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Abstract: Experimental designs for generalized linear models often depend on the specifica-
tion of the model, including the link function, predictors, and unknown parameters, such as
the regression coefficients. To deal with the uncertainties of these model specifications, it is
important to construct optimal designs with high efficiency under such uncertainties. Exist-
ing methods, such as Bayesian experimental designs, often use prior distributions of model
specifications to incorporate model uncertainties into the design criterion. Alternatively, one
can obtain the design by optimizing the worst-case design efficiency with respect to the un-
certainties of the model specifications. In this work, we propose a new Maximin & ,-Efficient
(or Mm-®,, for short) design that aims to maximize the minimum ®,-efficiency under model
uncertainties. Based on the theoretical properties of the proposed criterion, we develop an
efficient algorithm with sound convergence properties to construct the Mm-®,, design. The

performance of the proposed Mm-®,, design is assessed using several numerical examples.

Key words and phrases: ®,-Criterion, Design Efficiency, Efficient Algorithm, Model Uncer-

tainty, Optimal Design.
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1. Introduction

Optimal design for generalized linear models (GLMs) (Khuri et al., 2006; Fedorov
and Leonov, 2013) is an important topic in the design of experiments. Here, recent
theoretical and algorithmic developments include the works of Woods and Lewis
(2011), Yang et al. (2011), Burghaus and Dette (2014), Wu and Stufken (2014), and
Wong et al. (2019), among many others. A key challenge of the optimal design for a
GLM is that the design criterion often depends on the regression model assumption,
including the specification of the link function, the linear predictor, and the values
of the unknown regression coefficients. Many existing works focus on locally optimal
designs, given a certain model specification, as in Yang and Stufken (2009), Li and
Majumdar (2009), Wu and Stufken (2014), and Li and Deng (2020). In contrast to
the locally optimal design, one type of global optimal design considers the parameter
uncertainty under two directions. One direction is to consider a prior distribution of
the unknown parameters, when constructing the so-called Bayesian optimal design
(Khuri et al., 2006; Woods et al., 2017). The design criterion is typically the integral
of the local design criterion or efficiency with respect to the prior of the parameters.
When such integration is not analytically available, a standard solution is to sample
from the prior distribution, and to use the weighted average of local design criteria or
efficiencies as the objective function (Atkinson and Woods, 2015). Another direction

is to use the minimax/maximin approach to minimize the design criterion or to
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maximize the efficiency under the “worst-case” scenario. Sitter (1992) introduced a
minimax procedure for obtaining a design to deal with parameter uncertainty. King
and Wong (2000) proposed an efficient algorithm to construct a maximin design for
the logistic regression model under D-optimality. Imhof and Wong (2000) developed
an algorithm to maximize the minimum efficiency under two competing optimality
criteria using a graphical method. Note that existing studies on maximin/minimax
designs often focus on D-optimality and the uncertainty of the unknown parameters.
The biggest challenge in maximin/minimax designs is that the design construction
can be quite difficult (Atkinson and Woods, 2015).

In addition to the unknown parameters, there could be other uncertainties in-
volved in a GLM, such as the specification of the link function and the linear predictor.
However, the literature on GLM designs that deal with such model uncertainty is rel-
atively scarce. Woods et al. (2006) proposed a compromise design that minimizes
the weighted average of the criteria, and each criterion is based on a potential model.
Later, Dror and Steinberg (2006) proposed using clustered locally optimal designs,
and showed the resulting design had comparable performance with the compromise
design through numerical examples.

In this work, we propose a new maximin ®,-efficient design (denoted as Mm-®,))
criterion for GLMs using the ®,-efficiency (Kiefer, 1974), and develop an efficient

algorithm to construct the design. The proposed design, the Mm-®, design, can
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accommodate several types of uncertainty, including (i) uncertainty over the unknown
parameter values, (ii) uncertainty over the linear predictor, and (ii) uncertainty over
the link function. Here, we focus on an approzimate design (Atkinson, 2014), which
describes the design as a probability measure on a group of support points. This
provides a framework for us to investigate the theoretical properties of the proposed
design criterion, as well as a theoretical foundation from which to develop an efficient
algorithm with desirable convergence properties.

