z). Instead, we assume the observed quanti-
tative measure of disease progression is the sum h(z) +
€. Let the true value of the treatment effect = 2. Given
treatment assignment x, the response data including the
treatment effect is, y = ax + h(z) + €.

For different values of N, ranging from N = 12
to N = 60, m = 1000 partitions are generated using
complete randomisation and rerandomisation. As
explained before, for each N value, the optimal KDE-
based partition is deterministic. For each of the par-
titions obtained from the three methods, we ran-
domly assign treatment settings to the two partitioned
groups to obtain the design, and then compute the
response ¥ accordingly. The estimated mean squared
error MSE(Q) = % > (@ — @)? of the difference-in-
mean estimator is calculated for each N. They are shown
in Figure 2. The KDE-based partition outperforms the
other two partition methods for all sample sizes.

6. Discussion

In this paper, we introduce a KDE-based partition
method for the controlled experiments. By adopting a
smooth approximation of the covariate empirical dis-
tributions, we propose a new covariate balancing cri-
terion. It measures the difference between the distri-
butions of covariates in the partitioned groups. We
use quadratic integer programming to construct the
partition that minimises the covariate balancing cri-
terion for the two-level experiments. If the number
of treatment settings is more than two, other stochas-
tic optimisation methods can be applied. The design
generated via the KDE-partition can regulate the vari-
ance of the difference-in-mean estimator. Compared
with the complete randomisation and rerandomisa-
tion methods, the simulation and real examples show
that the proposed method leads to a more accurate
difference-in-mean estimation of the treatment effect
when the underlying model involves more compli-
cated functions of the covariates. The simulation exam-
ple also confirms that the covariates’ distributions of
the groups are better matched using the proposed
method.
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Figure 2. Comparison of the estimated mean squared error of difference-in-mean estimator using three partition methods for

Example 2.

It is worth pointing out that, when the KDE-
based partition is used, the classical hypothesis test-
ing procedure for the difference-in-mean estimator
is not applicable, since the partition is a determin-
istic solution and the random treatment assignments
only provide two different designs when L = 2. For-
tunately, a sophisticated testing procedure using boot-
strap method has been established and proven to be
powerful (Bertsimas et al., 2015) for the sharp null
hypothesis (Rubin, 1980), Hy : alltreatmenteffectsare0.
The detailed bootstrap algorithm is in Algorithm 1.

Algorithm 1 Hypothesis testing procedure

1: procedure HYPOTHESIS TESTING OF TREATMENT
EFFECT

2 Construct KDE-based partition, randomly
assign treatment levels to treatment groups, apply
treatments, measure the responses y;, i =1,...,N
and compute the difference-in-mean estimate &.

3: fort=1,...,Tdo

4 sample i; ~ unif (1,...,N) independently
forj=1,...,N,

5: construct KDE-based partition for
Zise e 2, and

6: compute the new difference-in-mean esti-
mate &'

7: end for

T
20—t Lyat = jan
1 .

8: the p-value of Hy is p = T

9: end procedure

One limitation of the proposed KDE-based parti-
tion is the ‘curse of dimensionality’. It is well-known
that KDE may perform poorly when the dimension
of the covariate is large relative to the sample size.
To overcome this problem, the experimenter can add
a dimension reduction step prior to the partition of
the experimental units. Based on the properties of the

covariate data, one can choose the appropriate dimen-
sion reduction method from various choices, such as
the principal component analysis (PCA) and the non-
linear variants of PCA. For instance, using PCA, the
experimenter can select a small but sufficient number
of the principal components and apply the KDE-based
partition on the linearly transformed covariates of a
much lower dimension. We also want to alert the read-
ers with another limitation of the KDE-based partition.
Similar to other optimal covariates balancing ideas,
such as Bertsimas et al. (2015) and Kallus (2018), the
KDE-based partition assumes all the influential covari-
ates to the response are known to the experimenter
and their data are included in the observed covari-
ates data. Otherwise, if there are latent but important
covariates, the optimal partition methods, including the
proposed KDE-based partition, might lead to an esti-
mator with large variance because it deterministically
balances the experimental units based on incomplete
covariate information. In this case, we recommend the
randomisation or rerandomisation methods.

The proposed KDE-based partition method can be
used in other scenarios beyond controlled experiments.
Essentially, we have proposed a density-based partition
method that minimises the differences of data between
groups. It can be incorporated into any statistical tool
that needs to partition data into similar groups, such
as cross-validation, divide-and-conquer, etc. We hope
to explore these directions in the future. In this work,
we do not assume any interaction terms between the
covariates and the treatment effect. However, interac-
tion effects are likely to occur in practice. Another
interesting direction is the partition of the experimental
units considering the interaction terms in the model.
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