The key idea of this work is to adopt a continuous and convex relaxation (i.e.,
the “log-sum-exp” approximation) as a tight approximation of the worst-case ®,-
efficiency with respect to the uncertainty of the model specifications. With this
relaxation, we arrive at a tractable design criterion that facilitates the theoretical
investigation for developing an efficient algorithm to construct the corresponding
design. The merits of this idea are not restricted to the ®, criterion, even though
®, is already a quite general criterion that includes the A-, D-, E-, and I-optimality
criteria as special cases. A demonstration of the proposed approach based on the
®,,-criterion reveals that this convex and smooth relaxation idea can be applied to
other maximin designs, as long as the criterion is convex in the design. The proposed
framework, including the general equivalence theorem and the design construction
algorithm and its convergence, can be extended to other maximin designs as well.

Other main contributions of this work are summarized as follows. First, the
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proposed Mm-®, design criterion is very general, covering various design criteria,
such as D-, A-, E-optimality for estimation accuracy and I- and El-optimality for
prediction accuracy (Li and Deng, 2020). Second, in contrast to the Bayesian optimal
design, the proposed Mm-®,, design is a maximin design, which avoids having to
choose prior distributions on the model specifications. Third, the proposed Mm-®,,
design can flexibly accommodate the aforementioned three types of model uncertainty
in a GLM. Finally, the proposed algorithm has impressive computational efficiency
with sound theoretical properties, and can be easily modified to construct compromise
designs and Bayesian optimal designs.

The rest of the paper is organized as follows. Section 2 describes the Mm-®,
design criterion and investigates its theoretical properties. In Section 3, an efficient
algorithm is developed. Numerical examples are conducted in Section 4 to examine
the performance of the proposed method. We summarize the work with a discussion

in Section 5. All technical proofs are relegated to the Supplementary Material.

2. The Mm-®, Design Criterion and Its Properties

Consider an experiment with d design variables, = [z1, ..., 24|, and x; € §;, where
(2; is a measurable domain of all possible values for z;. The experimental region, €2, is
a certain measurable subset of {2y X - - - x€,. For a GLM, the response Y (z) is assumed

to follow a distribution in the exponential family. The link function, A : R — R,
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2.1 The Mm-®, Design Criterion6

Tg(ar:), and the mean of

provides the relationship between the linear predictor, n = 3
the response Y (2), u(), as p(@) = E[Y (x)] = h* (8" g(a)), where g = [g1, ..., g

are the known basis functions of the design variables, B = [31, fa,..., 3] are the

corresponding regression coefficient parameters, and h~! is the inverse function of

Ty, ..., Ty
h. The approximate design £ is defined as ¢ = , where 1, ... @,

Ay oy Ap
are the support points, and 0 < \; < 1 represents the probability mass allocated

to the corresponding support point ;. We use M = (h,g,3) to denote the model
specification of a GLM with link function h, the basis functions g, and the vector of

the regression coefficients 3. The Fisher information matrix of the GLM, M, is

1(&; M) = Z)\ig(fﬂz’)w(fci;M)gT(wi)a (2.1)

where w(z;; M) = [var(Y (z;))[h (u(wi))]Z]fl. Clearly, 1(&; M) depends on all three
components of M = (h, g, 3). Various locally optimal design criteria in the literature

are based on the Fisher information with a specified M.

2.1 The Mm-®, Design Criterion

To represent the uncertainties of a GLM, we denote the set of candidate link functions,
set of the candidate basis functions, and domain of the regression coefficients as

H, (G|H), and (B|H,G), respectively. The notation of conditioning represents the
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2.1 The Mm-®, Design Criterion7

dependence of the basis functions g on the choice of the link function h, and the
dependence of the regression coefficients B on the choice of both h and g. The
set M = {M = (h,g,8) : h € H,g € (G|H),B € (B|H,G)} contains all model
specifications of interest.

In optimal design theory, efficiency is a popular and scale-free performance mea-
surement used to compare designs for a given criterion. Specifically, for a generic
design criterion W(&; M), which is to be minimized, the efficiency of a design £ rela-

tive to another design ¢’ is defined as (Atkinson et al., 2006)

effy (€, &5 M) = ———= (2:2)

Using this definition of efficiency, the design £ is more efficient than the design &’
as long as the efficiency in (2.2) is larger than one. When a single model specification
is considered, that is, M = {M}, the criterion ¥ becomes a locally optimal design
criterion. When multiple specifications are considered, the criterion ¥ corresponds
to a global optimal design criterion, such as the Bayesian optimality, compromise
design optimality, minimax/maximin optimality, and so on.

Throughout this work, for a specified model M, we use the generalized ®,-
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2.1 The Mm-®, Design Criterions

optimality introduced in Kiefer (1974), which is

TP\ /P
D,(& M) = (ql tr lag[_(ﬁ)l(& M)*l (%@) ] ) , 0<p< oo, (2.3)

where f(8) = [f1(8), ..., f(3)]" are some functions of 8. Common examples are
linear contrasts of the coefficients, such as 8 and 3;— ;. Note that the ®,-optimality
is essentially D-optimality as p — 0 and E-optimality as p — oo. We denote 51(’&"3
to be the locally optimal design that minimizes the ®,-criterion for the model M.
According to (2.2), the ®,-efficiency of any design & relative to a locally optimal

design £", given a specific M = (h, g, B), is

; D, (0 M
et 6,675 M) = 222 (2.4

It is obvious that 0 < eﬁ¢p(§,§j}’t;M ) < 1 for any &, and a larger ®,-efficiency
represents a more efficient design &. Under the idea of a global maximin design,
we consider the maximin ®,-efficient design, which maximizes the smallest possible

effy, (€, fﬁ?t; M) over all M € M. That is, we consider the following maximin design:
€ = argmax inf, effa, (&, €015 M). (2.5)

In the optimization problem (2.5), the infimum is used instead of the minimum,
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2.1 The Mm-®, Design Criterion9

because it is not certain whether the minimum is attainable. To simplify the problem,
we take a closer look at the model set M. In practice, H usually contains several

candidate link functions. For example, the link function of a GLM for binary data

could be the logistic function h(p(x)) = In <1f S&)), probit function h(u(x)) =
&~ (u(x)), or complementary log-log function h(pu(z)) = In(—In(1—pu(x))). The link
function of a GLM for counting data could be the log function h(u(x)) = In(u(x)) or
the power function h(u(x)) = (u(x))®, with a proper choice of a. The set of candidate
basis functions (G|H) is often also finite. The typical basis functions used in GLMs
are linear and/or higher-order polynomials of . Note that (B|H,G), the domain of
3, is often uncountable when 3 is considered to be continuous. Consequently, the set
M is an uncountable set, which may not ensure an attainable minimum. A common
remedy (Dror and Steinberg, 2006; Woods et al., 2006; Atkinson and Woods, 2015;
Woods et al., 2017) is to discretize (B|H,G) and create a finite subset (B'|’H,G). The
corresponding surrogate set M' = {M = (h,g,3) : h€ H,g € (G|H),B € (B|H,G)}

is also a subset of the original M. Replacing M by M’ in (2.5), the solution of
& = argrgnaXMI,IéiAr}ll [eff%(g,gj’\;t; M)} (2.6)

is a sub-optimal solution of (2.5). When the discretization is adequate to form a close

approximation of M, the sub-optimal solution is expected to be close to the original
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2.1 The Mm-®, Design Criterion10

optimal solution.

The design criterion in (2.6) is still a challenging optimization, owing to the
nonsmooth objective function minyseay [effq, (&, €60 M)} (Wong, 1992; King and
Wong, 1998; Atkinson and Woods, 2015). We use “Log-Sum-Exp” as a tight and
smooth approximation to the minimum function, which is widely used in machine

learning (Calafiore and El Ghaoui, 2014). With “Log-Sum-Exp,” one has

m 1 - opt
lln <; exp ( G §°pt )>>] < N?élﬂl}[, effe, (& & 3 M)

m 1 -1
< [ln (; exp (eﬂ% c fopt ))) — ln(m)] : (2.7)

where m is the cardinality of M, that is, the number of potential model specifications

in M’. The equality in the first inequality is obtained when m = 1, and the equality in

the second inequality holds when effg (¢, §Opt ;) remains the same for all M; € M'.
-1

Thus, maximizing [ (Z exp (W))] leads to maximizing both the
lower and the upper bound of the worst (or the smallest) ®,-efficiency. Therefore,
instead of solving (2.6), which involves an inner minimization of ®,-efficiency, we

propose using the “Log-Sum-Exp” approximation of the worst-case ®,-efficiency as
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the design criterion, thus minimizing

LEA(& M) £ 1n (i exp ( e ;pt ))) . (2.8)

7j=1

1
m
Minimizing LEA (§; M) is the same as maximizing [ln (Z exp (W) ) ]
j=1 Mi

because In (Z exp (W)) > 0. We call LEA(¢; M), which aims at max-
j=1 v ’

imizing the minimal ®,-efficiency, the Mm-®,, criterion. The design that minimizes

LEA(&; M) is called the Mm-®,, design for the surrogate model set M’, denoted by

Mm
MI .

It is obvious that minimizing LEA(&; M) is equivalent to minimizing

s 1 < §; M;)
A(ﬁ,M)—;eXp (eﬂ:@p@ ] ) Z (—( ?Vf;t,M.))' (2.9)

That is, X" = argmin EA(§; M) = argmin LEA(; M').
& 3
In Section 2.2, we show the convexity of EA({; M) with respect to £, as well as

the necessary and sufficient conditions of the Mm-®, design ¥

2.2 General Equivalence Theorem

To develop an efficient algorithm to construct the Mm-®, design, we study the con-

vexity of the objective function EA(&; M') with respect to &, and summarize the
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2.2 General Equivalence Theorem12

necessary and sufficient conditions of the Mm-®, design )4 in a General Equiva-
lence Theorem. To keep this section concise, we present the major results here and
place the lemmas and proofs in the Supplementary Material S1.

For a model specification M; € M’ we simplify the notation of the infor-
mation matrix 1(&; M;) to 1;(§), the weight function w(x; M;) in (2.1) to wj(x),
the ®,-criterion value of a design ®,(&; M;) to ®J(&), and the ®,-criterion value
D, ( ?VI;;; M;) of the locally optimal design to @;ptj . Then, we can rewrite EA(&; M)
as EA(&; M) = Z exp ( 55,9) . Lemma 1 in the Supplementary Material proves the
convexity of EA('; M) with respect to . Given two designs £ and &', the directional
derivative of EA(&; M) in the direction of ¢’ is defined as follows:

EA((1 = a)é + o€, M') — EA(E, M)

Ve EA(f, M/) = ¢(§ g) = lim ‘ y ac [07 1]'

a—0T (6%

(2.10)
Lemma 2 in the Supplementary Material derives the specific formula for ¢(¢&',€). If
& contains only a single support point @ with corresponding weight A = 1, the direc-
tional derivative of EA(&; M) in the direction of &’ is a special case of Lemma 2. We
denote this directional derivative as ¢(x, £), and give its formula in Lemma 3 in the
Supplementary Material. Following Lemma 3, we also provide specific formulae for
o(x, ) for D-, A-; and El-optimality. Using these results, we obtain General Equiva-

lence Theorem 1 for the Mm-®,, design that minimizes LEA(&; M) or, equivalently,
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minimizes EA(&; M').

Theorem 1 (General Equivalence Theorem). The following two conditions of a de-

sign Y4 are equivalent:

1. The design V5" minimizes LEA(E; M) and EA(&; M).

2. ¢(x, E8™) > 0 holds for any = € ©, and the inequality becomes an equality if

x is a support point of the design &Y.

The General Equivalence Theorem 1 for the LEA criterion in (2.8) provides
important guidelines on how the support points of the Mm-®, design should be
added sequentially. The proposed algorithm for the Mm-®,, design (detailed in Sec-
tion 3) iterates between adding the support point and updating the weights A;,
which can be considered a Fedorov—Wynn-type of algorithm (Dean et al., 2015).
In each iteration, to achieve the maximum reduction of EA(&; M), the design point
x* = argmin ¢(x, §) < 0 is added into the current design.

After the design point x* is added, the weights of all design points in the current
design are optimized. Thus, it is important to investigate the property of the optimal
weights when the design points are given. Given design points xi, s, ..., ,, the

weight vector A = [\, Xa, ..., A\,] " is the only variable for the design. We emphasize

this by adding a superscript A in the notation of the design, and denote it as * =
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Ty, ..., Iy
{ } Consider EA(£*; M) as a function of A; that is,
A, o A

EA(,M/) . {A — ()\1’... 7)\71) : )\’L > O’Z)\z = 1} —> ieXp (%) (211)
j=1 P

The optimal weight vector A* should be the one that minimizes EA(&*; M) with
the given support points @1, ...,x,. Lemma 4 in the Supplementary Material proves
the convexity of EA(&*; M) with respect to A. Corollary 1 provides a sufficient and
necessary condition on the optimal weights for a design with fixed support points.

A special case of Theorem 1 is when the experimental region is restricted to the set

Q=A{xy,...,z,}.

Corollary 1 (Conditions of Optimal Weights). Given a set of design points &1, ..., &,

the following two conditions on the weight vector A* = [A}, ..., A\*]" are equivalent:
1. The weight vector A* minimizes LEA(£*; M') and EA (&M M').

2. For all x;, with \* > 0, ¢(x;,E)) = 0; for all x;, with A = 0, ¢(x;, &) > 0.

3. Efficient Algorithm of Constructing Mm-®, Design

This section details the proposed sequential algorithm, the Mm-®,, Algorithm, used

to construct the Mm-®,, design ). The proposed algorithm has a sound theoretical
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rationale and an efficient computation. Following a similar spirit to the sequential
Wynn—Fedorov-type algorithm, in each sequential iteration, a new design point x*
with the smallest negative value of directional derivative x* = argmin ¢(x,£) < 0
@
is added to the current design. Then, the Optimal-Weight Procedure (detailed in
Section 3.2) is used to optimize the weights of the current design points. Theoreti-
cally, the algorithm will terminate when the directional derivatives of all candidate
design points in the experimental region are nonnegative. However, this stopping
rule is not very practical, because it may require many iterations to make all the di-
rectional derivative values strictly positive (numerically, it is unlikely to have exactly
zero cases). A common practice is to terminate the algorithm when the directional
derivative 1;11618 o(x, &) > €, with a small negative e. Alternatively, one can use the de-
sign efficiency as the stopping rule, which terminates the algorithm when the design
efficiency is large enough, say close to one. In this work, we adopt the latter rule,
because the design efficiency directly reflects the quality of the constructed design.
Following the general definition of design efficiency in (2.2), we denote the effi-
ciency of a design ¢ relative to the Mm-®, design Y5 that minimizes the Mm-®,
criterion LEA as

o LEA(&Mm M

(3.1)

Because Eff pa (€, 857 M) involves E5*, which is unknown, we derive a lower bound

for it in Theorem 2. Instead of using Eff;pa (€, 857 M) as the stopping rule, we can
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use this lower bound.

Theorem 2 (A Lower Bound of LEA-Efficiency). Design V3" is the Mm-®,, design
that minimizes the LEA criterion in (2.8). The LEA-efficiency defined in (3.1) of any

design ¢ relative to &Y is bounded below by

Efftpa(§, s M) > 1+ QW'

Using the lower bound of LEA-efficiency in Theorem 2 as the stopping criterion,

2225 o (x,€)

W exceeds a

the proposed algorithm terminates when the lower bound 1 +
user-specified value, Tol.g. Here, Tol.g should be set close to one, say Tol.z = 0.99,

min ¢(z,£)

or equivalently TEEAQ(SW’) > —0.005. Note that Tol.s is chosen to be 0.99 in all the
numerical examples presented here. With this stopping rule, the sequential algorithm
used to construct the Mm-®, design is described in Algorithm 1. Here, MaxIter; is
the maximum number of iterations allowed of adding design points, and we set it to
be 200. To avoid including design points with almost zero weights in the constructed
design, in each iteration of Algorithm 1, one can exclude these design points (say,
weight < 107%%), and then obtain the optimal weights for the updated set of design
points. The candidate pool C could be evenly spaced grid points or some space-filling

designs. Because the directional derivatives of all points in C are evaluated in each

iteration of Algorithm 1, the computational time relies heavily on the size of C. When
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the grid points are adopted, the size of the candidate pool C increases dramatically
as the dimension d of the design variables x increases. Thus, we suggest using the
grid points when the dimension d of the design variables is small, and choosing the
Sobol sequence (Sobol, 1967) as the candidate pool when the dimension d is large.
The Sobol sequence is a space-filling design (Santner et al., 2003) that covers the
experimental region €2 well, and can be generated efficiently when the dimension d is
large.

In Section 3.1, we provide some theoretical properties on the convergence of
the Mm-®,, Algorithm. Note that the Mm-®, Algorithm requires optimizing the
weights A of the current design points in each sequential iteration. Section 3.2

describes the procedure on how to optimize the weights given the design points.

3.1 Convergence of the Mm-®, Algorithm

The sequential nature of the proposed Mm-®, Algorithm (i.e., Algorithm 1) makes
it computationally efficient because it adds one design point in each iteration. More-
over, we can establish the theoretical convergence of Algorithm 1, which is stated as

follows.

Theorem 3 (Convergence of Algorithm 1(Mm-®, Algorithm)). Assume the candi-

date pool C contains all the support points of the Mm-®,, design £\, The design
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Algorithm 1 (Mm-®, Algorithm) The Sequential Algorithm for Mm-®, Design.

1:

For each model specification M; € M’, construct the locally optimal design and
calculate the corresponding optimality criterion value @Zptj .

: Generate a candidate pool C of N points using a grid or Sobol sequence from

experimental region 2.

. Choose an initial design points set X© = {&,--- , &;;;} containing [ 4 1 points.

4: Obtain optimal weights A of initial design points set X© using Algorithm 2

(0)
(Optimal-Weight Procedure) and form the initial design £©) = { /’;(0) }

. Calculate the lower bound of LEA-efficiency of £©:

mig ¢(m,§(0))
- xre
eff.low =1+ Q—EA(f(O); ) .

. Set r = 1.

7: while eff.low < Tol.g and » < MazIter; do

10:

11:
12:

Add the point ) = argmin d(x, £77Y) to the current design points set, i.e.,
xzeC
X" = xr=Yy {x*}, where ¢(x, £M) is given in Lemma 3.
Obtain optimal weights A" of the current design points set X() using Al-
gorithm 2 (Optimal-Weight Procedure) and form the current design (™ =

X
{oo )
Calculate the lower bound of LEA-efficiency of £,
min ¢(z, )

xzeC

fflow=14+2—"———.
efl.low + EA(E0): M)

r=r+41.
end while
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constructed by Algorithm 1 converges to £\ that minimizes LEA(&; M'); that is,

lim LEA(¢M: M') = LEA(E)m: M),

In addition to its theoretically guaranteed convergence property, Algorithm 1
also converges fast, within about 50 iterations in all numerical examples, although
the maximal number of iterations is set to be 200. More details about the speed of
convergence and computational time are reported in Section 4.

Note that, at the beginning of Algorithm 1, the locally optimal design and the
corresponding optimality criterion value @;ptj need to be calculated for each model
specification M; € M'. This is because they are involved in EA(¢; M') and all
its derivatives. However, we only need to compute them once. Using the algorithm

proposed by Li and Deng (2020), we can construct local ®,-optimal designs for GLMs

efficiently with guaranteed convergence.

3.2 An Optimal-Weight Procedure Given Design Points

Based on Corollary 1, with a given set of design points x4, - - - , x,, a sufficient condi-

tion that A* minimizes EA(&*; M) is ¢(x;,€X) = 0, for i = 1,...,n or, equivalently
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(based on Lemma 3),

03 BE) = 3 A Y] (@M )g ), p=0

0 35 IR = 3 ) (i (FE))) " o @M gm0, 9> 0
(3.2)
where (6) =[] " oxp (248 ) and My(6) = (&) BIF,(O7 B () with
B, = oL on and F; (g) B;1;(€)"'BJ. For convenience, we denote the right side

of (3.2) as d,(x;, ). For any weight vector A = [y, ..., \,]", simple linear algebra

yields

N (3.3)
g Z <I>J< ><I>,%<£*) = ; Xidp (5, €*), p> 0.

Combining (3.2) and (3.3), the sufficient condition of the optimal weights is equivalent

to
> Ndy(x, &) = dy(x:,6), p>0, (3.4)
s=1

for all design points xq,---,x,. To obtain the optimal weight A* that minimizes

EA (£} M), the current weights of the design points are adjusted according to the two
sides of (3.4). For a design point x;, if d,(x;, £*) > Zn:l)\sdp(ws,fk), then the weight
of point @; is increased based on (3.4). However, if d,(x;,&*) < i:l/\sdp(:cs,g)‘),
the weight of point @; is decreased based on (3.4). Thus, followi;g the similar

idea in classic multiplicative algorithms (Silvey et al., 1978; Yu, 2010), the ratio
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(dp(a:i, &) /il )\sdp(ms,f)‘)>6 is a good adjustment for the weight of design point
—

x;. Because this weight updating scheme is inspired by the classic multiplicative algo-

rithm, we call it the modified multiplicative procedure, and describe it in Algorithm

2 in Supplementary Material S2.

Note that Yu (2010) proved the convergence of the classical multiplicative al-
gorithm (Silvey et al., 1978) used to construct a locally optimal design for a class
of optimality tr(I(¢*; M)P),p < 0, and Li and Deng (2020) extended the results to
a more general class of ®,-optimality. However, the proof in Yu (2010) cannot be
extended easily to prove the convergence of Algorithm 2, because the derivative of
EA(&* M') to \; cannot be reformulated into the general form in Equation (2) in
Yu (2010), where only one model is involved. Nevertheless, Lemma 4 shows that the
optimization problem solved by Algorithm 2 is a convex optimization,

m}%n EA(EM M) = 3 exp (‘I’%(i’\)) ’
j=1

Optj
q>P

st. 1"TA=1, A>0

with linear constraints. Some existing optimization tools are available to solve such
an optimization. Based on our empirical study, Algorithm 2 converges to a solution
as good as those of the commonly used optimization tools, but with a much faster

computational speed. Fzample 1 is relegated to the Supplementary Material S2
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owing to space limitations.

4. Numerical Examples

In this section, we conduct several numerical examples to evaluate the performance
of the proposed Mm-®,, design under different types of model uncertainty. Woods
et al. (2006) proposed a compromise design that optimizes the weighted average of
certain criteria, where each criterion is based on a potential model from some prior
distribution p(M). There are two ways to define a compromise design. The first
way aims at maximizing a weighted average of the local ®,-efficiencies. That is,
o™ = argmaxg Y70 p(M;) eff, (€ ,fi?jt; M;), which is henceforth called the eff-
compromise design. Another type of compromise design minimizes the weighted
average of a local ®,-criterion. That is, 6" = argming Y ") p(M;)®,(&; M;),
which is henceforth called the ®,-compromise design. The ®,-compromise design co-
incides with the Bayesian optimal design when considering only the uncertainty from
unknown regression coefficients. The performance of the proposed Mm-®, design
is compared to that of the eff-compromise and ®,-compromise designs. A detailed
discussion about the connection between the proposed Mm-®,, design and the com-
promise designs is relegated to the Supplementary Material S3.

For all the designs in the examples, the candidate pool C is constructed using

grid points, and each dimension of & has 51 equally spaced grid points. We use
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the default uniform prior distribution on the model specification for the compromise

designs. All algorithms are programmed using MATLAB and run on a MacBook Pro

with a 2.4 GHz Intel Core i5 processor. For f(8) = [f1(B), ..., fo(B)]" in ®,(&, M)

in (2.3), we set f;(B) = B;.

4.1 Model Uncertainty

In Ezample 2, we investigate the performance of the Mm-®, design and algorithm
when there is uncertainty in both the link functions and the basis functions in the
model space M.

Example 2. For an experiment with d = 2 input variables and one binary re-
sponse, consider three link functions: logit link (A, ), probit link (hs), and complemen-
tary log-log link (h3). Consider possible polynomial basis functions up to degree two,
that is, G = {91 = (1, z1,20) ", gy = (1,21, 20, 1172) T, g3 = (1,$17$2,$1ZE2,1’%,J}%>T} )
For the basis g5, the regression coefficients B3 = [B31,---, 836" are drawn ran-
domly from a standard multivariate normal distribution. For the basis g,, the
regression coefficients 8, = [fa1, -+, B24]" are drawn independently with s ; ~
N(Bsj, (0.583;)?), for j = 1,2,3,4. The variance (0.533;)? that depends on the re-
gression coefficient 33 ; allows a larger perturbation for 3, ; when the corresponding
Bs,; is large. This accommodates the situation in which the values of the regression

coefficients could change when the quadratic terms are not included in the model.
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For the basis g;, the regression coefficients 8, = [B1.1, 812,013 are drawn inde-
pendently with 81, ~ N(8s;,(0.535,)?), for i = 1,2,3. Thus, the model space M
consists of nine models: M = {M = (h,-,gj,ﬁj)?flyjzl}. We generate 100 parameter
sets B = {834, Bs, B3} to form 100 model spaces. For each generated model space, we
construct the Mm-®,, design, eff-compromise design, and ®,-compromise design.

To compare the designs, we use the ®,-efficiency defined in (2.4) as a larger-the-
better performance measure. In particular, we consider ®y(&; M) (i.e., }Di_r% (& M))
and @4 (&; M), which are the D- and A-optimality, respectively. For each model space,
we compute the @,-efficiency in (2.4) of all three designs relative to the corresponding
locally optimal design. The locally optimal design fﬁ’t is obtained using the algorithm

of Li and Deng (2020). For each model space, we calculate the worst-case efficiency

as min effg (¢, 53}1’:; M;).
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Figure 1: Box Plots of Worst-Case A- and D-Efficiency of Mm-®, Design, Eff-
Compromise Design, and ®,-Compromise Design across 100 Randomly Generated
Model Spaces

Figure 1 shows the box plots of the worst-case A- and D-efficiency of the Mm-®,,

design, eff-compromise design, and ®,-compromise design across 100 different model
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Table 1: Minimum and Median of the Worst-Case A- and D-Efficiency across 100
Randomly Generated Model Spaces for Comparison of Designs

Worst-Case A-Efficiency  Worst-Case D-Efficiency

min median min median
Mm-®,, Design 0.46 0.69 0.70 0.85
Eff-Compromise Design  0.25 0.66 0.55 0.83
®,-Compromise Design  0.14 0.61 0.63 0.80

spaces. The red asterisks “x” in the box plots denote the minimum worst-case A- and
D-efficiency, and the larger the minimum, the better the design. Table 1 summarizes
the minimum and median of the worst-case A- and D-efficiency of the three designs.
The results show that the Mm-®,, design gives the largest values on the minimum and
median of the worst-case efficiency. In terms of the worst-case A- and D-efficiency,
the Mm-®,, design outperforms the eff-compromise design for 98% and 94% of the
100 model spaces, respectively. Note too that the eff-compromise design often gives
the highest mean efficiency for a given model space, which is expected because it
is designated to achieve the maximum mean efficiency. However, the mean A- and
D-efficiency of all three designs are comparable, on average, over the 100 model
sets. The computational times of Algorithm 1 to construct the Mm-®, design, eff-
compromise design, and ®,-compromise design are about 8.57 seconds, 8.59 seconds,
and 6.48 seconds, respectively, for A-optimality, and 6.03 seconds, 7.98 seconds, and

3.30 seconds, respectively, for D-optimality.
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4.2 Uncertain Regression Coefficients

In Ezample 3, we further illustrate the advantages of the Mm-®,, design by considering
uncertain regression coefficients with the specified link function A and basis functions
g. Note that when the regression coefficient space B is continuous, a discretization
is needed. In Ezample 3, we investigate the performance of the proposed design and
algorithm over the unsampled values of the regression coefficient 3.

Example 3. For a univariate logistic regression model with experimental domain

T, consider a regression

Q = [-1,1] and a quadratic basis, that is, g(z) = [1,z, 2?]
coefficient space B = {3, € [0,6], 3, € [—6,0], B3 € [5,11]}. Because B is continuous,
we choose a Sobol sample of size 26 and the centroid B, = [3,—3,8]" of B, that
is, m = 27, to form the surrogate coefficient set B’. The Sobol sample is a low
discrepancy sequence that converges to a uniform distribution on a bounded set,
and is widely used in Monte Carlo methods (Sobol, 1967). The surrogate model
set is M' = {M = (h,g,8) : h,g,B € B'}, where h is the link function of the
logistic reg<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>